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1 Introduction

The most frequently occurring final states in high energy particle collisions contain hadronic

jets. Because of their large production cross sections, jet observables can be measured to

a high statistical accuracy, and are therefore ideal for precision studies. Examples include:

the measurement of the strong coupling, αs, from jet rates and event shapes in electron-

positron annihilation; the determination of the gluon parton distribution function (and

also αs) in deep inelastic lepton-hadron scattering into two plus one jets; the measurement

of parton distributions in hadron-hadron scattering from single jet inclusive production

and vector boson plus jet production. Often the relevant observables are measured with

experimental precision of a few per cent or better. Thus, theoretical predictions with

the same level of accuracy are necessary to fully exploit the physics potential of these

measurements. This usually requires the computation of next-to-next-to-leading order

(NNLO) corrections in perturbative QCD.

The straightforward calculation of jet cross sections in QCD perturbation theory is

however hampered by the presence of infrared singularities in the intermediate stages of

the calculation, which must be treated consistently before any numerical computation may

be performed. At next-to-leading order (NLO) accuracy, using a subtraction scheme to

handle infrared divergences is the approach of choice. Exploiting the fact that the kinematic

singularities of QCD matrix elements are universal, one builds process and observable

independent counterterms that simultaneously cancel both the kinematic singularities in

real-emission phase space integrals and the explicit ǫ-poles in one-loop virtual corrections

(here the use of dimensional regularisation in d = 4− 2ǫ dimensions is implied).

At NNLO accuracy, the calculation of fully differential cross sections is a challenging

problem, and various extensions of the subtraction method at NNLO have been proposed,

see e.g. refs. [1–12]. In very broad terms, when setting up any subtraction algorithm, two

quite distinct difficulties must be addressed. First, one must define subtraction terms that

properly regularise the real-emission phase space integrals and second, one must combine

the integrated form of these counterterms with the virtual contributions, so as to cancel

the infrared divergences of the loop matrix elements. In a rigorous mathematical sense, the

cancellation of both the kinematic singularities in the real-emission pieces and the explicit

ǫ-poles in the virtual pieces must be local. On the one hand, this means that the subtraction

terms and the real-emission contributions must tend to the same value in d dimensions, in
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all kinematic limits where the latter diverge. On the other hand, the cancellation of explicit

ǫ-poles between the integrated subtraction terms and the virtual contributions must take

place point-wise in phase space. This in particular implies that it is possible to write the

integrated counterterms in such a form that they can be explicitly combined with virtual

contributions, before phase space integration. From a practical point of view, the full

locality of the subtraction scheme is also important to insure good numerical efficiency of

the algorithm. Finally, the construction should be universal, i.e. independent of the process

and observable being considered. This avoids the need to tediously adapt the algorithm to

every specific problem.

However, defining universal subtraction terms that are completely local in the real-

emission phase space is rather delicate, and there is very little freedom to define these in

such a way, that their integration over the unresolved phase spaces becomes convenient.

One way to address these difficulties is to use counterterms that are not fully local, but

whose complete analytic integration is tractable. For example, the antenna subtraction

method [8–11] builds the subtraction terms from so-called antenna functions. These are

simple enough to be integrated analytically, but they do not reproduce azimuthal correla-

tions in gluon splitting, and the cancellation of ǫ poles in the real-virtual contributions is

also nonlocal. Because of this, actual numerical computations with the antenna scheme,

such as the calculation of total rates [13–16] and event shapes [17–21] in electron-positron

annihilation, require the use of an auxiliary phase space slicing. Another option is to de-

velop dedicated subtraction schemes that are applicable only to some specific processes,

such as the production of colourless final states, vector bosons [22, 23] or the Higgs boson

[24], in hadron collisions. Then, one may even propose to dispense with the subtraction

method altogether, and adopt a strategy such as sector decomposition (see [25] and ref-

erences therein), where the full Laurent expansions (in ǫ) of the real-emission and virtual

pieces are computed directly, and their finite pieces combined.

Nevertheless, despite the subtleties, it is possible to define completely local countert-

erms for real radiation, by first carefully matching the various QCD factorisation formulae

for unresolved emission [4, 26], and then extending the expressions obtained over the full

phase space [1–3]. Recall that in the scheme of refs. [1–4], the NNLO correction to a generic

m-jet cross section with no coloured particles in the initial state (work towards an extension

to hadron-initiated processes is presented in ref. [27]),

σNNLO =

∫

m+2
dσRR

m+2Jm+2 +

∫

m+1
dσRV

m+1Jm+1 +

∫

m
dσVV

m Jm , (1.1)

is rewritten as a sum of finite integrals

σNNLO =

∫

m+2
dσNNLO

m+2 +

∫

m+1
dσNNLO

m+1 +

∫

m
dσNNLO

m , (1.2)

where

dσNNLO
m+2 =

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}
ǫ=0

, (1.3)

dσNNLO
m+1 =

{[
dσRV

m+1 +

∫

1
dσ

RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1
]
Jm

}
ǫ=0

, (1.4)
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and

dσNNLO
m =

{
dσVV

m +

∫

2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫

1

[
dσ

RV,A1
m+1 +

( ∫

1
dσ

RR,A1
m+2

)
A1
]}

ǫ=0
Jm ,

(1.5)

are each integrable in four dimensions by construction. In eqs. (1.1)–(1.5) Jn (n = m+ 2,

m + 1 and m) denotes the jet function which defines the infrared safe observable being

calculated. All approximate cross sections appearing in eqs. (1.3)–(1.5) above have been

defined explicitly in refs. [1–3]. To finish the definition of the scheme, we must compute

once and for all the one- and two-particle integrals appearing in eqs. (1.4) and (1.5). In

previous publications, we have shown that it is possible to adapt and employ well-known

techniques of loop integration, such as integration-by-parts identities and solving of differ-

ential equations [28, 29], the method of Mellin–Barnes (MB) representations with harmonic

summation [30–34] and also sector decomposition [25], to compute the integrals that arise,

analytically and numerically. Indeed, all one-particle integrals, denoted formally by
∫
1

above, have been evaluated with these methods [35–37]. The actual computation of inte-

grated subtraction terms leads to a large number of rather elaborate phase space integrals,

however these can to be computed once and for all.

In this paper, we compute the integral of the iterated singly-unresolved subtraction

term,
∫
2 dσ

RR,A12
m+2 , over the phase space of the unresolved partons. We find that the inte-

grated approximate cross section can be written as the product of the Born cross section for

the production of m partons, times a new insertion operator (in colour space), I
(0)
12 . We use

the method of MB representations, as developed in this context in ref. [37], to compute the

integrals appearing in the various building blocks of the insertion operator. In several cases

we find multi-dimensional MB integrals that are very difficult to compute fully analytically,

and hence complete analytic expressions cannot be obtained at present. Nevertheless, in

these cases direct numerical integration of the appropriate MB representations provides a

fast and reliable way to obtain final results. We stress that for phenomenological appli-

cations, this is all that is required, hence, we make no severe effort to compute analytic

expressions beyond those that are trivial to derive. As a numerical check, all integrals are

evaluated using sector decomposition as well. Thus, each integral in this paper is obtained

by two independent computations.

Since the paper is quite long and rather technical, readers mainly interested in under-

standing the general structure of the results or in some applications are advised to first

read sections 2, 3.1 and 5. Section 2 sets the notation, and in section 3.1 we present the

final expression for the integrated iterated singly-unresolved approximate cross section in

eq. (3.13) and the new insertion operator I
(0)
12 in eq. (3.14). These two equations are the

main results of this paper. In section 5 we discuss some examples, specialising the general

formulae to the case of two- and three-jet production processes. The explicit definitions of

the integrated counterterms are then presented in sections 3.2 and 4. The technical details

of computing the integrated subtraction terms are given in appendices.
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2 Notation

2.1 Matrix elements

We consider processes with coloured particles (partons) in the final state, while the initial-

state particles are colourless (typically electron-positron annihilation into hadrons). Any

number of additional non-coloured final-state particles are allowed, too, but they will be

suppressed in the notation. Resolved partons in the final state are labeled with letters

chosen form the middle of the alphabet, i, j, k, l, . . . , while letters chosen form the end of

the alphabet, r, s, t, . . . , denote unresolved final-state partons.

We adopt the colour- and spin-state notation of ref. [38]. In this notation the amplitude

for a scattering process involving the final-state momenta {p}, |M({p})〉, is an abstract

vector in colour and spin space, and its normalisation is fixed such that the squared am-

plitude summed over colours and spins is

|M|2 = 〈M||M〉 . (2.1)

This matrix element has the following expansion in the number of loops:

|M〉 = |M(0)〉+ . . . , (2.2)

where |M(0)〉 denotes the tree-level contribution and the dots stand for higher-loop contri-

butions, which are not used in this paper.

Colour interactions at QCD vertices are represented by associating colour charges T i

with the emission of a gluon from each parton i. In the colour-state notation, each vector

|M〉 is a colour-singlet state, and colour conservation implies

(∑

j

T j

)
|M〉 = 0 , (2.3)

where the sum over j extends over all the final state partons of the state vector |M〉 (recall
that we are considering processes where the initial state is colourless), and the equation is

valid order by order in the loop expansion of eq. (2.2).

Using the colour-state notation, we define the two-parton colour-correlated squared

tree amplitudes as

|M(0)
(i,k)|

2 ≡ 〈M(0)|T i ·T k |M(0)〉 (2.4)

and similarly the four-parton colour-correlated squared tree amplitudes,

|M(0)
(i,k),(j,l)|

2 ≡ 〈M(0)|{T i ·T k,T j ·T l}|M(0)〉 . (2.5)

We will also use the following ⊗ product notation to indicate the insertion of colour charge

operators between 〈M(0)| and |M(0)〉:

|M(0)|2 ⊗ T i ·T k ≡ 〈M(0)|T i ·T k |M(0)〉 ,

|M(0)|2 ⊗ {T i ·T k,T j ·T l} ≡ 〈M(0)|{T i ·T k,T j ·T l}|M(0)〉 .
(2.6)
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The colour-charge algebra for the product
∑

n(T i)
n(T k)

n ≡ T i ·T k is:

T i ·T k = T k ·T i if i 6= k; T
2
i = Cfi . (2.7)

Here Cfi is the quadratic Casimir operator in the representation of particle i and we have

Cq ≡ CF = TR(N
2
c −1)/Nc = (N2

c −1)/(2Nc) in the fundamental and Cg ≡ CA = 2TRNc =

Nc in the adjoint representation, i.e. we are using the customary normalisation TR = 1/2.

We also use squared colour-charges with multiple indices, such as T
2
ir ≡ Cfir and

T
2
irs ≡ Cfirs . In such cases the multiple index denotes a single parton with flavour obtained

using the flavour summation rules: odd/even number of quarks plus any number of gluons

gives a quark/gluon, or explicitly for the relevant cases at NNLO:

q + g = q , q + q̄ = g , g + g = g ,

q + g + g = q , q + q + q̄ = q , g + q + q̄ = g , g + g + g = g .
(2.8)

2.2 Cross sections

In this paper we shall need to use only cross sections of producing n partons at tree level

with n = m, the Born cross section, and n = m + 2, the so-called doubly-real correction.

We have

dσ(0)
n ({p}) = N

∑

{n}
dφn({p})

1

S{n}
|M(0)

n ({p})|2 , (2.9)

where N includes all QCD-independent factors and dφn({p}) is the d-dimensional phase

space for n outgoing particles with momenta {p} ≡ {p1, . . . , pn} and total incoming mo-

mentum Q,

dφn(p1, . . . , pn;Q) =
n∏

i=1

ddpi
(2π)d−1

δ+(p
2
i ) (2π)

dδ(d)
(
Q−

n∑

i=1

pi

)
. (2.10)

The symbol
∑

{n} denotes summation over the different subprocesses and S{n} is the Bose

symmetry factor for identical particles in the final state. Then the Born cross section and

the doubly-real correction are simply

dσB
m({p}) ≡ dσ(0)

m ({p}) and dσRR
m+2({p}) ≡ dσ

(0)
m+2({p}) . (2.11)

The final result will also contain the phase space factor due to the integral over the

(d− 3)-dimensional solid angle, which is included in the definition of the running coupling

in the MS renormalisation scheme,1

Sǫ =

∫
d(d−3)Ω

(2π)d−3
=

(4π)ǫ

Γ(1− ǫ)
. (2.12)

1In the MS renormalisation scheme as often employed in the literature, the definition of the running

coupling includes the factor Sǫ = (4π)ǫe−ǫγE . The two definitions lead to the same expressions in a

computation at the NLO accuracy. At NNLO these lead to slightly different bookkeeping of the IR and UV

poles at intermediate steps of the computation, but the physical cross section of infrared safe observables

is the same. Our definition leads to somewhat simpler expressions at the NNLO level.

– 5 –



2.3 Momentum mappings and phase space factorisation

The iterated subtraction terms are written in terms of momenta obtained via various

combinations of the basic collinear and soft mappings of ref. [1]:

{p}m+2
XR−→ { p̂ }(R)

m+1

Y
Ŝ−→ { p̃ }( Ŝ ,R)

m , (2.13)

where both
XR−→ and

Y
Ŝ−→ may label either a collinear or soft mapping. (In general, both R

and Ŝ are multiple indices.) As the above notation suggests, the final set of m momenta

are denoted by tildes, while hats indicate the intermediate set of m + 1 momenta. In

kinematic expressions where only the label of a momentum is displayed (we shall discuss

several examples below), the tilde and/or hat is inherited by the label, and we write for

instance î , îr and ĩrs , where the latter two label single momenta. However, since these

mappings affect only the momenta, but not the colour and flavour (apart from the flavour

summation rules of eq. (2.8)), we shall omit the hat and tilde from flavour and colour

indices.

We also use labels such as (ir) to denote a single momentum that is simply the sum

of two momenta, p(ir) ≡ pi + pr.

Importantly, both the collinear and soft momentum mappings lead to an exact factori-

sation of phase space as follows:

{p}n+1
Cir−→ {p̄}(ir)n : dφn+1({p}n+1;Q) = dφn({p̄}(ir)n , Q)[dp

(ir)
1,n (pr, p̄ir;Q)] , (2.14)

{p}n+1
Sr−→ {p̄}(r)n : dφn+1({p}n+1;Q) = dφn({p̄}(r)n , Q)[dp

(r)
1,n(pr;Q)] , (2.15)

where here and below the bar denotes either a hat, when n = m + 1, or a tilde, when

n = m. The one-particle factorized phase spaces can be written in the following form. For

the collinear mapping we have

[dp
(ir)
1,n (pr, p̄ir;Q)] = dαir(1−αir)

2(n−1)(1−ǫ)−1
sirQ
2π

dφ2(pi, pr; p(ir))Θ(αir)Θ(1−αir) , (2.16)

where the p(ir) appearing on the right hand side is understood to be written in terms of

mapped momenta, that is pµ(ir) = (1− αir)p̄
µ
ir + αirQ

µ. For the soft mapping we find

[dp
(r)
1,n(pr;Q)] = dyrQ(1− yrQ)

(n−1)(1−ǫ)−1Q
2

2π
dφ2(pr,K;Q)Θ(yrQ)Θ(1 − yrQ) , (2.17)

where the momentum K is massive and K2 = (1 − yrQ)Q
2. As the notation above indi-

cates, αir and yrQ will become integration variables, hence their precise definitions are not

important and will not be recalled here. (See ref. [1] for details.)

2.4 Kinematic variables

Three types of kinematic variables are used to write the iterated subtraction terms. The

precise definitions of these were given in ref. [1]. Here we recall only those formulae that

are needed for defining every expression precisely in the present paper.
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• Two-particle invariants, such as

sir = 2pi·pr , s
k̂t r̂

= 2 p̂ kt·p̂ r , or siQ = 2pi·Q and sik⊥ = 2pi·k⊥ . (2.18)

The two-particle invariants scaled with Q2 are denoted by yij = sij/Q
2.

• Momentum fractions zi,r and z
k̂ , t̂

for the splittings p̂ ir → pi+pr and p̃ kt → p̂ k+ p̂ t,

zi,r =
yiQ

yiQ + yrQ
and z

k̂ , t̂
=

y
k̂ Q

y
k̂ Q

+ y t̂ Q

, (2.19)

with zr,i = 1 − zi,r and z t̂ , k̂
= 1 − z

k̂ , t̂
. Momentum fractions for three-particle

splittings are denoted by

zk,tr =
ykQ

ykQ + ytQ + yrQ
, (2.20)

with the expressions for zr,kt and zt,rk obtained by cyclic permutation. In the fol-

lowing, all momentum fractions will be integrated out, and so they will be expressed

using the integration variables.

We also use extensively the uncontracted and contracted eikonal factors:

Sµν
jl (r) =

pµj p
ν
l

pj ·pr pr ·pl
, Sjl(r) = gµνSµν

jl (r) =
2sjl
sjrslr

. (2.21)

As mentioned above, the sum of two momenta is often abbreviated with the two indices

in parenthesis, e.g. pµi + pµr = pµ(ir), which is used systematically in other occurrences, such

as

s(ir)k = sik + srk and S(ir)l(t) =
2s(ir)l

s(ir)tslt
=

sil + srl
(sit + srt)slt

. (2.22)

Finally, we express the integrated iterated subtraction terms as functions of the fol-

lowing (combinations of) invariants:

xi = yiQ and Yij,Q =
yij

yiQ yjQ
. (2.23)

In the centre-of-momentum frame (i.e. the rest frame of Qµ), we find that xi = 2Ei/
√
s

(s = Q2) is simply the scaled energy of parton i, while Yij,Q = (1− cosχij)/2, where χij is

the angle between momenta pµi and pµj .
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3 Integrating the iterated singly-unresolved approximate cross section

3.1 The integrated approximate cross section and insertion operator

We begin by recalling that the doubly-real emission cross section is defined precisely as in

eq. (2.9), with n = m + 2. Then the iterated singly-unresolved approximate cross section

times the jet function reads [1]

dσ
RR,A12
m+2 ⊙ Jm = N

∑

{m+2}
dφm+2({p})

1

S{m+2}

∑

t

[∑

k 6=t

1

2
C(0,0)
kt A2|M(0)

m+2({p})|2

+

(
S(0,0)
t A2|M(0)

m+2({p})|2 −
∑

k 6=t

CktS
(0,0)
t A2|M(0)

m+2({p})|2
)]

⊙ Jm({ p̃ }) ,

(3.1)

where the notation ⊙ Jm means that the jet function multiplying the different terms in the

sum depends on different sets of momenta. Explicitly, the three terms in eq. (3.1) are given

by

C(0,0)
kt A2|M(0)

m+2({p})|2 ⊙ Jm({ p̃ }) ≡

≡
∑

r 6=k,t

[
CktC

(0,0)
ktr Jm({ p̃ }(k̂t r̂ ,kt)) + CktCS

(0,0)
kt;r Jm({ p̃ }( r̂ ,kt))

− CktCktrCS
(0,0)
kt;r Jm({ p̃ }( r̂ ,kt))− CktCrktS

(0,0)
kt Jm({ p̃ }(k̂t,kt))

+
∑

i 6=r,k,t

(
1

2
CktC

(0,0)
ir;ktJm({ p̃ }( î r̂ ,kt))− CktCir;ktCS

(0,0)
kt;r Jm({ p̃ } r̂ ,kt))

)]

+ CktS
(0,0)
kt Jm({ p̃ }(k̂t,kt)) ,

(3.2)

S(0,0)
t A2|M(0)

m+2({p})|2 ⊙ Jm({ p̃ }) ≡

≡
∑

r 6=t

{∑

i 6=r,t

[
1

2

(
StC(0,0)

irt Jm({ p̃ }( î r̂ ,t)) + StCS(0,0)
ir;t Jm({ p̃ }( î r̂ ,t))

− StCirtCS(0,0)
ir;t Jm({ p̃ }( î r̂ ,t))

)
− StCirtS(0,0)

rt Jm({ p̃ }( r̂ ,t))

− StCSir;tS
(0,0)
rt Jm({ p̃ }( r̂ ,t)) + StCirtCSir;tS

(0,0)
rt Jm({ p̃ }( r̂ ,t))

]

+ StS(0,0)
rt Jm({ p̃ }( r̂ ,t))

}

(3.3)

– 8 –



and

CktS
(0,0)
t A2|M(0)

m+2({p})|2 ⊙ Jm({ p̃ }) ≡

≡
∑

r 6=k,t

[
CktStC

(0,0)
krt Jm({ p̃ }( k̂ r̂ ,t))

+
∑

i 6=r,k,t

(
1

2
CktStCS(0,0)

ir;t Jm({ p̃ }( î r̂ ,t))− CktStCSir;tS(0,0)
rt Jm({ p̃ }( r̂ ,t))

)

− CktStCkrtS
(0,0)
rt Jm({ p̃ }( r̂ ,t))− CktStCrktS

(0,0)
kt Jm({ p̃ }( k̂ ,t))

+ CktStS
(0,0)
rt Jm({ p̃ }( r̂ ,t))

]
+ CktStS

(0,0)
kt Jm({ p̃ }( k̂ ,t)) .

