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1 Introduction

The most frequently occurring final states in high energy particle collisions contain hadronic
jets. Because of their large production cross sections, jet observables can be measured to
a high statistical accuracy, and are therefore ideal for precision studies. Examples include:
the measurement of the strong coupling, ag, from jet rates and event shapes in electron-
positron annihilation; the determination of the gluon parton distribution function (and
also ag) in deep inelastic lepton-hadron scattering into two plus one jets; the measurement
of parton distributions in hadron-hadron scattering from single jet inclusive production
and vector boson plus jet production. Often the relevant observables are measured with
experimental precision of a few per cent or better. Thus, theoretical predictions with
the same level of accuracy are necessary to fully exploit the physics potential of these
measurements. This usually requires the computation of next-to-next-to-leading order
(NNLO) corrections in perturbative QCD.

The straightforward calculation of jet cross sections in QCD perturbation theory is
however hampered by the presence of infrared singularities in the intermediate stages of
the calculation, which must be treated consistently before any numerical computation may
be performed. At next-to-leading order (NLO) accuracy, using a subtraction scheme to
handle infrared divergences is the approach of choice. Exploiting the fact that the kinematic
singularities of QCD matrix elements are universal, one builds process and observable
independent counterterms that simultaneously cancel both the kinematic singularities in
real-emission phase space integrals and the explicit e-poles in one-loop virtual corrections
(here the use of dimensional regularisation in d = 4 — 2¢ dimensions is implied).

At NNLO accuracy, the calculation of fully differential cross sections is a challenging
problem, and various extensions of the subtraction method at NNLO have been proposed,
see e.g. refs. [1-12]. In very broad terms, when setting up any subtraction algorithm, two
quite distinct difficulties must be addressed. First, one must define subtraction terms that
properly regularise the real-emission phase space integrals and second, one must combine
the integrated form of these counterterms with the virtual contributions, so as to cancel
the infrared divergences of the loop matrix elements. In a rigorous mathematical sense, the
cancellation of both the kinematic singularities in the real-emission pieces and the explicit
e-poles in the virtual pieces must be local. On the one hand, this means that the subtraction

terms and the real-emission contributions must tend to the same value in d dimensions, in



all kinematic limits where the latter diverge. On the other hand, the cancellation of explicit
e-poles between the integrated subtraction terms and the virtual contributions must take
place point-wise in phase space. This in particular implies that it is possible to write the
integrated counterterms in such a form that they can be explicitly combined with virtual
contributions, before phase space integration. From a practical point of view, the full
locality of the subtraction scheme is also important to insure good numerical efficiency of
the algorithm. Finally, the construction should be universal, i.e. independent of the process
and observable being considered. This avoids the need to tediously adapt the algorithm to
every specific problem.

However, defining universal subtraction terms that are completely local in the real-
emission phase space is rather delicate, and there is very little freedom to define these in
such a way, that their integration over the unresolved phase spaces becomes convenient.
One way to address these difficulties is to use counterterms that are not fully local, but
whose complete analytic integration is tractable. For example, the antenna subtraction
method [8-11] builds the subtraction terms from so-called antenna functions. These are
simple enough to be integrated analytically, but they do not reproduce azimuthal correla-
tions in gluon splitting, and the cancellation of € poles in the real-virtual contributions is
also nonlocal. Because of this, actual numerical computations with the antenna scheme,
such as the calculation of total rates [13-16] and event shapes [17-21] in electron-positron
annihilation, require the use of an auxiliary phase space slicing. Another option is to de-
velop dedicated subtraction schemes that are applicable only to some specific processes,
such as the production of colourless final states, vector bosons [22, 23] or the Higgs boson
[24], in hadron collisions. Then, one may even propose to dispense with the subtraction
method altogether, and adopt a strategy such as sector decomposition (see [25] and ref-
erences therein), where the full Laurent expansions (in €) of the real-emission and virtual
pieces are computed directly, and their finite pieces combined.

Nevertheless, despite the subtleties, it is possible to define completely local countert-
erms for real radiation, by first carefully matching the various QCD factorisation formulae
for unresolved emission [4, 26], and then extending the expressions obtained over the full
phase space [1-3]. Recall that in the scheme of refs. [1-4], the NNLO correction to a generic
m-jet cross section with no coloured particles in the initial state (work towards an extension
to hadron-initiated processes is presented in ref. [27]),

O_NNLO _ / dU%E{-QJm-i-Q _|-/ dU%YHJm-I—l + / do';/lema (1.1)
m+2 m+1 m
is rewritten as a sum of finite integrals
O [ a0 [ aniio+ [ano, (12)
m+2 m+1 m
where
RR,A RR,A RR,A
dop 50 = {darprﬁwfmﬂ —doy, 5% Im — [dam+2 mr = dop 5 Jm] }6:0’ (1-3)

dopii© {{dafy{m\il + Adgii’fl}z]mﬂ - [daﬁfl + </1d071}11}r7§1)A1]Jm}€:07 (1.4)



and
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(1.5)

are each integrable in four dimensions by construction. In egs. (1.1)—-(1.5) J,, (n = m + 2,
m + 1 and m) denotes the jet function which defines the infrared safe observable being
calculated. All approximate cross sections appearing in egs. (1.3)—(1.5) above have been
defined explicitly in refs. [1-3]. To finish the definition of the scheme, we must compute
once and for all the one- and two-particle integrals appearing in egs. (1.4) and (1.5). In
previous publications, we have shown that it is possible to adapt and employ well-known
techniques of loop integration, such as integration-by-parts identities and solving of differ-
ential equations [28, 29|, the method of Mellin—Barnes (MB) representations with harmonic
summation [30-34] and also sector decomposition [25], to compute the integrals that arise,
analytically and numerically. Indeed, all one-particle integrals, denoted formally by fl
above, have been evaluated with these methods [35-37]. The actual computation of inte-
grated subtraction terms leads to a large number of rather elaborate phase space integrals,
however these can to be computed once and for all.

In this paper, we compute the integral of the iterated singly-unresolved subtraction
term, f2 daii’zA 12 over the phase space of the unresolved partons. We find that the inte-
grated approximate cross section can be written as the product of the Born cross section for
the production of m partons, times a new insertion operator (in colour space), I gg). We use
the method of MB representations, as developed in this context in ref. [37], to compute the
integrals appearing in the various building blocks of the insertion operator. In several cases
we find multi-dimensional MB integrals that are very difficult to compute fully analytically,
and hence complete analytic expressions cannot be obtained at present. Nevertheless, in
these cases direct numerical integration of the appropriate MB representations provides a
fast and reliable way to obtain final results. We stress that for phenomenological appli-
cations, this is all that is required, hence, we make no severe effort to compute analytic
expressions beyond those that are trivial to derive. As a numerical check, all integrals are
evaluated using sector decomposition as well. Thus, each integral in this paper is obtained

by two independent computations.

Since the paper is quite long and rather technical, readers mainly interested in under-
standing the general structure of the results or in some applications are advised to first
read sections 2, 3.1 and 5. Section 2 sets the notation, and in section 3.1 we present the
final expression for the integrated iterated singly-unresolved approximate cross section in
eq. (3.13) and the new insertion operator Igg) in eq.(3.14). These two equations are the
main results of this paper. In section 5 we discuss some examples, specialising the general
formulae to the case of two- and three-jet production processes. The explicit definitions of
the integrated counterterms are then presented in sections 3.2 and 4. The technical details

of computing the integrated subtraction terms are given in appendices.



2 Notation

2.1 Matrix elements

We consider processes with coloured particles (partons) in the final state, while the initial-
state particles are colourless (typically electron-positron annihilation into hadrons). Any
number of additional non-coloured final-state particles are allowed, too, but they will be
suppressed in the notation. Resolved partons in the final state are labeled with letters
chosen form the middle of the alphabet, i, j, k, [, ..., while letters chosen form the end of
the alphabet, r, s, t,..., denote unresolved final-state partons.

We adopt the colour- and spin-state notation of ref. [38]. In this notation the amplitude
for a scattering process involving the final-state momenta {p}, |[M({p})), is an abstract
vector in colour and spin space, and its normalisation is fixed such that the squared am-
plitude summed over colours and spins is

IM|? = (M[IM) . (2.1)
This matrix element has the following expansion in the number of loops:
M) = M)+ (2.2)

where |M(©) denotes the tree-level contribution and the dots stand for higher-loop contri-
butions, which are not used in this paper.

Colour interactions at QCD vertices are represented by associating colour charges T';
with the emission of a gluon from each parton . In the colour-state notation, each vector
|M) is a colour-singlet state, and colour conservation implies

(Z Tj> M) =0, (2.3)

where the sum over j extends over all the final state partons of the state vector |M) (recall
that we are considering processes where the initial state is colourless), and the equation is
valid order by order in the loop expansion of eq. (2.2).

Using the colour-state notation, we define the two-parton colour-correlated squared
tree amplitudes as

(M = (MO T T MO (2.4)

and similarly the four-parton colour-correlated squared tree amplitudes,

0
MO, o = (MOUTTL, T, T HMO). (2.5)
We will also use the following ® product notation to indicate the insertion of colour charge
operators between (M| and |M(©):

IMOP @ T, Ty, = (MO|T;-T), | MO,
(2.6)
MO @ {T;- Ty, T;-Ti} = (MOYT; Ty, T;- T HMO)



The colour-charge algebra for the product > (T;)"(Tx)" = T;-T, is:
T; T, =T, T; if i+#k; T? =Cy, . (2.7)

Here Cj, is the quadratic Casimir operator in the representation of particle i and we have
C, = Cp =Tr(N2—1)/N. = (N2—1)/(2N,) in the fundamental and C; = Cp = 2T N, =
N. in the adjoint representation, i.e. we are using the customary normalisation T = 1/2.
We also use squared colour-charges with multiple indices, such as T2, = Cy,, and
T? . =C s~ In such cases the multiple index denotes a single parton with flavour obtained
using the flavour summation rules: odd/even number of quarks plus any number of gluons
gives a quark/gluon, or explicitly for the relevant cases at NNLO:

g+9=9q, q9g+q=g9, g+g=4g,
(2.8)

q+9+9=q, q+q+q4=¢q, 9g+q+q4=9, g+g+g=g.
2.2 Cross sections

In this paper we shall need to use only cross sections of producing n partons at tree level
with n = m, the Born cross section, and n = m + 2, the so-called doubly-real correction.
We have

A0 ({p) =N Y déu(in}) |M<° ({phP2, (2.9)

{n}
where N includes all QCD-independent factors and d¢, ({p}) is the d-dimensional phase
space for n outgoing particles with momenta {p} = {p1,...,pn} and total incoming mo-

mentum @,

dy
don(p1, -, 0n; Q) :H(z(ji'%é 2) (2m) d5(d>< sz>. (2.10)

i=1

The symbol > {n} denotes summation over the different subprocesses and S,y is the Bose
symmetry factor for identical particles in the final state. Then the Born cross section and
the doubly-real correction are simply

oh({p)) =dol({p})  and  doR,({p}) = doys({p}). (2.11)

The final result will also contain the phase space factor due to the integral over the
(d — 3)-dimensional solid angle, which is included in the definition of the running coupling

in the MS renormalisation scheme,!

d@=3)Q (4m)e
S, = /(%)“ “T0_o- (2.12)

'In the MS renormalisation scheme as often employed in the literature, the definition of the running
coupling includes the factor S = (4m)%e”“"?. The two definitions lead to the same expressions in a
computation at the NLO accuracy. At NNLO these lead to slightly different bookkeeping of the IR and UV
poles at intermediate steps of the computation, but the physical cross section of infrared safe observables
is the same. Our definition leads to somewhat simpler expressions at the NNLO level.



2.3 Momentum mappings and phase space factorisation

The iterated subtraction terms are written in terms of momenta obtained via various
combinations of the basic collinear and soft mappings of ref. [1]:

X . Y5 (3
(Do 25 DY 25 ()50, (2.13)

where both 25 and Y—§> may label either a collinear or soft mapping. (In general, both R
and S are multiple indices.) As the above notation suggests, the final set of m momenta
are denoted by tildes, while hats indicate the intermediate set of m + 1 momenta. In
kinematic expressions where only the label of a momentum is displayed (we shall discuss
several examples below), the tilde and/or hat is inherited by the label, and we write for
instance g, ir and %, where the latter two label single momenta. However, since these
mappings affect only the momenta, but not the colour and flavour (apart from the flavour
summation rules of eq.(2.8)), we shall omit the hat and tilde from flavour and colour
indices.

We also use labels such as (ir) to denote a single momentum that is simply the sum
of two momenta, p;,) = p; + pr-

Importantly, both the collinear and soft momentum mappings lead to an exact factori-
sation of phase space as follows:

Dot =5 017 0 ddnpt({Phes s Q) = ddn (B}, QAP (pr i Q)] (2.14)
Phosr 2 010 0 dduri((Pharn: @) = don ({0}, Q)P (p,5 Q)] (2.15)

where here and below the bar denotes either a hat, when n = m + 1, or a tilde, when
n = m. The one-particle factorized phase spaces can be written in the following form. For
the collinear mapping we have

ir — n— —€)— SF
[dpg,n)(pmpir;Q)] = dair(l_air)Q( D=9 12—7_?d¢2(pi7pr;p(ir))@(air)@(l_air)7 (216)

where the p(;) appearing on the right hand side is understood to be written in terms of
mapped momenta, that is péf )= (1 — )Pl + a; Q. For the soft mapping we find

wr

2
[Ap) (pr: Q)] = dyrg(1 — yrQ><"—”<1—f>—1§—ﬂd¢2<pr, K; Q0001 —uq),  (217)

where the momentum K is massive and K? = (1 — y,0)Q?. As the notation above indi-
cates, o, and y,g will become integration variables, hence their precise definitions are not
important and will not be recalled here. (See ref. [1] for details.)

2.4 Kinematic variables

Three types of kinematic variables are used to write the iterated subtraction terms. The
precise definitions of these were given in ref. [1]. Here we recall only those formulae that
are needed for defining every expression precisely in the present paper.



e Two-particle invariants, such as

Sir = 2DiPr,  Spys = 2D 1Dy s or sig = 2pyQ and s, = 2pik, . (2.18)
The two-particle invariants scaled with Q? are denoted by Yij = Sij/ Q2.

e Momentum fractions z; , and z ; for the splittings p,. — pi+p, and Dy — D+ Dy,

. y"
Zig = - and 257 = k@ (2.19)
YiQ + YrQ ’ yEQ + y}\Q
with 2., = 1 — 2;; and z; 7 =1—275. Momentum fractions for three-particle
splittings are denoted by
YkQ
2k tr (220)

ot vty
with the expressions for z,.j; and 2,4 obtained by cyclic permutation. In the fol-
lowing, all momentum fractions will be integrated out, and so they will be expressed
using the integration variables.

We also use extensively the uncontracted and contracted eikonal factors:

25]'1

Mo v
b, D
Sl (r) = —

=—4—  Su(r) =gwS(r) =
DjDr PrDL ! Het

. (2.21)
SjrSir
As mentioned above, the sum of two momenta is often abbreviated with the two indices
in parenthesis, e.g. pf' + p}' = p’ér), which is used systematically in other occurrences, such
as
25 (iry1 i1 + Syl

Sk = sikork mnd - St = Sresi (Sit+ s (2.22)

Finally, we express the integrated iterated subtraction terms as functions of the fol-
lowing (combinations of) invariants:
Yij

T (2.23)
YiQ YiQ

T = YiQ and Yiio=
In the centre-of-momentum frame (i.e. the rest frame of Q*), we find that z; = 2E;/\/s
(s = @Q?) is simply the scaled energy of parton i, while Y;; o = (1 — cos xi;)/2, where y;; is
the angle between momenta p!’ and py .



3 Integrating the iterated singly-unresolved approximate cross section

3.1 The integrated approximate cross section and insertion operator

We begin by recalling that the doubly-real emission cross section is defined precisely as in

eq. (2.9), with n = m + 2. Then the iterated singly-unresolved approximate cross section
times the jet function reads [1]

1
Aoy 20 T =N 3" démea({p}) g Z [Z 5 A M (PP
{m+2} {m+ t k#t
; ( 00 A (D = s ML (D )| @ ().
At

(3.1)

where the notation ® J,,, means that the jet function multiplying the different terms in the

sum depends on different sets of momenta. Explicitly, the three terms in eq. (3.1) are given
by

00 MO, (NI 0 Jn({(5)) =

-y [cktckif ({5 TR0 40,0500 g, ((5)FH0)
r#£k,t

— CiChunCSp) T ({B T HD) — €y Sy T ({5 }FHHO) (3.2)
1 NG <17
£ X (OO (P H ) = oS I (7)) |
i#£rk,t

0,0 ~ (Kt
+ Cpy SO T ({ By KDY

SOV UMY (P © Jn({B}) =

‘Z{Z[ (5 e (Y0 0) + SieS n((BY0T)

r#£t ~i#rt
= SO I (PYT ) = SCuSEV I (a3)
_Sagzrt87£30)J ({ }(Tt)—i-SCZTtCSWtST?O ({ } rt)

#8897 ((7) )



and

Cu S0 Ao MO, ({pD))? © Jn({B}) =

-y [ckts 09 5 ({5 ) E70)

r#£k,t

1 7 ~ (7
+ 20 (G T ({5 T) = €SSy T ({5} ’“>> (3.4)
i#£rk,t

= CuS,Chre SOV T ({5 1T D) = €SSO0 T ({7 1)

S S0 1 ({710 >] TSSO (50

All momentum mappings in egs. (3.2)—(3.4) lead to the factorisation of the original
m + 2 parton phase space into an m parton phase space times two one-parton phase space
measures, as discussed originally in ref. [1], and recalled in section 2.3 above. Symbolically,

we may write

dém+2({p}) = don({ P })[dp1,m)[dp1mt1] - (3.5)

The jet function does not depend on the variables of the factorized one-parton measures,
[dp1,m][dP1,m+1], so we can compute the integral of eq. (3.1) over the phase space of the two
unresolved partons, independently of the jet function J,,, that we shall omit in the follow-
ing. The result of the integration is a long expression of kinematics-dependent functions

— each corresponding to a specific iteration of unresolved limits of the squared matrix



elements — times colour factors,

RR,Aj5 g ,U2 97
/2d Om+2 =N Z dom, {P})S{ 2 [ Se <Q2>}

{m+2}
1 1)
x> { 25[ > <[thcl(€t2"]fkftfr T5)? + E [CCSp, ) T3, T
t Skt T Ltk

0 0
- [thcktrcsl(ct?r]fkft (th)z - [thcrk‘tsl(ct)]frfkft (T3)2>

0
+ Z Z ( th ir; kt Vo fes fzfer;tTZT‘ [thcir;ktcsl(gt?r]fkfthth?>
r#£k,t i#£rk,t

)
+Z th kit | S‘katc TJ'Tl}

0) 0 l
+ Z Z |: < Cirt fzfr(TZZT‘) Z[S (Egr)t]gf]zleﬂ T‘Tl

r#£t i#£r,t 7,0

[S Czrt(Egr)t]fzfr (TZQT‘)2> [S Czrtsg’t)]fz (TQ)

ir;t irt ir;t
Jil

+3 Z[Stsg)](ak)(ﬂ) (T, T;T}} _i_Z[StS?(g)](i,k)CATiTk]
r#t “i,k,g,l ik

0
By [ 3 ([cktstcé,?t]fkft (T2,)° — [CoSiCanS T2
k#t Sr#kt
— [CSiCSWUT?)? + Z[cmstSﬁ’](jJ)T%TjTl)
75l

0
+ Z Z < ths CSZT)t]foTTZzTT% - [thStCSlr,tSS"t)]TgT%>
r#£k,t i#£rk,t

T Z[cktsts,i?]wcATjTl] } ® IMOP,
75l
(3.6)

where the operation ® means insertion of the colour charges between <M£2)| and |./\/l,(3)>,
see eq. (2.6). Three types of colour connections appear in eq. (3.6), and the functions on
the right hand side — the “non flavour summed” (see below) integrated counterterms —

,10,



take three different forms accordingly:

r 2\ €72
; Xs K
(300 = |25 (55) | O mamiap,
r 2\ €72
(00 _ | % H (001G A2y 4 40) 2
LXQ B _%SG (@) X715 Tl M ol
r 2\ €72
(00) _ [ H (0)1(i,k) (5,1 (0) 2
,B T e <@> (X3 1 PO0IM g (3.9)

where e.g. [Xfo)

|#,... represents a function that results in the integration of the counterterm
Xl(o’o). The quadratic Casimir operators that appear in egs. (3.7) and (3.8) are factored out
to make the integrals [Xfo)]fi___ and [XQ(O)]%’I) (together with [Xéo)](i’k)(j’l)) dimensionless

(0)

in colour-space. As the notation implies, [X;"]; = and [XQ(O)] ... may also carry flavour
dependence. Incidentally, we note that for every integrated counterterm in eq.(3.6), we
consider everything inside the square brackets to be simply part of the function’s name. In
particular, the lower indices inside square brackets loose their meaning. Nevertheless, we
choose to keep these in order to exhibit from which counterterm each function derives.

Eq. (3.6) is not yet in the form of an m-parton contribution times a factor. In order to
obtain such a form, we must still perform summation over unresolved flavours, rewriting the
symmetry factor of an m + 2-parton configuration to the symmetry factor of an m parton
configuration. The complete details of this counting are not very difficult, but rather long,
and are given in appendix A. As a result of these manipulations, we obtain functions —
the flavour summed integrated counterterms — denoted by (X (0))%?“', which are specific
sums of the non flavour summed integrated subtraction terms, symbolically

<X(o>) =[x

It is important to realise that the flavour indices on the left and right hand sides of the

G
fi..

GD--e

Fron (3.10)

above equation need not match up. Indeed, the non flavour summed functions on the right
hand side carry dependence on unresolved flavours, while the flavour summed functions
on the left do not, by definition. Similar change in notation was introduced in the dipole
subtraction scheme [38], where we find the definitions (see eqgs. (7.21) and (7.22))

if i=q.q, (3.11)

Vg (€) +neVyq(e), if i=g, (3.12)

1
2
where the functions V;(€) on the left hand side represent flavour summed integrated coun-
terterms, while the V;;(e) functions on the right hand side are not flavour summed. In the
present paper, due to the extra complications of an NNLO subtraction scheme, we believe
that it is helpful to make a sharper notational distinction between flavour summed and
non flavour summed integrated counterterms.

— 11 —



After summation over unresolved flavours in eq. (3.6), we find that the final result can
be written in the form

/2 a0 M2 = 4oB & 19 ({p}:6) (3.13)

where the insertion operator (in colour space) has three contributions according to the
possible colour structures in egs. (3.7)-(3.9):

10 [osg (£ 2 . ¢y, c% ¢ lc
12 = g% o2 Z 12,f; +Z 12,1, Cfi | Cfi
i k#i

+ 3 [s“) Uhey +ch§3 e ]Tsz (3.14)
Il#d

2> Sg)’(i’k)(j’l){Tsz,TJTJ}},

ik G 12
with f; denoting flavours, and C; = Cr = Tg, Cy=Ch= T; as in eq. (2.7).
Egs. (3.13) and (3.14) are the main results of this paper.

In the following, we shall define and compute each term appearing in eq. (3.14). First,
in terms of flavour summed integrated counterterms discussed above, we get:

00, = (€uel) ~ (Cucuts) — (Cucusl),
+(800), — (Si0mGsi)) | — (SiCmsty) | (3.15)

+ (5SS

i

~ (Cusici) | + (CuSiChnsty) -

i

(0)
12 Jfife <th ir; kt)f i (thcir;ktcskt;r>fifk

—(Cusisi)), + (Cusisisty) (3.16)

D0 = (0us) "+ (3i89) " - (cusisit) . .17)
0 = () (sis) " - (s,05,89) "

<thSt rt) ) (3.18)

SOERGD _ <St )(””” (3.19)

On the right hand sides of these equations the flavour dependent functions are the flavour
summed integrated counterterms discussed above. They depend on the kinematics through
variables of the type x; and Y;; ¢. The latter dependence derives from integrating an eikonal
factor which is always multiplied with a colour-connected squared matrix element. In order
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to make the results more transparent, we hid the arguments of the functions, but kept the
relation to the colour-connected matrix elements, shown as upper indices.

3.2 Flavour summed integrated counterterms

Here we list the flavour summed integrated counterterms appearing on the right hand sides
of egs. (3.15)—(3.19), written in terms of the integrated subtraction terms.

Collinear-type terms:

1. Collinear-triple collinear:

0 0 1 0 0
(thcl(ct2">q = [thcl(ct“qgg + §[thci(ct2n]ggq + nf[cktcl(ctz*]Q"?'q )

(3.20)
0 1 0 0 0
(thCé,tZ,)g = §[thcl(ct2“]ggg +ng [thcl(gtl]qqg + 2n¢ [thcl(cti]gCIQ'
2. Collinear-double collinear:
<C/€t ir; kt) w th ir; kt]qg 399 >
0) 1 0
<thcir kt) . ~ 9 [CiC zr)kt]qg ;99 T nf[cktcgr)kt]qg 594 »
0) 1
<C Cz(r kt) 9q 5 th zr)kt]gg q9 + nf[cktcgr)kt]qq q9 » (321)
0) 1 0
(thcgr kt) 9 1 [CriC zr)kt]gg ;99 T Nf [thcgr)kt]qq qq
1 0 0
+ §nf([cktcz(r;)kt]qq;gg + [thcz(r;)kt]QQHI‘f) .
3. Collinear-soft-collinear:
(0u82)"" - Ui
" (3.22)
0) \ Y 1 0 i\l
<thcsl(§t3r)g = §[thcsl(ct)r]gjgl) + nf[ckt$](gt)r](] ) .
4. Collinear-triple collinear-soft-collinear:
0
<thcktrcsl(§t)r) = [thcktrcsl(gt?r]q97
(3.23)
(cc CS()) [CC SO 10+ 16[Cy Crpn S 1o
kt~ktr Pkt:r p kt~ ktr P kt;rlgg LYk Y ktr M ket:rlag
5. Collinear-double collinear-soft-collinear:
0 0
<thci7’§ktcsl(ct?r> of = [thcir;ktcsl(ct?r]qg )
(3.24)

0 1 0 0
<thcir;ktcsl(ct?r>gf = §[thcir;ktcsl(et?r]99 + nf[cktcir;ktcsgggr]qu

i.e. it is independent of the flavour f.
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6. Collinear-double soft:

0 (jvl) 1 0 ; 0 ',l
<ths§€t)) - §[thsl(€t)]§]]971) + nf[thSI(ct)]é]q .

7. Collinear-triple collinear-double soft:

0 1 0 0
(thcrktsl(ct))f = §[thcrktsét)]fgg + nf[thCrktSI(ct)]fqti-

Soft-type terms:

1. Soft-triple collinear:
0 0
<Stc(' )>q = [StC( Z]qg’

irt ir

irt irt

0 1 0 0
<Stc(' )> - §[Stcgr2]99 + nf[StC(- )]qti-
g
2. Soft-soft-collinear:

init) irstlqg

(4,0 .
<StCS(O)) J _ [StCS(O)](j,l)

G 1 | |
(:39) " = S8, BLIED + el 5150

int) ir;tlgg irstlqq
3. Soft-triple collinear-soft-collinear:
<Stcirt(S§E;)t>q = [Stcirtcsgg;)t]qg7
<StcirtCSz(70’;)t>g = %[Stcirtcsgg;)t]gg + nf[StCirtCSz(g;)t]Q‘j'
4. Soft-triple collinear-double soft:
(Stcirtsy(g))f = [Stcirtsy(g)]f-
5. Soft-soft-collinear-double soft:
(8:6805) " = [5.G5,r891600,
i.e. it is independent of the flavour f.
6. Soft-triple collinear-soft-collinear-double soft
(Stcirtcsir;tsg)>f - [StcirtCSir;tsv("g ] )
i.e. it is independent of the flavour f.

7. Soft-double soft:
(3,k) (5,1 N
(s:81) " = iSOUY,

T

(Stsy(»g)>(j’l) - [Stsy(»g)](j’l) :

— 14 —

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)



Soft-collinear-type terms:

1. Soft-collinear-triple collinear:

0 0 0
(thstcl(cr)t)q = [thstcl(cr)t]qg + [thStCl(cr)t]Q(]’

(3.34)
0 0 0
(thstcér)t)g - [thstcér)t]gg + an[cktstcér)t]qti-

. Soft-collinear-soft-collinear:

0 0
<thStCSz(r;)t) fq = [thStCSz(r;)t]qg’
) (3.35)
0 0 0
<thStCS(. )) , = §[thStCSz(r;)t]gg + nf[cktstcsgr;)t]qq7

it
i.e. it is independent of the flavour f.

. Soft-collinear-triple collinear-double soft:
0 0 0
(CuS1CirSY) | = [CuiSiCureS{] + [CuSiCoruaS (3.36)
i.e. it is independent of the flavour f.

. Flavour-dependent soft-collinear-double soft:

(D

(Cusisty) | = [Cusis1 (3.37)

Actually, as shown here, and also seen in the precise definition of integrated flavour-
dependent soft-collinear-double soft subtraction in eq.(4.37), the integral itself does
not depend on the flavour. Distinguishing the flavour dependence serves book-keeping

purposes: the flavour-dependent subtraction contributes to CS&OQ)’f(z] D iy eq. (3.18), while

the flavour-independent one in eq. (3.39) contributes to Sg)’(j’l) in eq. (3.17).

. Soft-collinear-soft-collinear-double-soft:
0 0
(CrrSiCSinaSY) = 1018108, (3.38)
fife

i.e. it is independent of both flavours fi, fs.

. Flavour-independent soft-collinear-double soft:

(Cusis) ™ = [CuSiSI00. (3.39)
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3.3 Analytic expressions to O(¢2)

In the next section we compute the functions on the right hand sides of egs. (3.20)—(3.39) in
terms of basic integrals that are calculated in appendices. Expanding these integrals in € we
obtain the Laurent expansions of the functions on the left hand sides of egs. (3.20)—(3.39).
Analytic expressions for the expansion coefficients have been obtained to O(e~2) accuracy
in all cases, and we present these below. However, in the case of the single and double
poles as well as the finite terms, we encountered several instances where obtaining complete
analytic expressions was not feasible. This being the case, we made no severe effort to derive
analytic expressions beyond those presented here. Higher order coefficients in the Laurent
expansions will be given numerically in the form of a computer code elsewhere. In the
following results we use df, = D{, + dje (see appendix B and especially eq. (B.8)) and the

abbreviations foln)  11C T
B _ o1t _ A — RTf 3.40
o(ne) = =7 30, : (3.40)
N
1—(1—2)k
by = — e .
(z, N)=Inz Z ’ (3.41)
k=1
Collinear-type terms:
1. Collinear-triple collinear:
(0) Ca +2Cy, 1 1
<thcktr>ﬁ($i) T, 6—4 =\ 4w = 385,40 — 5Bo(ne) O, g
(3.42)

1 Ca Cr 1 9
—— — Ot .
+e3Cf BO<CfZ, ><4 fisg T fz,g>+o(€ )
2. Collinear-double collinear:

1
(%ng;)kt)ff (i, k) = — — [2<ln i +1n xk) = 305,,40f,g — Bo(ne) 05,905, 9
iJk

1
—5 (3 + Bo(nf)> <5fi,q Ofpg T 0firg 5fk,q>} +0(e7?).

(3.43)
3. Collinear-soft-collinear:
0) \ (4.0 1 2
<thCS,(€t)r)f (i, Yji0) = ——4 Inz; + X(yo, Dy — 1)
(3.44)

1 1
vl [m Vitg ~ 3 (300 + Bolnn) 51 ) | + 01,
When e.g. i = j, the functions <thCS,(£)r); )(azi, Yii.o) and <thCS,(£)r>;]7 )(:cl-, Yjiq) are

different (where i # j,1 is understood) but up to this order, the functional dependence

on the variables is the same.
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4. Collinear-triple collinear-soft-collinear:

1 2
(thcktrcsgz]t?r> . (i) = a3 <1D i + %(yo, Dy — 1)>

(3.45)
11 _
+ 39 <3 5f¢,q + Bo(nr) 5fi,g> + O(e 2) .
5. Collinear-double collinear-soft-collinear:
1 2
<thcir;ktCSl(£?r>ff (@i Yie@) = 3 - 3 <1n i + % (yo, Dy — 1))
iJk
(3.46)

11
t33 (3 O£, + Bo(ng) 5fi,g> +0(e7?).

As implied by the notation, this function depends on both x; and Yj; . However, the
dependence on the latter vanishes up to this order.
6. Collinear-double soft:
(4,0 1 1 1 3 3 _
(Cs?) <nu»:5[—g+;iﬁﬂw@+@me%—n+5—16am0}+0@Qy
(3.47)
7. Collinear-triple collinear-double soft:
(0) _Ca |1 1 , 1 9
<thcrktskt >fi abTen [6—4 — (420, Do —1) = 5 Bo(ne) | | +O(e77).  (3.48)
This function is independent of the kinematics.
Soft-type terms:

1. Soft-triple collinear:

C 2C¢ [ 1 2
(Stcggzz)f.(xi) _ At n [—4 3 (hlxi + E(ymDé))

207, €
(3.49)
11 1 2 (C .
+t33 (3 Ofiq + 5Bo(ne) 05,9 + B0 (C_Anf> 5fi79>:| +0(e77).
2. Soft-soft-collinear:
o\ D) 12
(68%) @ ¥ing) =~ + 5 ( M + 200, D))
1 1 o
+6_3 lanl,Q— 3 3(5fi7q+80(nf) 5f¢7g +O(€ ),
(3.50)

0)) ) 5[ 12 A
(StCSir;t>f, (i, Yig) = sl T ata Inz; + 3 (yo, Dp)

7

1 3
+3 [hl Yaq—g <3 81,4 + Bo(ns) 5fi,g>] +0(e7?).
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3. Soft-triple collinear-soft-collinear:

1 2
a3 (111%‘ + X (yo, D()))}

(Stcz‘rt(sz(‘g;)t) £ (z:) = %[

(3.51)
11
T3 <3 81,4 + Bo(ny) 5fi,g> +0(e7?).

€

4. Soft-triple collinear-double soft:

= O = 2 (20D + 20 D - 1) |+ 06 52)

(sCst), = =56 a @

i

This function is independent of the kinematics.

5. Soft-soft-collinear-double soft:

(4,0 1 2
(518, @ Yn@) =~ + 5 (z<yo,Da> + X (yo, Df - 1))

1
+ 3V +0(?),

o) (&) 1 5) 1
<StCSir;tS£t)>fi (#1.Yio) = 5 [_ T3 (mi + 10 (yo, Dfy) + 9% (yo, D}y — 1))}
L -2
+ 6_3 ln}/;‘l7Q + O(E ) .
(3.53)

6. Soft-triple collinear-soft-collinear-double soft

1({2 1
(5CunSi8) (o) = 3| 5 = 5 (s + 12000 D) + 350,05~ 1)) | + 017,
(3.54)

7

7. Soft-double soft:

(i.k)(3.k) 11 1
<St5$)) Yie YisQ Yike) = 5 [6—4 3 <1n Yik,Q +1n ijﬂ

(g0, Db) + S (o, D 1)) Lo(e?).
(3.55)

. )\ BRIGR) . . .
The expansion for <StS,,t ) is valid for the restricted kinematics discussed around

eq. (D.54).
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Soft-collinear-type terms:

1. Soft-collinear-triple collinear:

0 Ca+C ; 1 2
(CusCl) o) = 0| = 5 (s 2om, ) )

Cy, € €
- c (3.56)
— - ~F -2
+ 39 (35fi,q + BO(CAnf> 5fi79>:| + O(e )
2. Soft-collinear-soft-collinear:
1 2
(thStCSz(‘B;)t> L (k) = a3 <1D Tg + E(yo,D6)>
- (3.57)
+33 <3 0fu,q T Bo(nr) 5fk,g> +0(e7?).
3. Soft-collinear-triple collinear-double soft:
2 4 _
(CusiCuiSiY ) =5~ (2@0,%) + Sy, Df - 1)) +0(€).  (358)

This function is independent of the kinematics.

4. Flavour-dependent soft-collinear-double soft:

() 1 1 _
(Cusis?) (V@) = -5+ <1n Yito + 25(yo, Db) + 25 (yo, Dy - 1)) +0(e72).

fi
(3.59)
5. Soft-collinear-soft-collinear-double-soft:
1 2 _
(Csus), | =2~ (S D)+ S D= 1)) + 0. (3.00)
iJk

This function is independent of the kinematics.

6. Flavour-independent soft-collinear-double soft:

() 1 1
(CusiSy) Vi) = -5+ <1n Yio + 25(yo, Db) + 25 (yo, D - 1)) +0(e7?).

(3.61)

Substituting the expansions in egs. (3.42)—(3.61) into egs. (3.15)—(3.19), we obtain the
following explicit expressions for the kinematics dependent functions appearing on the right

hand side of eq. (3.14). For ng{fi we find

0 Cy—Call 2
C&Q),fi(xi) = f? [6—4 -3 (E(yo, DGy) + E(yo, Dy — 1))}
Cp +Ca 1 1 Crng 3.62
+0(e7?).
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The function ng) it simply vanishes up to this order in the e-expansion

ng),fifk (4,21, Yik,g) = O(e7?).

The two-parton colour-correlated soft function, 8502),(]‘ ’l), is

; 1/1 3 3
Sgg)v(ﬂvl)(Y'th) = 6—3 <§ In Y}LQ — E(yo, D()) + E(yo, D6 — 1) + g — gBO(TLf))

+0(e7?).

For ng)}(,] D we obtain (the Yj; o dependence vanishes up to this order)

ngoz)f(] (21, Yig) = 3 [4 Inz; — 25(yo, D) — 2% (yo, Dy — 1)

~ (3850 + Bulan) 370 ) + 002,
if 4 is distinct from both j and [, while for e.g. i = j we have

i\l 17 3
(:S§02)f(l Nz, Yag) = 3 [5 In; — 2% (yo, Do) — 5%(y0, Dy — 1)

7
8

gg)’(i’k)(i’k), reads

Finally, the four-parton colour-correlated soft function, S

R 27t 1
SOERNER (v ) = 3 <1n Yir,q + X(yo, Dy) + (0, Dy — 1))

+0(e7?),

if only two indices, say i and k are distinct, while

OV Gk ik 271 1/1 1
Si2 MO Vi, i Yire) = 1 — (5 Yo+ 5 In¥ing

+HmD&+ﬂwD&4O+O&%,

— = (3 8f,.q + Bo(n) 5fi,g>] +0(7?).

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

for three distinct indices. Furthermore, the above expression is valid in the case of restricted

kinematics of three hard partons.

4 Integrated counterterms

In this section we list the explicit definitions of the functions that appear on the right hand

side of an equation among egs. (3.20)—(3.39).
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4.1 Integrated collinear-type counterterms
1. Collinear-triple collinear:

0 167T € kt7 k 1 1
[CoiCil st = ( Q2> /2[ e api ) —

Skt Slgt?

1 s.0.(0) (41)

2 .
X mpfkftfr <Zt,k,2?,;&ay]&?/ylaf@ve)
T
X f(a07akt7d(m7€))f(a07 kt’f?d(m 6))

where Pf f( f) are the strongly-ordered three-parton splitting kernels averaged over the
spin states of the parent parton (see appendix D.1 and especially eq. (D.27)). The sub-
traction terms contain the spin-dependent kernels, that together with the corresponding
kinematic variables can be found in ref. [1]. In appendix D.1 we prove that the integrals
of the spin-dependent kernels give the same contribution as those of the spin-averaged
ones, therefore, we can use the latter when integrating the subtraction terms.

The f(ap,a,d) functions, defined in eq. (B.6), represent simple modifications to the
original subtraction scheme of ref. [1]. As discussed in appendix B in detail, these mod-
ifications do not destroy the cancellation of singularities, but serve improved numerical
control, efficiency and stability, and result in simpler, m independent, integrated coun-
terterms. The rest of the counterterms are modified similarly by appropriate f functions,
and below we shall simply include these factors without further comment.

The integrated counterterm is computed in appendix D.3. In terms of the functions Z((:i)
(i =1, 2 and 3) of egs. (D.31)—(D.33) we find

(0) Chi RONIO!
S Cf:t [Z Z Z fktfml fkftd fktth ( ktro € @0, do; j,1)
T Ri=1 j=—11l=-1

0) ,(0 3
_5fktgb§”k)ftb§‘k1fr( ()( Fir § € @0, do, 1) - Zé)( Fir + € @0, do, ))]

(4.2)
The various coefficients read:
by =0y =2, b =2, ﬁ_ﬁig’ (4.3)
Chor1 =2 Cholo = —2, Chon =1 ¢, hor =0,
o1 =0, 0= g_i ) w1 = bag - Ch2 = ~b4g (4.4)
Chop1 =4, Choro = 4 ot = 05 Chgn = —b3)
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(0) (0)

with Coqj = Cagui» and finally
(0) 0 _ (0) (0) (0) © _ 40 _ 0 _1
dqg72 - dgq 1 — 1 9 dgq 2 — d q9, 1= 0, dgg71 == dgg72 == dqq,l = dqq72 = 5 . (45)

2. Collinear-double collinear:

1672

>2
o k I 1 J0 I 1 o
LT o PR Gt ) g PR (o7 250

2
T Tir

rr

0
[thcgr;)m]fkft;fifr = <

x f(ao, ke, d(ms,€)) f(ao, az 4, d(m,€)) .
(4.6)

(4)

The integrated counterterm is computed in appendix D.4. In terms of the function Z;
of eq. (D.39) we find

4 .
[thcgr kt fkftafzf’r Z Z kaft,] flfr, )(xﬁaxz G,Oéo,do;j,l), (47)
j=—1l=-1

with coefficients given in eq. (4.4).

3. Collinear-soft-collinear:

0) 16l 1672 ,.\° e 1. 11
(ClCSiI 75 = - (—S @2) / [Api ) AP 15851 (F) T Py, (i )
€ t

X f(ao’akta d(m’ 6))f(y05y?Q’ d,(m’ 6)) )

where SAA( ) is the eikonal factor defined in eq. (2.21) and P}S}t are the spin-averaged
two- parton Altarelli-Parisi splitting kernels (see egs. (D.18)—(D.20)).

The integrated counterterm is computed in appendix D.5. In terms of the function IéS)

of eq. (D.53) we find

(0) 1(4.0) (5)
[Crt Bl = Z fkft iLe (@ 5 Y570 5 mo Yim o€ ; a0, do, yo, do3 i), (4.9)
i=—1

()

with coefficients given in eq. (4.4). The integral Z,” with full kinematic dependence, as

written above, first appears in computing NNLO corrections to four-jet production.

4. Collinear-triple collinear-soft-collinear:

2
(CaCrn SO 1, . = (ﬁcz%) / (dp{™)[dpt*Y 1]i Gr L1 po) (o
t tr ktirlJkJt Se 2 o et Sl;t rk:t Skt Tkt Tt ’

x flao, are, d(m, €)) f(yo, y7q, d (m,€)) .
(4.10)
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This integrated counterterm is also computed in appendix D.5. In terms of the function

I((:6) of eq. (D.70) we find

[Crt Crer CS ktr fkft - Z cfkft] th,O;e,Ozo,do,yo,da;j), (4.11)
Jj=—1

with coefficients given in eq. (4.4).