(3.4)

All momentum mappings in eqs. (3.2)–(3.4) lead to the factorisation of the original

m+2 parton phase space into an m parton phase space times two one-parton phase space

measures, as discussed originally in ref. [1], and recalled in section 2.3 above. Symbolically,

we may write

dφm+2({p}) = dφm({ p̃ })[dp1,m][dp1,m+1] . (3.5)

The jet function does not depend on the variables of the factorized one-parton measures,

[dp1,m][dp1,m+1], so we can compute the integral of eq. (3.1) over the phase space of the two

unresolved partons, independently of the jet function Jm, that we shall omit in the follow-

ing. The result of the integration is a long expression of kinematics-dependent functions

— each corresponding to a specific iteration of unresolved limits of the squared matrix
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elements — times colour factors,

∫

2
dσ

RR,A12
m+2 = N

∑

{m+2}
dφm({ p̃ }) 1

S{m+2}

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ]2

×
∑

t

{∑

k 6=t

1

2

[ ∑

r 6=k,t

(
[CktC

(0)
ktr]fkftfr(T

2
ktr)

2 +
∑

j,l

[CktCS
(0)
kt;r]

(j,l)
fkft

T
2
ktT jT l

− [CktCktrCS
(0)
kt;r]fkft(T

2
kt)

2 − [CktCrktS
(0)
kt ]frfkft(T

2
r)

2

)

+
∑

r 6=k,t

∑

i 6=r,k,t

(
1

2
[CktC

(0)
ir;kt]fkft;fifrT

2
ktT

2
ir − [CktCir;ktCS

(0)
kt;r]fkftT

2
ktT

2
i

)

+
∑

j,l

[CktS
(0)
kt ]

(j,l)
fkft

CAT jT l

]

+
∑

r 6=t

∑

i 6=r,t

[
1

2

(
[StC

(0)
irt ]fifr(T

2
ir)

2 +
∑

j,l

[StCS
(0)
ir;t]

(j,l)
fifr

T
2
irT jT l

− [StCirtCS
(0)
ir;t]fifr(T

2
ir)

2

)
− [StCirtS

(0)
rt ]fi(T

2
i )

2

−
∑

j,l

[StCSir;tS
(0)
rt ]

(j,l)
T

2
iT jT l + [StCirtCSir;tS

(0)
rt ](T

2
i )

2

]

+
∑

r 6=t

[ ∑

i,k,j,l

[StS
(0)
rt ]

(i,k)(j,l){T iT k,T jT l}+
∑

i,k

[StS
(0)
rt ]

(i,k)CAT iT k

]

−
∑

k 6=t

[ ∑

r 6=k,t

(
[CktStC

(0)
krt]fkft(T

2
krt)

2 − [CktStCkrtS
(0)
rt ](T

2
k)

2

− [CktStCrktS
(0)
kt ](T

2
r)

2 +
∑

j,l

[CktStS
(0)
rt ]

(j,l)
T

2
kT jT l

)

+
∑

r 6=k,t

∑

i 6=r,k,t

(
1

2
[CktStCS

(0)
ir;t]fifrT

2
irT

2
k − [CktStCSir;tS

(0)
rt ]T

2
iT

2
k

)

+
∑

j,l

[CktStS
(0)
kt ]

(j,l)CAT jT l

]}
⊗ |M(0)

m |2 ,

(3.6)

where the operation ⊗ means insertion of the colour charges between 〈M(0)
m | and |M(0)

m 〉,
see eq. (2.6). Three types of colour connections appear in eq. (3.6), and the functions on

the right hand side — the “non flavour summed” (see below) integrated counterterms —
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take three different forms accordingly:

∫

2
X (0,0)
1 =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ]2
[X

(0)
1 ]fi...T

2
xT

2
y|M(0)

m |2 , (3.7)

∫

2
X (0,0)
2 =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ]2
[X

(0)
2 ]

(j,l)
fi...

T
2
x|M(0)

m,(j,l)|
2 , (3.8)

∫

2
X (0,0)
3 =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ]2
[X

(0)
3 ](i,k)(j,l)|M(0)

m,(i,k)(j,l)|
2 , (3.9)

where e.g. [X
(0)
1 ]fi... represents a function that results in the integration of the counterterm

X (0,0)
1 . The quadratic Casimir operators that appear in eqs. (3.7) and (3.8) are factored out

to make the integrals [X
(0)
1 ]fi... and [X

(0)
2 ]

(j,l)
fi...

(together with [X
(0)
3 ](i,k)(j,l)) dimensionless

in colour-space. As the notation implies, [X
(0)
1 ]fi... and [X

(0)
2 ]fi... may also carry flavour

dependence. Incidentally, we note that for every integrated counterterm in eq. (3.6), we

consider everything inside the square brackets to be simply part of the function’s name. In

particular, the lower indices inside square brackets loose their meaning. Nevertheless, we

choose to keep these in order to exhibit from which counterterm each function derives.

Eq. (3.6) is not yet in the form of an m-parton contribution times a factor. In order to

obtain such a form, we must still perform summation over unresolved flavours, rewriting the

symmetry factor of an m+ 2-parton configuration to the symmetry factor of an m parton

configuration. The complete details of this counting are not very difficult, but rather long,

and are given in appendix A. As a result of these manipulations, we obtain functions —

the flavour summed integrated counterterms — denoted by
(
X(0)

)(j,l)...
fi...

, which are specific

sums of the non flavour summed integrated subtraction terms, symbolically

(
X(0)

)(j,l)...
fi...

=
∑

[X(0)]
(j,l)...
fk...

. (3.10)

It is important to realise that the flavour indices on the left and right hand sides of the

above equation need not match up. Indeed, the non flavour summed functions on the right

hand side carry dependence on unresolved flavours, while the flavour summed functions

on the left do not, by definition. Similar change in notation was introduced in the dipole

subtraction scheme [38], where we find the definitions (see eqs. (7.21) and (7.22))

Vi(ǫ) ≡ Vqg(ǫ) , if i = q, q̄ , (3.11)

Vi(ǫ) ≡
1

2
Vgg(ǫ) + nfVqq̄(ǫ) , if i = g , (3.12)

where the functions Vi(ǫ) on the left hand side represent flavour summed integrated coun-

terterms, while the Vij(ǫ) functions on the right hand side are not flavour summed. In the

present paper, due to the extra complications of an NNLO subtraction scheme, we believe

that it is helpful to make a sharper notational distinction between flavour summed and

non flavour summed integrated counterterms.
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After summation over unresolved flavours in eq. (3.6), we find that the final result can

be written in the form ∫

2
dσ

RR,A12
m+2 = dσB

m ⊗ I
(0)
12 ({p}m; ǫ) , (3.13)

where the insertion operator (in colour space) has three contributions according to the

possible colour structures in eqs. (3.7)–(3.9):

I
(0)
12 =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ]2{∑

i

[
C
(0)
12,fi

Cfi +
∑

k 6=i

C
(0)
12,fifk

Cfk

]
Cfi

+
∑

j,l 6=j

[
S
(0),(j,l)
12 CA +

∑

i

CS
(0),(j,l)
12,fi

Cfi

]
T jT l

+
∑

i,k 6=i

∑

j,l 6=j

S
(0),(i,k)(j,l)
12 {T iT k,T jT l}

}
,

(3.14)

with fi denoting flavours, and Cq = CF ≡ T
2
q, Cg = CA ≡ T

2
g as in eq. (2.7).

Eqs. (3.13) and (3.14) are the main results of this paper.

In the following, we shall define and compute each term appearing in eq. (3.14). First,

in terms of flavour summed integrated counterterms discussed above, we get:

C
(0)
12,fi

=
(
CktC

(0)
ktr

)
fi
−
(
CktCktrCS

(0)
kt;r

)
fi
−
(
CktCrktS

(0)
kt

)
fi

+
(
StC

(0)
irt

)
fi
−
(
StCirtCS

(0)
ir;t

)
fi
−
(
StCirtS

(0)
rt

)
fi

(3.15)

+
(
StCirtCSir;tS

(0)
rt

)
fi
−
(
CktStC

(0)
krt

)
fi
+
(
CktStCkrtS

(0)
rt

)
fi
,

C
(0)
12,fifk

=
(
CktC

(0)
ir;kt

)
fifk

−
(
CktCir;ktCS

(0)
kt;r

)
fifk

−
(
CktStCS

(0)
ir;t

)
fifk

+
(
CktStCSir;tS

(0)
rt

)
fifk

, (3.16)

S
(0),(j,l)
12 =

(
CktS

(0)
kt

)(j,l)
+
(
StS

(0)
rt

)(j,l)
−
(
CktStS

(0)
kt

)(j,l)
, (3.17)

CS
(0),(j,l)
12,fi

=
(
CktCS

(0)
kt;r

)(j,l)
fi

+
(
StCS

(0)
ir;t

)(j,l)
fi

−
(
StCSir;tS

(0)
rt

)(j,l)
fi

−
(
CktStS

(0)
rt

)(j,l)
fi

, (3.18)

S
(0),(i,k)(j,l)
12 =

(
StS

(0)
rt

)(i,k)(j,l)
. (3.19)

On the right hand sides of these equations the flavour dependent functions are the flavour

summed integrated counterterms discussed above. They depend on the kinematics through

variables of the type xi and Yij,Q. The latter dependence derives from integrating an eikonal

factor which is always multiplied with a colour-connected squared matrix element. In order

– 12 –



to make the results more transparent, we hid the arguments of the functions, but kept the

relation to the colour-connected matrix elements, shown as upper indices.

3.2 Flavour summed integrated counterterms

Here we list the flavour summed integrated counterterms appearing on the right hand sides

of eqs. (3.15)–(3.19), written in terms of the integrated subtraction terms.

Collinear-type terms:

1. Collinear-triple collinear:
(
CktC

(0)
ktr

)
q
= [CktC

(0)
ktr]qgg +

1

2
[CktC

(0)
ktr]ggq + nf [CktC

(0)
ktr]q′q̄′q ,

(
CktC

(0)
ktr

)
g
=

1

2
[CktC

(0)
ktr]ggg + nf [CktC

(0)
ktr]qq̄g + 2nf [CktC

(0)
ktr]gqq̄ .

(3.20)

2. Collinear-double collinear:(
CktC

(0)
ir;kt

)
qq

= [CktC
(0)
ir;kt]qg;qg ,

(
CktC

(0)
ir;kt

)
qg

=
1

2
[CktC

(0)
ir;kt]qg;gg + nf [CktC

(0)
ir;kt]qg;qq̄ ,

(
CktC

(0)
ir;kt

)
gq

=
1

2
[CktC

(0)
ir;kt]gg;qg + nf [CktC

(0)
ir;kt]qq̄;qg ,

(
CktC

(0)
ir;kt

)
gg

=
1

4
[CktC

(0)
ir;kt]gg;gg + n2

f [CktC
(0)
ir;kt]qq̄;qq̄

+
1

2
nf

(
[CktC

(0)
ir;kt]qq̄;gg + [CktC

(0)
ir;kt]gg;qq̄

)
.

(3.21)

3. Collinear-soft-collinear:
(
CktCS

(0)
kt;r

)(j,l)
q

= [CktCS
(0)
kt;r]

(j,l)
qg ,

(
CktCS

(0)
kt;r

)(j,l)
g

=
1

2
[CktCS

(0)
kt;r]

(j,l)
gg + nf [CktCS

(0)
kt;r]

(j,l)
qq̄ .

(3.22)

4. Collinear-triple collinear-soft-collinear:
(
CktCktrCS

(0)
kt;r

)
q
= [CktCktrCS

(0)
kt;r]qg ,

(
CktCktrCS

(0)
kt;r

)
g
=

1

2
[CktCktrCS

(0)
kt;r]gg + nf [CktCktrCS

(0)
kt;r]qq̄ .

(3.23)

5. Collinear-double collinear-soft-collinear:(
CktCir;ktCS

(0)
kt;r

)
qf

= [CktCir;ktCS
(0)
kt;r]qg ,

(
CktCir;ktCS

(0)
kt;r

)
gf

=
1

2
[CktCir;ktCS

(0)
kt;r]gg + nf [CktCir;ktCS

(0)
kt;r]qq̄ ,

(3.24)

i.e. it is independent of the flavour f .
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6. Collinear-double soft:
(
CktS

(0)
kt

)(j,l)
=

1

2
[CktS

(0)
kt ]

(j,l)
gg + nf [CktS

(0)
kt ]

(j,l)
qq̄ . (3.25)

7. Collinear-triple collinear-double soft:
(
CktCrktS

(0)
kt

)
f
=

1

2
[CktCrktS

(0)
kt ]fgg + nf [CktCrktS

(0)
kt ]fqq̄ . (3.26)

Soft-type terms:

1. Soft-triple collinear:
(
StC

(0)
irt

)
q
= [StC

(0)
irt ]qg ,

(
StC

(0)
irt

)
g
=

1

2
[StC

(0)
irt ]gg + nf [StC

(0)
irt ]qq̄ .

(3.27)

2. Soft-soft-collinear:
(
StCS

(0)
ir;t

)(j,l)
q

= [StCS
(0)
ir;t]

(j,l)
qg ,

(
StCS

(0)
ir;t

)(j,l)
g

=
1

2
[StCS

(0)
ir;t]

(j,l)
gg + nf [StCS

(0)
ir;t]

(j,l)
qq̄ .

(3.28)

3. Soft-triple collinear-soft-collinear:
(
StCirtCS

(0)
ir;t

)
q
= [StCirtCS

(0)
ir;t]qg ,

(
StCirtCS

(0)
ir;t

)
g
=

1

2
[StCirtCS

(0)
ir;t]gg + nf [StCirtCS

(0)
ir;t]qq̄ .

(3.29)

4. Soft-triple collinear-double soft:
(
StCirtS

(0)
rt

)
f
= [StCirtS

(0)
rt ]f . (3.30)

5. Soft-soft-collinear-double soft:
(
StCSir;tS

(0)
rt

)(j,l)
f

= [StCSir;tS
(0)
rt ]

(j,l) , (3.31)

i.e. it is independent of the flavour f .

6. Soft-triple collinear-soft-collinear-double soft
(
StCirtCSir;tS

(0)
rt

)
f
= [StCirtCSir;tS

(0)
rt ] , (3.32)

i.e. it is independent of the flavour f .

7. Soft-double soft:
(
StS

(0)
rt

)(i,k)(j,l)
= [StS

(0)
rt ]

(i,k)(j,l) ,

(
StS

(0)
rt

)(j,l)
= [StS

(0)
rt ]

(j,l) .

(3.33)
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Soft-collinear-type terms:

1. Soft-collinear-triple collinear:

(
CktStC

(0)
krt

)
q
= [CktStC

(0)
krt]qg + [CktStC

(0)
krt]gq ,

(
CktStC

(0)
krt

)
g
= [CktStC

(0)
krt]gg + 2nf [CktStC

(0)
krt]qq̄ .

(3.34)

2. Soft-collinear-soft-collinear:

(
CktStCS

(0)
ir;t

)
fq

= [CktStCS
(0)
ir;t]qg ,

(
CktStCS

(0)
ir;t

)
fg

=
1

2
[CktStCS

(0)
ir;t]gg + nf [CktStCS

(0)
ir;t]qq̄ ,

(3.35)

i.e. it is independent of the flavour f .

3. Soft-collinear-triple collinear-double soft:

(
CktStCkrtS

(0)
rt

)
f
= [CktStCkrtS

(0)
rt ] + [CktStCrktS

(0)
kt ] , (3.36)

i.e. it is independent of the flavour f .

4. Flavour-dependent soft-collinear-double soft:

(
CktStS

(0)
rt

)(j,l)
f

= [CktStS
(0)
rt ]

(j,l) . (3.37)

Actually, as shown here, and also seen in the precise definition of integrated flavour-

dependent soft-collinear-double soft subtraction in eq. (4.37), the integral itself does

not depend on the flavour. Distinguishing the flavour dependence serves book-keeping

purposes: the flavour-dependent subtraction contributes to CS
(0),(j,l)
12,fi

in eq. (3.18), while

the flavour-independent one in eq. (3.39) contributes to S
(0),(j,l)
12 in eq. (3.17).

5. Soft-collinear-soft-collinear-double-soft:

(
CktStCSir;tS

(0)
rt

)
f1f2

= [CktStCSir;tS
(0)
rt ] , (3.38)

i.e. it is independent of both flavours f1, f2.

6. Flavour-independent soft-collinear-double soft:

(
CktStS

(0)
kt

)(j,l)
= [CktStS

(0)
kt ]

(j,l) . (3.39)
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3.3 Analytic expressions to O(ǫ−2)

In the next section we compute the functions on the right hand sides of eqs. (3.20)–(3.39) in

terms of basic integrals that are calculated in appendices. Expanding these integrals in ǫ we

obtain the Laurent expansions of the functions on the left hand sides of eqs. (3.20)–(3.39).

Analytic expressions for the expansion coefficients have been obtained to O(ǫ−2) accuracy

in all cases, and we present these below. However, in the case of the single and double

poles as well as the finite terms, we encountered several instances where obtaining complete

analytic expressions was not feasible. This being the case, we made no severe effort to derive

analytic expressions beyond those presented here. Higher order coefficients in the Laurent

expansions will be given numerically in the form of a computer code elsewhere. In the

following results we use d′0 = D′
0 + d′1ǫ (see appendix B and especially eq. (B.8)) and the

abbreviations

B0(nf) ≡
β0(nf)

CA
=

11CA − 4TRnf

3CA
, (3.40)

Σ(z,N) = ln z −
N∑

k=1

1− (1− z)k

k
. (3.41)

Collinear-type terms:

1. Collinear-triple collinear:

(
CktC

(0)
ktr

)
fi
(xi) =

CA + 2Cfi

2Cfi

[
1

ǫ4
− 1

ǫ3

(
4 lnxi − 3 δfi,q −

1

2
B0(nf) δfi,g

)]

+
1

ǫ3
CA

Cfi

B0

(
CF

Cfi

nf

)(
1

4
δfi,q + δfi,g

)
+O(ǫ−2) .

(3.42)

2. Collinear-double collinear:

(
CktC

(0)
ir;kt

)
fifk

(xi, xk) =
1

ǫ4
− 1

ǫ3

[
2

(
lnxi + lnxk

)
− 3 δfi,q δfk ,q − B0(nf) δfi,g δfk,g

− 1

2

(
3 + B0(nf)

)(
δfi,q δfk,g + δfi,g δfk ,q

)]
+O(ǫ−2) .

(3.43)

3. Collinear-soft-collinear:

(
CktCS

(0)
kt;r

)(j,l)
fi

(xi, Yjl,Q) = − 1

ǫ4
+

2

ǫ3

(
lnxi +Σ(y0,D

′
0 − 1)

)

+
1

ǫ3

[
lnYjl,Q − 1

2

(
3 δfi,q + B0(nf) δfi,g

)]
+O(ǫ−2) .

(3.44)

When e.g. i = j, the functions
(
CktCS

(0)
kt;r

)(i,l)
fi

(xi, Yil,Q) and
(
CktCS

(0)
kt;r

)(j,l)
fi

(xi, Yjl,Q) are

different (where i 6= j, l is understood) but up to this order, the functional dependence

on the variables is the same.
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4. Collinear-triple collinear-soft-collinear:

(
CktCktrCS

(0)
kt;r

)
fi
(xi) =

1

ǫ4
− 2

ǫ3

(
lnxi +Σ(y0,D

′
0 − 1)

)

+
1

ǫ3
1

2

(
3 δfi,q + B0(nf) δfi,g

)
+O(ǫ−2) .