. Collinear-double collinear-soft-collinear:

2
0 1672 7 ket 2 =71 1 o
[thcir;ktcsl(ct3r]fkft = <—Se Q2> /Z[dpg,rgl][dpg,nzﬂ]— AAS—MT—QP}k}t(Zt ks €)

x f(ao, are, d(m, €)) f(yo, y7q, d (m,€)) .
(4.12)

This integrated counterterm is also computed in appendix D.5. In terms of the function

I((:6) of eq. (D.70) we find

0 0 .
[Ck‘tcir;k‘tcsl(ct?r]fkft = ka)ft jI((,' )( ktQ YF@'VEE,Q; €; @0, do, Yo, d6’ ‘7) ! (413)
j=—1

with coefficients given in eq. (4.4).

. Collinear-double soft:

0)1 (4,1 1672 . ? et k
CusiV) = (Fg-@) [t

11 (4.14)

X Sﬁl//\(kﬁt) <,Uz| fkft(zktyztk,klkta )|V>

2 Jl SktCA

X f(ao’akta d(ma 6))f(y05y];\tQ’d/(m? E))’

where S‘Jil%(/;:\t) is defined in eq. (2.21) and (u\ﬁ}f}t\w is the spin-dependent Altarelli-
Parisi splitting kernel for gluon splitting (see eq. (D.72)).
i)

The integrated counterterm is computed in appendix D.6. In terms of the functions I((:

(1=17,8and9) of egs. (D.84)-(D.86) we find

2

0)1(4,0 0 7
CrSINE) = S P T (Vo7 i, a0, dosi)
=—1
(4.15)
9
0 i 7
+ bgck)ft Z (I((: )(6’ o, do; 1) - Ié)(e, ap, do; 2)) s

=8

with bgf(;?ft and Cgf(;?ft & given in egs. (4.3) and (4.4), respectively.

,23,



7. Collinear-triple collinear-double soft:

0 167T ];t kt 2
[thcrktsl(ct)]frfkft = < ) /[ (,W)L][dpg,rr)wrl] -
2 Sk‘t‘sk‘t?
T; G Yo
X —Tkgt ( r - T2 P;k;t(zt,kﬁ) - Zk,tzt,kbgck)ft ’5”
r kt T th

X f(ag, agt, d(m, €)) f(yo, Yo d'(m,e)),
(4.16)

with the flavour-dependent constants b
ft = g gives a non-vanishing result (see eq.(3.25)). In obtaining the form (4.16) of
the integrated counterterm, we exploited that the integrals of the two expressions in

gv(,?ft given in eq.(4.3). Of course, only fi +

eq. (D.17) are equal.
The integrated counterterm is computed in appendix D.6. In terms of the functions Iés)
and I((zg) of egs. (D.85) and (D.86) we find

Ox | &

[ChtCrriS g gy =
Kkt~ rktPkt 1 frfift Cf

T

0 .
Stk)ft jI( )(6’ o, dOa])

j=—1

(4.17)
+ bgf?c)f (Z( (e, a0, do; 1) — Zég)(ea a, do; 2))] ’

with coefficients given in egs. (4.3) and (4.4).

4.2 Integrated soft-type counterterms

1. Soft-triple collinear:

2
0 1672 . 7 t 1 s
[S Cirz]fz’fr = < Q2 ) /Z[dpg,m)][dpgﬁﬂ]Tg P;}g( ’T’t’zhitvZt,imsirasimsrt%f)

Se
1 1 (0) ,
X PO T2 Pfifr(z?,/{;e)f(yantQad (ma 6))f(0[0, d(m 6))

(4.18)

where the functions P}f}r 5, are the soft limits of the triple-collinear splitting functions,

introduced in ref. [4] (see eq. (E.2)), and we used T, = T7. because the soft parton ¢

can only be gluon, f; = g.

This integrated counterterm is computed in appendix E.1. In terms of the functions
Ig) and Ig) of egs. (E.6) and (E.8) we find

2
S,C ps = Z f”[“ { (Cy, + Cf, — Cp, ) IS (2= €, 0, do, yo, diy; k)
v Cte (4.19)

+2Cy, 73 (x5 €, a0, do, Yo, dy; k)] :
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with coefficients given in eq. (4.4).
2. Soft-soft-collinear:
2
(0) 1G0) 167° s G ® Lo oy L L o0,
[S:CSial iy, = (TeQ ) /Q[dpl,m ][dpl,m+1]§Sjl(t)%T—22rPfifr(Z?,i’6) (420)
X f(y07 UtQ» d/(ma 6))f(040, a’{?7d(m7 6)) .

This integrated counterterm is computed in appendix E.1. In terms of the functions
IéB) and Igl) of egs. (E.11) and (E.14) we find

2
0 l 0 3
5 ngr)t]%fz 2. SE}T {(1 0j(ir) — 5l(ir))I‘(s )(JU%’ Y=7 o1 € @0, do, yo, do; k)
= (4.21)
4
+ (5](17") + 6l(ir) )I‘(S' )(x;;, Y;T,Q’ €,Qp, do, Yo, dlo’ k)] ,
with coefficients given in eq. (4.4). Note that j and [ are always distinct.

3. Soft-triple collinear-soft-collinear:

1672 ,.\° +a y 2 1z 1 1
S Con s, = (@) [l S ACE

€ (ir)t  Rtir ot

X f(yOa YtQ> d/(ma 6))f(0é0, O"{?’d(m’ E)) :
(4.22)
This integrated counterterm is computed in appendix E.1. In terms of the function IéS)
of eq. (E.16) we find

[S¢ Czrtcszrt Jifr = Z szfh W,E a07d07y07d0’k)7 (4.23)
k=—1

with coefficients given in eq. (4.4).

4. Soft-triple collinear-double soft:?

1672 ,\°
S:CaniS1 15, = <S—Q2 )

x / dp{Tdp) ]

(2

Ca < Sir + i Zr.it 1 Zi,rt> + 2 Zirt
: _ = Lt £ st
T \SitSrt  Srt Ztar  Sit Ztir Sit 2tir

L7 (o, pign d (m, ) f (w0, s & (m, €)).

(4.24)

2We note a harmless misprint in the definition of the subtraction term StC”tSﬁ?’o) in eq. (7.38) of ref. [1],

where in the last term of the square bracket :‘ was used as compared to Z’f” here. Our definition of the

. . . zZ zZ i
momentum fractions gives the same for these ratios: —=rt = ~t — zz—g.
tyir t,1
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The integrated counterterm is computed in appendix E.2. In terms of the functions Iéﬁ)

and Ig) of egs. (E.21) and (E.25) we find

Ca
irtsg)]fi = 21596)(€7yo7d6) + azg)(ﬁ?/o’dé)- (4.25)

i

[5,C

5. Soft-soft-collinear-double soft:

(i 1672 5.\’ = 2 2551
5800 = = (T [l i) 22 5t

(4.26)

X f (o, v d' (m, €) f (o, y7q, d (m,€)) .

The integrated counterterm is computed in appendix E.2. In terms of the functions Iés)

and Iég) of egs. (E.35) and (E.40) we find

0)1(4 8
[StCSir;tsfﬂt)](j’l) = (1 - 6]'(@'7") - 51(@7")) I‘(S )(Y}77Q; €, Y0, dlo)
(4.27)
9
+ (05¢ir) + 5z(¢r))1§ )(wg,Y;77Q; €, Y0, dp) -
Note that j and [ are always distinct.
6. Soft-triple collinear-soft-collinear-double soft:
(0) 1672 .\ QIO 2 25 2 1=z
[Stcirt(Eir;tSrt ] = S—Q [dme] [dpl,m—f—l] N e ]
€ 2 ST 2?72‘ S(zr)t Ztyir (4.28)

X f(yantQ,dl(m’ 6))f(y0ay?Qadl(m’ E)) .

This integrated counterterm is computed in appendix E.2. In terms of the function Iélo)
of eq. (E.44) we find

8:CirtCSirS) = T8 (271 €. 90, ) (4.29)
7. Soft-double soft:

i) (i 1672 5 2 7 1 =~
(S8R0 = <TQ2 ) / (APl [dp1 0 115 S57 (F)Sa(t)

€

X f(yOa YtQ> d,(ma 6))f(y05 Y7 Q> d,(ma 6)) ) (430)
- 1672 2 7 1 .
5910 = = (5 @) [l 1157 (F) (Su0) 4 8100) - Su)

X f(yo,yeq, d' (m, €)) f(yo, y7 @, d'(m,€)). (4.31)

In this paper we do not discuss the case when %, j, k, and [ are all distinct, which first
appears in computing NNLO corrections to four-jet production. For the specific cases of
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two and three hard partons in the final state, we compute the integrated counterterms
in appendix E.2. In terms of the functions Iéll) and I§12) of egs. (E.52) and (E.62) we
find

0)1(s i 11
[8,8)ERGH = ng k(0 Y550 Y7006 0 do) | (4.32)

and

0)1( 12 11
S = 2702 (v+p e wo,dh) + Zh) (V7 o3 € b0, ). (4.33)
4.3 Integrated soft-collinear-type counterterms

1. Soft-collinear-triple collinear:

2 2 2
O _ (107 o EPngp® 122 1 Th 1 50
[Ck‘tstckrt]fkft_< 5 @ > L[d Mprmal s 72, 72 s o i)

X f(yanthd,(mve))f(a07 k??d(m 6))
(4.34)

where we used Tiﬁ = T% because the soft parton ¢ can only be gluon, f; = g. For the
same reason T%,/T% , = T?/T%,, to be used in eq. (4.39).

2. Soft-collinear-soft-collinear:?

1672

T 2 2y 1
[thstcsz(g;)t]fifr:< ) /2[ (,m)][d %H] _t——PJE:)}r( 7i€)

Skt 2tk S55 T2 '

X f(yo, Y, d (m,€)) f (o, s, d(m,e)).

(4.35)
3. Soft-collinear-triple collinear-double soft:
1672 _,.\° 7 2 255 2 2z
CSCTS£0)2<— 26> /d“’d(“ T
[CrtSiCrriSyet’ | S, Q 2[ P1,m” P1,m+1] Shr Zr 7 Skt Ak
x [ (Yo, %, d'(m, €)) f (Yo, yrq. d (m, €)),
(4.36)

1672 2 % 2 3% 2 iy
C,.S CT S(O) _ ( 2€> /d (k) d (t) _rhR 2 TR
[ ktPt~rktP ket ] Se Q 2[ me” p17m+1] 54 ZE,? Skt 2tk

< f(yo, yiq. d'(m, €)) f (0, Y7 o> @ (M, €)) -
The integrals over [dpglm (or [dpg?n)l]) and [dpgt)m 1] factorize in the two equations above.
Therefore, [thStCkrtSS)] = [thstcrktsg)] (as seen by the simple exchange of indices
k < r) and the distinction of these functions is purely formal, and serves bookkeeping
purposes only.

$We note a misprint in the definition of the subtraction term thStCS to) in eq. (7.46) of ref. [1]. The
quadratic Casimir has to be changed from T to T (see eq. (7.22) of ref. [4])
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4. Soft-collinear-double soft:

2
C,,5,80)6) = _ 167° O 1dp{™)[ap?) ]ESM(?)i@
ktOtOrt S. ) PLmllOP1Lm+115977 Skt Zt.k

X f(y07 YtQ» d/(mv 6))f(y07 Y7 Q> dl(m7 6)) )
(4.37)
2 e

)

0)1(4 1672 . 2 7 1
[thstsét)](%l) == (S—Q2 > /Z[dpgmz] [dpgfznﬂ]ié‘ﬁ(

Skt 2tk
X f(yO, YtQ, d,(m’ 6))f(y0) nga d,(ma 6)) )

where the first equation above defines the flavour-dependent soft-collinear-double soft

function, while the second equation gives the flavour-independent one. Again, the in-
tegrals over [dp( )] (or [dpgrn)l]) and [dpgtzn +1] factorize in both equations. Therefore,

[thstsgt)](] D= [thStS,(g)](j’l) (as seen by the simple exchange of indices k <> r) and
the distinction of these functions is formal, and serves bookkeeping purposes.

5. Soft-collinear-soft-collinear-double soft:

1672 .\ 7 2 52z
(1G58 = (‘E**Q%> Jlantiantn = 22 S
- . 577 27 7 Skt 2tk (4.38)

X f (o, yq, d'(m, €)) f (Yo, y7 . d'(m,€)) .

The soft-collinear-type integrated counterterms are computed in appendix F. The cal-
culation of the integrals in egs. (4.34)—(4.38) is fairly straightforward because the integrals
over the soft phase space measures decouple in all cases. Using the functions Zé? (1 =1,
2, 3) computed in egs. (F.2)—(F.4), we find:

C 2
0 0 1 .
[CriSiCinl s, = % > Cgfk)fmjz—c(’s)(yg;@;G,QOadanOada;])

kr j:—l

[ths (:Szrtfzfr Z cflfr,] GS yer7€ a07d07y07d07 )7
= (4.39)
[CreSiChreSY] = [CriSiCrreSY] = T (e, yo, dy)

0)1(4 0)1(5 2
[CrSS 10 = [C8, 81190 = T& (V57 i € w0, dpy)

[CreSiCSiS) = T8 (e, yo. ) -

ir;t

with coefficients given in eq. (4.4).
This ends the definition of the integrals of the iterated subtraction terms, that can be
used to construct the insertion operator I gg) as given by egs. (3.14)—(3.38). The computa-

tion of these integrals is presented in the appendices.
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5 Insertion operator for two- and three-jet production

In this section, we present illustrative numerical results for the insertion operator I gg) of

eq. (3.14), at various specific phase space points, for processes with at most three hard
partons in the final state.

While it is true that the most general collinear and/or soft configuration at NNLO
accuracy involves four hard partons, if these are all in the final state, which is the subject
of this paper, then the two-loop amplitudes needed in the doubly-virtual correction have
at least six massless (or four massless and one massive) external legs. Results for such
amplitudes are not foreseen in the near future, therefore, we restrict our discussion to
computing NNLO corrections to two- and three-jet quantities.

In an explicit computation of a jet cross section at NNLO, we require the expansion
coefficients (up to and including the finite part) of the Laurent series in € of the insertion
operator. In general, these expansion coefficients are functions of various kinematic vari-
ables (and also parameters such as a, yo, dp and dj)) which depend on the particular phase
space point. One may either attempt to compute these functions analytically, or numeri-
cally. The former is important as a matter of principle only. For practical purposes (from
the point of phenomenology) the latter is sufficient. Indeed, the higher order expansion
coefficients (starting form O(e~2)) of the results we will present were obtained numerically.

5.1 Two-jet production

Let us consider the process ete™ — 2 jets. The corresponding squared matrix element at
tree level is |./\/l;0)(1q, 24)|%, i.e. the quark carries label 1 and the antiquark label 2. Both

the colour algebra and kinematics are trivial. Colour conservation implies
T, T, =—-Cp (5.1)

and Cfy, = Cf, = Cr. Hence, the insertion operator is a scalar in colour space. On the other
hand, momentum conservation requires that the two final state momenta are back-to-back,

i.e. in a properly oriented frame we have

no 1 1
p - S\ 3 > 0 ) 0 5 9 )
¢ = v ) o
pg = \/g (% 9 0 9 0 9 _%) 9
which implies
yr2=a1 =22="Y29=1. (5.3)
The insertion operator eq. (3.14) becomes
92\ €12
0 s M 0 0 0),(1,2 0),(1,2)(1,2
1) = 525 (15 ) | 208 (08 + 0, — 205002 +asig0202)
(5.4)

_ QCFCASQ,(L?)} ’
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1 -4 -3 —2 -1 0

TH9 | 6 | T | 32104023 | —87.90+0.66 | —554.5+ 1.8

Ty | ~2 | —Z | —5240£0.01 | —150.7£0.09 | —339.5 £ 0.43

TH) | 0 | —1 | —6.332£0.001 | ~17.66 £ 0.008 | 1.013 = 0.069

Table 1. Coefficients of the Laurent expansion of the 75 2; functions appearing in the insertion
operator I gg) (p1, p2; €) in the case of two-jet production. The numbers for ¢ = —4, —3 are obtained by

evaluating the appropriate analytic expressions. We used the parameters ag = yo = 1, dg = djy = 3.

with all arguments being equal to 1. Substituting the Laurent expansions of the kinematic

functions, we obtain

2\ €72 0
0 %s H i (70, @i i
152)(1)1,172;6) = [%Se (@) ] 012«‘ Z € <I£272)j + 33252,2)]‘ + ynfzfgﬂ)j) ) (5.5)
i=—4
where [39]
_ Ca _1Tr
:U—CF, y—CF. (5.6)

With this decomposition the Abelian case is obtained by setting Cp =1, 2 =0, y = 1. We
can compute the two leading terms in the e expansion analytically:

92\ €12
. 2 1
1) (01, paie) = [;‘—Se (M—2> ] 012?{(3—$)—4+‘[72+21x_6y“f

e Q € 6 (5 7)

—24(1 — 2)%(yo, Dy — 1) — 12(2 — 32)S(ypo, D())] 6% + 0(62)} .

The rest of the expansion coefficients are computed numerically. We present the results in
table 1. To obtain these numbers, we used the specific values of o = yo = 1, dy = dj, = 3.

Finally, we show the value of the complete insertion operator for the case of QCD with
ng = 5 light flavours:
I(O)( ) 3 83 97.68 £0.27  460.2 + 0.87
) = 2 _ _
12 \PL P2; 2¢t 1263 €2 €

In the above equation, the coefficients of 1/e* and 1/e? were computed by evaluating

- <1317. + 2.9) +O(eY). (5.8)

the appropriate analytic expressions. However, we have also computed these term with
the same numerical algorithms that we used for computing the higher order expansion
coefficients. It is then instructive to compare this numerical result to the analytic one. We

find:

0 15  6.917 _

152)(P17p2§€)|A:6—4—6—3+O(6 %), (5.9)
0 1.498 +0.0014  6.932 £ 0.11 _

1) (p1,p2:6)| = i - = +0(e7?). (5.10)
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Comparing the exact and numerical results, we see first of all that the two match up to
the uncertainty of the numerical computation, and second, that the error estimate on the

next-to-leading pole is very conservative.

5.2 Three-jet production

Next, let us consider the process e e~ — 3 jets. The corresponding squared matrix element
at tree level is |Mg0)(1q, 24,34)|?, i.e. the quark carries label 1, the antiquark label 2 and
the gluon carries label 3. The colour algebra is again trivial. Colour conservation implies

T, Ty =2 "% T T3=TyTs=——2, (5.11)

and Cy, = Cy, = Cp, while Uy, = Cx. Thus, the insertion operator is again a scalar
in colour space. On the other hand, the kinematics is no longer trivial, since the relative
orientation of the three final state momenta are not fully fixed by momentum conservation.
(Note that the insertion operator is independent of the overall event orientation with respect
to the beam.) Since the three-particle phase space in d = 4 dimensions is 5-dimensional,
but three of the independent variables just correspond to the three Euler angles needed to

specify the overall orientation, we find that out of the six kinematic variables

ri=yiq, and Yy=Yiyo= -9,  §,j=123 and i#j, (5.12)

il

only two are independent. Nevertheless, we choose not to fix the independent ones below,

in order to better exhibit the structure of the insertion operator.
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The insertion operator eq. (3.14) becomes
©) o Mg €2
0 s 0 0 0
I, = [%Se (@) ] {C’% (ng),q(xl) + C§2),q($2)> + C/?\C§2),g(333)
+Ct <C§g)7qq(9617 r2,Y12) + ng),qq(m, 1, Y12)>

+ CrCa <C(O)

0
127‘19('%.17 3, Y13) + CgQ),gq(xga T, Y13)

+ CgOQ),qg(x% 3, Y23) + CgOQ)’gq(l'g, X9, ng))
+(Ca — 20F) [CA <ng0),(1,2) (23, Yia) + SO-12 (Ym))
+ Cr (CS((]O)’(I’2) (w1, Y12) + CSéO)’(M) (x2, le))}

—Cy {CA <CS(O)’(1’3) (z3,Y13) + S(O)’(Ls)(ym))

+2CA(2CF — Cy)
X <S§02)’(1’2)(1’3)(Y12, Yas, Vi3) + 812 (v1, Y13, Yas)
+ 8O (v Vig Vig) + S (vig o, Y12))
+2C% <S§O)’(1’3)(2’3) (Yiz, Yz, Ya3) + S\ ®P ) (va3, Vi, Y13)>

+ (8CE - 8CrCx +203 )81 0D (1)

+20% (81 (13) + 8 BV (v)) } .

(5.13)
Substituting the Laurent expansions of the kinematic functions, we obtain
0 le% M2 €12 0 A
I&Z)(p17p27p3;6) = [ﬁse <@> :| CFQ‘ Z el
- (5.14)

(T + =T + T +ume Tl + e 7))
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We can compute the leading two terms in the € expansion analytically:

2\ €12
0 « 1 1 101 67
Ig;(pl,pg,pg;e) = [—2;55 <_Q2> ] C%{(ﬁ + 2% +m2)6—4 + [12 + < ° + —12352

13 3
= gyne = geyng — (4 = 42)X(yo, Do — 1)
(5.15)

5
— (4 — 6z — %)% (yo, D}) — (8 +x— 5952) Iny1o

5 1
- (435 + 51'2) (Iny13 + lnygg)} = + O(ez)} .

In order to obtain eq. (5.15), we used InYj; = Iny;; —Inx; —Inx;. The rest of the expansion
coefficients are computed numerically. For purposes of demonstration, below we present
numerical results in three specific phase space points. Since the result is insensitive to
overall orientation, we will always choose the event to lie in the z — y plane, with p/
pointing in the positive y direction. In all cases we use the specific values of oy = yg = 1,

do = dly = 3.