(3.45)

5. Collinear-double collinear-soft-collinear:
(
CktCir;ktCS

(0)
kt;r

)
fifk

(xi, Yik,Q) =
1

ǫ4
− 2

ǫ3

(
lnxi +Σ(y0,D

′
0 − 1)

)

+
1

ǫ3
1

2

(
3 δfi,q + B0(nf) δfi,g

)
+O(ǫ−2) .

(3.46)

As implied by the notation, this function depends on both xi and Yik,Q. However, the

dependence on the latter vanishes up to this order.

6. Collinear-double soft:
(
CktS

(0)
kt

)(j,l)
(Yjl,Q) =

1

2

[
− 1

ǫ4
+

1

ǫ3

(
lnYjl,Q+4Σ(y0,D

′
0−1)+

3

4
− 3

4
B0(nf)

)]
+O(ǫ−2) .

(3.47)

7. Collinear-triple collinear-double soft:

(
CktCrktS

(0)
kt

)
fi
=

CA

2Cfi

[
1

ǫ4
− 1

ǫ3

(
4Σ(y0,D

′
0 − 1)− 1

2
B0(nf)

)]
+O(ǫ−2) . (3.48)

This function is independent of the kinematics.

Soft-type terms:

1. Soft-triple collinear:

(
StC

(0)
irt

)
fi
(xi) =

CA + 2Cfi

2Cfi

[
1

ǫ4
− 2

ǫ3

(
lnxi +Σ(y0,D

′
0)

)

+
1

ǫ3
1

2

(
3 δfi,q +

1

3
B0(nf) δfi,g +

2

3
B0

(
CF

CA
nf

)
δfi,g

)]
+O(ǫ−2) .

(3.49)

2. Soft-soft-collinear:
(
StCS

(0)
ir;t

)(j,l)
fi

(xi, Yjl,Q) = − 1

ǫ4
+

2

ǫ3

(
lnxi +Σ(y0,D

′
0)

)

+
1

ǫ3

[
lnYjl,Q − 1

2

(
3 δfi,q + B0(nf) δfi,g

)]
+O(ǫ−2) ,

(
StCS

(0)
ir;t

)(i,l)
fi

(xi, Yil,Q) =
5

6

[
− 1

ǫ4
+

2

ǫ3

(
lnxi +Σ(y0,D

′
0)

)]

+
1

ǫ3

[
lnYil,Q − 3

8

(
3 δfi,q + B0(nf) δfi,g

)]
+O(ǫ−2) .

(3.50)
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3. Soft-triple collinear-soft-collinear:

(
StCirtCS

(0)
ir;t

)
fi
(xi) =

2

3

[
1

ǫ4
− 2

ǫ3

(
lnxi +Σ(y0,D

′
0)

)]

+
1

ǫ3
1

4

(
3 δfi,q + B0(nf) δfi,g

)
+O(ǫ−2) .

(3.51)

4. Soft-triple collinear-double soft:

(
StCirtS

(0)
rt

)
fi
=

CA + 2Cfi

2Cfi

[
1

ǫ4
− 2

ǫ3

(
Σ(y0,D

′
0) + Σ(y0,D

′
0 − 1)

)]
+O(ǫ−2) . (3.52)

This function is independent of the kinematics.

5. Soft-soft-collinear-double soft:

(
StCSir;tS

(0)
rt

)(j,l)
fi

(xi, Yjl,Q) = − 1

ǫ4
+

2

ǫ3

(
Σ(y0,D

′
0) + Σ(y0,D

′
0 − 1)

)

+
1

ǫ3
lnYjl,Q +O(ǫ−2) ,

(
StCSir;tS

(0)
rt

)(i,l)
fi

(xi, Yil,Q) =
1

6

[
− 5

ǫ4
+

1

ǫ3

(
lnxi + 10Σ(y0,D

′
0) + 9Σ(y0,D

′
0 − 1)

)]

+
1

ǫ3
lnYil,Q +O(ǫ−2) .

(3.53)

6. Soft-triple collinear-soft-collinear-double soft

(
StCirtCSir;tS

(0)
rt

)
fi
(xi) =

1

3

[
2

ǫ4
− 1

ǫ3

(
lnxi + 4Σ(y0,D

′
0) + 3Σ(y0,D

′
0 − 1)

)]
+O(ǫ−2) .

(3.54)

7. Soft-double soft:

(
StS

(0)
rt

)(i,k)(j,k)
(Yik,Q, Yij,Q, Yjk,Q) =

1

2

[
1

ǫ4
− 1

ǫ3

(
lnYik,Q + lnYjk,Q

)]

− 1

ǫ3

(
Σ(y0,D

′
0) + Σ(y0,D

′
0 − 1)

)
+O(ǫ−2) ,

(
StS

(0)
rt

)(i,k)
(Yik,Q) = −1

2

(
1

ǫ4
− 2

ǫ3
lnYik,Q

)

+
1

ǫ3

(
Σ(y0,D

′
0) + Σ(y0,D

′
0 − 1)

)
+O(ǫ−2) .

(3.55)

The expansion for
(
StS

(0)
rt

)(i,k)(j,k)
is valid for the restricted kinematics discussed around

eq. (D.54).
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Soft-collinear-type terms:

1. Soft-collinear-triple collinear:

(
CktStC

(0)
krt

)
fi
(xi) =

CA + Cfi

Cfi

[
1

ǫ4
− 2

ǫ3

(
lnxi +Σ(y0,D

′
0)

)

+
1

ǫ3
1

2

(
3 δfi,q + B0

(
CF

CA
nf

)
δfi,g

)]
+O(ǫ−2) .

(3.56)

2. Soft-collinear-soft-collinear:
(
CktStCS

(0)
ir;t

)
fifk

(xk) =
1

ǫ4
− 2

ǫ3

(
lnxk +Σ(y0,D

′
0)

)

+
1

ǫ3
1

2

(
3 δfk ,q + B0(nf) δfk ,g

)
+O(ǫ−2) .

(3.57)

3. Soft-collinear-triple collinear-double soft:

(
CktStCkrtS

(0)
rt

)
fi
=

2

ǫ4
− 4

ǫ3

(
Σ(y0,D

′
0) + Σ(y0,D

′
0 − 1)

)
+O(ǫ−2) . (3.58)

This function is independent of the kinematics.

4. Flavour-dependent soft-collinear-double soft:

(
CktStS

(0)
rt

)(j,l)
fi

(Yjl,Q) = − 1

ǫ4
+

1

ǫ3

(
lnYjl,Q + 2Σ(y0,D

′
0) + 2Σ(y0,D

′
0 − 1)

)
+O(ǫ−2) .

(3.59)

5. Soft-collinear-soft-collinear-double-soft:
(
CktStCSir;tS

(0)
rt

)
fifk

=
1

ǫ4
− 2

ǫ3

(
Σ(y0,D

′
0) + Σ(y0,D

′
0 − 1)

)
+O(ǫ−2) . (3.60)

This function is independent of the kinematics.

6. Flavour-independent soft-collinear-double soft:

(
CktStS

(0)
kt

)(j,l)
(Yjl,Q) = − 1

ǫ4
+

1

ǫ3

(
lnYjl,Q + 2Σ(y0,D

′
0) + 2Σ(y0,D

′
0 − 1)

)
+O(ǫ−2) .

(3.61)

Substituting the expansions in eqs. (3.42)–(3.61) into eqs. (3.15)–(3.19), we obtain the

following explicit expressions for the kinematics dependent functions appearing on the right

hand side of eq. (3.14). For C
(0)
12,fi

we find

C
(0)
12,fi

(xi) =
Cfi − CA

Cfi

[
1

ǫ4
− 2

ǫ3

(
Σ(y0,D

′
0) + Σ(y0,D

′
0 − 1)

)]

+
Cfi + CA

Cfi

1

ǫ3

[
Σ(y0,D

′
0 − 1)− lnxi +

1

4

(
3 δfi,q + B0

(
CFnf

CA

)
δfi,g

)]

+O(ǫ−2) .

(3.62)
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The function C
(0)
12,fifk

simply vanishes up to this order in the ǫ-expansion

C
(0)
12,fifk

(xi, xk, Yik,Q) = O(ǫ−2) . (3.63)

The two-parton colour-correlated soft function, S
(0),(j,l)
12 , is

S
(0),(j,l)
12 (Yjl,Q) =

1

ǫ3

(
1

2
lnYjl,Q − Σ(y0,D

′
0) + Σ(y0,D

′
0 − 1) +

3

8
− 3

8
B0(nf)

)

+O(ǫ−2) .

(3.64)

For CS
(0),(j,l)
12,fi

we obtain (the Yjl,Q dependence vanishes up to this order)

CS
(0),(j,l)
12,fi

(xi, Yjl,Q) =
1

ǫ3

[
4 ln xi − 2Σ(y0,D

′
0)− 2Σ(y0,D

′
0 − 1)

−
(
3 δfi,q + B0(nf) δfi,g

)]
+O(ǫ−2) ,

(3.65)

if i is distinct from both j and l, while for e.g. i = j we have

CS
(0),(i,l)
12,fi

(xi, Yil,Q) =
1

ǫ3

[
7

2
lnxi − 2Σ(y0,D

′
0)−

3

2
Σ(y0,D

′
0 − 1)

− 7

8

(
3 δfi,q + B0(nf) δfi,g

)]
+O(ǫ−2) .

(3.66)

Finally, the four-parton colour-correlated soft function, S
(0),(i,k)(i,k)
12 , reads

S
(0),(i,k)(i,k)
12 (Yik,Q) =

2−1

ǫ4
− 1

ǫ3

(
lnYik,Q +Σ(y0,D

′
0) + Σ(y0,D

′
0 − 1)

)

+O(ǫ−2) ,

(3.67)

if only two indices, say i and k are distinct, while

S
(0),(i,k)(j,k)
12 (Yik,Q, Yij,Q, Yjk,Q) =

2−1

ǫ4
− 1

ǫ3

(
1

2
lnYik,Q +

1

2
lnYjk,Q

+Σ(y0,D
′
0) + Σ(y0,D

′
0 − 1)

)
+O(ǫ−2) ,

(3.68)

for three distinct indices. Furthermore, the above expression is valid in the case of restricted

kinematics of three hard partons.

4 Integrated counterterms

In this section we list the explicit definitions of the functions that appear on the right hand

side of an equation among eqs. (3.20)–(3.39).
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4.1 Integrated collinear-type counterterms

1. Collinear-triple collinear:

[CktC
(0)
ktr]fkftfr =

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

(k̂t r̂ )
1,m ][dp

(kt)
1,m+1]

1

skt

1

s
k̂t r̂

× 1

(T 2
ktr)

2
P

s.o.(0)
fkftfr

(
zt,k, z r̂ ,k̂t

, y
k̂t r̂

/y2
k̂tQ

; ǫ
)

× f(α0, αkt, d(m, ǫ))f(α0, αk̂t r̂
, d(m, ǫ)) ,

(4.1)

where P
s.o.(0)
fkftfr

are the strongly-ordered three-parton splitting kernels averaged over the

spin states of the parent parton (see appendix D.1 and especially eq. (D.27)). The sub-

traction terms contain the spin-dependent kernels, that together with the corresponding

kinematic variables can be found in ref. [1]. In appendix D.1 we prove that the integrals

of the spin-dependent kernels give the same contribution as those of the spin-averaged

ones, therefore, we can use the latter when integrating the subtraction terms.

The f(α0, α, d) functions, defined in eq. (B.6), represent simple modifications to the

original subtraction scheme of ref. [1]. As discussed in appendix B in detail, these mod-

ifications do not destroy the cancellation of singularities, but serve improved numerical

control, efficiency and stability, and result in simpler, m independent, integrated coun-

terterms. The rest of the counterterms are modified similarly by appropriate f functions,

and below we shall simply include these factors without further comment.

The integrated counterterm is computed in appendix D.3. In terms of the functions I(i)
C

(i = 1, 2 and 3) of eqs. (D.31)–(D.33) we find

[CktC
(0)
ktr]fkftfr =

Cfkt

Cfktr

[ 2∑

i=1

2∑

j=−1

2∑

l=−1

d
(0)
fktfr ,i

c
(0)
fkft,j

c
(0)
fktfr ,l

I(i)
C (x

k̃tr
; ǫ, α0, d0; j, l)

− δfktgb
(0)
fkft

b
(0)
fktfr

(
I(3)
C (x

k̃tr
; ǫ, α0, d0, 1)− I(3)

C (x
k̃tr

; ǫ, α0, d0, 2)
)]

.

(4.2)

The various coefficients read:

b(0)qg = b(0)gq = 2 , b(0)gg = 2 , b
(0)
qq̄ = − 2

1− ǫ

TR

CA
, (4.3)

c
(0)
qg,−1 = 2 , c

(0)
qg,0 = −2 , c

(0)
qg,1 = 1− ǫ , c

(0)
qg,2 = 0 ,

c
(0)
qq̄,−1 = 0 , c

(0)
qq̄,0 =

TR

CA
, c

(0)
qq̄,1 = b

(0)
qq̄ , c

(0)
qq̄,2 = −b

(0)
qq̄ , (4.4)

c
(0)
gg,−1 = 4 , c

(0)
gg,0 = −4 , c

(0)
gg,1 = b(0)gg , c

(0)
gg,2 = −b(0)gg ,
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with c
(0)
gq,j = c

(0)
qg,j , and finally

d
(0)
qg,2 = d

(0)
gq,1 = 1 , d

(0)
gq,2 = d

(0)
qg,1 = 0 , d

(0)
gg,1 = d

(0)
gg,2 = d

(0)
qq̄,1 = d

(0)
qq̄,2 =

1

2
. (4.5)

2. Collinear-double collinear:

[CktC
(0)
ir;kt]fkft;fifr =

(
16π2

Sǫ
Q2ǫ

)2

×
∫

2
[dp

( î r̂ )
1,m ][dp

(kt)
1,m+1]

1

skt

1

T
2
kt

P
(0)
fkft

(zt,k; ǫ)
1

s î r̂

1

T
2
ir

P
(0)
f
î
f r̂

(z r̂ , î ; ǫ)

× f(α0, αkt, d(m, ǫ))f(α0, α î r̂ , d(m, ǫ)) .

(4.6)

The integrated counterterm is computed in appendix D.4. In terms of the function I(4)
C

of eq. (D.39) we find

[CktC
(0)
ir;kt]fkft;fifr =

2∑

j=−1

2∑

l=−1

c
(0)
fkft,j

c
(0)
fifr ,l

I(4)
C (x

k̃t
, x

ĩr
; ǫ, α0, d0; j, l) , (4.7)

with coefficients given in eq. (4.4).

3. Collinear-soft-collinear:

[CktCS
(0)
kt;r]

(j,l)
fkft

= −
(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( r̂ )
1,m][dp

(kt)
1,m+1]

1

2
S
ĵ l̂

( r̂ )
1

skt

1

T
2
kt

P
(0)
fkft

(zt,k; ǫ)

× f(α0, αkt, d(m, ǫ))f(y0, y r̂ Q, d
′(m, ǫ)) ,

(4.8)

where S
ĵ l̂

( r̂ ) is the eikonal factor defined in eq. (2.21) and P
(0)
fkft

are the spin-averaged

two-parton Altarelli–Parisi splitting kernels (see eqs. (D.18)–(D.20)).

The integrated counterterm is computed in appendix D.5. In terms of the function I(5)
C

of eq. (D.53) we find

[CktCS
(0)
kt;r]

(j,l)
fkft

=

2∑

i=−1

c
(0)
fkft,i

I(5)
C (x

k̃t
, Y

j̃ l̃ ,Q
, Y

j̃ k̃t ,Q
, Y

l̃ k̃t ,Q
; ǫ, α0, d0, y0, d

′
0; i) , (4.9)

with coefficients given in eq. (4.4). The integral I(5)
C with full kinematic dependence, as

written above, first appears in computing NNLO corrections to four-jet production.

4. Collinear-triple collinear-soft-collinear:

[CktCktrCS
(0)
kt;r]fkft =

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( r̂ )
1,m][dp

(kt)
1,m+1]

2

s
k̂t r̂

z
k̂t, r̂

z
r̂ ,k̂t

1

skt

1

T
2
kt

P
(0)
fkft

(zt,k; ǫ)

× f(α0, αkt, d(m, ǫ))f(y0, y r̂ Q, d
′(m, ǫ)) .

(4.10)
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This integrated counterterm is also computed in appendix D.5. In terms of the function

I(6)
C of eq. (D.70) we find

[CktCktrCS
(0)
kt;r]fkft =

2∑

j=−1

c
(0)
fkft,j

I(6)
C (x

k̃tQ
, 0; ǫ, α0, d0, y0, d

′
0; j) , (4.11)

with coefficients given in eq. (4.4).

5. Collinear-double collinear-soft-collinear:

[CktCir;ktCS
(0)
kt;r]fkft =

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( r̂ )
1,m][dp

(kt)
1,m+1]

2

s î r̂

z î , r̂

z r̂ , î

1

skt

1

T
2
kt

P
(0)
fkft

(zt,k; ǫ)

× f(α0, αkt, d(m, ǫ))f(y0, y r̂ Q, d
′(m, ǫ)) .

(4.12)

This integrated counterterm is also computed in appendix D.5. In terms of the function

I(6)
C of eq. (D.70) we find

[CktCir;ktCS
(0)
kt;r]fkft =

2∑

j=−1

c
(0)
fkft,j

I(6)
C (x

k̃tQ
, Y

ĩ k̃t ,Q
; ǫ, α0, d0, y0, d

′
0; j) , (4.13)

with coefficients given in eq. (4.4).

6. Collinear-double soft:

[CktS
(0)
kt ]

(j,l)
fkft

=

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

(k̂t)
1,m][dp

(kt)
1,m+1]

× 1

2
Sµν

ĵ l̂
(k̂t)

1

skt

1

CA
〈µ|P̂ (0)

fkft
(zk,t, zt,k, k⊥,k,t; ǫ)|ν〉

× f(α0, αkt, d(m, ǫ))f(y0, yk̂tQ, d
′(m, ǫ)) ,

(4.14)

where Sµν

ĵ l̂
(k̂t) is defined in eq. (2.21) and 〈µ|P̂ (0)

fkft
|ν〉 is the spin-dependent Altarelli–

Parisi splitting kernel for gluon splitting (see eq. (D.72)).

The integrated counterterm is computed in appendix D.6. In terms of the functions I(i)
C

(i = 7, 8 and 9) of eqs. (D.84)–(D.86) we find

[CktS
(0)
kt ]

(j,l)
fkft

=

2∑

i=−1

c
(0)
fkft,i

I(7)
C (Y

j̃ l̃ ,Q
; ǫ, α0, d0; i)

+ b
(0)
fkft

9∑

i=8

(
I(i)
C (ǫ, α0, d0; 1)− I(i)

C (ǫ, α0, d0; 2)
)
,

(4.15)

with b
(0)
fkft

and c
(0)
fkft,k

given in eqs. (4.3) and (4.4), respectively.

– 23 –



7. Collinear-triple collinear-double soft:

[CktCrktS
(0)
kt ]frfkft =

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

(k̂t)
1,m][dp

(kt)
1,m+1]

2

sktsk̂t r̂

× T
2
kt

T
2
r

(
z
r̂ ,k̂t

z
k̂t, r̂

1

T
2
kt

P
(0)
fkft

(zt,k; ǫ)− zk,tzt,kb
(0)
fkft

y
k̂t r̂

y2
k̂tQ

)

× f(α0, αkt, d(m, ǫ))f(y0, yk̂tQ, d
′(m, ǫ)) ,

(4.16)

with the flavour-dependent constants b
(0)
fkft

given in eq. (4.3). Of course, only fk +

ft = g gives a non-vanishing result (see eq. (3.25)). In obtaining the form (4.16) of

the integrated counterterm, we exploited that the integrals of the two expressions in

eq. (D.17) are equal.

The integrated counterterm is computed in appendix D.6. In terms of the functions I(8)
C

and I(9)
C of eqs. (D.85) and (D.86) we find

[CktCrktS
(0)
kt ]frfkft =

CA

Cfr

[
2∑

j=−1

c
(0)
fkft,j

I(8)
C (ǫ, α0, d0; j)

+ b
(0)
fkft

(
I(9)
C (ǫ, α0, d0; 1)− I(9)

C (ǫ, α0, d0; 2)
)]

,

(4.17)

with coefficients given in eqs. (4.3) and (4.4).