Symmetric point. First, we consider the maximally symmetric configuration

o= Vs(3.0 .5 5 0),
b= Vi —h0). (5.16)

vio= Vs(3 . —55 0 50 0)
which leads to the following values for the kinematic invariants (i, = 1,2,3 and i # j):
Yij = é, T = %’ and Yij = Z . (5.17)

The coefficients of the Laurent expansion of the insertion operator in the symmetric phase
space point are shown in table 2.

Finally, we show the value of the complete insertion operator in the symmetric phase
space point for the case of QCD with ny = 5 light flavours:
83 1323  114.5+4.6 1142. + 14.
T 3¢t €3 €2 B €

In this equation the coefficients of 1/¢* and 1/€3 were obtained by evaluating the appro-

19 (1, pa. ps: _ (6150.i51.> +O(h). (5.18)

priate analytic expressions. As in the case of two-jet production, it is again instructive to
compare the exact result with one obtained by numerical computation. We find:

. 2767 132.3 )
152)(p15p2ap3;6)‘A = o +€—3 +O(€ 2), (519)

27.6568 +£0.027 1324 +1.9

1) (p1,p2,p3:6) | = o + +0(e7?). (5.20)

As before, the results match within the uncertainty of the numerical calculation, and the
error estimate on the next-to-leading pole is again seen to be very conservative. We will
reach similar conclusions in other examples as well.
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] -4 -3 —2 -1 0

IOV | 6 | 3412 | 82984025 | 34594071 | —543.8+2.2

T30 | 2 [ 9721 | 1.200+£052 | ~1422+15 | —696.6+4.8

7350 | 1| 6497 | 17.80+023 | 15874079 | —47.93+2.9

T | 0 | —1 | —32.40 £0.007 | ~127.940.03 | —355.2 % 0.20
7G50 0 | =3 | ~12.014£0.004 | —46.90 % 0.02 | ~104.1 £0.16

Table 2. Coefficients of the Laurent expansion of the 75 3; functions appearing in the insertion
operator I g) (p1, p2, p3; €) for three-jet production in the symmetric phase space point. The numbers
for ¢« = —4,—3 are obtained by evaluating the appropriate analytic expressions. We used the
parameters ag = yo = 1, dg = dj = 3.

Collinear point. Next, we choose a configuration where (in the rest frame of Q*) we

have a hierarchy of angles such that

A(p2,p3) < £L(p1,p2), £(p1,03) , (5.21)

i.e. where momenta ph and ply are close to being collinear. Specifically, we set

P = /5(0.49841 , 0. , 049841, 0.),
ph = /(0120923 , 0.0240634 , -0.118505 , 0.), (5.22)
py = +/5(0.380667 , -0.0240634 , -0.379905 , 0.),

which leads to the following values for the kinematic invariants (i, = 1,2,3 and i # j):

y12 = 0.238667 , y13 = 0.758153, y23 = 0.003180,
z1 = 0.99682, To = 0.241847, rg3 = 0.761333, (5.23)
Y12 = 0.99, Y13 =0.999, Yo3 = 0.0172697 .

The coefficients of the Laurent expansion of the insertion operator in the collinear phase
space point are shown in table 3.

Finally, we show the value of the complete insertion operator in the collinear phase
space point for the case of QCD with ny = 5 light flavours:

© 83 2783 1601.3+£52 7084 + 18.
I}y (p1,p2, p3ie) = AT T3 T 2 - c

- <26690.i71.> FO(Y). (5.24)

We present next the comparison of the exact 1/e* and 1/€® pole coefficients given above
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i 4| -3 —2 -1 0
IO | 6 3679 | 106.0+£0.23 | 120.640.68 | —431.0+2.0
T30 | 2 [ 2538 | 143.6+£055 | 537.3+16 | 1505.£5.3
7350 | 1 | 15.24 | 11954029 | 660511 | 2903 +4.9
73 10 | 1 | ~31.30£0.007 | ~121.740.03 | —346.0 % 0.18
750 0 | =3 | ~17.72£0.005 | ~109.140.03 | —470.9 +0.21

Table 3. Coefficients of the Laurent expansion of the 75 3; functions appearing in the insertion

operator I g’ (p1, p2, p3; €) for three-jet production in the collinear phase space point. The numbers

for ¢« = —4,—3 are obtained by evaluating the appropriate analytic expressions. We used the
parameters ag = yo = 1, dg = djy = 3.
with ones computed numerically. We find:
0 27.67  278.3 _
1) (p1,p2,p3:6)| , = Tt g 0, (5.25)
0 27.658 £ 0.027 2784 £2.1 _
1) (p1,p2,p3:6) | = i 3 +0(e7?). (5.26)

We note that the two results match up to the uncertainty of the numerical computation,
and as in previous examples, the error estimate on the next-to-leading pole is seen to be

very conservative.

Soft point. Finally, we consider a configuration where (in the rest frame of Q*) we have
a hierarchy of energies such that
E3 < Ey, By, (5.27)

i.e. where momentum pj is close to being soft. Specifically, we set

py = /5(0.480625 , 0. , 0480625 , 0.),

Py = /s5(0.487897 , -0.0308419 , -0.486921 , 0.), (5.28)

py = /5(0.0314778 , 0.0308419 , 0.00629557 , 0.),
which leads to the following values for the kinematic invariants (i, j = 1,2,3 and i # j):

y12 = 0.937044 , y13 = 0.024207 ya3 = 0.038749

x1 = 0.961251, r9 = 0.975794, 3 = 0.062956 , (5.29)

Y12 = 0.999, Yi3 =04, Yo3 = 0.630768.

The coeflicients of the Laurent expansion of the insertion operator in the soft phase space

point are shown in table 4.
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] -4 -3 —2 -1 0

T8 | 6 | 2585 | 34.50+£0.23 | —84.25+0.66 | —566.8+ 1.9

T30 | 2 [ 2779 | 1368052 | 330.6+14 | 46.20£45

7350 | 1 | 2102 | 1954+026 | 1174.£0.96 | 5354 £4.1

%) | 0 |~ | ~57.50 £0.009 | —405.2 4 0.06 | —2119. + 0.34
7350 | 0 | —3 | —24.07 £0.006 | ~194.740.05 | ~1083. £ 0.31

Table 4. Coefficients of the Laurent expansion of the 75 3; functions appearing in the insertion
operator I g’ (p1, P2, p3; €) for three-jet production in the soft phase space point. The numbers for
i = —4,—3 are obtained by evaluating the appropriate analytic expressions. We used the parameters

Oé():y():l,do:d613.

Finally, we show the value of the complete insertion operator in the soft phase space
point for the case of QCD with ny = 5 light flavours:
83 320.6 1995.4+4.9 8928.+ 16.

(0) L) o °2
Il2 (Plap2,p3a€) - 364+ 63 + 62

- (32182.i61.> +O(eY). (5.30)

€

We finish by comparing the exact coefficients of 1/¢* and 1/€3 that appear above with the
values obtained via numerical computation. We find:

0 27.667  320.56 _
1) (91, p2, p3; ), = Tt O %), (5.31)
27.658 +0.027  320.6 + 1.9 _
1) (p1.p2.p3;€) | = i + = +0(e7?). (5.32)

Our conclusions are identical to those in the symmetric and collinear phase space point: the
values match up to the numerical uncertainty and the error estimate on the next-to-leading
pole is again shown to be very conservative.

We finish by briefly commenting on the size of numerical uncertainties. The uncer-
tainties relevant for phenomenology are those associated with the complete I g) insertion
operator, in various phase space points. However, the requirements in terms of precision
are different for the pole coefficients and the finite part.

On the one hand, the pole coefficients are only relevant for establishing the cancellation
of all e-poles between the doubly-virtual cross section and various integrated subtraction
terms. As stressed earlier, our subtraction scheme is fully local, hence this cancellation can
be checked point by point in phase space for any specific process. From a practical point
of view, it clearly suffices to demonstrate pole cancellation in a relatively small number of
phase space points, thus the pole coefficients of I gg) have to be computed as precisely as
feasible in a small set of points only. Because of this, the runtime of numerical integration is
not an issue, and increased precision may be obtained simply by adjusting the parameters

of the numerical integration to include more sampling points for each integral.
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On the other hand, the precision requirement on the finite part of the insertion operator
is essentially set by the relative uncertainty associated with the numerical phase space
integration of the doubly-virtual contribution. This is not expected to be below the per
mille level, hence from a practical point of view it is pointless to evaluate the finite term
of the insertion operator with a precision much greater than this. In all cases discussed
above, the relative uncertainty of the finite part of the insertion operator is at the per mille
level already.

6 Conclusions

In this work, we have performed the integration of the iterated singly-unresolved approxi-
mate cross section of the NNLO subtraction scheme of refs. [1-3]. The final result can be
written as the product (in colour space) of the Born cross section times a newly defined
insertion operator, I gg). The insertion operator depends on the colours, flavours and mo-
menta of the final-state partons, and is an elaborate sum of many different terms, each
corresponding to the integrated form of a specific iterated singly-unresolved subtraction
term of ref. [1].

We have also explicitly evaluated all integrated subtraction terms which are necessary
to assemble the insertion operator for processes involving at most three hard partons in
the final state. The knowledge of these integrals (i.e. their Laurent expansions in € to O(e)
accuracy) is necessary in order to make the subtraction scheme an effective tool, and we
have computed them once and for all.

We have achieved this task by deriving Mellin—Barnes integral representations for all
integrals under consideration. In principle, it is possible to evaluate all MB integrals via
the residuum theorem, and in a subsequent step to obtain fully analytic expressions by
performing the summation of nested sums over series of residua. However in practice, we
have encountered several cases of higher order expansion coefficients, where the summation
cannot be performed analytically with present methods. Therefore, in this paper, we have
concentrated on the direct numerical evaluation of the MB integrals in the complex plane.
All MB representations for both the numerical and, if available, the analytic expressions
have been checked by an independent evaluation of the integrals using sector decomposition
as in ref. [35]. We have found that all integrals contributing to the insertion operator are
smooth functions of their variables (in the colloquial sense). For practical applications,
this means that all integrals (in particular the finite in € contributions) can be given either
in terms of interpolating tables or simple fitting functions, which can be computed once
and for all. We leave this step for later work. Finally we want to stress again that
the tables we have shown here are for demonstration purposes only, and obtaining high
resolution interpolating tables needed for the computation of an actual cross section is
straightforward. Increasing the accuracy of each entry is feasible as well, the best way of
doing this is under investigation.

The integrals discussed in this paper appear when integrating the subtraction terms
that regularise the doubly-real NNLO correction to the jet cross section, see ref.[2]. The
final step in finishing the definition of the subtraction scheme is the computation of the
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integrated counterterms corresponding to the the doubly-unresolved approximate cross
section (those labeled by Aj in ref. [1]). In that case, the analytic structure of the integrals
is essentially the same as those studied in this paper, though a few are admittedly somewhat
more cumbersome. Nevertheless, we are confident that the techniques of the present paper
will also be applicable to the computation of these remaining contributions.
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A Summation over unresolved flavours

In this appendix, we discuss how to perform the summation over unobserved flavours
in eq.(3.6). It turns out that we only need to consider three different cases explicitly,
corresponding to sums involving two, three and four partons. All specific results are then
easily obtained by appropriate substitutions.

A.1 Generic flavour sums

Consider an m-parton configuration with my quarks of flavour f, m; antiquarks of flavour
f and my, gluons. From this configuration we can obtain an (m + 2)-parton configuration
in the following ways.

1. Increasing the number of gluons by two,

mg — Mg + 2. (A1)

2. Increasing the number of quarks and antiquarks of flavour f by one each,

mf—>mf+1, mf—>mjz—|—1. (AQ)

3. Increasing the number of quarks and antiquarks by two each. The flavour of the two
quarks may or may not be identical. We will refer to these two cases respectively as
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the ‘equal flavour’ (e.f.) and ‘unequal flavour’ (u.f.) configurations,

Mg — Mg —2, myp — my+ 2, my—myp+2, e.f. (A.3)
mg —mg —2,  mygp—mpp+1, mpp—mpp+1, u.f.

where f and f’ are understood to be different quark flavours. This case is relevant
only for the doubly-collinear-type configuration, i.e. the sum involving four partons.

The ratios of Bose symmetry factors for identical final state particles in the various cases

are
S{m} 1
p— A.4)
(1) 7 (
S{m+2} (mg +1)(mg + 2)
S{m} 1
= A5)
(2) = ’ (
S, G+ Dm D
and finally
mg(mg — 1) ef.
Stmy (mf+2)(mf+1)(mf+2)(mf+ 1) (46)
(3) '
Stm+2) mg(mg 1) w

(my+ 1)(mf + 1) (my + 1)(m]a +1)

Two-parton flavour sums. Consider a generic integrated counterterm [X ](C?)].(:."), which
depends on two indices, k and t. This integrated counterterm may or may not depend
on the corresponding parton flavours and it may or may not carry an upper index, as
explained in detail below eq. (3.9). Examples would be e.g. [ths,gﬂ)]%’j% and [Stsg)](j’l). In
the latter case, we see a situation where no flavour index is displayed, since both r and ¢
are constrained to be gluons. In what follows, we will discuss the most general case, when
both flavour indices are explicit.

Such terms necessarily appear in eq. (3.6) under a double sum:

SO (A7)

iy V2 T

In this configuration, we go from m to (m + 2) partons as in egs. (A.1) and (A.2). Then,
since we are considering iterated singly-unresolved terms, both indices must correspond to
unresolved partons, which means that they are either both gluons or a quark-antiquark pair.
Now, decomposing the summation over ¢ and k into sums in which the flavour (including
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specific quark ﬂavour) of each index is fixed, we find

PO D BB I

{m+2} Stm+2} 5 kAt

1 S
=D o 1{> D ID B UV RINLI (A.8)

oy Stmd Sy T A

1 S
Z S 2{) } ZZZ X(O fkft [5fk,qf/5ft ag + 5fk7qf/5ft7qf/:| s

(S S0y T T A

where > f stands for the explicit summation over specific quark flavours. Performing the
summation over ¢ and k simply amounts to counting the number of ways in which we can
assign the proper flavours to k and ¢ in the appropriate (m + 2)-parton configuration:

SN = #mee # ik #E D (A.9)

t kAt

where #(f)m+2 denotes the number of partons of flavour f; in the (m + 2)-parton config-
uration, while #(fi; k # t)m2 is the number of partons, different form ¢, of flavour fi in
the (m + 2)-parton configuration. Note that ¢t and k are assumed to be distinguishable,

which is the generic case. Clearly we have
#(9m+2 #(9: k # )my2 = (mg +2)(mg + 1),

#(af)m+2 #(@p k # Dmiz = (mgp +1)(ms+1).

The case of f; = ¢y and fi = ¢ is obtained by exploiting symmetry of this factor under

(A.10)

permutations of indices. Then, using egs. (A.4) and (A.5), we find

2 Sowem 2 2k i = Zs{ }{Xfi? )+ (X306 >+[X,£?]§;>)}.

{m+2} Stm+2} 5 kAt (m}
(A.11)

In writing eq. (A.11), we have used that [X ,(C(t))]((lé') and [X ,g t)]( 7 do not depend on the specific
quark flavour (as implied by the notation), and hence the summation p ineq. (A.8) may

be performed, yielding the factor of ny.
Defining the flavour summed counterterm as

>3 SR = ZS{ }( ) - (A.12)

{m+2} Stm+2} 5 kAt (m}

we obtain :
) _ (001 (0)1(--2) (0)1(.--)
<th ) = [Xp ]gg) + m([th ]qé + [ Xyt ]éq > (A13)
0 0)+(...
- [Xlgt)]gg”) + 2nf[X,gt)]éq—) )

(0)](;) _ [X(o)](...)

where the second line follows, since [X,,’] .2 it lgg  in all cases we need to consider.
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Three-parton flavour sums. Next, consider a generic integrated counterterm [X, © )]( ),

](J )

depending on three indices, k, t and r. Examples are e.g. [thC,gtz,]fkftfr and [S, CS(O) P

ar;t
As before, we will discuss the most general case, when all flavour indices are explicit.

These terms always appear in eq. (3.6) under a triple sum:

Z ZZ Z lm fkfth (A.14)

{m+2} Stm+2} 5 kAt rkt

In this configuration, we again go from m to (m + 2) partons as in eqgs. (A.1) and (A.2).
Then, we decompose the summation over ¢, k and r into sums in which the flavour (in-
cluding specific quark flavour) of each index is fixed. We obtain

PO e DO DD BTl ¥

{m+2} Stm+2) 5 ket 1kt

1 St
:Z bt ZZ Z X,g?r fkftfr

0
St S{o oy T

X [<5fk,qf 012,90 fr,9 + 019010100 0900090810y + (ar (if)> +041,99f1,90f1.9

1 Sim

e
{my 21 Sy

ATEY S,

ot k#tr#kt
X {5fk,qf/5ft,qf/5fr,g + 0510500090 fra0 T 0190 fr,a 083y

+051,a7 08005 0 g + 0f1,a0f1,90 frsap + O, ,g5ft,qf/5fr,qf/]

D ID BB B> o) ¥

At kst rkt

X {5fk,qf/5ft,qf/5fr,qf +0f1ap0f0ar0frap + OfiiarOfeapOfray

+ 6 40a5 080050 frar + Ofisdap OfearOfriap T OfiiarOfeapOfrap + (ar (if)]

+Y > > X ol fkftfr

t kst rkt

X [5fk,Qf5ft7Qf6fr@f + 5fk7Qf6ftvqf6fr7Qf + 6fkvqf6ft7Qf6fm‘jf + (Qf AN ij)] }
(A.15)

Next, we use the flavour summation rules to rewrite the summation over the unobserved

indices k, t and 7 in the (m + 2)-parton configurations into a sum over a single index ktr
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in the m-parton configuration. We have

ZZ Z #(f)me2 #(fr: k %(?}::;n#(fmr #k,t)mo Z N

t k#t r#k,t ktr

(A.16)

where the notation is the same as in eq. (A.9) and in particular #( fxs)m is the number of
partons with flavour fis. in the m-parton configuration. Again, ¢, k and r are assumed to

be distinguishable, which is the generic case. Then we have

#(ap)mr2 #(9 k # Oma2 #(g;7 # K, V)2
#(af)m

#(Dmr2 #(g: k # maa #(g;7 # k) mo
#(9)m

#(qp ) mr2 #(@psk # Omao #(g57 # K t)mo
#(9)m

#(qp ) mr2 #( Gk # Omyz #(qp7 # kB, Dmyo
#(qf)m

#(qf)m-i-Q #(Qf§ k # t)m+2 #((jﬁr # k7t)m+2
#(af)m

The rest of the cases are obtained by exploiting symmetry of this factor under permutations
of indices. Then, using egs. (A.4) and (A.5), we find

Z SN S, =

{m+2} Sm+2) t kAt rk,t

0)q(... 0 0 0 0)4(...
—Z&}Z{[Mu+mmw+mmgum (X5, + X,
{m} Ftr

= (mg +2)(my +1).

= (mg +2)(my +1).

= (mp +1)(mp +1). (A.17)

= (myp + 1)(mf/ +1).

= (mys + 1)(mf—|— 1).

0 0)1(... 0 0 0)4(...
+ (XN + IXNG D, + X + (XHG ) + (XAt

+ DXL + 05 |3 + (0 0 1)
[R50 e (1210 + XN + XD + X

0
+ [Xétz]fy q) [Xlth]éqq))} 5f1m,g}
(A.18)

In obtaining eq. (A.18), we have used that whenever any of ¢, k or r are (anti)quarks,

(X ,g%),];k}t 1, does not depend on the specific quark flavour(s) (as implied by the notation),

except that we have allowed for the possibility that the ‘equal flavour’ and ‘unequal flavour’
counterterms are different, e.g. [X lg(zz]éqq) # [X ,ggz]é q) 4> Which implies that the summations
> in eq. (A.15) may be performed, yielding the factors of (nf — 1) and ny.
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Let us define the flavour summed counterterms as follows:

1 ()
DD I B 3 B CrE) IR

{(m+2} S{m+2) kAt rkt {m)}

Then we find
0)) ) 0)1(... 0)1(... 0)1(... 0)1(... 0
(xi),” = X006 + (X006 + (X6 + (o — ) (XG53, + X0y

(XN + XS, + X, + (XN, ) + XA + X

q9'q ktriq'q'q
+ (X5d
(Xé?i); ! = Q16 e (1K) + XOIG) + X0 + X O) + X6
+(X05) -

(A.20)

Four-parton flavour sums. Consider finally a generic integrated counterterm [X ,ggz)r](),
which depends on four indices, k, ¢, ¢ and r. Two examples are [thCEB,)kt] Frfeififr and

[CreSi (S, tS( )]. We will discuss the most general case, when all flavour indices are ex-

plicit.