4.2 Integrated soft-type counterterms

1. Soft-triple collinear:

[StC
(0)
irt ]fifr =

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( î r̂ )
1,m ][dp

(t)
1,m+1]

1

T
2
ir

P
(S)
fifrg

(zi,rt, zr,it, zt,ir, sir, sit, srt; ǫ)

× 1

s î r̂

1

T
2
ir

P
(0)
fifr

(z r̂ , î ; ǫ)f(y0, ytQ, d
′(m, ǫ))f(α0, α î r̂ , d(m, ǫ)) ,

(4.18)

where the functions P
(S)
fifrft

are the soft limits of the triple-collinear splitting functions,

introduced in ref. [4] (see eq. (E.2)), and we used T
2
irt = T

2
ir because the soft parton t

can only be gluon, ft = g.

This integrated counterterm is computed in appendix E.1. In terms of the functions

I(1)
S and I(2)

S of eqs. (E.6) and (E.8) we find

[StC
(0)
irt ]fifr =

2∑

k=−1

c
(0)
fifr,k

Cfir

[
(Cfi + Cfr − Cfir)I

(2)
S (x

ĩr
; ǫ, α0, d0, y0, d

′
0; k)

+ 2CfirI
(1)
S (x

ĩr
; ǫ, α0, d0, y0, d

′
0; k)

]
,

(4.19)
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with coefficients given in eq. (4.4).

2. Soft-soft-collinear:

[StCS
(0)
ir;t]

(j,l)
fifr

= −
(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( î r̂ )
1,m ][dp

(t)
1,m+1]

1

2
Sjl(t)

1

s î r̂

1

T
2
ir

P
(0)
fifr

(z r̂ , î ; ǫ)

× f(y0, ytQ, d
′(m, ǫ))f(α0, α î r̂ , d(m, ǫ)) .

(4.20)

This integrated counterterm is computed in appendix E.1. In terms of the functions

I(3)
S and I(4)

S of eqs. (E.11) and (E.14) we find

[StCS
(0)
ir;t]

(j,l)
fifr

=
2∑

k=−1

c
(0)
fifr,k

[
(1− δj(ir) − δl(ir))I(3)

S (x
ĩr
, Y

j̃ l̃ ,Q
; ǫ, α0, d0, y0, d

′
0; k)

+ (δj(ir) + δl(ir))I(4)
S (x

ĩr
, Y

j̃ l̃ ,Q
; ǫ, α0, d0, y0, d

′
0; k)

]
,

(4.21)

with coefficients given in eq. (4.4). Note that j and l are always distinct.

3. Soft-triple collinear-soft-collinear:

[StCirtCS
(0)
ir;t]fifr =

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( î r̂ )
1,m ][dp

(t)
1,m+1]

2

s(ir)t

1− zt,ir
zt,ir

1

s î r̂

1

T
2
ir

P
(0)
fifr

(z r̂ , î ; ǫ)

× f(y0, ytQ, d
′(m, ǫ))f(α0, α î r̂ , d(m, ǫ)) .

(4.22)

This integrated counterterm is computed in appendix E.1. In terms of the function I(5)
S

of eq. (E.16) we find

[StCirtCS
(0)
ir;t]fifr =

2∑

k=−1

c
(0)
fifr,k

I(5)
S (x

ĩr
; ǫ, α0, d0, y0, d

′
0; k) , (4.23)

with coefficients given in eq. (4.4).

4. Soft-triple collinear-double soft:2

[StCirtS
(0)
rt ]fi =

(
16π2

Sǫ
Q2ǫ

)2

×
∫

2
[dp

( r̂ )
1,m][dp

(t)
1,m+1]

[
CA

T
2
i

(
sir

sitsrt
+

1

srt

zr,it
zt,ir

− 1

sit

zi,rt
zt,ir

)
+

2

sit

zi,rt
zt,ir

]

× 2

s î r̂

z î , r̂

z r̂ , î

f(y0, ytQ, d
′(m, ǫ))f(y0, y r̂ Q, d

′(m, ǫ)) .

(4.24)

2We note a harmless misprint in the definition of the subtraction term StCirtS
(0,0)
rt in eq. (7.38) of ref. [1],

where in the last term of the square bracket
zi,t
zt,i

was used as compared to
zi,rt
zt,ir

here. Our definition of the

momentum fractions gives the same for these ratios:
zi,rt
zt,ir

=
zi,t
zt,i

=
yiQ
ytQ

.
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The integrated counterterm is computed in appendix E.2. In terms of the functions I(6)
S

and I(7)
S of eqs. (E.21) and (E.25) we find

[StCirtS
(0)
rt ]fi = 2I(6)

S (ǫ, y0, d
′
0) +

CA

Cfi

I(7)
S (ǫ, y0, d

′
0) . (4.25)

5. Soft-soft-collinear-double soft:

[StCSir;tS
(0)
rt ]

(j,l) = −
(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( r̂ )
1,m][dp

(t)
1,m+1]

2

s î r̂

z î , r̂

z r̂ , î

1

2
Sjl(t)

× f(y0, ytQ, d
′(m, ǫ))f(y0, y r̂ Q, d

′(m, ǫ)) .

(4.26)

The integrated counterterm is computed in appendix E.2. In terms of the functions I(8)
S

and I(9)
S of eqs. (E.35) and (E.40) we find

[StCSir;tS
(0)
rt ]

(j,l) = (1− δj(ir) − δl(ir))I(8)
S (Y

j̃ l̃ ,Q
; ǫ, y0, d

′
0)

+ (δj(ir) + δl(ir))I(9)
S (x ĩ , Y j̃ l̃ ,Q

; ǫ, y0, d
′
0) .

(4.27)

Note that j and l are always distinct.

6. Soft-triple collinear-soft-collinear-double soft:

[StCirtCSir;tS
(0)
rt ] =

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( r̂ )
1,m][dp

(t)
1,m+1]

2

s î r̂

z î , r̂

z r̂ , î

2

s(ir)t

1− zt,ir
zt,ir

× f(y0, ytQ, d
′(m, ǫ))f(y0, y r̂ Q, d

′(m, ǫ)) .

(4.28)

This integrated counterterm is computed in appendix E.2. In terms of the function I(10)
S

of eq. (E.44) we find

[StCirtCSir;tS
(0)
rt ] = I(10)

S (x ĩ ; ǫ, y0, d
′
0) . (4.29)

7. Soft-double soft:

[StS
(0)
rt ]

(i,k)(j,l) =

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( r̂ )
1,m][dp

(t)
1,m+1]

1

8
S

î k̂
( r̂ )Sjl(t)

× f(y0, ytQ, d
′(m, ǫ))f(y0, y r̂ Q, d

′(m, ǫ)) , (4.30)

[StS
(0)
rt ]

(i,k) = −
(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( r̂ )
1,m][dp

(t)
1,m+1]

1

4
S

î k̂
( r̂ )

(
Sir(t) + Skr(t)− Sik(t)

)

× f(y0, ytQ, d
′(m, ǫ))f(y0, y r̂ Q, d

′(m, ǫ)) . (4.31)

In this paper we do not discuss the case when i, j, k, and l are all distinct, which first

appears in computing NNLO corrections to four-jet production. For the specific cases of
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two and three hard partons in the final state, we compute the integrated counterterms

in appendix E.2. In terms of the functions I(11)
S and I(12)

S of eqs. (E.52) and (E.62) we

find

[StS
(0)
rt ]

(i,k)(j,k) =
1

2
I(11)
S ;ik,jk(Y ĩ k̃ ,Q

, Y ĩ j̃ ,Q, Y j̃ k̃ ,Q
; ǫ, y0, d

′
0) , (4.32)

and

[StS
(0)
rt ]

(i,k) = 2I(12)
S ;ik(Y ĩ k̃ ,Q

; ǫ, y0, d
′
0) + I(11)

S ;ik,ik(Y ĩ k̃ ,Q
; ǫ, y0, d

′
0) . (4.33)

4.3 Integrated soft-collinear-type counterterms

1. Soft-collinear-triple collinear:

[CktStC
(0)
krt]fkft =

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( k̂ r̂ )
1,m ][dp

(t)
1,m+1]

2

skt

zk,t
zt,k

1

s
k̂ r̂

T
2
kt

T
2
krt

1

T
2
kr

P
(0)
fkfr

(z
r̂ , k̂

; ǫ)

× f(y0, ytQ, d
′(m, ǫ))f(α0, α k̂ r̂

, d(m, ǫ)) ,

(4.34)

where we used T
2
krt = T

2
kr because the soft parton t can only be gluon, ft = g. For the

same reason T
2
kt/T

2
krt = T

2
k/T

2
kr, to be used in eq. (4.39).

2. Soft-collinear-soft-collinear:3

[CktStCS
(0)
ir;t]fifr =

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( î r̂ )
1,m ][dp

(t)
1,m+1]

2

skt

zk,t
zt,k

1

s î r̂

1

T
2
ir

P
(0)
fifr

(z r̂ , î ; ǫ)

× f(y0, ytQ, d
′(m, ǫ))f(α0, α î r̂ , d(m, ǫ)) .

(4.35)

3. Soft-collinear-triple collinear-double soft:

[CktStCkrtS
(0)
rt ] =

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( r̂ )
1,m][dp

(t)
1,m+1]

2

s
k̂ r̂

z
k̂ , r̂

z
r̂ , k̂

2

skt

zk,t
zt,k

× f(y0, ytQ, d
′(m, ǫ))f(y0, y r̂ Q, d

′(m, ǫ)) ,

[CktStCrktS
(0)
kt ] =

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( k̂ )
1,m][dp

(t)
1,m+1]

2

s
k̂ r̂

z
r̂ , k̂

z
k̂ , r̂

2

skt

zk,t
zt,k

× f(y0, ytQ, d
′(m, ǫ))f(y0, y k̂ Q

, d′(m, ǫ)) .

(4.36)

The integrals over [dp
( k̂ )
1,m] (or [dp

( r̂ )
1,m]) and [dp

(t)
1,m+1] factorize in the two equations above.

Therefore, [CktStCkrtS
(0)
rt ] = [CktStCrktS

(0)
kt ] (as seen by the simple exchange of indices

k ↔ r) and the distinction of these functions is purely formal, and serves bookkeeping

purposes only.

3We note a misprint in the definition of the subtraction term CktStCS
(0,0)
ir;t in eq. (7.46) of ref. [1]. The

quadratic Casimir has to be changed from T
2
i to T

2
k (see eq. (7.22) of ref. [4]).
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4. Soft-collinear-double soft:

[CktStS
(0)
rt ]

(j,l) = −
(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( r̂ )
1,m][dp

(t)
1,m+1]

1

2
S
ĵ l̂

( r̂ )
2

skt

zk,t
zt,k

× f(y0, ytQ, d
′(m, ǫ))f(y0, y r̂ Q, d

′(m, ǫ)) ,

[CktStS
(0)
kt ]

(j,l) = −
(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( k̂ )
1,m][dp

(t)
1,m+1]

1

2
S
ĵ l̂

( k̂ )
2

skt

zk,t
zt,k

× f(y0, ytQ, d
′(m, ǫ))f(y0, y k̂ Q

, d′(m, ǫ)) ,

(4.37)

where the first equation above defines the flavour-dependent soft-collinear-double soft

function, while the second equation gives the flavour-independent one. Again, the in-

tegrals over [dp
( k̂ )
1,m] (or [dp

( r̂ )
1,m]) and [dp

(t)
1,m+1] factorize in both equations. Therefore,

[CktStS
(0)
rt ]

(j,l) = [CktStS
(0)
kt ]

(j,l) (as seen by the simple exchange of indices k ↔ r) and

the distinction of these functions is formal, and serves bookkeeping purposes.

5. Soft-collinear-soft-collinear-double soft:

[CktStCSir;tS
(0)
rt ] =

(
16π2

Sǫ
Q2ǫ

)2 ∫

2
[dp

( r̂ )
1,m][dp

(t)
1,m+1]

2

s î r̂

z î , r̂

z r̂ , î

2

skt

zk,t
zt,k

× f(y0, ytQ, d
′(m, ǫ))f(y0, y r̂ Q, d

′(m, ǫ)) .

(4.38)

The soft-collinear-type integrated counterterms are computed in appendix F. The cal-

culation of the integrals in eqs. (4.34)–(4.38) is fairly straightforward because the integrals

over the soft phase space measures decouple in all cases. Using the functions I(i)
CS (i = 1,

2, 3) computed in eqs. (F.2)–(F.4), we find:

[CktStC
(0)
krt]fkft =

Cfk

Cfkr

2∑

j=−1

c
(0)
fkfr,j

I(1)
CS (y

k̃r Q
; ǫ, α0, d0, y0, d

′
0; j)

[CktStCS
(0)
ir;t]fifr =

2∑

j=−1

c
(0)
fifr ,j

I(1)
CS (y

k̃r Q
; ǫ, α0, d0, y0, d

′
0; j) ,

[CktStCkrtS
(0)
rt ] = [CktStCrktS

(0)
kt ] = I(3)

CS (ǫ, y0, d
′
0) ,

[CktStS
(0)
rt ]

(j,l) = [CktStS
(0)
kt ]

(j,l) = I(2)
CS (Y

j̃ l̃ ,Q
; ǫ, y0, d

′
0) ,

[CktStCSir;tS
(0)
rt ] = I(3)

CS (ǫ, y0, d
′
0) .

(4.39)

with coefficients given in eq. (4.4).

This ends the definition of the integrals of the iterated subtraction terms, that can be

used to construct the insertion operator I
(0)
12 as given by eqs. (3.14)–(3.38). The computa-

tion of these integrals is presented in the appendices.
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5 Insertion operator for two- and three-jet production

In this section, we present illustrative numerical results for the insertion operator I
(0)
12 of

eq. (3.14), at various specific phase space points, for processes with at most three hard

partons in the final state.

While it is true that the most general collinear and/or soft configuration at NNLO

accuracy involves four hard partons, if these are all in the final state, which is the subject

of this paper, then the two-loop amplitudes needed in the doubly-virtual correction have

at least six massless (or four massless and one massive) external legs. Results for such

amplitudes are not foreseen in the near future, therefore, we restrict our discussion to

computing NNLO corrections to two- and three-jet quantities.

In an explicit computation of a jet cross section at NNLO, we require the expansion

coefficients (up to and including the finite part) of the Laurent series in ǫ of the insertion

operator. In general, these expansion coefficients are functions of various kinematic vari-

ables (and also parameters such as α0, y0, d0 and d′0) which depend on the particular phase

space point. One may either attempt to compute these functions analytically, or numeri-

cally. The former is important as a matter of principle only. For practical purposes (from

the point of phenomenology) the latter is sufficient. Indeed, the higher order expansion

coefficients (starting form O(ǫ−2)) of the results we will present were obtained numerically.

5.1 Two-jet production

Let us consider the process e+e− → 2 jets. The corresponding squared matrix element at

tree level is |M(0)
2 (1q, 2q̄)|2, i.e. the quark carries label 1 and the antiquark label 2. Both

the colour algebra and kinematics are trivial. Colour conservation implies

T 1 T 2 = −CF (5.1)

and Cf1 = Cf2 = CF. Hence, the insertion operator is a scalar in colour space. On the other

hand, momentum conservation requires that the two final state momenta are back-to-back,

i.e. in a properly oriented frame we have

pµ1 =
√
s
(
1
2 , 0 , 0 , 1

2

)
,

pµ2 =
√
s
(
1
2 , 0 , 0 , −1

2

)
,

(5.2)

which implies

y12 = x1 = x2 = Y12,Q = 1 . (5.3)

The insertion operator eq. (3.14) becomes

I
(0)
12 (p1, p2; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ]2[
2C2

F

(
C
(0)
12,q +C

(0)
12,qq − 2CS

(0),(1,2)
12,q + 4S

(0),(1,2)(1,2)
12

)

− 2CFCAS
(0),(1,2)
12

]
,

(5.4)
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i −4 −3 −2 −1 0

I(0,i)
12,2j 6 76

3 32.10 ± 0.23 −87.90 ± 0.66 −554.5 ± 1.8

I(x,i)
12,2j −2 −27

2 −52.40 ± 0.01 −150.7 ± 0.09 −339.5± 0.43

I(y,i)
12,2j 0 −1 −6.332 ± 0.001 −17.66 ± 0.008 1.013 ± 0.069

Table 1. Coefficients of the Laurent expansion of the I12,2j functions appearing in the insertion

operator I
(0)
12 (p1, p2; ǫ) in the case of two-jet production. The numbers for i = −4,−3 are obtained by

evaluating the appropriate analytic expressions. We used the parameters α0 = y0 = 1, d0 = d′0 = 3.

with all arguments being equal to 1. Substituting the Laurent expansions of the kinematic

functions, we obtain

I
(0)
12 (p1, p2; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ]2
C2
F

0∑

i=−4

ǫi
(
I(0,i)
12,2j + x I(x,i)

12,2j + ynf I(y,i)
12,2j

)
, (5.5)

where [39]

x =
CA

CF
, y =

TR

CF
. (5.6)

With this decomposition the Abelian case is obtained by setting CF = 1, x = 0, y = 1. We

can compute the two leading terms in the ǫ expansion analytically:

I
(0)
12 (p1, p2; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ]2
C2
F

{
(3− x)

2

ǫ4
+

1

6

[
72 + 21x− 6ynf

− 24(1 − x)Σ(y0,D
′
0 − 1)− 12(2 − 3x)Σ(y0,D

′
0)

]
1

ǫ3
+O(ǫ−2)

}
.

(5.7)

The rest of the expansion coefficients are computed numerically. We present the results in

table 1. To obtain these numbers, we used the specific values of α0 = y0 = 1, d0 = d′0 = 3.

Finally, we show the value of the complete insertion operator for the case of QCD with

nf = 5 light flavours:

I
(0)
12 (p1, p2; ǫ) =

3

2ǫ4
− 83

12ǫ3
− 97.68 ± 0.27

ǫ2
− 460.2 ± 0.87

ǫ
−
(
1317.± 2.9

)
+O(ǫ1) . (5.8)

In the above equation, the coefficients of 1/ǫ4 and 1/ǫ3 were computed by evaluating

the appropriate analytic expressions. However, we have also computed these term with

the same numerical algorithms that we used for computing the higher order expansion

coefficients. It is then instructive to compare this numerical result to the analytic one. We

find:

I
(0)
12 (p1, p2; ǫ)

∣∣
A
=

1.5

ǫ4
− 6.917

ǫ3
+O(ǫ−2) , (5.9)

I
(0)
12 (p1, p2; ǫ)

∣∣
N
=

1.498 ± 0.0014

ǫ4
− 6.932 ± 0.11

ǫ3
+O(ǫ−2) . (5.10)
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Comparing the exact and numerical results, we see first of all that the two match up to

the uncertainty of the numerical computation, and second, that the error estimate on the

next-to-leading pole is very conservative.

5.2 Three-jet production

Next, let us consider the process e+e− → 3 jets. The corresponding squared matrix element

at tree level is |M(0)
2 (1q, 2q̄, 3g)|2, i.e. the quark carries label 1, the antiquark label 2 and

the gluon carries label 3. The colour algebra is again trivial. Colour conservation implies

T 1 T 2 =
CA − 2CF

2
, T 1 T 3 = T 2 T 3 = −CA

2
, (5.11)

and Cf1 = Cf2 = CF, while Cf3 = CA. Thus, the insertion operator is again a scalar

in colour space. On the other hand, the kinematics is no longer trivial, since the relative

orientation of the three final state momenta are not fully fixed by momentum conservation.