These terms always appear in eq. (3.6) under a four-fold sum:

Z ZZ Z Z Xlg(t)zr Py (A.21)

{m+2} {m+2} t  k#t r#k,titkt,r

In this configuration, we go from m to (m + 2) partons as in egs. (A.1)-(A.3), i.e. case 3

must also be considered. Decomposing the summation over ¢, k, ¢ and r into sums in which
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the flavour (including specific quark flavour) of each index is fixed, we find

PO D SO B DED BC A YT

{m+2} Stm+2} 5 kAt vkt ikt

1 S
=) o { LYY > it

{m} {m} S{m+2} t  k#t r#ktitk,tr

X |:(6fk7Qf6ft796fi7Qf/6f%g + 6fk7‘1f 5ft796fi 796f1"7Qf/ + 6fk796ft7Qf6fi7Qf’6f%g
+ 054,90 f0as0£1,90 frap + (ar € @p) + (ap < Qp) + (ar € @55 qp < (iff))
+ (6fk7Qf6ft796fi796fmg + 5fk,95ft,qf 6fi ,951%79 + 5fk 795ft796fi7Qf 6fr79

+051.901.901.90 fray + (a5 < @f)) +0£1,9970,99f5,90fr.9

1 Sim
g gt
P g X

{m} {m} S{m+2} 1t k#FEt r#Ektitktr

(A.22)
X |:(6fk7Qf6ft796fi7Qf/6f7“7(jf’ + 5flc7‘1f5ft795fivqf’5f1”7‘1f/ + 5fk795ft7Qf5fi,qf/5fmlif/

+ 5fk795ft7qf5f’ivqf/5f’l‘7qf/ + 5fk7qf/5ftyqf/5fi7qf5f7‘7g + 5fk7(jf/5ft7qf/5f’i7qf5f’l‘79
+ 0 fuay050a 05190 friar T Ofndp Ofias 0590 fras (A Gf))
+ 6fkvg6ft796fivqu’6f%qf’ + 6fk796ft796fi7‘jf/6f%qjd + 6flc7‘1f/6ftvqf’5fi796frvg

+ 5fk,qf/5ft,qf/5f¢,g5fr,g}

T D L1 5 ) D DD DE (A |

{m} {m} S{m+2} [ f t kFEtr£ktitktr

X |:5fk7Qf5ft7‘jf5fi7Qf’5f1"7qf/ + 6fk7¢1f6ft7‘jf6fi7‘jf/5fryqul + 6fkvqf6ftﬂf6fi7‘1f/5fr7‘jf/

+5fkvqf5ft7Qf5fivqf’5fr7Qf/:| :

Four-index subtraction terms only arise in conjunction with the double collinear limit and
are always completely independent of the specific quark flavours. We have used these facts
to write eq. (A.22) in the above form. First, since the pairs of indices k, t and 4, r will
always correspond to true singly-unresolved collinear limits, we have discarded all terms
where this is not the case. In effect, we have dropped all terms where both k and ¢ or both
i and r are (anti)quarks. Second, complete independence of all counterterms on specific
quark flavours implies that the ‘equal flavour’ and ‘unequal flavour’ ones are equal. E.g.
[X Iggzr]ng/é/ =[X ,gggr]ngq and so on. We have used this fact in writing the equation, hence,
in (A.22), f and f’ are not necessarily distinct flavours. Then using the flavour summation
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rules, we can rewrite the summation over the unobserved indices k, ¢, ¢ and r in the (m+2)-
parton configurations into sums over indices kt and ¢r in the m-parton configuration. We
have

_ #(ft)m-i—Q #(fka k 7é ZL/)m-l—Q #(f?"; r 7& kat)m—f—Z #(flaZ 7& k,t,?“)m+2
;;;; h #(frt)m #(firs i # kt)m

Y

Kt ir £kt
(A.23)

where the notation is the same as in egs. (A.9) and (A.16). We assume that in general k,
t, 1 and r are all distinguishable. Then we find

#(qp)mr2 #(g; k # Omro #(qy; rfk,t)im #(g;1 # Kkt 1) m2
#(qr)m #(qps ir # kt)m
#(af)my2 #(g: k # t)mi2 #(Q;Tfk,t)imw #(9:1 # k1) my2
#(qp)m #(g; ir # kt)m
#(@)mi2 #(g: k # )mi2 #(g; Tfk,t)ﬁw #(9;9 # k,t,7)m2
#(9)m #(g; ir # kt)m
#(af)ms2 #(9: k # )mio #(ayp; T’fk‘,t)im #(qp5i # k) mge
#(ap)m #(g; ir # Kkt ),
#(Dmr2 #(g;k # )mi2 #(Qf';rfkat)LnH #(qp5i # kot r)m2
#(9)m #(g; ir # Kkt )

= (mg +2)(my + 1),

= (mg +2)(mg +1),

= (mg +2)(myg +1),

= (mp + 1)(mf/ +1),

= (mf/ + 1)(mf/ + 1) .

(A.24)

In case 3 we must remember that the counting is slightly different for the ‘equal flavour’
and ‘unequal flavour’ contributions even when the counterterms are the same. We have

#(qf)ma2 #(drs k # Oma2 #(qp;r # k7i)/m+2 #(@s; i # kot r)mia
#(9)m #(g; it # Kt )m
(mys+2)(mys + 1)(mf + 2)(mf +1)

= , e.f.
mg(mg — 1)

#(ap)my2 #(q5 b # my2 #(C]f’”j kaf)vmﬁ #(qp;i # kot m)ma2 _
#(9)m #(g; ir # kt)m

_ (my+ 1)(mf + 1) (my + 1)(mf7 +1)
mg(mg — 1)

(A.25)

, u.f.

By exploiting the symmetry of this factor under permutations of indices, we trivially obtain
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the rest of the cases as well. Finally, using eqgs. (A.4)—(A.6), we have

Z S Y X =

{m+2} Stm+2} 5 kot 1kt ikt

0 0
- Z Z Z { |: ktzr ng g + [Xlgtz)r]égg)q’ + [X/gtz)r]gqq)g + [Xlgtz)r]f]qg)q 6fkt7q6fw,q

{m} {m} Kt zr;ék:t
+(qe )+ <)+ @< q,4d < 7)

[[ (©

. 0) ) 0) (...
ktzr]égs?g"’_[ ktzr gqgg X( ( [X( ]( )

ktzr q9q’q’ ktir

]()

(0)
+[X 999’7 ktzr gqq q’ :|6fkt7q6fw79 + (¢ < @)

ktir

0
+ [Xlgrtz)r](g q)gq ktzr q q qq :|5fkt795fzr7q + (q A q)

0 . 0 0 0) 1(...
| 5 + e (X e+ L+ X

0 0 0 0
X Same) 1 (XM i+ XA G + (X0,

q99°9

0) (...
+ [Xlg:tz?r]éqq)’q’)] 6fkt796fi1"79} :

q97'q’

0) (... (0 (0) 1(..)
+ |:[th27’]§79‘1)9 + [ Imr gggq f( Xk‘tzr q q a9 [thir](i/q/qg

](---)

99’7

(A.26)

We remind the reader that eq. (A.26) was derived by using that the counterterms are
independent of specific quark flavours (as the notation implies), and further that the ‘equal
flavour” and ‘unequal flavour’ subtraction terms are equal. Then the sums » 7 and > g n

eq. (A.22) may be performed, and we obtain the factors of ny and n% as shown.

Finally, we define the flavour summed counterterms as

> 3

{m+2} {m+2}

ZZ Z ktzr fkfthfT Z S{ }Z Z ( ktzr) ok .
t k#t r#k,

LiFh,t, {m} kt ir# &t
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We obtain

(xih),

qq

(- ) (0) 7(--.) (0)
] + [X ] 2 [X 999’9 ktirlgqgq’

999’9 ktirlgqggq ktir

ktirlgqgg

0) ) ¢+ 0
<X]§)t2)7') a9 [XIEEtZ)T]qggg

r (XN + XL + X + X100

q99'q q97'q
()
(X0) 7 = I+ 05 (4.28)

ktir ktirlgggq

0 0 0 0
+ nf <|:X]gtl?'r‘]é’q2qg + [X]gtl?'r‘]((j’qzqg [XIE)tZ)T]((J q)gq + [X]E)tl?r]é’ngq)

)( ) x @) ([Xm)

(0)
<X ktir gggg ktir

0) (... 0
tir Vg + [ Xieh Jsaa + (X!

() (0) 1(--)
ktir ggqq ktzr]qqgg + [thir]éqgg)

0 0) 1(...
+ng ([Xlgtl)r]fgqq) 'q + [X/gtz)r]fgqq) 'q’ + [X/gtz)r]éqq) 'q’ + [Xlgtl?r]é’qq’)’q’)

A.2 Computing the flavour summed integrated counterterms

Using eqs. (A.12), (A.13), (A.19), (A.20), (A.27) and (A.28), it is straightforward to com-
pute all flavour summed integrated counterterms as presented in section 3.2, after taking
account of the following points.

e In eq. (3.6), most counterterms appear with some explicit overall factor, which must
be included in the final result. E.g. for the collinear-triple collinear counterterm, this
factor is 1/2.

e In certain cases, the ordering of some flavour indices may be meaningless, due to
a symmetry of the integrated counterterms. E.g. in the collinear-triple collinear
case, the integrated counterterm is symmetric in the first two indices, [thC,(ctzn]ng
[thcl(gtl]qgg and so on. Hence, some terms that appear separately on the right hand
sides of egs. (A.20) and (A.28) may be equal. See also the second line of eq. (A.13),
where the appropriate symmetry is already taken into account.

e In particular cases, some terms that appear on the right hand sides of egs. (A.13),
(A.20) and (A.28) may be zero for certain flavour assignments. E.g. in the collinear-
triple collinear case, the first two indices must correspond to a true singly-collinear

limit, hence [C ktcét)r]qqq = 0 and so on.

e The ‘equal flavour’ and ‘unequal flavour’ counterterms in eq. (A.20) may actually be
(0)

equal as e.g. in the collinear-triple collinear case, where [C,,C}, ]qqq = [thckgr]qq/@'
Recall that this is already taken into account in eq. (A.28).
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With these in mind, we easily find e.g.

0 0 1 0 0
(thcl(ct2">q - [thcétz]qgg + §[thcl(ct3»]ggq + nf[cktcl(ctzf]Q"?'q )
(A.29)

0 1 0 0 0
(thCé‘;)g = §[thcétl]999 + ng [thcl(stl]qég + 2n¢ [thcl(stl]gqq’

for the collinear-triple collinear flavour summed counterterms. The rest of the results in
section 3.2 are obtained similarly.

B Modified doubly-real subtraction terms

We outline a simple modification to the NNLO subtraction scheme presented in refs. [1,
2]. Parts of these modifications were presented previously: those relevant to the singly-
unresolved approximate cross section dasi’QA ! appearing in eq. (1.3), and to the approxi-
mate cross sections in eq. (1.4), were presented in ref. [35]. In this appendix we describe the
modification of the iterated singly-unresolved approximate cross section daiﬁ’f 2 which
appears in eq. (1.3).

Recall that the iterated singly-unresolved approximate cross section can be written
symbolically as

RR7A12

dohiy ™ = Aoy [dpa] Aral M % (B.1)

where the iterated singly-unresolved approximation A12‘M£L2’2 is a sum of a number of
different collinear-, soft-, and soft-collinear-type terms (see egs. (3.1)—(3.4)). The precise
definition of these terms involves the introduction of two momentum mappings

Cir — (er Sr — (r
{p}n+1 — {p}gz ) ’ and {p}n+1 — {p}gz) ’ (B2)

which are iterated in various combinations to produce appropriate mappings of m+2 — m
momenta. As discussed in section 2.3, all such mappings lead to an exact factorisation of
the m + 2 particle phase space, symbolically written as

ddmi2({r}; Q) = dPpm({ P }n; Q)dp1m][dp1m+1] - (B.3)

The exact form of the factorized phase spaces [dp; ] (n = m,m+ 1) is given in egs. (2.16)
and (2.17), but their only feature which is relevant presently is that they carry a dependence
on the number of partons, n, of the form

[dp{7)] oc (1 — gy 2 DO==T (B-4)
[dp{)] oc (1 — yrg) (DAL, (B.5)

The subtraction terms, as originally defined in ref.[1] do not depend on the number of
hard partons, thus the m-dependence of the factorized phase space measures is carried
over to the integrated counterterms, where furthermore this dependence enters in a rather
cumbersome way (see e.g. egs. (A.9) and (A.10) of ref. [3]).
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Thus, as in ref. [35], we reshuffle the m-dependence of the integrated counterterms into
the subtraction terms themselves, where it appears in a very straightforward and harmless
way, through factors of (1 — «) and/or (1 — y) raised to m-dependent powers. For easier
reference, we gather the results in table 5, where together with the subtraction terms, we
give the momentum mappings used to define the term(s) and the function which multiplies
the original counterterm to produce the modified one. The f functions appearing in table 5
are defined as

F(20,2,p) = O(z0 — 2)(1 = )77 (B.6)

The pattern of modifications is hopefully clear: if the factorized phase space ap-
propriate to a given subtraction term carries m-dependence through factors of (1 — «)
and/or (1 — y) respectively, it is multiplied by a factor/factors of f(ag,a,d(m,¢€)) and/or
f(yo,y,d' (m,€)). We emphasise that the form of the exponents d(m,e) and d'(m,e), is
actually fixed by the prescription in ref. [35] (see egs. (3.2), (3.12) and (3.13) in particular)
and the requirement that the modified subtraction terms should still correctly regularise
all kinematic singularities. In fact, we must have

d(m,e) =2m(l —¢€) —2dy, and d'(m,e) =m(l—¢€)—dj, (B.7)

where dy and dj, are the same constants which appear in egs. (3.2), (3.12) and (3.13) of
ref. [35], i.e.

dy = Do+ die, and dj = D} + dje, (B.8)

where Dy, D) > 2 are integers, while dy,d) are real. Also, the parameters « and yp must
have the same values for all subtraction terms, including the singly-unresolved ones of
ref. [35].

Finally, we note that the modifications introduced above do not spoil any of the can-
cellations which take place among the original subtraction terms, hence the modified coun-
terterms are still a correct regulator of all kinematic singularities. This is not particularly
hard to check explicitly, and is actually a manifestation of the fact that the various mo-
mentum mappings obey several conditions in soft and/or collinear limits. As these were
discussed in ref. [1], we do not go into further details here.

C Basic collinear, soft and soft-collinear functions

Certain basic functions appear repeatedly during computations in this paper. They all arise
as integrals of various simple factors over factorized collinear or soft phase space measures.
Below we define and give explicit integral representations of these functions. Some, notably
Z, J and K, have been considered previously in ref. [35], albeit in somewhat more general
forms. For completeness, we present these here as well, although only in the special cases
used in this paper.
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Iterated collinear counterterms

Subtraction term Momentum mapping Function

f(ao, age, d(m, €))
C tc((zro) c’” (kt) (Kt 7 ,kt)
. (o} S5 {5} ET (5} e
(

f(ao, akt, d(m,e))

C- . -~
thcz(g I(c)z)t {p} C& {ﬁ}(kt) iw {ﬁ}(l 7,kt)
xf(ao, az5,d(m, )
thcsxi(zf:), thcwt(l?;i?;f), (o} & [ T }(kt) S, (510 f(ao, ake, d(m, €))
p p

ththrCSkfg) X f(yo,yrq,d (m,¢))

flao, age,d(m, e
thslg(t’,(){cktcrktslgg,o) {p} S5 Cht, {p}(kt) { }(kt k) 0, Okt d( )

Xf(y07 yEQ7 d/(m7 6))

Iterated soft counterterms

Subtraction term Momentum mapping Function
Stci(gio) StCSz(StO)7 S o) S (T f (o, yeq,d (m,€))
5,C,r S0 te} = {3 = APFT % f (0, s d(m, €))
8:Cipi S| 8,81 SO0, S ) St () fo, yq, d'(m, €))
SiCiriCSiraSie", S8 v xf(yo,yr o, d (m, e))
Iterated soft-collinear counterterms
Subtraction term Momentum mapping Function
CiSiCY, CuSeSY, S 0 Cix G f(yo, yrq, d'(m,€))
5,C,y G50 te} = {3 = APFT % f (0, s . d(m, €))

CriSiSEY, CrSiCrreS?, /
(0,0) (0,0) St, f~1(t) ST, =1 (71 I (o, yrg, d'(m, €))
C'rtCStC}w‘zﬁ‘g'rt7 ) Cl»ct‘sllf‘g'rt7 {p} — {p} — {p} " /
Xf(y07 Y7 Q> d (m7 E))

CrrSiCSir S

Table 5. The modified iterated singly-unresolved subtraction terms are obtained from the original
counterterms (first column) by multiplication with an appropriate function (last column). Also
shown are the momentum mappings used to define the subtraction terms (middle column). The
f (20, 2z, p) function is defined in eq. (B.6) while d(m, €) and d’'(m, €) are defined in eq. (B.7).

C.1 Collinear functions

When computing the integral of the azimuthally averaged Altarelli-Parisi splitting func-
tions over the factorized collinear phase space, the following function arises:

Il(yi?@’ €, aq, dp, ]{?) = I(yi’\rQ’ €, g, dp,0,k,0, 1) =

C.1)
1672 ir 1 (
= TQze /1[(1]?5 n)1+1] rzf(a0> (077 d(m> 6)) s
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which, as indicated, is simply the Z function of [35], for the special values of parameters
k=0 =0 and gr = 1 (for their meaning see ref. [35]). The integral is over [dpgz,;)wl], ie.
the factorized measure obtained when going from m + 2 to m + 1 partons via the collinear

mapping of ref. [1], which can explicitly be written as

[dp(ir) (pk /ﬁ Q)] _ (QQ)l_ES (1 — o )2m(1—e)—1 ~ dea.. dvs
1,m+1 s Pars 1672 € i irQ ar UWlgp
x o, (o + (1= 0i)ysg) ™ 05" (1—v3) ¢ (C.2)

X @(Oéir) @(1 — Oéir) @(Uz‘r) @(1 — Uir) .

The general collinear function was first computed analytically in ref. [36]. For convenience,
we present the integral representation for the specific case, used in this paper:

ao
Ty (x5 €, ap, do, k) = :c/ da (1 — )™ 1o ¢ a + (1 — a)z] 1 7¢
0

) 1 . (C.3)
« / dvo—<(1 — v)—¢ (;ﬁ(——_wv> ,
0 a+(1—a)x
where the factors ( )
a+ (1 —a)zv

correspond to the collinear pole y;, and momentum fraction z,.;, respectively (with » = .,
a =y and v =1 — vy).
Among the iterated subtraction terms considered in this paper, we find two other basic

integrals over the collinear phase space measure (C.2). One of these is the Lorentz tensor

R 1672 ) 1 4k‘i K
Ilw(piraQ;e,aO,dO) = S Q2E /[dpgz,ngl];Zi,rzr,i%f(QOaO‘ir,d(m’ E))
€ ir i

(C.5)
with kinematic dependence only on p‘ and Q. The transverse momentum is defined to
be orthogonal to both of these, p;.-k| ;,» = Q-k1 ;, = 0 and contraction with g"” replaces
the fraction in the last factor with four. The most general Lorentz structure that obeys
these conditions is

TH =

1—e€ /ﬁlrQ (/ﬁer)Q e
(C.6)

1672 . ir . 1
X S—Q2 /[dpg,w{“(pt, pir;Q)];Zr,izi,rf(QOaairad(ma €)),

where the integral in the second line is clearly just [Z1(z=, €, g, do, 1) —Z1 (2, €, g, dp, 2)].

ar’ ar’
The other one is

1672 ir 1 yir
Ig(xi;;e,ao,do) = 5 QQG/[dpgm)hLl]— y2 (ao,air,d(m, 6)) . (07)
€ Sir Yiq
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The definition of z;, [1] implies viq = zi,(¥ig + ¥r@), and from the definition of p;,. we
have yig + yr@ = 20, + (1 — air)xi;. The momentum fraction can be expressed with the

integration variables as in eq. (C.4), therefore,
YiQ = ir + (1 — )5 040, (C.8)
hence

To(xs€,00,dy) = x/oao da (1 — a)?™1a=la 4 (1 — a)z] ¢
) (C.9)
v (1 —v) o —a)zv] 2.
« [ ave = oot (1 -

C.2 Soft functions

When integrating the eikonal factor s;x/(sirsk.) over the factorized soft phase space, we
encounter the following function:

jl (Y2E7Qa €, Y0, dé)) = j(Y”{E,Qa €, %0, d,O, 0) =
(C.10)

1672

2¢ (r) Sik
TS, Q /1[dp1,m+1]ﬁf(y0,y7»@,d'(m,e)),

irokr

which, as shown, is simply the J function of ref.[35], for k = 0. The integral is over
[dpgr,)ﬂ 41, i-e. the factorized measure obtained when going from m +2 to m + 1 partons via
the soft mapping of ref. [1]. This measure can conveniently be written using energy and

angle variables in the centre of mass frame, where

(C.11)

pt = E,(1, ‘angles’, sin ¥ sin ¢ sin 77, sin ¥ sin ¢ cos 1, sin 9 cos ¢, cos I) ,

where (here and below) the dots stand for vanishing components, while the notation "angles’
indicates the dependence of p) on the d—4 angular variables that can be trivially integrated
in all relevant cases. In terms of the scaled energy-like variable 3, and the angular variables
9, ¢ and 7, the two-particle phase space d¢a(p,, K; Q) is

(Qz)_e € 1—2¢ -
S S 4dyy' 6y — yrg) (C.12)

x d(cos ) d(cos @) d(cos i) (sin ) "2 (sin ) "1 2 (sin ) "2,

d¢2(p7’, K’ Q) =

Often the integrand does not depend on all angles and we can integrate out 7,

! g 272721 )
/1 d(COS n)(sm 77) 272 — _ c m s (Cl?))
and ¢,
M /1 d(cos @) (sin @) 7172 = 22%¢ (C.14)
(1 —2¢) J_4 7 4 ' '
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The J) function of eq.(C.10) was first computed analytically in ref. [36]. We recall
that it is conveniently evaluated in the frame eq. (C.11), with the orientation fixed by

p=FE:(1,...,1), ﬁZ:EE(l,...,Sinx,cosx). (C.15)
The precise definitions of p and p’ via the soft mapping [1] imply

sik = (1 —4Q)s37 » Sir = §7,. Skr = 5%, (C.16)

and expressing all two-particle invariants with integration variables, we find [36]

TV e, y0,dy) = —4YMQ (cos x(Y),1,1) /y0 dyy (1 —y)b .  (C.17)
1 5 €590, Qg 27TF(1—26) 11 y Ly 0 . .
Above Y =Y> 4 0’ while
cosx(Y)=1-2Y, (C.18)

and the function 2;; denotes the angular integral

1

Qji(cos x, b1, f2) = /1 d(cos ¥) d(cos ) (sin ) ~2¢(sin ) "1 7% o)

x (1= By cos ) 7 [1 — By(sin x sin ) cos g — cos x cos9)] .

Presently we need the special case 81 = (2 = 1, which we call the ‘massless’ angular
integral. The result of this angular integration is well-known [40] and is proportional
to a hypergeometric function. Finally, using some hypergeometric identities and a one-
dimensional integral representation of the hypergeometric function, we derive the following
integral representation for 77, to be used in this paper:

%1 — Yo ;1 ¢
Ve d) = -y~ 2 LD [Mayymoxa gy [Cae=[i-a-vy)”
0 0

(1 — 2¢)
(C.20)
In some cases the eikonal factor involves three momenta as in

1 Sil + Ski

—Siy(r) = ——% . C.21

2 (lk)l( ) (Sir + Sk‘r)slr ( )

Then the soft integral
j(lm) (}/—(7%\)77@7 5(’{'];)a €, Y0, dé]) =
C.22)
1672 / () Sil + Sk / (
= T a ¢ d ; v N ) ) d m’ 6
S, Q [ Pl,m+1(Pr Q)] (sor +Skr)81rf(y0 Yrq. d ( )

cannot be expressed with the soft function J any longer. In eq. (C.22) 5(7@ is the velocity

of the momentum p% + p/ in the centre of mass frame. We evaluate J (Im) in the frame
(C.11), with orientation specified by

/ﬁé‘—i—/ﬁZ:EGE)(l,...,ﬂGE)), P =FE;(1,... sinx,cosx). (C.23)
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Using the precise definition of ;/57 (j =1, k, 1), we find

Sl = S5 . (C.24)

sitsp=1—yrq)(577 +537)s  Sir + Skr = 57 ;)

ir

+sz

r )
Then we express all relevant two-particle invariants with integration variables and obtain

I'2(1—e¢)

(1m) . AN
j (Y’ﬁaeayOadO) 4Y27TF(1 — 26)

Yo ,
Q11 (cos x(Y: ), B, 1) / dyy "2 (1 — ),
0

(C.25)
where we used the soft phase space eq. (C.12) with n integrated out (see eq.(C.13)). In
eq. (C.25) Y = Y(?E)T,Q’ B= B(QE)’ while
1-2Y

B

and the function 2 is defined in eq. (C.19) above. Now we need the special case f; = f < 1

cosx(Y, ) =

(C.26)

and B2 = 1, which we call the ‘one-mass’ angular integral. The evaluation of this integral
will be discussed elsewhere, and here we simply indicate that the result is proportional to an
Appell function of the first kind. Finally, using a one-dimensional integral representation
of the Appell function, we obtain an integral representation for 7™ similar to eq. (C.17):

5 2T (1 —e€) [0 ,
(1m) Y 8 1Y (9Y)"2€ / 1=2e1 _ 44
JU(Y, B €, 90, dy) = —(2Y) a2 J, dyy (1 —y)®

x/ldtt_l_ZE [1+5—(1+5—2Y)t]6[1-ﬁ-(1-5-2¥)t -
' (C.27)

Setting B = 1, we see that U™ (Y, 1;¢,y0,d5) = J1(Y;€,y0,d)), as expected.

C.3 Soft-collinear functions

The following function arises when integrating the collinear limit of the eikonal factor,
22; 1/ (sirzr,i), over the factorized soft phase space (recall that z;,/2,; = sig/srQ):

1672 r 2 ziy
(e ) = Koy, 0) = Q% [0 2 i, ). (€25)

SE i AT

As indicated, this is just the K function that was defined and computed in ref.[35], for
k = 0. The integral is over [dpgrr)n +1], i.e. the factorized measure obtained when going from
m + 2 to m + 1 partons via the soft mapping. An integral representation for K is easily

derived in the frame of egs. (C.11) and (C.15) using
Sir = 87, SiQ = (1- yrQ)SQQ + 57, (C.29)

which follow from the precise definition of p!' via the soft mapping. We find

Yo , 1
e dy) =2 [y -t [

5 d(cos ) (sinv) =2 [1 + M] :

y(1 — cos )
(C.30)

,56,



which can also be written as

Yo ) 1
K1(e,y0,dp) = 2/ dy y71726(1 — y)dof1 / dz 27176(1 —2) ‘(1-y+yz)), (C.31)
0 0

where we made the substitution cos?d — 1 — 2z. Notice that the soft-collinear function C
is independent of the kinematics.

In some cases, the collinear limit of the eikonal factor involves three momenta as in

2 1—zir 2 %iQ+UYrq

Syt Zir Sit T St YtQ

(C.32)

Then the soft-collinear integral

m 1672 5.
KO (G sondy) =~ Q¥ [145), 1 (pis Q)

21— ztn‘r

f(y07 UtQ» d/(ma 6))

(C.33)
cannot be expressed with the soft-collinear function I any longer. In eq. (C.33), ﬁ(

S(ir)t  Atyir

i) I8
the velocity of the momentum p% + D in the centre of mass frame. Using the definition
of the mapped momenta [1], we have

sit +5r¢ =57, + 57, siQ T srQ = (1 —yQ) (579 +57¢) + 57, + s7¢- (C.34)
Then we evaluate K™ in the frame given in eqs. (C.11) and (C.23) (with the trivial

replacement k — 7). Expressing all two-particle invariants with integration variables, we
find the following integral representation for the ‘one-mass’ soft-collinear integral:

KO (3; €, o, di) = 22 / T / " dfeos 9) (sing) 2 |14 —20=9)
; » y{1 = Beos D)
(C.35)

where 8 = ﬁ(g?). We make the substitution cos?¥ — 1 — 2z to obtain the final form of the
integral representation used in this paper:

—e2—y(1+ B8 —2Bz)
1-08+4282
(C.36)

Yo , 1
K™ (B; €, yo. dp) = 2 / dyy (1 — )% / dz[=(1 - 2)]
0 0

For B = 1, we recover the soft-collinear integral, ('™ (1; ¢, o, dy) = Ki(e, y0,dj)).

D Integrating the collinear-type counterterms

In this appendix, we discuss the integration of the collinear-type counterterms of section 4.1.
In particular, we define and give an explicit integral representation of all Iél) functions

(i=1,...,9).
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D.1 Treatment of azimuthal correlations

Collinear subtraction terms contain azimuthal correlations if the factorisation formula in
the Corresponding collinear limit involves gluon splitting kernels. For the two-parton split-
ting ij — i+ 7, these azimuthal correlations involve a transverse momentum k:“ that we
always chose to be orthogonal to the parent momentum p* = This condition is sufﬁ(nent to
prove that the integral of the spin-dependent and spin-averaged splitting kernels over the
factorized phase space of the unresolved parton are the same [38]. Therefore, one can always
substitute the spin-dependent splitting kernels P}?}j (2j,i1 k1355 €) with their spin-averaged
counterparts, <P}?}j(zj,i; ki s e)> = P}?}j(zj,i; €), as done in section 4.

In the case of strongly-ordered three-parton splittings, one cannot directly use the same
argument. The splitting kernels in the integral of the collinear-triple collinear subtraction,
thC,(gg’rO) depend on the transverse momentum &/ , , in two ways. One is when the Lorentz
index of the transverse momentum coincides with that of the parent gluon as in the explicit
R ook e/ ki,kﬂf terms in the gluon splitting kernels:

(1 !Pgs,f],cqt (Zk,hzt,kakJ_,k,ta21&7?72?7];}7kl’]%7?§6)"/> =

2 w v
Z 27y 5% ze ~ k k
7kt kt,7 ThL ot Et, 7 MLkt Kt
=207TR | — g/“/ — + — + 22, k7k2 + 4Zk,t2t,k N 12
it o FF R 1Lk tSker “rt Nkt
EY kY
(0) O\ LR R LR Rt
_ 4CA(1 - E)Z’\ ot k‘t 7 quQt (Zk,ta 2tk kl,k,ta 6) ]{?2 ~ (Dl)
1,7kt

and

(1 !Pgsk(;t(gor (Zh,ts 2t K Lkts 255 50 25 i KL s OIV) = 403

Za i 27y -~

Tkt kt, T

_ gl“’ 2
“RnE o Fr okt

&2
2kt | Atk 1—€ STk, . E?kiktklkt
X <— + ) + 9" sz —— g — 2(1 - E)Zktztk

2 _ 2
Ptk Pkt 2 k1 eiSir o Rk
E* v
0 i i,r,kt 1,7kt
— 4Cx(1 - E)ZA Kt7kt, 7 Pg(kz)lt(zkm Zt ke KLkt )2— . (D-Q)
1,7kt

This transverse momentum is not orthogonal to p’, , as defined originally in ref. [1]. Never-
theless, when integrating these subtraction terms, we can still substitute the spin-dependent
splitting kernels with the spin-averaged ones, as we now show.

Recall that the strongly-ordered three-parton splitting kernel appears in the collinear-

triple collinear subtraction term in the form

CCo® oc (MO ({7 yFT 40 oo O A O ({5 yR7 4 (D.3)

and the bra-ket expression above has the following precise meaning;:
0)| Hs-o0. (0) 0\
(MBS M) =
(D.4)
~ ~ s.0. (0) ~ ~
(MO AD Dy (B g m1) (1 1255 1 Yo (B s m2) I MD ({5 1))
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where d,;,/ (D g4, n1) and dy,r (P gy, n2) are gluon polarisation tensors With (time-like) gauge
vectors, n1 and no. Hence, the object to integrate is not simply (,u| I f(J?)| ), but rather
the contraction

g (B ot 70) (| P35 5 10 ) o (B g m2) (D.5)

that is clearly orthogonal to ﬁ;:t (because of the presence of the polarisation tensors).

0)

Thus, by the usual arguments, the azimuthal correlations present in thC( vanish after
integration over the phase space of the unresolved parton. However, we must still be careful

to compute the average over the polarisations correctly. When k| -p # 0, we have

I 0 1 ki -P ki-p
Ao (P yn1)—2d, (P, n :—<kz — = n ><k y— = n,,>—i—..., D.6
L (p,n1) ki (p,n2) ki Lo Don 1p 1, D s 2 ( )

where the dots stand for terms proportional to p* or p” which vanish after contraction
with the matrix element, by gauge invariance. Thus we find (7 is a further time-like gauge

vector)
K 1 e (B, n)KY R doy (B m2)
d /(ﬁ,nl) 1 ldl,,,(p nz) =— d V(ﬁ,ﬁ) [t ) 1 vl s
< o ki 2(1—¢) H kﬁ_
11 ki P (ki-P)?
T 21— e k2 [ L M T T G (pong)

(D.7)

Eq. (D.7) shows that the advantage of having k,-p = 0 actually lies in the trivial azimuthal
averaging. However, this can also be arranged if k) - p # 0. For example, choosing gauge
vectors nf and nf such that n} + n} o« k/ (and of course n? = n% = 0), we find that the
above average just reduces to —1/[2(1 — ¢)], which is the usual result. Since k2 < 0, such

nonzero n} and n} always exist. Indeed, in any Lorentz frame we have the parametrisation
k! = K(1,87), where & = 1 and 8% # 1. Then setting e.g.

nf = %K(l + B)(1,7), and  nh = %K(l - B)(1, —7), (D.8)

we clearly have n/ and n} nonzero, n? = n3 = 0, and n{ +n{’ = k', as required. We make
essentially such a choice in our numerical code.

A shorter, though less transparent proof is to observe that if we change this single
troublesome term to

o v .u IR
kL,k,th_,k,t ki,k,tkj_,k,t D
k2 79 ) ( 9)

Lkt kJ_,k,t

where -
KLkt Dk

P O (D-10)

Tk LM _
kJ_,k,t - kJ_,k,t

then obviously & 1kt P ger = 0, and all the usual arguments apply. What is not immediately
obvious, is that this modification does not ruin any of the delicate cancellations between
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the various counterterms in any IR limit, and hence is allowed. This can be established as
follows: in the centre of mass frame of @, the replacement of eq. (D.9) simply amounts to

ki,k,t = _K(]"IBU) — %l,k,t = _K(l + A’ﬁg) ) (Dll)

with some A. Then, continuing to choose the gauge vectors as in eq. (D.8), we have

= _K(1+ﬁ)( DRI %K(l +A+0)(1,9),
(D.12)

= _K(1 —B)(1,-7) —» nh = %K(l +A = B)(1,7),

i.e. only the normalisation of the gauge vectors is changed by the replacement in eq. (D.9).
However, this implies that eq. (D.6) is actually unchanged. Indeed, recalling that kj‘_ =
ny + nk, we find

N K N ~ 4+ Y(nY +nY -
dﬂﬂ'(panl)lk—Qldu/u(panQ) = d““/(p,nl)( L (nQ_i)_(nl)Q 2 )dl//l/(p7n2)
- L (D.13)
n“,n”/
—d (D 2L q,.(p
LR (p7n1)2(n1_n2) (p7n2)7

and the last expression is clearly seen to be invariant under (independent) rescalings of n;
and nsy. Hence, the replacement in eq. (D.9) is completely harmless. (However, notice that

the proof requires the specific choice of gauge vectors as in eq. (D.8).)
2

sS4
The other occurrence of k| 1+ in the strongly-ordered kernels is in the ratio T2L’k’t,

L.kt
also present in the quark splitting kernels. Examining the explicit forms of the strongly-

ordered splitting kernels, we find that this ratio always appears in the form

o~y
PrPEDY (51, Q). (D.14)
Skt7

where the integral IH is defined in eq. (C.5) and computed in eq. (C.6). Contracting the

latter with p}'p; /sy, ~, we obtain

2, _ 2
T 3 - (Qszkﬁ — SiQ> 1?; Q* /[dpgkzﬂ]ik 2k 2kt f (g, i, d(my €)) . (D.15)
EQ ktQ € t
Observing that
55q _ ik (D.16)
ShQ  PRF
we find that when integrating the strongly-ordered splitting kernels over the factorized
phase space, the integrals of

2 —~
Loe Thiw g Y ZrR (D.17)
B - .
2 kY ushe IR CRLF

are equal, so we can substitute the former with the latter, which we implement in the next

subsection, where we give the spin-averaged splitting kernels explicitly.
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D.2 Explicit forms of the spin-averaged splitting kernels

For the sake of completeness we present the explicit expressions for the spin-averaged
splitting kernels used in the integrals of the subtraction terms.
The azimuthally averaged Altarelli-Parisi splitting kernels are well known:

1 1
0) () = Sy = — 2
P (z) =2Cx L + T 24+z2—-2 ] , (D.18)

2
Pq(g)(z;e) =1TRr [1 1

(s - z2)] , (D.19)

PO (z€) = Cp E —24(1— e)z] . (D.20)

In our convention the ordering of the labels on the splitting-kernels is usually meaningless,
but in eq. (D.20) z refers to the momentum fraction of the second label. In other words
Pg(g)(z; €) = Pq(g)(l — z;€). The other two cases are symmetric with respect to z <> 1 — z.
In the strongly-ordered kernels Pf fi (f) the ordering matters, too. As a result, the same
triple-parton splitting function may have different strongly-ordered limits, which can be
distinguished by the momentum labels in the kernel, once the ordering of the limits is fixed
by the momentum mapping, ktr — kt+ 7 — (k 4+ t) + r in our convention. We always

choose z = 2 and Z = z, 1 as independent variables. For quark splitting we have

et

P (2, 216) = P (5 ) P (Z5¢) | (D.21)
P (2,2, Rye) = P (2) P (1 = Z5€) — Ca Cpz(1 — 205 R, (D.22)
P\ (2, 2, Rie) = P () P (1= Z5€) — Ca Crz(1 — 200 R, (D.23)

while for gluon splitting we find
POz, 2, R) = P ()P (2) — CR2(1 - 2)(b{0))°R, (D.24)
P2, Be) = P (5 ) PD(2) = CRa(1 — 2 b0 R, (D.25)
Por Oz, 210) = P (1= 210 P (230), (D.26)

where the constants b'" )f2 are given in eq. (4.3). Egs. (D.21)—(D.26) can also be written in

a unified form,

S.0. (O)(
frfefr

We see that the second term is present only if the three-parton splitting involves a two-

0 0 ~ 0 0
Rie) = Py} (5P (7:0) = 01,00y, Oy, 2(1 = 2B b R (D27)

parton sub-splitting with parent gluon.

D.3 Collinear-triple collinear counterterm

The collinear-triple collinear counterterm involves two successive collinear mappings, which

leads to exact phase space factorisation in the iterated form

b y2({p}; Q) = dbun ({5 YET 40, Q)dp™D (B, B s D™D, (ks B Q)] (D.28)
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The one-parton factorized phase spaces [dpglf:r)LH(pk, D Q)] and [dpgl;fj)(fﬁr, P Q)

are given explicitly by eq.(C.2) after appropriate changes in labelling, including the re-
placement m — m — 1 in the second case. The Altarelli-Parisi splitting functions and the
factor z(1 — z) in eq. (D.27) can be expressed as linear combinations of powers of momen-
tum fractions. Consequently, the integral over the factorized phase space [dpgkzz 41] in the
integrated collinear-triple collinear counterterm is written in terms of collinear functions

Ti(z g, € a0, do; k) of eq. (C.1). In order to compute the subsequent integrals over [dpglf,f)],
1 2 3 167 m7); 1 Yy
{28 19,218} = = Qze/[dpg,ﬁf)]SA {(1 — 2 @) A g BT }
¢ kt7 " Yhe (D.29)

x fao, ap~,d(m,€)) Ty (vg, €, a0, dos k)

the variable x5 =y, needs to be expressed in terms of Py, instead of DY, (see eq. (C.8)
with proper changes in labelling),

o = Yoo = Y + (1 — a&?)xﬁv&? . (D.30)
Then using the abbreviations o = o, ., v = vy (the integration variable corresponding
to1— 2. ) and z = x4, the integral representations (C.3) and (C.9), we find that the
integrated collinear-triple collinear counterterm can be expressed using the following three

types of integrals:

ag
I((:l) (1‘; €, 0, do; k,l) = x/ da(l _ a)2d0—3+25a—1—5(a + (1 . a)x)_l_e
0
1 1 ;
X / dvo (1 —v)~° at(1-ary (D.31)
0 200+ (1 — o)z
X I (a+ (1 — a)zv, €, a0, dos k) k,l=-1,01,2,

aQ
Z((:Z) (1‘; €, 0, do; k?, l) = x/ da(l _ a)2d0—3+25a—1—5(a + (1 . a)x)_l_e
0

Jomr (B

X I (a+ (1 — a)zv, €, o, dos k) k,1=-1,0,1,2,
and

o
Iés) (z;€,a0,dp; k) = x/ do(1l — )20 =342~ (o 4 (1 — a)z) ¢
0

1
1 -v) Y« — a)zv)? .
x/odvv (1—0)"(a+ (1 - a)zv) (D.33)

X I (a+ (1 — a)zv, e, a0, dos k) k=1,2.
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We can use the relations
Ié2)($, €, 0, dO; ka 0) = I((Zl) ('Iv €, Q, dOa k’ 0) ) (D34)

Ié2)($, €, Q, dO; ka 1) = ((Zl) ('Iv €, Q, dOa k? 0) - Iél) ('Iv €, 0, dO; ka 1) 9 (D35)
and

IéQ)(x; €,aq,do; k,2) = Iél)(x; €, ap,do; k,0) — 21((:1)(3:; €, aq,do; k, 1)
+Ié1)(x; €, ap,do; k,2) (D.36)

)

to reduce the explicit computation of the IéQ integral to the case [ = —1.

In terms of the functions I((:i) (1 =1, 2 and 3) we find the result given in eq. (4.2).

D.4 Collinear-double collinear counterterm

The collinear-double collinear counterterm also involves two successive collinear mappings,

which leads to exact phase space factorisation in an iterated form similar to that in

eq. (D.28). The integral over the factorized phase space measure [dpglz?b 41 leads to the
(i7

same collinear integrals as in eq. (C.1). Then the necessary integrals over [dplfnz)] are

1672 77, 1
Ié4)=—Q2€/[dp§, )]—A 2
5ir (D.37)

Again, x7; needs to be expressed in terms of ph, instead of pi,,

2/\ . 2(1 — v~ ~ Do
T = pé;Q _A O‘ég)p’“ 910 e (D.38)

V=VUr4,
LT

integration measure, we find that the integrated collinear-double collinear counterterm can

Setting o = a~

pP T =1,y =z, and using the v > 1 — v symmetry of the

be expressed as a linear combination of the integrals

(e 7))
IO (2, ys e a0, dos k. 1) = y / da(l — a)20=3+20 1€ ¢ (1 — a)y] 1~
0

1 1 !
[ (e o
0 20+ (1 —a)y
XIl((l—Oé).%',E,Oéo,do;k), /{?, l=—1,0,1,2.

In terms of the functions I((:4) (z,y; €, a0,dp; k, 1) we find the result given in eq. (4.7).
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D.5 Collinear-soft-collinear-type counterterms

The collinear-soft-collinear-type counterterms in eqns. (4.8), (4.12) and (4.10), involve a
collinear mapping followed by a soft mapping of the phase space, which leads to an exact
factorisation of the original m + 2-particle phase space in the form

ddmra({p}) = dom{B YT dp7) (B ,; QAP (e, B Q)1 (D.40)

)

where the factorized phase space measures [dpgkf?z +1) and [dpg?n)I

and (C.12) after appropriate changes in labelling, including the replacement m — m — 1

in the second case. The integral over [dpgkf?z +1] gives the same collinear function as in

(?)]

1,m

1672 . 1)1 T e
o) e il 2 )

i A7 Skiv fR ke

| are given in egs. (C.2)

eq. (C.1). In order to compute the subsequent integrals over the measure [dp

X f(yan?@d/(ma6))11(%&757 a07d0;k) 3

we have to express the invariants of the dependent momenta (with hat) with those of the
independent ones (with tilde):

S}\/l\:(l_y?Q)S;T’ SE?:SE?’ for k = Z'a ja kt’ l’ (D42)
SEQ = (1 — y?Q)SEQ +SE? , for /k\: = /2'\, l;t,
which also implies
T = —yrQ)ry T Vg (D-43)
Furthermore,
“ir Y _ (1- y?Q)yzQ TYir (D.44)

257 YrQ YrQ
with a similar expression for 2 / 25 R |
To write explicit integral representations of Iél) (i = 5,6 and 7), we choose the specific
Lorentz frame of eq. (C.11) with a different orientation for each function.