(Note that the insertion operator is independent of the overall event orientation with respect

to the beam.) Since the three-particle phase space in d = 4 dimensions is 5-dimensional,

but three of the independent variables just correspond to the three Euler angles needed to

specify the overall orientation, we find that out of the six kinematic variables

xi = yiQ , and Yij ≡ Yij,Q =
yij
xixj

, i, j = 1, 2, 3 and i 6= j , (5.12)

only two are independent. Nevertheless, we choose not to fix the independent ones below,

in order to better exhibit the structure of the insertion operator.
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The insertion operator eq. (3.14) becomes

I
(0)
12 =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ]2{
C2
F

(
C
(0)
12,q(x1) + C

(0)
12,q(x2)

)
+ C2

AC
(0)
12,g(x3)

+ C2
F

(
C
(0)
12,qq(x1, x2, Y12) + C

(0)
12,qq(x2, x1, Y12)

)

+ CFCA

(
C
(0)
12,qg(x1, x3, Y13) + C

(0)
12,gq(x3, x1, Y13)

+ C
(0)
12,qg(x2, x3, Y23) + C

(0)
12,gq(x3, x2, Y23)

)

+ (CA − 2CF)
[
CA

(
CS(0),(1,2)g (x3, Y12) + S(0),(1,2)(Y12)

)

+ CF

(
CS(0),(1,2)q (x1, Y12) + CS(0),(1,2)q (x2, Y12)

)]

− CA

[
CA

(
CS(0),(1,3)g (x3, Y13) + S(0),(1,3)(Y13)

)

+ CF

(
CS(0),(1,3)q (x1, Y13) + CS(0),(1,3)q (x2, Y13)

)

+ CA

(
CS(0),(2,3)g (x3, Y23) + S(0),(2,3)(Y23)

)

+ CF

(
CS(0),(2,3)q (x1, Y23) + CS(0),(2,3)q (x2, Y23)

)]

+ 2CA(2CF − CA)

×
(
S
(0),(1,2)(1,3)
12 (Y12, Y23, Y13) + S

(0),(1,2)(2,3)
12 (Y12, Y13, Y23)

+ S
(0),(2,3)(1,2)
12 (Y23, Y13, Y12) + S

(0),(1,3)(1,2)
12 (Y13, Y23, Y12)

)

+ 2C2
A

(
S
(0),(1,3)(2,3)
12 (Y13, Y12, Y23) + S

(0),(2,3)(1,3)
12 (Y23, Y12, Y13)

)

+
(
8C2

F − 8CFCA + 2C2
A

)
S
(0),(1,2)(1,2)
12 (Y12)

+ 2C2
A

(
S
(0),(1,3)(1,3)
12 (Y13) + S

(0),(2,3)(2,3)
12 (Y23)

)}
.

(5.13)

Substituting the Laurent expansions of the kinematic functions, we obtain

I
(0)
12 (p1, p2, p3; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ]2
C2
F

0∑

i=−4

ǫi

×
(
I(0,i)
12,3j + x I(x,i)

12,3j + x2 I(x2,i)
12,3j + ynf I(y,i)

12,3j + xynf I(xy,i)
12,3j

)
.

(5.14)
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We can compute the leading two terms in the ǫ expansion analytically:

I
(0)
12 (p1, p2, p3; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ]2
C2
F

{
(6 + 2x+ x2)

1

ǫ4
+

[
12 +

101

6
x+

67

12
x2

− 13

3
ynf −

3

2
xynf − (4− 4x)Σ(y0,D

′
0 − 1)

− (4− 6x− x2)Σ(y0,D
′
0)−

(
8 + x− 5

2
x2
)
ln y12

−
(
4x+

5

2
x2
)
(ln y13 + ln y23)

]
1

ǫ3
+O(ǫ−2)

}
.

(5.15)

In order to obtain eq. (5.15), we used lnYij = ln yij− lnxi− lnxj . The rest of the expansion

coefficients are computed numerically. For purposes of demonstration, below we present

numerical results in three specific phase space points. Since the result is insensitive to

overall orientation, we will always choose the event to lie in the x − y plane, with pµ1
pointing in the positive y direction. In all cases we use the specific values of α0 = y0 = 1,

d0 = d′0 = 3.

Symmetric point. First, we consider the maximally symmetric configuration

pµ1 =
√
s
(
1
3 , 0 , 1

3 , 0
)
,

pµ2 =
√
s
(
1
3 , 1

2
√
3

, −1
6 , 0

)
,

pµ3 =
√
s
(
1
3 , − 1

2
√
3

, −1
6 , 0

)
,

(5.16)

which leads to the following values for the kinematic invariants (i, j = 1, 2, 3 and i 6= j):

yij =
1

3
, xi =

2

3
, and Yij =

3

4
. (5.17)

The coefficients of the Laurent expansion of the insertion operator in the symmetric phase

space point are shown in table 2.

Finally, we show the value of the complete insertion operator in the symmetric phase

space point for the case of QCD with nf = 5 light flavours:

I
(0)
12 (p1, p2, p3; ǫ) =

83

3ǫ4
+
132.3

ǫ3
+
114.5 ± 4.6

ǫ2
− 1142. ± 14.

ǫ
−
(
6150.±51.

)
+O(ǫ1) . (5.18)

In this equation the coefficients of 1/ǫ4 and 1/ǫ3 were obtained by evaluating the appro-

priate analytic expressions. As in the case of two-jet production, it is again instructive to

compare the exact result with one obtained by numerical computation. We find:

I
(0)
12 (p1, p2, p3; ǫ)

∣∣
A
=

27.67

ǫ4
+

132.3

ǫ3
+O(ǫ−2) , (5.19)

I
(0)
12 (p1, p2, p3; ǫ)

∣∣
N
=

27.658 ± 0.027

ǫ4
+

132.4 ± 1.9

ǫ3
+O(ǫ−2) . (5.20)

As before, the results match within the uncertainty of the numerical calculation, and the

error estimate on the next-to-leading pole is again seen to be very conservative. We will

reach similar conclusions in other examples as well.

– 33 –



i −4 −3 −2 −1 0

I(0,i)
12,3j 6 34.12 82.98 ± 0.25 34.59 ± 0.71 −543.8 ± 2.2

I(x,i)
12,3j 2 9.721 1.209 ± 0.52 −142.2± 1.5 −696.6 ± 4.8

I(x2,i)
12,3j 1 6.497 17.80 ± 0.23 15.87 ± 0.79 −47.93 ± 2.9

I(y,i)
12,3j 0 −13

3 −32.40 ± 0.007 −127.9 ± 0.03 −355.2 ± 0.20

I(xy,i)
12,3j 0 −3

2 −12.01 ± 0.004 −46.90 ± 0.02 −104.1 ± 0.16

Table 2. Coefficients of the Laurent expansion of the I12,3j functions appearing in the insertion

operator I
(0)
12 (p1, p2, p3; ǫ) for three-jet production in the symmetric phase space point. The numbers

for i = −4,−3 are obtained by evaluating the appropriate analytic expressions. We used the

parameters α0 = y0 = 1, d0 = d′0 = 3.

Collinear point. Next, we choose a configuration where (in the rest frame of Qµ) we

have a hierarchy of angles such that

∡(p2, p3) ≪ ∡(p1, p2),∡(p1, p3) , (5.21)

i.e. where momenta pµ2 and pµ2 are close to being collinear. Specifically, we set

pµ1 =
√
s
(
0.49841 , 0. , 0.49841 , 0.

)
,

pµ2 =
√
s
(
0.120923 , 0.0240634 , -0.118505 , 0.

)
,

pµ3 =
√
s
(
0.380667 , -0.0240634 , -0.379905 , 0.

)
,

(5.22)

which leads to the following values for the kinematic invariants (i, j = 1, 2, 3 and i 6= j):

y12 = 0.238667 , y13 = 0.758153 , y23 = 0.003180 ,

x1 = 0.99682 , x2 = 0.241847 , x3 = 0.761333 , (5.23)

Y12 = 0.99 , Y13 = 0.999 , Y23 = 0.0172697 .

The coefficients of the Laurent expansion of the insertion operator in the collinear phase

space point are shown in table 3.

Finally, we show the value of the complete insertion operator in the collinear phase

space point for the case of QCD with nf = 5 light flavours:

I
(0)
12 (p1, p2, p3; ǫ) =

83

3ǫ4
+
278.3

ǫ3
+
1601.3 ± 5.2

ǫ2
−7084. ± 18.

ǫ
−
(
26690.±71.

)
+O(ǫ1) . (5.24)

We present next the comparison of the exact 1/ǫ4 and 1/ǫ3 pole coefficients given above
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i −4 −3 −2 −1 0

I(0,i)
12,3j 6 36.79 106.0 ± 0.23 120.6 ± 0.68 −431.0 ± 2.0

I(x,i)
12,3j 2 25.38 143.6 ± 0.55 537.3 ± 1.6 1505. ± 5.3

I(x2,i)
12,3j 1 15.24 119.5 ± 0.29 660.5 ± 1.1 2903. ± 4.9

I(y,i)
12,3j 0 −13

3 −31.30 ± 0.007 −121.7 ± 0.03 −346.0 ± 0.18

I(xy,i)
12,3j 0 −3

2 −17.72 ± 0.005 −109.1 ± 0.03 −470.9 ± 0.21

Table 3. Coefficients of the Laurent expansion of the I12,3j functions appearing in the insertion

operator I
(0)
12 (p1, p2, p3; ǫ) for three-jet production in the collinear phase space point. The numbers

for i = −4,−3 are obtained by evaluating the appropriate analytic expressions. We used the

parameters α0 = y0 = 1, d0 = d′0 = 3.

with ones computed numerically. We find:

I
(0)
12 (p1, p2, p3; ǫ)

∣∣
A
=

27.67

ǫ4
+

278.3

ǫ3
+O(ǫ−2) , (5.25)

I
(0)
12 (p1, p2, p3; ǫ)

∣∣
N
=

27.658 ± 0.027

ǫ4
+

278.4 ± 2.1

ǫ3
+O(ǫ−2) . (5.26)

We note that the two results match up to the uncertainty of the numerical computation,

and as in previous examples, the error estimate on the next-to-leading pole is seen to be

very conservative.

Soft point. Finally, we consider a configuration where (in the rest frame of Qµ) we have

a hierarchy of energies such that

E3 ≪ E1, E2 , (5.27)

i.e. where momentum pµ3 is close to being soft. Specifically, we set

pµ1 =
√
s
(
0.480625 , 0. , 0.480625 , 0.

)
,

pµ2 =
√
s
(
0.487897 , -0.0308419 , -0.486921 , 0.

)
,

pµ3 =
√
s
(
0.0314778 , 0.0308419 , 0.00629557 , 0.

)
,

(5.28)

which leads to the following values for the kinematic invariants (i, j = 1, 2, 3 and i 6= j):

y12 = 0.937044 , y13 = 0.024207 , y23 = 0.038749 ,

x1 = 0.961251 , x2 = 0.975794 , x3 = 0.062956 , (5.29)

Y12 = 0.999 , Y13 = 0.4 , Y23 = 0.630768 .

The coefficients of the Laurent expansion of the insertion operator in the soft phase space

point are shown in table 4.
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i −4 −3 −2 −1 0

I(0,i)
12,3j 6 25.85 34.59 ± 0.23 −84.25 ± 0.66 −566.8 ± 1.9

I(x,i)
12,3j 2 27.79 136.8 ± 0.52 330.6 ± 1.4 46.20 ± 4.5

I(x2,i)
12,3j 1 21.02 195.4 ± 0.26 1174. ± 0.96 5354. ± 4.1

I(y,i)
12,3j 0 −13

3 −57.59 ± 0.009 −405.2 ± 0.06 −2119. ± 0.34

I(xy,i)
12,3j 0 −3

2 −24.07 ± 0.006 −194.7 ± 0.05 −1083. ± 0.31

Table 4. Coefficients of the Laurent expansion of the I12,3j functions appearing in the insertion

operator I
(0)
12 (p1, p2, p3; ǫ) for three-jet production in the soft phase space point. The numbers for

i = −4,−3 are obtained by evaluating the appropriate analytic expressions. We used the parameters

α0 = y0 = 1, d0 = d′0 = 3.

Finally, we show the value of the complete insertion operator in the soft phase space

point for the case of QCD with nf = 5 light flavours:

I
(0)
12 (p1, p2, p3; ǫ) =

83

3ǫ4
+
320.6

ǫ3
+
1995. ± 4.9

ǫ2
− 8928. ± 16.

ǫ
−
(
32182.±61.

)
+O(ǫ1) . (5.30)

We finish by comparing the exact coefficients of 1/ǫ4 and 1/ǫ3 that appear above with the

values obtained via numerical computation. We find:

I
(0)
12 (p1, p2, p3; ǫ)

∣∣
A
=

27.667

ǫ4
+

320.56

ǫ3
+O(ǫ−2) , (5.31)

I
(0)
12 (p1, p2, p3; ǫ)

∣∣
N
=

27.658 ± 0.027

ǫ4
+

320.6 ± 1.9

ǫ3
+O(ǫ−2) . (5.32)

Our conclusions are identical to those in the symmetric and collinear phase space point: the

values match up to the numerical uncertainty and the error estimate on the next-to-leading

pole is again shown to be very conservative.

We finish by briefly commenting on the size of numerical uncertainties. The uncer-

tainties relevant for phenomenology are those associated with the complete I
(0)
12 insertion

operator, in various phase space points. However, the requirements in terms of precision

are different for the pole coefficients and the finite part.

On the one hand, the pole coefficients are only relevant for establishing the cancellation

of all ǫ-poles between the doubly-virtual cross section and various integrated subtraction

terms. As stressed earlier, our subtraction scheme is fully local, hence this cancellation can

be checked point by point in phase space for any specific process. From a practical point

of view, it clearly suffices to demonstrate pole cancellation in a relatively small number of

phase space points, thus the pole coefficients of I
(0)
12 have to be computed as precisely as

feasible in a small set of points only. Because of this, the runtime of numerical integration is

not an issue, and increased precision may be obtained simply by adjusting the parameters

of the numerical integration to include more sampling points for each integral.
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On the other hand, the precision requirement on the finite part of the insertion operator

is essentially set by the relative uncertainty associated with the numerical phase space

integration of the doubly-virtual contribution. This is not expected to be below the per

mille level, hence from a practical point of view it is pointless to evaluate the finite term

of the insertion operator with a precision much greater than this. In all cases discussed

above, the relative uncertainty of the finite part of the insertion operator is at the per mille

level already.

6 Conclusions

In this work, we have performed the integration of the iterated singly-unresolved approxi-

mate cross section of the NNLO subtraction scheme of refs. [1–3]. The final result can be

written as the product (in colour space) of the Born cross section times a newly defined

insertion operator, I
(0)
12 . The insertion operator depends on the colours, flavours and mo-

menta of the final-state partons, and is an elaborate sum of many different terms, each

corresponding to the integrated form of a specific iterated singly-unresolved subtraction

term of ref. [1].

We have also explicitly evaluated all integrated subtraction terms which are necessary

to assemble the insertion operator for processes involving at most three hard partons in

the final state. The knowledge of these integrals (i.e. their Laurent expansions in ǫ to O(ǫ)

accuracy) is necessary in order to make the subtraction scheme an effective tool, and we

have computed them once and for all.

We have achieved this task by deriving Mellin–Barnes integral representations for all

integrals under consideration. In principle, it is possible to evaluate all MB integrals via

the residuum theorem, and in a subsequent step to obtain fully analytic expressions by

performing the summation of nested sums over series of residua. However in practice, we

have encountered several cases of higher order expansion coefficients, where the summation

cannot be performed analytically with present methods. Therefore, in this paper, we have

concentrated on the direct numerical evaluation of the MB integrals in the complex plane.

All MB representations for both the numerical and, if available, the analytic expressions

have been checked by an independent evaluation of the integrals using sector decomposition

as in ref. [35]. We have found that all integrals contributing to the insertion operator are

smooth functions of their variables (in the colloquial sense). For practical applications,

this means that all integrals (in particular the finite in ǫ contributions) can be given either

in terms of interpolating tables or simple fitting functions, which can be computed once

and for all. We leave this step for later work. Finally we want to stress again that

the tables we have shown here are for demonstration purposes only, and obtaining high

resolution interpolating tables needed for the computation of an actual cross section is

straightforward. Increasing the accuracy of each entry is feasible as well, the best way of

doing this is under investigation.

The integrals discussed in this paper appear when integrating the subtraction terms

that regularise the doubly-real NNLO correction to the jet cross section, see ref. [2]. The

final step in finishing the definition of the subtraction scheme is the computation of the
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integrated counterterms corresponding to the the doubly-unresolved approximate cross

section (those labeled by A2 in ref. [1]). In that case, the analytic structure of the integrals

is essentially the same as those studied in this paper, though a few are admittedly somewhat

more cumbersome. Nevertheless, we are confident that the techniques of the present paper

will also be applicable to the computation of these remaining contributions.
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A Summation over unresolved flavours

In this appendix, we discuss how to perform the summation over unobserved flavours

in eq. (3.6). It turns out that we only need to consider three different cases explicitly,

corresponding to sums involving two, three and four partons. All specific results are then

easily obtained by appropriate substitutions.

A.1 Generic flavour sums

Consider an m-parton configuration with mf quarks of flavour f , mf̄ antiquarks of flavour

f and mg gluons. From this configuration we can obtain an (m+ 2)-parton configuration

in the following ways.

1. Increasing the number of gluons by two,

mg → mg + 2 . (A.1)

2. Increasing the number of quarks and antiquarks of flavour f by one each,

mf → mf + 1, mf̄ → mf̄ + 1 . (A.2)

3. Increasing the number of quarks and antiquarks by two each. The flavour of the two

quarks may or may not be identical. We will refer to these two cases respectively as
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the ‘equal flavour’ (e.f.) and ‘unequal flavour’ (u.f.) configurations,

mg → mg − 2, mf → mf + 2, mf̄ → mf̄ + 2 , e.f.

mg → mg − 2, mf/f ′ → mf/f ′ + 1, mf̄/f̄ ′ → mf̄/f̄ ′ + 1 , u.f.
(A.3)

where f and f ′ are understood to be different quark flavours. This case is relevant

only for the doubly-collinear-type configuration, i.e. the sum involving four partons.

The ratios of Bose symmetry factors for identical final state particles in the various cases

are

S{m}

S
(1)
{m+2}

=
1

(mg + 1)(mg + 2)
, (A.4)

S{m}

S
(2)
{m+2}

=
1

(mf + 1)(mf̄ + 1)
, (A.5)

and finally

S{m}

S
(3)
{m+2}

=





mg(mg − 1)

(mf + 2)(mf + 1)(mf̄ + 2)(mf̄ + 1)
e.f.

mg(mg − 1)

(mf + 1)(mf̄ + 1)(mf ′ + 1)(mf̄ ′ + 1)
u.f.

(A.6)

Two-parton flavour sums. Consider a generic integrated counterterm [X
(0)
kt ]

(...)
... , which

depends on two indices, k and t. This integrated counterterm may or may not depend

on the corresponding parton flavours and it may or may not carry an upper index, as

explained in detail below eq. (3.9). Examples would be e.g. [CktS
(0)
kt ]

(j,l)
fkft

and [StS
(0)
rt ]

(j,l). In

the latter case, we see a situation where no flavour index is displayed, since both r and t

are constrained to be gluons. In what follows, we will discuss the most general case, when

both flavour indices are explicit.

Such terms necessarily appear in eq. (3.6) under a double sum:

∑

{m+2}

1

S{m+2}

∑

t

∑

k 6=t

[X
(0)
kt ]

(...)
fkft

. (A.7)

In this configuration, we go from m to (m+ 2) partons as in eqs. (A.1) and (A.2). Then,

since we are considering iterated singly-unresolved terms, both indices must correspond to

unresolved partons, which means that they are either both gluons or a quark-antiquark pair.

Now, decomposing the summation over t and k into sums in which the flavour (including
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specific quark flavour) of each index is fixed, we find

∑

{m+2}

1

S{m+2}

∑

t

∑

k 6=t

[X
(0)
kt ]

(...)
fkft

=

=
∑

{m}

1

S{m}

S{m}

S
(1)
{m+2}

∑

t

∑

k 6=t

[X
(0)
kt ]

(...)
fkft

δfk,gδft,g

+
∑

{m}

1

S{m}

S{m}

S
(2)
{m+2}

∑

f ′

∑

t

∑

k 6=t

[X
(0)
kt ]

(...)
fkft

[
δfk,qf ′δft,q̄f ′ + δfk,q̄f ′δft,qf ′

]
,

(A.8)

where
∑

f ′ stands for the explicit summation over specific quark flavours. Performing the

summation over t and k simply amounts to counting the number of ways in which we can

assign the proper flavours to k and t in the appropriate (m+ 2)-parton configuration:

∑

t

∑

k 6=t

. . . = #(ft)m+2 #(fk; k 6= t)m+2 . . . , (A.9)

where #(ft)m+2 denotes the number of partons of flavour ft in the (m+ 2)-parton config-

uration, while #(fk; k 6= t)m+2 is the number of partons, different form t, of flavour fk in

the (m + 2)-parton configuration. Note that t and k are assumed to be distinguishable,

which is the generic case. Clearly we have

#(g)m+2 #(g; k 6= t)m+2 = (mg + 2)(mg + 1) ,

#(qf )m+2 #(q̄f ; k 6= t)m+2 = (mf + 1)(mf̄ + 1) .
(A.10)

The case of ft = q̄f and fk = qf is obtained by exploiting symmetry of this factor under

permutations of indices. Then, using eqs. (A.4) and (A.5), we find

∑

{m+2}

1

S{m+2}

∑

t

∑

k 6=t

[X
(0)
kt ]

(...)
fkft

=
∑

{m}

1

S{m}

{
[X

(0)
kt ]

(...)
gg + nf

(
[X

(0)
kt ]

(...)
qq̄ + [X

(0)
kt ]

(...)
q̄q

)}
.

(A.11)

In writing eq. (A.11), we have used that [X
(0)
kt ]

(...)
qq̄ and [X

(0)
kt ]

(...)
q̄q do not depend on the specific

quark flavour (as implied by the notation), and hence the summation
∑

f ′ in eq. (A.8) may

be performed, yielding the factor of nf .

Defining the flavour summed counterterm as

∑

{m+2}

1

S{m+2}

∑

t

∑

k 6=t

[X
(0)
kt ]

(...)
fkft

≡
∑

{m}

1

S{m}

(
X

(0)
kt

)(...)
, (A.12)

we obtain :

(
X

(0)
kt

)(...)
= [X

(0)
kt ]

(...)
gg + nf

(
[X

(0)
kt ]

(...)
qq̄ + [X

(0)
kt ]

(...)
q̄q

)

= [X
(0)
kt ]

(...)
gg + 2nf [X

(0)
kt ]

(...)
qq̄ ,

(A.13)

where the second line follows, since [X
(0)
kt ]

(...)
qq̄ = [X

(0)
kt ]

(...)
q̄q in all cases we need to consider.
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Three-parton flavour sums. Next, consider a generic integrated counterterm [X
(0)
ktr]

(...)
... ,

depending on three indices, k, t and r. Examples are e.g. [CktC
(0)
ktr]fkftfr and [StCS

(0)
ir;t]

(j,l)
fifr

.

As before, we will discuss the most general case, when all flavour indices are explicit.

These terms always appear in eq. (3.6) under a triple sum:

∑

{m+2}

1

S{m+2}

∑

t

∑

k 6=t

∑

r 6=k,t

[X
(0)
ktr]

(...)
fkftfr

. (A.14)

In this configuration, we again go from m to (m + 2) partons as in eqs. (A.1) and (A.2).

Then, we decompose the summation over t, k and r into sums in which the flavour (in-

cluding specific quark flavour) of each index is fixed. We obtain

∑

{m+2}

1

S{m+2}

∑

t

∑

k 6=t

∑

r 6=k,t

[X
(0)
ktr]

(...)
fkftfr

=

=
∑

{m}

1

S{m}

S{m}

S
(1)
{m+2}

∑

t

∑

k 6=t

∑

r 6=k,t

[X
(0)
ktr]

(...)
fkftfr

×
[(

δfk,qf δft,gδfr ,g + δfk,gδft,qf δfr ,g + δfk,gδft,gδfr ,qf + (qf ↔ q̄f )
)
+ δfk,gδft,gδfr ,g

]

+
∑

{m}

1

S{m}

S{m}

S
(2)
{m+2}

×
{∑

f ′

∑

t

∑

k 6=t

∑

r 6=k,t

[X
(0)
ktr]

(...)
fkftfr

×
[
δfk ,qf ′δft,q̄f ′δfr ,g + δfk ,qf ′δft,gδfr ,q̄f ′ + δfk,gδft,qf ′δfr ,q̄f ′

+ δfk ,q̄f ′δft,qf ′δfr ,g + δfk ,q̄f ′δft,gδfr ,qf ′ + δfk,gδft,q̄f ′δfr ,qf ′

]

+
∑

f ′ 6=f

∑

t

∑

k 6=t

∑

r 6=k,t

[X
(0)
ktr]

(...)
fkftfr

×
[
δfk ,qf ′δft,q̄f ′δfr ,qf + δfk,qf ′δft,qf δfr ,q̄f ′ + δfk ,qf δft,qf ′δfr ,q̄f ′

+ δfk ,q̄f ′δft,qf ′δfr ,qf + δfk,q̄f ′δft,qf δfr ,qf ′ + δfk ,qf δft,q̄f ′δfr ,qf ′ + (qf ↔ q̄f)
]

+
∑

t

∑

k 6=t

∑

r 6=k,t

[X
(0)
ktr]

(...)
fkftfr

×
[
δfk ,qf δft,qf δfr ,q̄f + δfk,qf δft,q̄f δfr ,qf + δfk,q̄f δft,qf δfr ,q̄f + (qf ↔ q̄f )

]}

(A.15)

Next, we use the flavour summation rules to rewrite the summation over the unobserved

indices k, t and r in the (m+ 2)-parton configurations into a sum over a single index k̃tr
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in the m-parton configuration. We have

∑

t

∑

k 6=t

∑

r 6=k,t

. . . =
#(ft)m+2 #(fk; k 6= t)m+2 #(fr; r 6= k, t)m+2

#(fktr)m

∑

k̃tr

. . . , (A.16)

where the notation is the same as in eq. (A.9) and in particular #(fktr)m is the number of

partons with flavour fktr in the m-parton configuration. Again, t, k and r are assumed to

be distinguishable, which is the generic case. Then we have

#(qf )m+2 #(g; k 6= t)m+2 #(g; r 6= k, t)m+2

#(qf )m
= (mg + 2)(mg + 1) .

#(g)m+2 #(g; k 6= t)m+2 #(g; r 6= k, t)m+2

#(g)m
= (mg + 2)(mg + 1) .

#(qf ′)m+2 #(q̄f ′ ; k 6= t)m+2 #(g; r 6= k, t)m+2

#(g)m
= (mf ′ + 1)(mf̄ ′ + 1) .

#(qf ′)m+2 #(q̄f ′ ; k 6= t)m+2 #(qf ; r 6= k, t)m+2

#(qf )m
= (mf ′ + 1)(mf̄ ′ + 1) .

#(qf )m+2 #(qf ; k 6= t)m+2 #(q̄f ; r 6= k, t)m+2

#(qf )m
= (mf + 1)(mf̄ + 1) .

(A.17)

The rest of the cases are obtained by exploiting symmetry of this factor under permutations

of indices. Then, using eqs. (A.4) and (A.5), we find

∑

{m+2}

1

S{m+2}

∑

t

∑

k 6=t

∑

r 6=k,t

[X
(0)
ktr]

(...)
fkftfr

=

=
∑

{m}

1

S{m}

∑

k̃tr

{[
[X

(0)
ktr]

(...)
qgg + [X

(0)
ktr]

(...)
gqg + [X

(0)
ktr]

(...)
ggq + (nf − 1)

(
[X

(0)
ktr]

(...)
q′q̄′q + [X

(0)
ktr]

(...)
q′qq̄′

+ [X
(0)
ktr]

(...)
qq′q̄′ + [X

(0)
ktr]

(...)
q̄′q′q + [X

(0)
ktr]

(...)
q̄′qq′ + [X

(0)
ktr]

(...)
qq̄′q′

)
+ [X

(0)
ktr]

(...)
qqq̄

+ [X
(0)
ktr]

(...)
qq̄q + [X

(0)
ktr]

(...)
q̄qq

]
δfktr,qf + (qf ↔ q̄f )

+

[
[X

(0)
ktr]

(...)
ggg + nf

(
[X

(0)
ktr]

(...)
qq̄g + [X

(0)
ktr]

(...)
qgq̄ + [X

(0)
ktr]

(...)
gqq̄ + [X

(0)
ktr]

(...)
q̄qg

+ [X
(0)
ktr]

(...)
q̄gq + [X

(0)
ktr]

(...)
gq̄q

)]
δfktr,g

}

(A.18)

In obtaining eq. (A.18), we have used that whenever any of t, k or r are (anti)quarks,

[X
(0)
ktr]

(...)
fkftfr

does not depend on the specific quark flavour(s) (as implied by the notation),

except that we have allowed for the possibility that the ‘equal flavour’ and ‘unequal flavour’

counterterms are different, e.g. [X
(0)
ktr]

(...)
qq̄q 6= [X

(0)
ktr]

(...)
q′ q̄′q, which implies that the summations∑

f ′ in eq. (A.15) may be performed, yielding the factors of (nf − 1) and nf .
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Let us define the flavour summed counterterms as follows:

∑

{m+2}

1

S{m+2}

∑

t

∑

k 6=t

∑

r 6=k,t

[X
(0)
ktr]

(...)
fkftfr

=
∑

{m}

1

S{m}

∑

k̃tr

(
X

(0)
ktr

)(...)
fktr

. (A.19)

Then we find

(
X

(0)
ktr

)(...)
q

= [X
(0)
ktr]

(...)
qgg + [X

(0)
ktr]

(...)
gqg + [X

(0)
ktr]

(...)
ggq + (nf − 1)

(
[X

(0)
ktr]

(...)
q′ q̄′q + [X

(0)
ktr]

(...)
q′qq̄′

+ [X
(0)
ktr]

(...)
qq′q̄′ + [X

(0)
ktr]

(...)
q̄′q′q + [X

(0)
ktr]

(...)
q̄′qq′ + [X

(0)
ktr]

(...)
qq̄′q′

)
+ [X

(0)
ktr]

(...)
qqq̄ + [X

(0)
ktr]

(...)
qq̄q

+ [X
(0)
ktr]

(...)
q̄qq ,

(
X

(0)
ktr

)(...)
g

= [X
(0)
ktr]

(...)
ggg + nf

(
[X

(0)
ktr]

(...)
qq̄g + [X

(0)
ktr]

(...)
qgq̄ + [X

(0)
ktr]

(...)
gqq̄ + [X

(0)
ktr]

(...)
q̄qg + [X

(0)
ktr]

(...)
q̄gq

+ [X
(0)
ktr]

(...)
gq̄q

)
.

(A.20)

Four-parton flavour sums. Consider finally a generic integrated counterterm [X
(0)
ktir]

(...)
... ,

which depends on four indices, k, t, i and r. Two examples are [CktC
(0)
ir;kt]fkft;fifr and

[CktStCSir;tS
(0)
rt ]. We will discuss the most general case, when all flavour indices are ex-

plicit.

These terms always appear in eq. (3.6) under a four-fold sum:

∑

{m+2}

1

S{m+2}

∑

t

∑

k 6=t

∑

r 6=k,t

∑

i 6=k,t,r

[X
(0)
ktir]

(...)
fkftfifr

. (A.21)

In this configuration, we go from m to (m + 2) partons as in eqs. (A.1)–(A.3), i.e. case 3

must also be considered. Decomposing the summation over t, k, i and r into sums in which
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the flavour (including specific quark flavour) of each index is fixed, we find

∑

{m+2}

1

S{m+2}

∑

t

∑

k 6=t

∑

r 6=k,t

∑

i 6=k,t,r

[X
(0)
ktir]

(...)
fkftfifr

=

=
∑

{m}

1

S{m}

S{m}

S
(1)
{m+2}

∑

t

∑

k 6=t

∑

r 6=k,t

∑

i 6=k,t,r

[X
(0)
ktir]

(...)
fkftfifr

×
[(

δfk ,qf δft,gδfi,qf ′δfr ,g + δfk,qf δft,gδfi,gδfr ,qf ′ + δfk,gδft,qf δfi,qf ′δfr ,g

+ δfk,gδft,qf δfi,gδfr ,qf ′ + (qf ↔ q̄f ) + (qf ′ ↔ q̄f ′) + (qf ↔ q̄f , qf ′ ↔ q̄f ′)
)

+
(
δfk ,qf δft,gδfi,gδfr ,g + δfk,gδft,qf δfi,gδfr ,g + δfk ,gδft,gδfi,qf δfr ,g

+ δfk,gδft,gδfi,gδfr ,qf + (qf ↔ q̄f )
)
+ δfk,gδft,gδfi,gδfr ,g

]

+
∑

{m}

1

S{m}

S{m}

S
(2)
{m+2}

∑

f ′

∑

t

∑

k 6=t

∑

r 6=k,t

∑

i 6=k,t,r

[X
(0)
ktir]

(...)
fkftfifr

×
[(

δfk ,qf δft,gδfi,qf ′δfr ,q̄f ′ + δfk ,qf δft,gδfi,q̄f ′δfr ,qf ′ + δfk ,gδft,qf δfi,qf ′δfr ,q̄f ′

+ δfk,gδft,qf δfi,q̄f ′δfr ,qf ′ + δfk,qf ′δft,q̄f ′δfi,qf δfr ,g + δfk,q̄f ′δft,qf ′δfi,qf δfr ,g

+ δfk,qf ′δft,q̄f ′δfi,gδfr ,qf + δfk,q̄f ′δft,qf ′δfi,gδfr ,qf + (qf ↔ q̄f )
)

+ δfk ,gδft,gδfi,qf ′δfr ,q̄f ′ + δfk,gδft,gδfi,q̄f ′δfr ,qf ′ + δfk ,qf ′δft,q̄f ′δfi,gδfr ,g

+ δfk ,q̄f ′δft,qf ′δfi,gδfr ,g

]

+
∑

{m}

1

S{m}

S{m}

S
(3)
{m+2}

∑

f

∑

f ′

∑

t

∑

k 6=t

∑

r 6=k,t

∑

i 6=k,t,r

[X
(0)
ktir]

(...)
fkftfifr

×
[
δfk ,qf δft,q̄f δfi,qf ′δfr ,q̄f ′ + δfk ,qf δft,q̄f δfi,q̄f ′δfr ,qf ′ + δfk,q̄f δft,qf δfi,qf ′δfr ,q̄f ′

+ δfk ,q̄f δft,qf δfi,q̄f ′δfr ,qf ′

]
.

(A.22)

Four-index subtraction terms only arise in conjunction with the double collinear limit and

are always completely independent of the specific quark flavours. We have used these facts

to write eq. (A.22) in the above form. First, since the pairs of indices k, t and i, r will

always correspond to true singly-unresolved collinear limits, we have discarded all terms

where this is not the case. In effect, we have dropped all terms where both k and t or both

i and r are (anti)quarks. Second, complete independence of all counterterms on specific

quark flavours implies that the ‘equal flavour’ and ‘unequal flavour’ ones are equal. E.g.

[X
(0)
ktir]qgq′q̄′ = [X

(0)
ktir]qgqq̄ and so on. We have used this fact in writing the equation, hence,

in (A.22), f and f ′ are not necessarily distinct flavours. Then using the flavour summation
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rules, we can rewrite the summation over the unobserved indices k, t, i and r in the (m+2)-

parton configurations into sums over indices k̃t and ĩr in the m-parton configuration. We

have

∑

k

∑

t6=k

∑

r 6=k,t

∑

i 6=k,t,r

. . . =
#(ft)m+2 #(fk; k 6= t)m+2 #(fr; r 6= k, t)m+2 #(fi; i 6= k, t, r)m+2

#(fkt)m #(fir; ĩr 6= k̃t )m

×
∑

k̃t

∑

ĩr 6= k̃t

. . . ,

(A.23)

where the notation is the same as in eqs. (A.9) and (A.16). We assume that in general k,

t, i and r are all distinguishable. Then we find

#(qf )m+2 #(g; k 6= t)m+2 #(qf ′ ; r 6= k, t)m+2 #(g; i 6= k, t, r)m+2

#(qf )m #(qf ′ ; ĩr 6= k̃t )m
= (mg + 2)(mg + 1) ,

#(qf )m+2 #(g; k 6= t)m+2 #(g; r 6= k, t)m+2 #(g; i 6= k, t, r)m+2

#(qf )m #(g; ĩr 6= k̃t )m
= (mg + 2)(mg + 1) ,

#(g)m+2 #(g; k 6= t)m+2 #(g; r 6= k, t)m+2 #(g; i 6= k, t, r)m+2

#(g)m #(g; ĩr 6= k̃t )m
= (mg + 2)(mg + 1) ,

#(qf )m+2 #(g; k 6= t)m+2 #(qf ′ ; r 6= k, t)m+2 #(q̄f ′ ; i 6= k, t, r)m+2

#(qf )m #(g; ĩr 6= k̃t )m
= (mf ′ + 1)(mf̄ ′ + 1) ,

#(g)m+2 #(g; k 6= t)m+2 #(qf ′ ; r 6= k, t)m+2 #(q̄f ′ ; i 6= k, t, r)m+2

#(g)m #(g; ĩr 6= k̃t )m
= (mf ′ + 1)(mf̄ ′ + 1) .

(A.24)

In case 3 we must remember that the counting is slightly different for the ‘equal flavour’

and ‘unequal flavour’ contributions even when the counterterms are the same. We have

#(qf )m+2 #(q̄f ; k 6= t)m+2 #(qf ; r 6= k, t)m+2 #(q̄f ; i 6= k, t, r)m+2

#(g)m #(g; ĩr 6= k̃t )m
=

=
(mf + 2)(mf + 1)(mf̄ + 2)(mf̄ + 1)

mg(mg − 1)
, e.f.

#(qf )m+2 #(q̄f ; k 6= t)m+2 #(qf ′ ; r 6= k, t)m+2 #(q̄f ′ ; i 6= k, t, r)m+2

#(g)m #(g; ĩr 6= k̃t )m
=

=
(mf + 1)(mf̄ + 1)(mf ′ + 1)(mf̄ ′ + 1)

mg(mg − 1)
, u.f.

(A.25)

By exploiting the symmetry of this factor under permutations of indices, we trivially obtain
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the rest of the cases as well. Finally, using eqs. (A.4)–(A.6), we have

∑

{m+2}

1

S{m+2}

∑

t

∑

k 6=t

∑

r 6=k,t

∑

i 6=k,t,r

[X
(0)
ktir]

(...)
fkftfifr

=

=
∑

{m}

1

S{m}

∑

k̃t

∑

ĩr 6= k̃t

{[
[X

(0)
ktir]

(...)
qgq′g + [X

(0)
ktir]

(...)
qggq′ + [X

(0)
ktir]

(...)
gqq′g + [X

(0)
ktir]

(...)
gqgq′

]
δfkt,qδfir ,q

+ (q ↔ q̄) + (q′ ↔ q̄′) + (q ↔ q̄ , q′ ↔ q̄′)

+

[
[X

(0)
ktir]

(...)
qggg + [X

(0)
ktir]

(...)
gqgg + nf

(
[X

(0)
ktir]

(...)
qgq′ q̄′ + [X

(0)
ktir]

(...)
qgq̄′q′

+ [X
(0)
ktir]

(...)
gqq′q̄′ + [X

(0)
ktir]

(...)
gqq̄′q′

)]
δfkt,qδfir ,g + (q ↔ q̄)

+

[
[X

(0)
ktir]

(...)
ggqg + [X

(0)
ktir]

(...)
gggq + nf

(
[X

(0)
ktir]

(...)
q′ q̄′qg + [X

(0)
ktir]

(...)
q̄′q′qg

+ [X
(0)
ktir]

(...)
q′q̄′gq + [X

(0)
ktir]

(...)
q̄′q′gq

)]
δfkt,gδfir ,q + (q ↔ q̄)

+

[
[X

(0)
ktir]

(...)
gggg + nf

(
[X

(0)
ktir]

(...)
ggqq̄ + [X

(0)
ktir]

(...)
ggq̄q + [X

(0)
ktir]

(...)
qq̄gg

+ [X
(0)
ktir]

(...)
q̄qgg

)
+ n2

f

(
[X

(0)
ktir]

(...)
qq̄q′q̄′ + [X

(0)
ktir]

(...)
qq̄q̄′q′ + [X

(0)
ktir]

(...)
q̄qq′q̄′

+ [X
(0)
ktir]

(...)
q̄qq̄′q′

)]
δfkt,gδfir ,g

}
.

(A.26)

We remind the reader that eq. (A.26) was derived by using that the counterterms are

independent of specific quark flavours (as the notation implies), and further that the ‘equal

flavour’ and ‘unequal flavour’ subtraction terms are equal. Then the sums
∑

f and
∑

f ′ in

eq. (A.22) may be performed, and we obtain the factors of nf and n2
f as shown.