Integrated collinear-soft-collinear counterterm. Here and in the following, we will
use the partial fraction identity below to disentangle the singularities associated with the
factors of 1/ 554 and 1/s7-, appearing in the eikonal factor (first term in the braces in
eq. (D.41)):

it _l-vre Y51 _1-vrq . YidYie

. i1, .
i75T% Q* Yi5Y7s Q? IHe dys5yrs

-1
1—ys Y3 Y7 2y55 2y7-
_ y2rQ4Y;TQ<2]Q +21Q>< ]7"+ lr> )
Q “\25: 255 Yio  Yig

This is useful when computing the integral via iterated sector decomposition, while the

(D.45)

original form is better suited to derive the Mellin—Barnes representation. Since ‘undoing’
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the partial fractioning is trivial, below we will show the more elaborate form of the integrals,
which are directly suited to treatment with sector decomposition.

The convenient frame for integrating the first term in eq. (D.45) is

ﬁy:EE(l,...,l), py =E;7(1,...,sinx5,cos x7),

(D.46)
Phy=Eg(1,... sin¢p sinx 7, cos ¢ sinx7,c08 X7 )

while for the second term we choose a frame where j and [ are interchanged as compared to
eq. (D.46). In terms of the scaled energy-like variable 37 ¢ and the angular variables o, ¢
and 7, the two-particle phase space dgs(p,, K; Q) is given by eq. (C.12). The two-particle
invariants Yie Yisr Y s have to be expressed in terms of the integration variables, i.e.

2y~.A
1L = y7ro(1 — cos V), (D.47)
Yja
2y~
yy~l = = y7q(1 — sin x7 sind cos ¢ — cos xj cos V), (D.48)
lQ

Yigs = §y7§to?Q(1 —sin ¢ sin x 47 sindsin pcosn (D.49)
— €08 ¢ sin x 47 sin v cos p — cos x 77 cos ).

Furthermore, writing out the definition, eq. (2.23), of all Y-r Q’s in the specific Lorentz
frames, we easily find that the fixed angles can be expressed with invariants as

COS X7 = COS X(Yng) , COS X 77 = COS X(Y'j EZQ) 1 (D.50)

CoS P~ = Cos ¢(Y37,Q’Y}E,Q’YTEZ,Q)7 (D.51)
with
cosx(Y)=1-2Y, siny(Y)=2Y(1-Y),

Yi+Ys — Y — 2V1Y, (D.52)
2\/Y1(1 - Y1)Ya(1-Ya)

COS ¢(Y1, YQ, Yg) =

Using (C.12) and the expressions for the ratios of kinematic invariants in egs. (D.47)—(D.51),
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we find the following explicit expression for Ié5):

_2256
2T

Yo ,
IC(’S)(x7Y17Y27}/:3;67 a07d07y07d6; k) - - < ) 4Y1/ dyy71726(1 - y)d071+€
0

1
X /_1 d(cos ¥) d(cos @) d(cos ) (sin 1) 2

X (sin @) 172 (sinn) 7272¢(1 — cos ) !

(D.53)
-1
X (2 — cos ¥ — sin x (Y1) sin ) cos ¢ — cos x (Y1) cos 19)
X |:Il ([(1 - y)fE + yﬂ’r‘(y?xyyla Yé)}/éa’lg’ SD)], €, Q, dOa k)
+Il ([(1 - y)fE + yﬂ?(y?xyyla YE.’»)Y2579’ SD)], €, 0, dOa k):| )
which we need for k = —1, 0, 1, 2. Above, z = T, Y1 = Y}TQ’ Yy, = Y}EEQ’ and
Ys =Y o The second term in the squared brackets in eq. (D.53) corresponds to the

second term in the partial fractions of eq. (D.45). The integral representations of the two
terms are formally identical, only the kinematic variables Y5 and Y3 are interchanged.

) we find the result given in eq. (4.9). In writing eq. (D.53),

In terms of the functions I((:5
we have tacitly assumed that ﬁé‘ , 5;‘ and ﬁgt are all distinct (massless) momenta, whose
kinematics is furthermore unconstrained. For processes involving two or three hard final

)

written above, first appears in computing NNLO corrections to processes with at least four

state partons, this is not the case, so the integral I((:E’ with full kinematic dependence, as
hard final state partons.

When there are only three hard partons in the final state, the kinematics of the event is
constrained because momentum conservation forces the final state momenta to be coplanar.
Thus, in eq.(D.46) we have sin ¢ = 0, and the parametrisation of p;, p; and py,
simplifies accordingly:

}55:E3(1,...,1), fif:Ej(l,...,sinxj,cosxj),
(D.54)
Dl =FE(1,...,—sinxg;,cosx5),
where we choose cos¢ = —1, so that we may assume sin x7 and sin x4 to be non-

negative. As a result of the constrained kinematics, we can first of all perform the cosn

integration in eq. (C.12) using eq. (C.13). Second, out of the four kinematic invariants (247,

ng o Y}EZ o and Y74 Q) of the general case in eq. (D.53), only two are independent.
(Momentum conservation implies three constraints among the five variables Eg, Ey, B,

cos x7 and cos XE;-) However, it is convenient to leave the formal dependence on all four
variables, with the constraints

Vite= Y510 5me 2510 ime T 2\/Y37,Q(1 Y5105~ Y5 o)

(D.55)
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and

\/Y~~ (1-Y~~ )
, 71
= e @ . (D.56)
JlQ\/ 700~ Y570 T im0y i1~ Yi10)
The physical region for Y?i and Y~ -~ T .0 is0 < Y fl Q,Y oS <1 andY Q—i—Y 7.0 > 1.
The two-particle invariant y- - becomes 1ndependent of ¢77,
1 . .
Y = 5?/%?@?/?@(1 + sin x 77 sin ¥ cos ¢ — cos x 77 cos V), (D.57)
therefore, the dependence on Y=+~ 1.0 Y~. and Yia 0 enters only through the angles
oS X7 = COS X(YFY,Q) , COS X 77 = COS X(Y}E{,Q) (D.58)

for the first term in the partial fraction and the angles

cos X7 = Cos X(Y}T,Q) , Cos X 77 = €08 X(YTEZ,Q) (D.59)

in the second one (with eq. (D.52) for cos x(Y)). Integrating out cosn as in eq. (C.13), the
integral (D.53) simplifies to

P2(1—6) Yo /
70 (2.1, Yy, Ya: do. o, dh: k :—4Y7/ dy y~1726(1 — y)do—1+e
c,gj(l“, 1, Y2, Y356, ag, do, yo, do; k) 127TF(1—26) o Yy ( Y)

1
X /_1 d(cos ) d(cos @) (sin ) ~2¢(sin ) "1 72(1 — cos ) !

-1
X <2 — cos ¥ — sin x(Y7) sin ¥ cos ¢ — cos x (Y1) cos 19)

X [Zl <[(1 — )T + Yz (Y2, Y2, 9, 0); € ap, do; k)

+Il<[(1 —Y)T + Y- (Y2, Y3, 0, <P)];670407d0;k>] :
(D.60)

(k=-1,0, 1, 2) and it replaces the function Ié5) in eq. (4.9).

Further simplifications emerge if the three labels j, [ and kt are not all distinct and
e.g. | = kt, which is the only case relevant for processes with only two hard final state
partons. (Note that j # [, so up to j <> [ interchange, this is the only option.) Then

YTEEQ — Y57 o = = 0 and the integral (D.53) depends only on two kinematic variables,
-7 and YJ o= Y}H o The parametrisation of the two hard momenta p; and py, in

eq. (D.46) simplifies to:
5?:E;(1,...,1), P = B (L. sinx 77,008 X77) (D.61)

SO

1 . .
Yiis = 5%2@31?@(1 — sin x 7 sin v cos ¢ — cos x 77 cos V), (D.62)
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and the dependence on Y} 50 enters through the angle

COS X 77 = COS X(Y}H,Q) (D.63)

for the first term in the partial fraction and through

COs X5 = COS X(Y}EZ,Q) (D.64)
in the second one (with eq. (D.52) for cos x(Y)). Integrating out cosn as in eq. (C.13), the
integral (D.53) reduces to

I'2(1—¢ Yo 19 I 1ae
IC('E,)%]'(%YN670407d07y07d6§k) — _4Y1 ( )) / dyy 1=2 (1 - y)do I+
0

2 (1 — 2e

1
X / d(cos ) d(cos ) (sin ) 2 (sin ) "1 72¢(1 — cos ) !
-1

-1
X <2 — cos ) — sin x (Y1) sin ) cos ¢ — cos x (Y1) cos 19)
X |:Il <[(1 - y)ﬂ? + yE?(yaxa leyﬁ? SD)]? G,QO,dO; k)
+I <[(1 - y)CC + yf;t’f(yaxa 0,19? Qp)]a €, (0, dO; k)] )
(D.65)
(k=-1,0, 1, 2) and it replaces the function I((:5) in eq. (4.9).

Rest of the integrated collinear-soft-collinear-type terms. The convenient frame
for integrating the second term in the braces in eq. (D.41) is

pl=FE:(1,...,1), P = B (1, sinx 7, co8 x77) - (D.66)
The two-particle invariants are expressed with the integration variables as
2y~ ~
Yir _ yro(l —cos?), (D.67)
y{Q
1 . .
Y = 53/@2@3/?@(1 — sin x 77 sin ¥ cos ¢ — cos x 77 cos V), (D.68)
where
COS X 77 = COS X(YiﬁiQ) , (D.69)

with eq. (D.52) for cos x(Y'). Then, using eq. (D.44) the integral in eq.(4.12) can be ex-
pressed as a linear combination of the integrals

I2(1—e)

Yo
I8 (@, Y36, 00, do, yo, diy; k) = / dyy =2 (1 — y)h2+e
C ('Ia €, O, A0, Yo, Qg ) 7TF(1 — 26) 0 yy ( y)

1 2 — y(1 4 cos V)
. - —2€/ s —1—2¢
X /_1 d(cos ) d(cos ¢) (sin )~ (sin ) y(1 — cos )

X Il ([(1 - y)x + yﬁ?(y’x’y’ﬁ’ Qp)]a €, 0, dOa k) ) k= _15 0, 15 25
(D.70)
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as in eq. (4.13).

Fmally, the integral of the third term in the braces in eq. (D.41) is obtained by setting
% = kt in the previous case, which implies Y=~ Qo Y- 0= = 0, so the integration over ¢
can be evaluated using eq. (C.14) and the 1ntegral in eq. (4.10) can be expressed as a linear

combination of the integrals

Yo ,
79 (2,0; €, a0, do, yo, diy; k) = 2%¢ / dyy 2 (1 — y)do—2+e
0

1 cos sin )~ 2¢ 2 —y(1 + cosv) D.71
x/_ld( 9) (sin ) 71 o5 0) (D.71)

X Il([(l - y)l’ +y7€?/7;(y,1',0,'§7 (p)];QaOadO;k) )

(k=-1,0,1, 2) as in eq. (4.11).

D.6 Integrated collinear-double soft-type counterterms

The collinear-double soft counterterm is defined by an iterated application of a collinear
and a soft momentum mapping, which results in an exact factorisation of the original
(m+ 2)-particle phase space very similar to that in eq. (D.40). The difference is that in the
present case the soft measure involves the momentum p}, instead of p#. The integrand of
the collinear integral is the spin-dependent splitting kernel of gluon splitting, with Lorentz

structure
I, =0 0 0 1—e¢ 4%,19, kY ko
o WP g G 2 kL €)lv) = —gwagfk)ft(zt,k) - bgvk)ftTZk,tZt,kkgit ,
A Tkt
(D.72)
where
0 z 1—2z (0) . TR
gg)()—2<1_z—|— . >, aqq(z)_C—A, (D.73)

and bg”(;?ft is defined in eq. (4.3), hence, the integral over the phase space measure [dpglz?b 1

involves both collinear functions Z and Z*¥. Introducing the abbreviation

. 167T . k 1
I}kat - Q2 /[ grtg-i—l(pta pkth)]s_ktf(amakt’d(m’e))
(D.74)
1, =0
N (Wl P g p (Zhts 2t ko gets €)|V)
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and using the result in eq. (C.6), we find that

1672

wo v 2¢ (kt) 1
74, = " @ [l )= e, e dlm, )

x (a;?c)ft(zt,k) + bgf?ft Zk,ﬂt,k)
o) (ﬁZtQ” +Q DY, 02

(D.75)
n - S ﬁ”)
Jrfe D@ (Prt-Q)? Rt Tkt

1672 1
X S—QZE /[dpglf:rszl]s_Mzk,tzt,kf(aO, ALt d(ma 6)) )

where in the first integral we recognise the spin-averaged splitting kernel,

0y, (o) + 0 2k (1= 2) = P (zups€) (D.76)

Therefore, Ij‘f:ft can be expressed as a linear combination of collinear functions Z, with
Lorentz structure exhibited in eq. (D.75). After contraction with S‘Jil%(/;:\t) (see eq. (4.14)),

we obtain

1w Lo o167 oo [ ey 1 10
53%("575)%& w = —5557(kt) S Q /[dp1,m+1]8—mpfkft(zt,k;G)f(aoaakt,d(m, €))
o < je . _®lq _2622)
PN S 3
Tl SeitRQ  CRITRQ SR

167 1
X TQQE /[dpglf,fzﬂ]s—mzt,k(l - Zt,k)f(amakta d(m,e)).

(D.77)

In the integral of the complete collinear-double soft subtraction, eq. (D.77) is multiplied
with terms that are symmetric with respect to the interchange j <> [, and summed over
both j and [ (cf. egs. (3.2) and (3.6)). Therefore, the integrals of the terms

S~ S5
i@ and e (D.78)
Skt SktQ SET%k0Q
in the parenthesis give identical contributions, and it is sufficient to evaluate three types
of integrals:

() +3) 7o) _ 167 / @y 1 851 259 0 207
{Ic s Lo, Lp }— S, Q [dme]SA ) (D.79)

i Ggan ] G mg~ 2
7 STk SR ko

ktr

< f (Y0, Ygug d (m, €)) (g€, a0, dos k) -

To compute the integrals in eq. (D.79), first we have to express the invariants of the
dependent momenta with those of independent ones:

551 = U =Va)s510 S5 =Sim ST = STh
(D.80)
550 = 1= Yag)s50 T 55> %10 = (1~ Yag)sig + St
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Then we can proceed as usual by writing the factorized phase space [dpglf:r)L 41 explicitly.
We choose a Lorentz frame defined by

pH=E~(1,...,1), fif:Ej(l,...,sinxj,cosxj), (D.81)

where the two-particle invariants are expressed in terms of the integration variables as

Y5 2y . .
o y]&Q(l — cos ), T ykAtQ(l — sin x7 sin ¥ cos ¢ — cos x7 cos ), (D.82)
iQ 1Q
with
Cos X7 = COS X(YFT,Q) , (D.83)

and eq. (D.52) for cos x(Y).
For the eikonal factor (first term in the braces in egs. (D.84)—(D.86)) we use the partial

fraction identity (D.45) (with the substitution 7 — kt), and the j <> [ symmetry to
integrate only one term. Thus we are left with the following three integrals:

F2(1 —€) Yo /
70y . ::—4Y———————1/ Ty
1 2 1-2 2
q Nd ng)" €/t —lmee D.84
X /_1 (cos ) d(cos ) (sin )™~ (sin p) 1 —cos?v ( )

~1
X <2 — cos ) — sin x (V) sin ¥ cos p — cos x (V) cos 19))
XIl(y;eya(),dO;k)a k=-1,0,1,2

(here Y corresponds to Y57 0)

I(S) dn: k) = 226 v d —1-2¢ 1— dy—1+e€
C (6,040, 05 )_ vy ( y)

0
! 2 —y(1+4 cosv)
d(cos ) (sin )% D.85
X /_1 (cos ) (sin ) 1 —cosd ( )
XIl(y;€7a07d0;k)7 k:_17071727
and
2 Yo
(9) “(1—¢ / —1—2¢ dl —2+¢
Z do k) = 2———= d 1-— D.
C (6,0[0, 0, ) F(2 — 26) 0 vy ( y) 0 ( 86)

x I1(y; €, 0, dos k) k=1,2.

(The cases k = —1,0 in eq. (D.85) are needed for eq. (4.16), see next paragraph.) The final
result is presented in eq. (4.15).
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For the integrated collinear-triple collinear-double soft subtraction in eq. (4.16) the
phase space factorisation is the same as for the integrated collinear-double soft subtraction,

and we need to evaluate the integrals

1672 (kt) 2 %R 2Q°
€ d ) _
o [l § =8,

PR 2
k7 ‘i ko

(D.87)
< f (Yo, Vg @ (m, €)) Ty (x5 €, 00, dos ) -

Recalling the definition of the momentum fractions, in the first term we recognise twice the
second one in eq. (D.79) (after replacing j with r), while the second term is equal to the
last one in eq. (D.79). Thus we do not have to compute any new integrals, we can express
this integrated counterterm as a linear combination of the integrals defined in eqgs. (D.85)
and (D.86). The final result is given in eq. (4.17).

E Integrating the soft-type terms

In this appendix, we discuss the integration of the soft-type counterterms of section 4.2.
In particular, we define and give an explicit integral representation of all Ig) functions
(i=1,...,12).

E.1 Soft-triple collinear-type counterterms

There are three integrated counterterms that involve a soft mapping of the momenta,
followed by a collinear one, which leads to an exact factorisation of the original m + 2-
particle phase space in the form

dmr2({p}) = dbn (B TPy (B B QNP (i Q). (L)
The factorized phase space measures [dpgt)m +1(pi; Q)] and [dpglni )(ﬁr, Dir; Q)] are given
in egs. (C.12) and (C.2), with appropriate changes in labelling and the replacement of
m — m — 1 in the second case.

Integrated soft-triple collinear counterterm. We begin by noting that the soft func-
tions P}isf)r i (originally defined in ref. [1]), which appear in eq. (4.18) can be written in the

following unified form:

PS) = (Cp +Cp —Cr )2 (O 4O — O ) Dt
i1 = (Cr, +C, fw)s“sﬁﬂ o+ Cha f”)sit .
(E.2)
1 Zr.it

+(Crip +Cpp = Cpy) — -
Srt Zt,ir
This general form hides the fact that f; = g, which also implies Cy,, = Cy, and Cy,, = Cy,
(used in eq. (4.39)). Furthermore, according to our definition of the momentum fractions,
we have
Zigk _ YiQ _ Zij (E.3)

- )

Zigk  YiQ  Zji
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for any 4, 7 and k. Therefore, performing the integration over the soft phase space
[dpgfLLJrl(pt;Q)] first, we find that the three terms in eq. (E.2) all lead to known func-

tions. The eikonal term gives (—1) times the soft function J1(Y, €, o, d[,), while both soft
1
2

tions we have the integral representations discussed in appendix C. Hence, we can express

collinear terms give 5 times the same soft-collinear function, K (e, yo, d;). For these func-

the integrated soft-triple collinear counterterms as linear combinations of two types of basic

integrals,
1672 . TEY . 1
Iél) = S—Q2 /[dpg,m)(pra DPirs Q)];Z;\jf(ao,aad(m’ E)) §K1(an0’d6) ) (E4)
and

1672 A 1
(E.5)

The soft-collinear function K does not depend on any kinematic variable, therefore,
it factorizes completely from the integral over [dpgfw:)]. The remaining integral can be
expressed with the collinear function Z(x;e, o, dg — 1 + €,0,k,0,1) (the parameter dy is

shifted because this integral corresponds to m partons in the final state), so
1
Iél)(xa €, 0, d07 Yo, lev k) = 5161 (67 Yo, d,O) Il(xa €, 0, dO -1 + €; k) . (Eﬁ)

The soft integral depends on Y5 0’ that has to be expressed with the integration
(??)]:

1,m

variables of [dp

ala+ (1 - a)zz]
[+ (1 —a)rzv]la+ (1 —a)rz (1 —v)]

Yg?,Q(x?;,a,v) = ) (E.7)

where we used the usual abbreviations a = o+ .. and v = v;.. Clearly, Y- . Q(xlf;; a,v), as
well as the phase space measure in eq. (C.2) is symmetric in v <> 1 —wv. Thus, it is sufficient

to consider only the following coupled collinear and soft integral,

o
Ifg2)(x; €, g, do,yo,df); k) — —CC/ da (1 _ a)2d073+26a7176[a + (1 _ Oz)x]ilie
0
1 1_ k
X / dvo (1 —v)~¢ (—g + _a)xv) (E.8)
0 a+(1—-a)x

Xjl(Y/{?,Q(x?a’v);eayO,dé])’ k:—1,0,1,2.