Finally, we define the flavour summed counterterms as

∑

{m+2}

1

S{m+2}

∑

t

∑

k 6=t

∑

r 6=k,t

∑

i 6=k,t,r

[X
(0)
ktir]

(...)
fkftfifr

=
∑

{m}

1

S{m}

∑

k̃t

∑

ĩr 6= k̃t

(
X

(0)
ktir

)(...)
fktfir

. (A.27)
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We obtain

(
X

(0)
ktir

)(...)
qq

= [X
(0)
ktir]

(...)
qgq′g + [X

(0)
ktir]

(...)
qggq′ + [X

(0)
ktir]

(...)
gqq′g + [X

(0)
ktir]

(...)
gqgq′

(
X

(0)
ktir

)(...)
qg

= [X
(0)
ktir]

(...)
qggg + [X

(0)
ktir]

(...)
gqgg

+ nf

(
[X

(0)
ktir]

(...)
qgq′q̄′ + [X

(0)
ktir]

(...)
qgq̄′q′ + [X

(0)
ktir]

(...)
gqq′q̄′ + [X

(0)
ktir]

(...)
gqq̄′q′

)

(
X

(0)
ktir

)(...)
gq

= [X
(0)
ktir]

(...)
ggqg + [X

(0)
ktir]

(...)
gggq

+ nf

(
[X

(0)
ktir]

(...)
q′ q̄′qg + [X

(0)
ktir]

(...)
q̄′q′qg + [X

(0)
ktir]

(...)
q′q̄′gq + [X

(0)
ktir]

(...)
q̄′q′gq

)

(
X

(0)
ktir

)(...)
gg

= [X
(0)
ktir]

(...)
gggg + nf

(
[X

(0)
ktir]

(...)
ggqq̄ + [X

(0)
ktir]

(...)
ggq̄q + [X

(0)
ktir]

(...)
qq̄gg + [X

(0)
ktir]

(...)
q̄qgg

)

+ n2
f

(
[X

(0)
ktir]

(...)
qq̄q′q̄′ + [X

(0)
ktir]

(...)
qq̄q̄′q′ + [X

(0)
ktir]

(...)
q̄qq′ q̄′ + [X

(0)
ktir]

(...)
q̄qq̄′q′

)

(A.28)

A.2 Computing the flavour summed integrated counterterms

Using eqs. (A.12), (A.13), (A.19), (A.20), (A.27) and (A.28), it is straightforward to com-

pute all flavour summed integrated counterterms as presented in section 3.2, after taking

account of the following points.

• In eq. (3.6), most counterterms appear with some explicit overall factor, which must

be included in the final result. E.g. for the collinear-triple collinear counterterm, this

factor is 1/2.

• In certain cases, the ordering of some flavour indices may be meaningless, due to

a symmetry of the integrated counterterms. E.g. in the collinear-triple collinear

case, the integrated counterterm is symmetric in the first two indices, [CktC
(0)
ktr]qgq =

[CktC
(0)
ktr]qgg and so on. Hence, some terms that appear separately on the right hand

sides of eqs. (A.20) and (A.28) may be equal. See also the second line of eq. (A.13),

where the appropriate symmetry is already taken into account.

• In particular cases, some terms that appear on the right hand sides of eqs. (A.13),

(A.20) and (A.28) may be zero for certain flavour assignments. E.g. in the collinear-

triple collinear case, the first two indices must correspond to a true singly-collinear

limit, hence [CktC
(0)
ktr]qqq̄ = 0 and so on.

• The ‘equal flavour’ and ‘unequal flavour’ counterterms in eq. (A.20) may actually be

equal as e.g. in the collinear-triple collinear case, where [CktC
(0)
ktr]qqq̄ = [CktC

(0)
ktr]qq′q̄′ .

Recall that this is already taken into account in eq. (A.28).
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With these in mind, we easily find e.g.

(
CktC

(0)
ktr

)
q
= [CktC

(0)
ktr]qgg +

1

2
[CktC

(0)
ktr]ggq + nf [CktC

(0)
ktr]q′q̄′q ,

(
CktC

(0)
ktr

)
g
=

1

2
[CktC

(0)
ktr]ggg + nf [CktC

(0)
ktr]qq̄g + 2nf [CktC

(0)
ktr]gqq̄ ,

(A.29)

for the collinear-triple collinear flavour summed counterterms. The rest of the results in

section 3.2 are obtained similarly.

B Modified doubly-real subtraction terms

We outline a simple modification to the NNLO subtraction scheme presented in refs. [1,

2]. Parts of these modifications were presented previously: those relevant to the singly-

unresolved approximate cross section dσ
RR,A1
m+2 appearing in eq. (1.3), and to the approxi-

mate cross sections in eq. (1.4), were presented in ref. [35]. In this appendix we describe the

modification of the iterated singly-unresolved approximate cross section dσ
RR,A12
m+2 , which

appears in eq. (1.3).

Recall that the iterated singly-unresolved approximate cross section can be written

symbolically as

dσ
RR,A12
m+2 = dφm[dp2]A12|M(0)

m+2|2 , (B.1)

where the iterated singly-unresolved approximation A12|M(0)
m+2|2 is a sum of a number of

different collinear-, soft-, and soft-collinear-type terms (see eqs. (3.1)–(3.4)). The precise

definition of these terms involves the introduction of two momentum mappings

{p}n+1
Cir−→ {p̄}(ir)n , and {p}n+1

Sr−→ {p̄}(r)n , (B.2)

which are iterated in various combinations to produce appropriate mappings of m+2 → m

momenta. As discussed in section 2.3, all such mappings lead to an exact factorisation of

the m+ 2 particle phase space, symbolically written as

dφm+2({p};Q) = dφm({ p̃ }m;Q)[dp1,m][dp1,m+1] . (B.3)

The exact form of the factorized phase spaces [dp1,n] (n = m,m+ 1) is given in eqs. (2.16)

and (2.17), but their only feature which is relevant presently is that they carry a dependence

on the number of partons, n, of the form

[dp
(ir)
1,n ] ∝ (1− αir)

2(n−1)(1−ǫ)−1 , (B.4)

[dp
(r)
1,n] ∝ (1− yrQ)

(n−1)(1−ǫ)−1 . (B.5)

The subtraction terms, as originally defined in ref. [1] do not depend on the number of

hard partons, thus the m-dependence of the factorized phase space measures is carried

over to the integrated counterterms, where furthermore this dependence enters in a rather

cumbersome way (see e.g. eqs. (A.9) and (A.10) of ref. [3]).
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Thus, as in ref. [35], we reshuffle the m-dependence of the integrated counterterms into

the subtraction terms themselves, where it appears in a very straightforward and harmless

way, through factors of (1 − α) and/or (1 − y) raised to m-dependent powers. For easier

reference, we gather the results in table 5, where together with the subtraction terms, we

give the momentum mappings used to define the term(s) and the function which multiplies

the original counterterm to produce the modified one. The f functions appearing in table 5

are defined as

f(z0, z, p) = Θ(z0 − z)(1 − z)−p . (B.6)

The pattern of modifications is hopefully clear: if the factorized phase space ap-

propriate to a given subtraction term carries m-dependence through factors of (1 − α)

and/or (1 − y) respectively, it is multiplied by a factor/factors of f(α0, α, d(m, ǫ)) and/or

f(y0, y, d
′(m, ǫ)). We emphasise that the form of the exponents d(m, ǫ) and d′(m, ǫ), is

actually fixed by the prescription in ref. [35] (see eqs. (3.2), (3.12) and (3.13) in particular)

and the requirement that the modified subtraction terms should still correctly regularise

all kinematic singularities. In fact, we must have

d(m, ǫ) = 2m(1 − ǫ)− 2d0 , and d′(m, ǫ) = m(1− ǫ)− d′0 , (B.7)

where d0 and d′0 are the same constants which appear in eqs. (3.2), (3.12) and (3.13) of

ref. [35], i.e.

d0 = D0 + d1ǫ , and d′0 = D′
0 + d′1ǫ , (B.8)

where D0,D
′
0 ≥ 2 are integers, while d1, d

′
1 are real. Also, the parameters α0 and y0 must

have the same values for all subtraction terms, including the singly-unresolved ones of

ref. [35].

Finally, we note that the modifications introduced above do not spoil any of the can-

cellations which take place among the original subtraction terms, hence the modified coun-

terterms are still a correct regulator of all kinematic singularities. This is not particularly

hard to check explicitly, and is actually a manifestation of the fact that the various mo-

mentum mappings obey several conditions in soft and/or collinear limits. As these were

discussed in ref. [1], we do not go into further details here.

C Basic collinear, soft and soft-collinear functions

Certain basic functions appear repeatedly during computations in this paper. They all arise

as integrals of various simple factors over factorized collinear or soft phase space measures.

Below we define and give explicit integral representations of these functions. Some, notably

I, J and K, have been considered previously in ref. [35], albeit in somewhat more general

forms. For completeness, we present these here as well, although only in the special cases

used in this paper.
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Iterated collinear counterterms

Subtraction term Momentum mapping Function

CktC
(0,0)
ktr {p}

Ckt−→ { p̂ }(kt)
C
k̂t r̂−→ { p̃ }(k̂t r̂ ,kt)

f(α0, αkt, d(m, ǫ))

×f(α0, αk̂t r̂
, d(m, ǫ))

CktC
(0,0)
ir;kt {p}

Ckt−→ { p̂ }(kt)
C

î r̂−→ { p̃ }( î r̂ ,kt)
f(α0, αkt, d(m, ǫ))

×f(α0, α î r̂ , d(m, ǫ))

CktCS
(0,0)
kt;r , CktCir;ktCS

(0,0)
kt;r ,

{p}
Ckt−→ { p̂ }(kt)

S r̂−→ { p̃ }( r̂ ,kt)
f(α0, αkt, d(m, ǫ))

×f(y0, y r̂ Q, d′(m, ǫ))CktCktrCS
(0,0)
kt;r

CktS
(0,0)
kt , CktCrktS

(0,0)
kt {p}

Ckt−→ { p̂ }(kt)
S
k̂t−→ { p̃ }(k̂t,kt)

f(α0, αkt, d(m, ǫ))

×f(y0, yk̂tQ, d′(m, ǫ))

Iterated soft counterterms

Subtraction term Momentum mapping Function

StC
(0,0)
irt , StCS

(0,0)
ir;t ,

{p}
St−→ { p̂ }(t)

C
î r̂−→ { p̃ }( î r̂ ,t)

f(y0, ytQ, d
′(m, ǫ))

×f(α0, α î r̂ , d(m, ǫ))StCirtCS
(0,0)
ir;t

StCirtS
(0,0)
rt , StCSir;tS

(0,0)
rt ,

{p}
St−→ { p̂ }(t)

S r̂−→ { p̃ }( r̂ ,t)
f(y0, ytQ, d

′(m, ǫ))

×f(y0, y r̂ Q, d′(m, ǫ))StCirtCSir;tS
(0,0)
rt , StS

(0,0)
rt

Iterated soft-collinear counterterms

Subtraction term Momentum mapping Function

CitStC
(0,0)
irt , CktStCS

(0,0)
ir;t ,

{p}
St−→ { p̂ }(t)

C
î r̂−→ { p̃ }( î r̂ ,t)

f(y0, ykQ, d
′(m, ǫ))

×f(α0, α î r̂ , d(m, ǫ))StCirtCS
(0,0)
ir;t

CrtStS
(0,0)
rt , CktStCkrtS

(0,0)
rt ,

{p}
St−→ { p̂ }(t)

S r̂−→ { p̃ }( r̂ ,t)
f(y0, ytQ, d

′(m, ǫ))

×f(y0, y r̂ Q, d′(m, ǫ))
CrtcStCkrtS

(0,0)
rt , CktStS

(0,0)
rt

CktStCSir;tS
(0,0)
rt

Table 5. The modified iterated singly-unresolved subtraction terms are obtained from the original

counterterms (first column) by multiplication with an appropriate function (last column). Also

shown are the momentum mappings used to define the subtraction terms (middle column). The

f(z0, z, p) function is defined in eq. (B.6) while d(m, ǫ) and d′(m, ǫ) are defined in eq. (B.7).

C.1 Collinear functions

When computing the integral of the azimuthally averaged Altarelli–Parisi splitting func-

tions over the factorized collinear phase space, the following function arises:

I1(yîrQ, ǫ, α0, d0, k) ≡ I(yîrQ, ǫ, α0, d0, 0, k, 0, 1) =

=
16π2

Sǫ
Q2ǫ

∫

1
[dp

(ir)
1,m+1]

1

sir
zkr,if(α0, αir, d(m, ǫ)) ,

(C.1)
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which, as indicated, is simply the I function of [35], for the special values of parameters

κ = δ = 0 and gI = 1 (for their meaning see ref. [35]). The integral is over [dp
(ir)
1,m+1], i.e.

the factorized measure obtained when going from m+2 to m+1 partons via the collinear

mapping of ref. [1], which can explicitly be written as

[dp
(ir)
1,m+1(pk, p̂ ir;Q)] =

(Q2)1−ǫ

16π2
Sǫ (1− αir)

2m(1−ǫ)−1 yîrQ dαir dvir

× α−ǫ
ir (αir + (1− αir)yîrQ)

−ǫ v−ǫ
ir (1− vir)

−ǫ

×Θ(αir)Θ(1− αir)Θ(vir)Θ(1− vir) .

(C.2)

The general collinear function was first computed analytically in ref. [36]. For convenience,

we present the integral representation for the specific case, used in this paper:

I1(x; ǫ, α0, d0, k) = x

∫ α0

0
dα (1− α)2d0−1α−1−ǫ[α+ (1− α)x]−1−ǫ

×
∫ 1

0
dv v−ǫ(1− v)−ǫ

(
α+ (1− α)xv

2α+ (1− α)x

)k

,

(C.3)

where the factors

α (α+ (1− α)x) and
α+ (1− α)xv

2α+ (1− α)x
(C.4)

correspond to the collinear pole yir and momentum fraction zr,i, respectively (with x ≡ xîr,

α ≡ αir and v ≡ 1− vir).

Among the iterated subtraction terms considered in this paper, we find two other basic

integrals over the collinear phase space measure (C.2). One of these is the Lorentz tensor

Iµν( p̂ ir, Q; ǫ, α0, d0) =
16π2

Sǫ
Q2ǫ

∫
[dp

(ir)
1,m+1]

1

sir
zi,rzr,i

4kµ⊥,i,rk
ν
⊥,i,r

k2⊥,i,r

f(α0, αir, d(m, ǫ))

(C.5)

with kinematic dependence only on p̂ µ
ir and Qµ. The transverse momentum is defined to

be orthogonal to both of these, p̂ ir·k⊥,i,r = Q·k⊥,i,r = 0 and contraction with gµν replaces

the fraction in the last factor with four. The most general Lorentz structure that obeys

these conditions is

Iµν =
2

1− ǫ

[
gµν − p̂ µ

irQ
ν +Qµ p̂ ν

ir

p̂ ir ·Q
+

Q2

( p̂ ir ·Q)2
p̂ µ
ir p̂

ν
ir

]

× 16π2

Sǫ
Q2ǫ

∫
[dp

(ir)
1,m+1(pt, p̂ ir;Q)]

1

sir
zr,izi,rf(α0, αir, d(m, ǫ)) ,

(C.6)

where the integral in the second line is clearly just [I1(xîr, ǫ, α0, d0, 1)−I1(xîr, ǫ, α0, d0, 2)].

The other one is

I2(xîr; ǫ, α0, d0) =
16π2

Sǫ
Q2ǫ

∫
[dp

(ir)
1,m+1]

1

sir

yir
y2iQ

f(α0, αir, d(m, ǫ)) . (C.7)
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The definition of zi,r [1] implies yiQ = zi,r(yiQ + yrQ), and from the definition of p̂ ir we

have yiQ + yrQ = 2αir + (1 − αir)xîr. The momentum fraction can be expressed with the

integration variables as in eq. (C.4), therefore,

yiQ = αir + (1− αir)xîrvir , (C.8)

hence

I2(x; ǫ, α0, d0) = x

∫ α0

0
dα (1− α)2d0−1α−ǫ[α+ (1− α)x]−ǫ

×
∫ 1

0
dv v−ǫ(1− v)−ǫ[α+ (1− α)xv]−2 .

(C.9)

C.2 Soft functions

When integrating the eikonal factor sik/(sirskr) over the factorized soft phase space, we

encounter the following function:

J1(Y î k̂ ,Q
; ǫ, y0, d

′
0) ≡ J (Y

î k̂ ,Q
; ǫ, y0, d

′
0, 0) =

= −16π2

Sǫ
Q2ǫ

∫

1
[dp

(r)
1,m+1]

sik
sirskr

f(y0, yrQ, d
′(m, ǫ)) ,

(C.10)

which, as shown, is simply the J function of ref. [35], for κ = 0. The integral is over

[dp
(r)
1,m+1], i.e. the factorized measure obtained when going from m+2 to m+1 partons via

the soft mapping of ref. [1]. This measure can conveniently be written using energy and

angle variables in the centre of mass frame, where

Qµ =
√
s(1, . . .)

pµr = Er(1, ‘angles’, sin ϑ sinϕ sin η, sinϑ sinϕ cos η, sin ϑ cosϕ, cos ϑ) ,
(C.11)

where (here and below) the dots stand for vanishing components, while the notation ’angles’

indicates the dependence of pµr on the d−4 angular variables that can be trivially integrated

in all relevant cases. In terms of the scaled energy-like variable yrQ and the angular variables

ϑ, ϕ and η, the two-particle phase space dφ2(pr,K;Q) is

dφ2(pr,K;Q) =
(Q2)−ǫ

16π2
Sǫ(−ǫ) 4ǫ dy y1−2ǫδ(y − y r̂ Q)

× d(cos ϑ) d(cosϕ) d(cos η)(sin ϑ)−2ǫ(sinϕ)−1−2ǫ(sin η)−2−2ǫ .

(C.12)

Often the integrand does not depend on all angles and we can integrate out η,

∫ 1

−1
d(cos η)(sin η)−2−2ǫ = −2−2ǫ

ǫ

Γ2(1− ǫ)

Γ(1− 2ǫ)
, (C.13)

and ϕ,
Γ2(1− ǫ)

πΓ(1− 2ǫ)

∫ 1

−1
d(cosϕ)(sinϕ)−1−2ǫ = 22ǫ . (C.14)
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The J1 function of eq. (C.10) was first computed analytically in ref. [36]. We recall

that it is conveniently evaluated in the frame eq. (C.11), with the orientation fixed by

p̂ µ
i = E î (1, . . . , 1) , p̂ µ

k = E
k̂
(1, . . . , sinχ, cosχ) . (C.15)

The precise definitions of p̂ µ
i and p̂ µ

k via the soft mapping [1] imply

sik = (1− yrQ)s î k̂
, sir = s î r , skr = s

k̂ r
, (C.16)

and expressing all two-particle invariants with integration variables, we find [36]

J1(Y ; ǫ, y0, d
′
0) = −4Y

Γ2(1− ǫ)

2πΓ(1− 2ǫ)
Ω11(cosχ(Y ), 1, 1)

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0 . (C.17)

Above Y ≡ Y
î k̂ ,Q

, while

cosχ(Y ) = 1− 2Y , (C.18)

and the function Ωjl denotes the angular integral

Ωjl(cosχ, β1, β2) ≡
∫ 1

−1
d(cos ϑ) d(cosϕ) (sin ϑ)−2ǫ(sinϕ)−1−2ǫ

× (1− β1 cos ϑ)
−j[1− β2(sinχ sinϑ cosϕ− cosχ cos ϑ)]−l .

(C.19)

Presently we need the special case β1 = β2 = 1, which we call the ‘massless’ angular

integral. The result of this angular integration is well-known [40] and is proportional

to a hypergeometric function. Finally, using some hypergeometric identities and a one-

dimensional integral representation of the hypergeometric function, we derive the following

integral representation for J1, to be used in this paper:

J1(Y ; ǫ, y0, d
′
0) = −Y −ǫ 2Γ

2(1− ǫ)

Γ(1− 2ǫ)

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0

∫ 1

0
dt t−1−ǫ

[
1− (1− Y )t

]ǫ
.