)

In terms of the integrals Iél) and Ig the integrated soft-triple collinear subtraction term

can be written as in eq. (4.19).
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Integrated soft-soft-collinear counterterm. To obtain the counterterm in eq. (4.20),
we again perform the integration over the factorized soft phase space [dpgfzﬂ 11(ps; Q)] first.
Now, we must distinguish two cases: (i) j, [ and ir are three distinct labels, (ii) j or [ coin-
cide with ir. (We always have j # [.) In the first case, the integral over the factorized soft
phase space simply leads to the J; function of eq. (C.10), and we find that the integrated
soft-soft-collinear counterterm can be expressed as a linear combination of the integrals

1672 77, 1
1{) = 2 [l - flavsag s dlm, o)
¢ iv (E.9)
le( lQaEyO,dOa )

Using the collinear mapping formula ﬁé‘l =(1-a;. )p] ;» we find

Y- il (o3 )51 (E.10)
o~ = N = "‘777 . .
Q" ssgstq  (I—ag;)Ps50s7 719
Consequently, the collinear and soft integrals decouple, and we obtain
I‘(S‘g) (1’, Y7 €, 0, d07 Yo, d/07 k) = Zl(.%', €, 0, dO -1 + € k) jl(Ya €, Yo, d,O) . (Ell)

In case (ii) if e.g. j = (ir), the eikonal factor S (t) evaluates as in eq. (2.22), and
the integral over the soft phase space leads to the one-mass soft function 7™, defined in
eq. (C.22) and computed in eq. (C.25). Hence we find that the integrated soft-soft-collinear
counterterm can be expressed as a linear combination of the integrals

1672 T8y, 1
700 = S0 [1ap)1 =k < flavsag s dlm, o)
¢ i (E.12)
Xj(lm (Y‘A)lQHB (i7) 6y07d0)

This time the collinear integral does not decouple because the parameters Y(.A)l Q and

ﬁ( ) depend on the collinear integration variables. Using the definition of p’. and pé‘ ,
we have p p( " = =(1—a;,)ph +a7.Q" and p)' = (1 — a;)p;’. Consequently,

1
YonieWaeYaiqeis) =3 (1 ~Ban e ais)l- QY?’TY’QD ’
B N ke 2L )
(7 WFe %) = 5 T —an.) o

and
@0
7 (@, Y5 e, a0, do, yo, dj; k) = / dar (1 — a)2do=3+24=1=¢[¢ 4 (1 — @)a] 1€
0
! a4 (1—a)zw\” (E.14)
X / dvv (1 —v) | ———— :
0 20+ (1 —a)x

x j(lm)(y(??ﬁ,cz(w,Y, ), B+ (@, )60, dy)
(kj - _1,05 172)

In terms of the integrals Iés) and Ié4), the integrated soft-soft-collinear counterterm
can be expressed as in eq. (4.21).
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Integrated soft-triple collinear-soft-collinear counterterm. When computing the
integrals in eq. (4.22), we first perform the integral over the soft phase space. Using the
same frame as in eq. (C.23), we find that the integral leads to the one-mass soft-collinear
function K™ defined in eq. (C.33) and computed in eq. (C.36). Thus the integrated soft-
triple collinear-soft-collinear counterterm can be expressed as linear combination of the
integrals

1672 ir), 1
19 = =5 -QQG/[dpﬁ,m)]sfzng(%a%’d(m’e))

KO3 (o))

The soft-collinear integral (™) (8) does not decouple from the collinear one because 3 =
ﬁ(;?)(y;; 0’ @7~ ) depends on the collinear integration variable o as in eq. (E.13). Thus,

ao
If? (w5 €, a0, do, Yo, dy; k) = :c/ do (1 — @)?d0=3+2¢0"1=¢ [0 4 (1 — a)z] 1€
0

x /01 dvv™(1 - v)~¢ (M)k (E.16)

20+ (1 — o)z

x KW (855 (@, )6, 90,dg) . k= —1,0,1,2.
In terms of the integrals 7%, we find the result as in eq. (4.23).

E.2 The soft-double soft-type counterterms

The remaining soft-type integrated counterterms involve two successive soft momentum
mappings, which leads to an exact factorisation of the original m + 2-particle phase space
in the form

ddmra({p}) = dém({B YN (073 Q))dpY s r (915 Q)] (E.17)

The factorized phase space measures [dpg?n)l] and [dpgt)m +1] are given in eq. (C.12), with
appropriate changes in labelling (including m — m — 1 in the first case). We often need to
express the two-particle scaled invariants of the momenta after the first mapping (‘hatted
momenta’) with the final momenta obtained after the second mapping (‘tilded momenta’).

The relevant formulae, collected here for later reference, are:

7= -vrQur,  Vip =V

)

(E.18)
i L.

Yio=0—vrQViotVis>»  k

Integrated soft-triple collinear-double soft counterterms. In computing the inte-
grals in eq. (4.24), we first perform the integration over the soft phase space factor [dpgf)m 1l

This integration leads to either the 77 soft function, or the IC; soft-collinear function of
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()

1.m) involves

section C. Then the remaining integral over [dp

1T T, (E.lg)
X {’Cl(€7y07d6)7 _jl(Y’{?7Q;€7y07d/0)} .

167> 7y 2 Fiw
(79,20} = 297 g2 [ 2 gm0

When the result of the first integration is a K function, it decouples from the second
integral, which gives a soft-collinear function again. Thus we find that all terms in the

integrand of the type
1 za 2 %5 (E.20)
Sjl 2Lij 875 #5.%

)

integrate to the product of two soft-collinear integrals:
(6) ' 1 ! /
s (e,90,dy) = §K1(e,y0,d0 — 14+ ¢)Ki(e, yo,dp) - (E.21)

On the other hand, when the result of the first integration is a soft function 71, the

two integrals do not decouple. In order to compute the second integral over the phase
(7)

1.m), we choose the usual frame (C.11), with orientation specified by

space factor [dp

Pl =E-(1,...,1). (E.22)

7
Using eq. (E.18), we compute

y- _ Yy Yia 1 — cos?

_ - - . E.23
T ygvie (M- yrQuig tuislvie 2 yro(l + cosd) 2

Then we find that the term in the integrand of the type

Sip 2 2375
roZ bl (E.24)
SitSrt S”Z\’j\ Z’j\fl\

leads to the integral

7 d) = —9 yOd —1-26(7 _ ,\do—2+e
S (67y07 0)_ 0 yy ( y)

X /1 dzz717(1 — 2)7(1 —y + y2) (E.25)
0

z
X _ dy | -
jl <1 _y+yzaeay07 0)
To write eq. (E.25) in the above form, we made the usual substitution of cos? — 1 — 2z.

In terms of the integrals Iéﬁ)(e, Yo, d(,) and Ig)(e, Y0, d(,) the integrated counterterm in
eq. (4.24) can be expressed as in eq. (4.25).
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Integrated soft-soft-collinear-double soft counterterm. In the case of the integral
in eq. (4.26), we begin by integrating the eikonal function %Sjl(t) over the soft phase space
[dpgfzﬂ 41). However, whenever j or [ is equal to ir (recall that j # [), the eikonal factor
evaluates as in eq. (2.22). Therefore, we have to distinguish two cases: (i) j, [ and ir are
three distinct labels, thus the integration over the first soft phase space leads to a J7 soft

function and we obtain the integral

1672 7, 2 %7
1§ = T g / [Ap{ ==L F 0, y7 . (m, )
€ 1T T, (E26)

X jl <Y/J\’[7Qa €, Y0, d6>

and (ii) j or [ coincide with (ir), hence the integration over the first soft phase space leads to
a JUM) one-mass soft function and we find the integral (choosing j = ir for concreteness)

1672 ), 2 FiF
¥ = TQZE/[dpg,rr)J(%—A —f (W0, y7q, d'(m, €))

1T CT, (EQ?)
X j(lm) <YV(?;>)/[Qa 5(2?), €, Y0, le) .

To proceed, we must express the parameters of the soft functions with independent mo-
menta. In the first case, using eq. (E.18), we can express Y}T o

1-y7q
Y-+ =4Y~~ .
e TLRR(1 - y7Q) + 25+ /Y50l 2(1 — yrq) + 2y75 /y7 ()]

In the second case the one-mass soft function also depends on the velocity of the momentum
SH L SH
p 7 + p o

(E.28)

Biasy= /1= =2 (E.29)

Again using eq. (E.18), we find

2
\/{2(1 —YrQ) +2u7:/¥ig + Qy?Q/ng] — 16y /v%,

, E.30
2(1 = y7rq) +2y77/v70 + 2Y7Q/¥7g (E.50)

A1 -y7Q)Y77 o + 475/ (Y70Y70)
Yoo = rOrile T IR 1YiQYIQ . (E.31)

[2(1 —yrQ) +2¥7:/Yig T 2@/?@/%@} [2(1 —yr@) + 2y7?/y7Q]

()

1,m

Turning to the integral over [dp;.,’], we use two different orientations of frames in the

two cases. In the first case, we fix the orientation such that

ﬁ?:E;(l,...,l), p; = E5(1,...,sinx5,cos x7), (E.32)
that implies
2y5 4 2y7 - . :
—— =y7q(l —cos?), = = y7q(1 —sin xj sin? cos p — cos xj cos ), (E.33)
Yia YiQ
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where

oS X7 = COS X(YET Q) (E.34)
(7)
1,m
soft-collinear-type, we cannot trivially integrate over ¢ because Y}T 0 depends on it. Thus

with eq. (D.52) for cos x(Y). Thus we see that although the integral over [dp;,’] is of

1T2%(1 —¢)

8
IO (Y, €, yo, dp) = AT(1—2)

Yo ,
/ dy y—1—25(1 _ y)d0—2+5
0

1

X / d(cos¥) d(cos @) (sin®)) 2 (sin ) 1% (E.35)

-1

" 2 —y(1+ cos?)
1 —cos?

Ji (YET,Q(Y’ Y, 0, SD)’ € Yo, d6> )

where the explicit dependence of the argument of the soft function (Y§T o in eq. (E.28))

on the integration variables is

-1
Y51 g(Voy0.9) = 4Y (1 =) (2~ y(1 + cos 1))

) (E.36)
X <2 — y(1 + sin x(Y) sin 9 cos ¢ + cos x(Y) cos 19)) .
In the second case, the orientation of the frame is fixed by
pi=FE(1,...,1), }5;‘:ET(l,...,sinXT,COSXT), (E.37)

that implies

2y~ 2y
# = y7r(l —cos?), yf = =yl —sin xysind cosp — cos x5 cos ), (E.38)
Yio Yig
where
Cos X7 = COS X(Y}T Q) (E.39)

with eq. (D.52) for cos x(Y). Then

1T?(1—¢€) [% Ry I o
7 (@, Y, €, yo, df) = ;ﬁ/{) dyy 1721 —y) B
! 2—y(1 U
X / d(cos¥) d(cos @) (sin®)) 2 (sin ) 172 y(1 + cos v) (E.40)
1 1 —cos?

X j(lm) (}Q??)T,Q(x’y’y’ﬁ’ @),5(;?)(%79, 90)7 G,yo,d/0> )

where ;) and Y are given in egs. (E.30) and (E.31), with the ratios of invariants

"1,Q
in eq. (E.38) (x corresponds to Yig: Y to Y?T,Q and y to y7¢)-
Our final result for the integrated counterterm defined in eq.(4.26) is presented in

eq. (4.27).
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Integrated soft-triple collinear-soft-collinear-double soft counterterm. The in-
tegral over the soft phase space factor [dpgfzﬂ 41} in eq. (4.28) is a one-mass soft-collinear
integral (™) of eq. (C.33), which is computed in eq. (C.36), where the velocity of the
(?)]

momentum pj + P4 is found in eq. (E.29). Then the integral over the measure [dp;’,,

1672 7 75
109 = 20" [0 =2 (s raud (m. )

Tt (E.41)
x fm) <,8(?;:)a €, Yo, dlo) )
is again of soft-collinear-type, but the two integrals are coupled through ﬂ(;?) that de-
pends on the integration variables of the second integral as in eq. (E.30). The ratio of the
invariants 2y;?/y7Q is
2y~ -
Yir _ yro(l —cos?), (E.42)
Y30
in a frame whose orientation is fixed by setting

P =EBs(1,...,1). (E.43)

Thus, [S,C,,.,CS,

mth)] is equal to the integral

irt
10 v —1—-2¢ 0 —24€
IS )(w;e,yo,d’o)=2/0 dyy 721 —y) Bt
1
X / dzz"7(1—2)" (1 —y + y2) (E.44)
0

x c(im) <ﬁ(x,y, 2); €, 90, d6) ;

with x corresponding to Yigr Y 1o UrQ and

VI —y+yzty/a)? —dyz/a
bla,y,2) = l—y+yz+y/z ’ (E.45)

where, as usual, we set cos? — 1 — 2z.
Our final result for the integrated counterterm defined in eq.(4.28) is presented in
eq. (4.29).

Integrated soft-double soft counterterms. There are two types of integrated soft-
double soft counterterms: an ‘abelian’ one in eq. (4.30) and a ‘non-abelian’ one in eq. (4.31).

Let us first consider the ‘abelian’ case. Performing the integral over [dpgtzn 1] first, we
(?)]

obtain a soft function —J7; (Y§T o> € Y0 dpy). In order to compute the integral over [dp7

1672 . 7)1 ~
200 = g [[p715855 (F)f s rqud (m.©) )
€ E.46

X ~7<Y;77Q; 6,y07d/o> ;
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we must first express Y}T 0 in terms of }55 and P/ as in eq. (E.28) (4,1 # r), which is seen
(7)

to depend on the integration variables in [dplvm] through the appearance of Y5z and y7 .

(7)

1m)s which is of soft-type, is nontrivial.

in the denominator. Thus, the integration over [dp
Also, although ¢ # k and j # [, there is no restriction on whether or not i, k is equal to
j,1. Thus we must consider the following three cases: (i) all of 4, k, j and [ are distinct,
(ii) only three of the four indices are distinct and, e.g. [ = k, and (iii) only two indices are
distinct and e.g. j =7 and [ = k.
Case (i) requires at least( f;our hard partons in the final state. Hence the corresponding
0

integrated counterterm, [S,S,;']#*):) with all labels distinct, does not enter a computation
of two- or three-jet quantities, and we will not consider it in this paper.

In case (ii), we have Y377Q — Y}E,Q’ and this is expressed with the independent
momenta as in eq. (E.28), after a [ — k replacement. To evaluate the integral over [dpg?n)l]
in eq. (E.46), we use the partial fraction identity (D.45) for the eikonal factor S- 7 (7) (with
the substitutions j — ¢ and [ — k). Further, we restrict our attention to the case when
there are precisely three hard partons in the final state. As discussed around eq. (D.54),
this leads to a constrained kinematics for the three momenta p*, ﬁg and p 7 , and we take
this into account below. It is convenient to introduce two different orientations of the frame
eq. (C.11) and integrate the two terms of the partial fraction in these different frames. In

the first, we set

~7:E7(1,...,1), fiZ:Eg(l,...,sinxik,cosxik),
) (E.47)
Py =E5(1,...,—sinxg, cos xi) ,
SO
2y~ ~
# =y7q(l —cos?), (E.48)
Y50
2y
Yir _ Y7 (1 — sin x; sin v cos ¢ — cos x4 cos V) , (E.49)
yEQ
2y~
—2% = y7o(1 + sin x;; sin ) cos ¢ — cos x;; cos ) , (E.50)
Y5a
where
COS Xik = COS X(YTE,Q) , COS Xjj = COS X(Y;%Q) , (E.51)

with cos x(Y) given by eq. (D.52). In the second frame we exchange ¢ and k, whose only
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effect on the integrand is to interchange x;; and x;x. Thus we find

P21—€ Yo —1-92¢ ’_ €
( ))/0 dyy12(1_y)d0 1+

(11) . A
IS;ik,jk(Yi, Y2, }/?3765 Yo, dO) - _4Yi 27TF(1 — 9%

1
X /1 d(cos ¥) d(cos ) (sin ) "% (sin ) 1 72¢(1 — cos )

_ _ -1 (E.52)
X <2 — cos ¥ — sin x (Y1) sin ¥ cos ¢ — cos x (Y1) cos 19)

X |:‘7<Y5E7Q(Y17Y27y7197 @)7 67y07d/0>

+j(Y}‘E’Q(Yh}%ayaﬂa@);67y07d6>:| )
where

-1
X <2 — y[1 + sin x (Y1) sin 9 cos ¢ + cos x (Y1) cos 19]) (E.53)

-1
X <2 — y[1 — sin x(Y2) sin ¥ cos ¢ + cos x(Y2) cos 19]) .

Above, Y] = Y;»];’Q, Ys = Y;;’Q and Y3 = YT/LQ' The two terms in the square bracket
in eq. (E.52) correspond to the two terms of the partial fraction in eq.(D.45). Their in-
tegral representations are formally identical, only the kinematic invariants Y and Y3 are
interchanged.

In terms of the integral I‘(Sli? ik the integrated subtraction term defined in eq. (4.30)
can be expressed as in eq. (4.32). 7

Finally, case (iii) is obtained trivially from the previous one. Setting j = i implies

Yije=Yiie =0 Yiig~Yiig: (E.54)

therefore, I‘(Slzll)ﬁ ;1 depends only on Y5~ o Then integral (E.52) simplifies to

I'2(1—¢ Yo 19 I 1ie
( ))/(; dyy12(1_y)d0 1+

T80 (Vise,yo, dy) = -4V ————2
( 15 €, Y0, (]) 127TF(1 9%

S;ik,ik
1
X / d(cos ) d(cos ) (sin ) 2 (sin ) 1 72¢(1 — cos ) !
L (E.55)
-1
X (2 — cos ¥ — sin x (Y1) sin ) cos ¢ — cos x (Y1) cos 19)

X QJ(Y’[E’Q(YVIayaﬁa90)767y05d,0) 5

and it replaces I‘(Slzll)ﬁ jx 10 eq. (4.32). Above

—1
Yo7 oYy, 0,9) = 01 (1 —y) (2 —y[1 + cos 79])
1 (E.56)
X <2 — y[1 + sin x(Y7) sin ¥ cos ¢ + cos x (Y1) cos 19]) .
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Turning now to the ‘non-abelian’ contribution, eq. (4.31), we see that we need to con-
sider a single new integral,

(12) 167‘(‘
IS;zk -

J @058 (P01 s . 0)
(E.57)

X jl( DT Qae yOad/O)

(t)

1,m

(obtained by performing the integral over [dp
terms of p!' (see eq. (E.18)),

41 as before). We must express Y5 o n

_ Ve _ 1 is/Yig (E.58)
Yig¥re Y7 2(1 —yrQ) +2v7:/vig

Y350

We use the partial fraction identity (D.45) to write the eikonal factor as a sum of two
terms, and choose two different orientations of the frame (C.11) for each term. In the first

one we set
pi=FE(1,...,1), pr=Ez(1,... sinx;,cosx3), (E.59)
thus
Y7+ ir . :
— = y7o(1 —cos?), = yrq(1 —sinxg sind cosp — cos x 7 cos V), (E.60)
Yie e
where

cos xj = cosx(Ys5z Q) (E.61)

with eq. (D.52) for cos x(Y). The second frame is obtained by the interchange i <+ k, which
again implies change only in the argument of the soft function. Then the integral Z}S le
equals

F2 1—c¢ Yo o .
Ié ll)c(yﬂeay()ad,) 4Y ( ))A dyy 1-2 (1—y)d0 1+

2 (1 — 2e

1
X /_1 d(cos ¥) d(cos ) (sin ) ~2¢(sin ) 1 72¢(1 — cos )

1
X <2 — cos ¥ — sin x(Y) sin ¥ cos ¢ — cos x(Y') cos 79) (E.62)

1 — cosv
. d/
Ji (2 —y(1+4 cosz?)’e’yo’ 0>

1 —sin x(Y) sin® — Y v
—i—j<2_ sin x(Y) sin 9 cos ¢ — cos x (V) cos eyo,d0>]

X

y(1 + sin x(Y) sin ¥ cos ¢ + cos x(Y) cos 9)’

In terms of the integrals I‘(gll.? ;. and Ifg ,1, the integrated subtraction term defined in
eq. (4.31) can be expressed as in eq. (4.33).
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F Integrating the soft-collinear-type terms

In this appendix, we discuss the integration of the soft-collinear-type counterterms of sec-
tion 4.3. In particular, we define and give an explicit integral representation of all Z((:ZS)
functions (i = 1,...,3).

F.1 Soft-collinear-triple collinear-type counterterms

The soft-collinear-triple collinear-type counterterms involve a soft momentum mapping
followed by a collinear one, which leads to an exact factorisation of the original m+2-particle
phase space in the form of eq.(E.1). To evaluate the integrals of egs.(4.34) and (4.35)
over the factorized one-particle phase space measures in eq. (E.1), we first observe that the
integral over the soft measure is a ; soft-collinear function, and the remaining the integral
over the collinear measure can be expressed as linear combination of the integrals

1677 i), 1
70 — TQQG/[dpg’mq&_]gjf(ao,a%,d(m, €)K1 (€, 0. dp) (F.1)

which is just twice the integral in eq. (E.4), computed in eq. (E.6), thus
Iéé)(w; €, g, do, Yo, dys k) = 21}91)(96; €, g, do, yo, dp; ) . (F.2)

F.2 Soft-collinear-double soft-type counterterms

The soft-collinear-double soft-type counterterms involve two successive soft momentum
mappings, which leads to an exact factorisation of the original m + 2-particle phase space
in the form of eq. (E.17). To evaluate the integrals of eqgs. (4.36), (4.37) and (4.38) over the
factorized one-particle phase space measures in eq. (E.17), we first observe that the integral
over the soft measure [dpgf)m 41 is again a Ky soft-collinear function, and the remaining
integral over the second soft measure contains either an eikonal factor or its collinear limit,

1672 7 1 - 2 %7
{Ig), I(({;’)} = —QQE/[dpgm)L]{ —5557(7), —— }f(yo,y?Q,d’(m, €))

Se 2 577 47,0 (F.3)
X ICl (67 Yo, d/O) ’
where in I((g) we recognise (twice) the function already defined in eq. (E.19), hence
76 (e, y0, df) = 228 (e, yo. dp) - (F.4)

)

The second integral decouples from the first one also for Z(% because K1 is independent

of the kinematics. Then, the final integral over [dp(f)] gives a soft function Ji, so in this

1,m
case,

Ig) (Y7 €, Y0, d,O) — jl (Y’ €, Y0, d,O -1 + E)’Cl(E, Yo, d/O) ) (FS)

where Y corresponds to Y}T o

In terms of the functions Zé?, (1 =1, 2, 3) we find the results given in eq. (4.39).
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