(C.20)

In some cases the eikonal factor involves three momenta as in

1

2
S(ik)l(r) =

sil + skl
(sir + skr)slr

. (C.21)

Then the soft integral

J (1m)(Y
( î k̂ ) l̂ ,Q

, β
( î k̂ )

; ǫ, y0, d
′
0) =

= −16π2

Sǫ
Q2ǫ

∫
[dp

(r)
1,m+1(pr;Q)]

sil + skl
(sir + skr)slr

f(y0, yrQ, d
′(m, ǫ))

(C.22)

cannot be expressed with the soft function J any longer. In eq. (C.22) β
( î k̂ )

is the velocity

of the momentum p̂ µ
i + p̂ µ

k in the centre of mass frame. We evaluate J (1m) in the frame

(C.11), with orientation specified by

p̂ µ
i + p̂ µ

k = E
( î k̂ )

(1, . . . , β
( î k̂ )

) , p̂ µ
l = E

l̂
(1, . . . , sinχ, cosχ) . (C.23)
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Using the precise definition of p̂ µ
j (j = i, k, l), we find

sil + skl = (1− yrQ)(s î l̂
+ s

k̂ l̂
) , sir + skr = s î r + s

k̂ r
, slr = s

l̂ r
. (C.24)

Then we express all relevant two-particle invariants with integration variables and obtain

J (1m)(Y, β; ǫ, y0, d
′
0) = −4Y

Γ2(1− ǫ)

2πΓ(1− 2ǫ)
Ω11(cosχ(Y, β), β, 1)

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0 ,

(C.25)

where we used the soft phase space eq. (C.12) with η integrated out (see eq. (C.13)). In

eq. (C.25) Y ≡ Y
( î k̂ ) l̂ ,Q

, β ≡ β
( î k̂ )

, while

cosχ(Y, β) =
1− 2Y

β
(C.26)

and the function Ωjl is defined in eq. (C.19) above. Now we need the special case β1 ≡ β < 1

and β2 = 1, which we call the ‘one-mass’ angular integral. The evaluation of this integral

will be discussed elsewhere, and here we simply indicate that the result is proportional to an

Appell function of the first kind. Finally, using a one-dimensional integral representation

of the Appell function, we obtain an integral representation for J (1m), similar to eq. (C.17):

J (1m)(Y, β; ǫ, y0, d
′
0) = −(2Y )−2ǫ 2Γ

2(1− ǫ)

Γ(1− 2ǫ)

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0

×
∫ 1

0
dt t−1−2ǫ

[
1 + β − (1 + β − 2Y ) t

]ǫ [
1− β − (1− β − 2Y ) t

]ǫ
.

(C.27)

Setting β = 1, we see that J (1m)(Y, 1; ǫ, y0, d
′
0) = J1(Y ; ǫ, y0, d

′
0), as expected.

C.3 Soft-collinear functions

The following function arises when integrating the collinear limit of the eikonal factor,

2zi,r/(sirzr,i), over the factorized soft phase space (recall that zi,r/zr,i = siQ/srQ):

K1(ǫ, y0, d
′
0) ≡ K(ǫ, y0, d

′
0, 0) =

16π2

Sǫ
Q2ǫ

∫

1
[dp

(r)
1,m+1]

2

sir

zi,r
zr,i

f(y0, ytQ, d
′(m, ǫ)) . (C.28)

As indicated, this is just the K function that was defined and computed in ref. [35], for

κ = 0. The integral is over [dp
(r)
1,m+1], i.e. the factorized measure obtained when going from

m + 2 to m + 1 partons via the soft mapping. An integral representation for K is easily

derived in the frame of eqs. (C.11) and (C.15) using

sir = s î r , siQ = (1− yrQ)s î Q + s î r , (C.29)

which follow from the precise definition of p̂ µ
i via the soft mapping. We find

K1(ǫ, y0, d
′
0) = 22ǫ

∫ y0

0
dy y−2ǫ(1− y)d

′

0−1

∫ 1

−1
d(cos ϑ) (sinϑ)−2ǫ

[
1 +

2(1 − y)

y(1− cos ϑ)

]
,

(C.30)
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which can also be written as

K1(ǫ, y0, d
′
0) = 2

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−1

∫ 1

0
dz z−1−ǫ(1− z)−ǫ(1− y + yz) , (C.31)

where we made the substitution cos ϑ → 1− 2z. Notice that the soft-collinear function K
is independent of the kinematics.

In some cases, the collinear limit of the eikonal factor involves three momenta as in

2

s(ir)t

1− zt,ir
zt,ir

=
2

sit + srt

yiQ + yrQ
ytQ

. (C.32)

Then the soft-collinear integral

K(1m)(β( î r̂ ); ǫ, y0, d
′
0) =

16π2

Sǫ
Q2ǫ

∫
[dp

(t)
1,m+1(pt;Q)]

2

s(ir)t

1− zt,ir
zt,ir

f(y0, ytQ, d
′(m, ǫ))

(C.33)

cannot be expressed with the soft-collinear function K any longer. In eq. (C.33), β( î r̂ ) is

the velocity of the momentum p̂ µ
i + p̂ µ

r in the centre of mass frame. Using the definition

of the mapped momenta [1], we have

sit + srt = s î t + s r̂ t , siQ + srQ = (1− ytQ)(s î Q + s r̂ Q) + s î t + s r̂ t . (C.34)

Then we evaluate K(1m) in the frame given in eqs. (C.11) and (C.23) (with the trivial

replacement k → r). Expressing all two-particle invariants with integration variables, we

find the following integral representation for the ‘one-mass’ soft-collinear integral:

K(1m)(β; ǫ, y0, d
′
0) = 22ǫ

∫ y0

0
dy y−2ǫ(1−y)d

′

0−1

∫ 1

−1
d(cos ϑ) (sinϑ)−2ǫ

[
1 +

2(1− y)

y(1− β cos ϑ)

]
,

(C.35)

where β ≡ β( î r̂ ). We make the substitution cos ϑ → 1− 2z to obtain the final form of the

integral representation used in this paper:

K(1m)(β; ǫ, y0, d
′
0) = 2

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−1

∫ 1

0
dz [z(1− z)]−ǫ 2− y(1 + β − 2βz)

1− β + 2βz
.

(C.36)

For β = 1, we recover the soft-collinear integral, K(1m)(1; ǫ, y0, d
′
0) = K1(ǫ, y0, d

′
0).

D Integrating the collinear-type counterterms

In this appendix, we discuss the integration of the collinear-type counterterms of section 4.1.

In particular, we define and give an explicit integral representation of all I(i)
C functions

(i = 1, . . . , 9).
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D.1 Treatment of azimuthal correlations

Collinear subtraction terms contain azimuthal correlations if the factorisation formula in

the corresponding collinear limit involves gluon splitting kernels. For the two-parton split-

ting ĩj → i+ j, these azimuthal correlations involve a transverse momentum kµ⊥,i,j that we

always chose to be orthogonal to the parent momentum p̃ µ
ij . This condition is sufficient to

prove that the integral of the spin-dependent and spin-averaged splitting kernels over the

factorized phase space of the unresolved parton are the same [38]. Therefore, one can always

substitute the spin-dependent splitting kernels P̂
(0)
fifj

(zj,i; k⊥,i,j ; ǫ) with their spin-averaged

counterparts,
〈
P̂

(0)
fifj

(zj,i; k⊥,i,j; ǫ)
〉
≡ P

(0)
fifj

(zj,i; ǫ), as done in section 4.

In the case of strongly-ordered three-parton splittings, one cannot directly use the same

argument. The splitting kernels in the integral of the collinear-triple collinear subtraction,

CktC
(0,0)
ktr depend on the transverse momentum kµ⊥,k,t in two ways. One is when the Lorentz

index of the transverse momentum coincides with that of the parent gluon as in the explicit

kµ⊥,k,tk
ν
⊥,k,t/k

2
⊥,k,t terms in the gluon splitting kernels:

〈µ|P̂ s.o. (0)
grqk q̄t

(zk,t, zt,k, k⊥,k,t, zk̂t, r̂ , z r̂ ,k̂t
, k⊥,k̂t, r̂

; ǫ)|ν〉 =

= 2CATR

[
− gµν

(
z
r̂ ,k̂t

z
k̂t, r̂

+
z
k̂t, r̂

z
r̂ ,k̂t

+ zk,tzt,k
s2r̂ k⊥,k,t

k2⊥,k,tsk̂t r̂

)
+ 4zk,tzt,k

z
k̂t, r̂

z
r̂ ,k̂t

kµ⊥,k,tk
ν
⊥,k,t

k2⊥,k,t

]

− 4CA(1− ǫ)z
r̂ ,k̂t

z
k̂t, r̂

P
(0)
qkq̄t(zk,t, zt,k, k⊥,k,t; ǫ)

kµ⊥, r̂ ,k̂t
kν⊥, r̂ ,k̂t

k2⊥, r̂ ,k̂t

(D.1)

and

〈µ|P̂ s.o. (0)
gkgtgr

(zk,t, zt,k, k⊥,k,t, zk̂t, r̂ , z r̂ ,k̂t
, k⊥,k̂t, r̂

; ǫ)|ν〉 = 4C2
A

[
− gµν

(
z
r̂ ,k̂t

z
k̂t, r̂

+
z
k̂t, r̂

z
r̂ ,k̂t

)

×
(
zk,t
zt,k

+
zt,k
zk,t

)
+ gµνzk,tzt,k

1− ǫ

2

s2r̂ k⊥,k,t

k2⊥,k,tsk̂t r̂
− 2(1− ǫ)zk,tzt,k

z
k̂t, r̂

z
r̂ ,k̂t

kµ⊥,k,tk
ν
⊥,k,t

k2⊥,k,t

]

− 4CA(1− ǫ)z
r̂ ,k̂t

z
k̂t, r̂

P (0)
gkgt

(zk,t, zt,k, k⊥,k,t; ǫ)
kµ⊥, r̂ ,k̂t

kν⊥, r̂ ,k̂t

k2⊥, r̂ ,k̂t

. (D.2)

This transverse momentum is not orthogonal to p̃ µ
ktr, as defined originally in ref. [1]. Never-

theless, when integrating these subtraction terms, we can still substitute the spin-dependent

splitting kernels with the spin-averaged ones, as we now show.

Recall that the strongly-ordered three-parton splitting kernel appears in the collinear-

triple collinear subtraction term in the form

CktC
(0,0)
ktr ∝ 〈M(0)

m ({ p̃ }(k̂t r̂ ,kt))|P̂ s.o. (0)
fkftfr

|M(0)
m ({ p̃ }(k̂t r̂ ,kt))〉 , (D.3)

and the bra-ket expression above has the following precise meaning:

〈M(0)
m |P̂ s.o. (0)

fkftfr
|M(0)

m 〉 =

〈M(0)
m ({ p̃ })|µ〉dµµ′ ( p̃ ktr, n1)〈µ′|P̂ s.o. (0)

fkftfr
|ν ′〉dν′ν( p̃ ktr, n2)〈ν|M(0)

m ({ p̃ })〉 ,
(D.4)
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where dµµ′( p̃ ktr, n1) and dνν′( p̃ ktr, n2) are gluon polarisation tensors with (time-like) gauge

vectors, n1 and n2. Hence, the object to integrate is not simply 〈µ|P̂ s.o. (0)
fkftfr

|ν〉, but rather
the contraction

dµµ′( p̃ ktr, n1)〈µ′|P̂ s.o. (0)
fkftfr

|ν ′〉dν′ν( p̃ ktr, n2) , (D.5)

that is clearly orthogonal to p̃ µ
ktr (because of the presence of the polarisation tensors).

Thus, by the usual arguments, the azimuthal correlations present in CktC
(0,0)
ktr vanish after

integration over the phase space of the unresolved parton. However, we must still be careful

to compute the average over the polarisations correctly. When k⊥ · p̃ 6= 0, we have

dµµ′( p̃ , n1)
kµ

′

⊥ kν
′

⊥
k2⊥

dν′ν( p̃ , n2) =
1

k2⊥

(
k⊥,µ − k⊥ · p̃

p̃ ·n1
n1µ

)(
k⊥,ν −

k⊥ · p̃
p̃ ·n2

n2ν

)
+ . . . , (D.6)

where the dots stand for terms proportional to p̃ µ or p̃ ν which vanish after contraction

with the matrix element, by gauge invariance. Thus we find ( ñ is a further time-like gauge

vector)

〈
dµµ′( p̃ , n1)

kµ
′

⊥ kν
′

⊥
k2⊥

dν′ν( p̃ , n2)

〉
≡ 1

2(1 − ǫ)
dµν( p̃ , ñ )

dµµ′( p̃ , n1)k
µ′

⊥ kν
′

⊥dν′ν( p̃ , n2)

k2⊥

=
−1

2(1− ǫ)

1

k2⊥

[
k2⊥ − k⊥ · p̃

p̃ ·n1
k⊥ ·n1 −

k⊥ · p̃
p̃ ·n2

k⊥ ·n2 +
(k⊥ · p̃ )2

( p̃ ·n1)( p̃ ·n2)
n1 ·n2

]
.

(D.7)

Eq. (D.7) shows that the advantage of having k⊥· p̃ = 0 actually lies in the trivial azimuthal

averaging. However, this can also be arranged if k⊥ · p̃ 6= 0. For example, choosing gauge

vectors nµ
1 and nµ

2 such that nµ
1 + nµ

2 ∝ kµ⊥ (and of course n2
1 = n2

2 = 0), we find that the

above average just reduces to −1/[2(1 − ǫ)], which is the usual result. Since k2⊥ < 0, such

nonzero nµ
1 and nµ

2 always exist. Indeed, in any Lorentz frame we have the parametrisation

kµ⊥ = K(1, β~v), where ~v2 = 1 and β2 6= 1. Then setting e.g.

nµ
1 =

1

2
K(1 + β)(1, ~v) , and nµ

2 =
1

2
K(1− β)(1,−~v) , (D.8)

we clearly have nµ
1 and nµ

2 nonzero, n2
1 = n2

2 = 0, and nµ
1 +nµ

1 = kµ⊥, as required. We make

essentially such a choice in our numerical code.

A shorter, though less transparent proof is to observe that if we change this single

troublesome term to
kµ⊥,k,tk

ν
⊥,k,t

k2⊥,k,t

→
k̃µ⊥,k,tk̃

ν
⊥,k,t

k̃2⊥,k,t

, (D.9)

where

k̃µ⊥,k,t = kµ⊥,k,t −
k⊥,k,t · p̃ ktr

p̃ ktr ·Q
Qµ , (D.10)

then obviously k̃⊥,k,t· p̃ ktr = 0, and all the usual arguments apply. What is not immediately

obvious, is that this modification does not ruin any of the delicate cancellations between
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the various counterterms in any IR limit, and hence is allowed. This can be established as

follows: in the centre of mass frame of Q, the replacement of eq. (D.9) simply amounts to

k⊥,k,t = −K(1, β~v) → k̃⊥,k,t = −K(1 + ∆, β~v) , (D.11)

with some ∆. Then, continuing to choose the gauge vectors as in eq. (D.8), we have

nµ
1 =

1

2
K(1 + β)(1, ~v) → ñ µ

1 =
1

2
K(1 + ∆+ β)(1, ~v) ,

nµ
2 =

1

2
K(1− β)(1,−~v) → ñ µ

2 =
1

2
K(1 + ∆− β)(1, ~v) ,

(D.12)

i.e. only the normalisation of the gauge vectors is changed by the replacement in eq. (D.9).

However, this implies that eq. (D.6) is actually unchanged. Indeed, recalling that kµ⊥ =

nµ
1 + nµ

2 , we find

dµµ′( p̃ , n1)
kµ

′

⊥ kν
′

⊥
k2⊥

dν′ν( p̃ , n2) = dµµ′( p̃ , n1)
(nµ′

1 + nµ′

2 )(nν′
1 + nν′

2 )

(n1 + n2)2
dν′ν( p̃ , n2)

= dµµ′( p̃ , n1)
nµ′

2 nν′
1

2(n1 ·n2)
dν′ν( p̃ , n2) ,

(D.13)

and the last expression is clearly seen to be invariant under (independent) rescalings of n1

and n2. Hence, the replacement in eq. (D.9) is completely harmless. (However, notice that

the proof requires the specific choice of gauge vectors as in eq. (D.8).)

The other occurrence of k⊥,k,t in the strongly-ordered kernels is in the ratio
s2r̂ k⊥,k,t

k2⊥,k,t

,

also present in the quark splitting kernels. Examining the explicit forms of the strongly-

ordered splitting kernels, we find that this ratio always appears in the form

p̂ µ
r p̂

ν
r

s
k̂t r̂

Iµν( p̂ kt, Q) , (D.14)

where the integral Iµν is defined in eq. (C.5) and computed in eq. (C.6). Contracting the

latter with p̂ µ
r p̂

ν
r/sk̂t r̂ , we obtain

2

1− ǫ

(
Q2s

k̂t r̂

s2
k̂tQ

− s r̂ Q

s
k̂tQ

)
16π2

Sǫ
Q2ǫ

∫
[dp

(kt)
1,m+1]

1

skt
zt,k zk,tf(α0, αir, d(m, ǫ)) . (D.15)

Observing that
s r̂ Q

s
k̂tQ

=
z
r̂ ,k̂t

z
k̂t, r̂

, (D.16)

we find that when integrating the strongly-ordered splitting kernels over the factorized

phase space, the integrals of

1− ǫ

2

s2r̂ k⊥,k,t

k2⊥,k,tsk̂t r̂
and

y
k̂t r̂

y2
k̂tQ

−
z
r̂ ,k̂t

z
k̂t, r̂

(D.17)

are equal, so we can substitute the former with the latter, which we implement in the next

subsection, where we give the spin-averaged splitting kernels explicitly.
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D.2 Explicit forms of the spin-averaged splitting kernels

For the sake of completeness we present the explicit expressions for the spin-averaged

splitting kernels used in the integrals of the subtraction terms.

The azimuthally averaged Altarelli–Parisi splitting kernels are well known:

P (0)
gg (z) = 2CA

[
1

z
+

1

1− z
− 2 + z − z2

]
, (D.18)

P
(0)
qq̄ (z; ǫ) = TR

[
1− 2

1− ǫ

(
z − z2

)]
, (D.19)

P (0)
qg (z; ǫ) = CF

[
2

z
− 2 + (1− ǫ)z

]
. (D.20)

In our convention the ordering of the labels on the splitting-kernels is usually meaningless,

but in eq. (D.20) z refers to the momentum fraction of the second label. In other words

P
(0)
gq (z; ǫ) = P

(0)
qg (1− z; ǫ). The other two cases are symmetric with respect to z ↔ 1− z.

In the strongly-ordered kernels P̂
s.o. (0)
fkftfr

the ordering matters, too. As a result, the same

triple-parton splitting function may have different strongly-ordered limits, which can be

distinguished by the momentum labels in the kernel, once the ordering of the limits is fixed

by the momentum mapping, k̃tr → k̂t + r̂ → (k + t) + r in our convention. We always

choose z = zt,k and ẑ = z
r̂ ,k̂t

as independent variables. For quark splitting we have

P s.o. (0)
qgg (z, ẑ ; ǫ) = P (0)

qg (z; ǫ)P (0)
qg ( ẑ ; ǫ) , (D.21)

P s.o. (0)
ggq (z, ẑ , R; ǫ) = P (0)

gg (z)P (0)
qg (1− ẑ ; ǫ)− CACFz(1 − z)b(0)gg b

(0)
qg R , (D.22)

P
s.o. (0)
q′ q̄′q (z, ẑ , R; ǫ) = P

(0)
qq̄ (z; ǫ)P (0)

qg (1− ẑ ; ǫ)− CACFz(1− z)b
(0)
qq̄ b

(0)
qg R , (D.23)

while for gluon splitting we find

P s.o. (0)
ggg (z, ẑ , R) = P (0)

gg (z)P (0)
gg ( ẑ )− C2

Az(1 − z)(b(0)gg )
2R , (D.24)

P
s.o. (0)
qq̄g (z, ẑ , R; ǫ) = P

(0)
qq̄ (z; ǫ)P (0)

gg ( ẑ )− C2
Az(1− z)b

(0)
qq̄ b

(0)
gg R , (D.25)

P
s.o. (0)
gqq̄ (z, ẑ ; ǫ) = P (0)

qg (1− z; ǫ)P
(0)
qq̄ ( ẑ ; ǫ) , (D.26)

where the constants b
(0)
f1f2

are given in eq. (4.3). Eqs. (D.21)–(D.26) can also be written in

a unified form,

P
s.o. (0)
fkftfr

(z, ẑ , R; ǫ) = P
(0)
fkft

(z; ǫ)P
(0)
fktfr

( ẑ ; ǫ)− δfktgCfktCfktrz(1− z)b
(0)
fkft

b
(0)
fktfr

R . (D.27)

We see that the second term is present only if the three-parton splitting involves a two-

parton sub-splitting with parent gluon.

D.3 Collinear-triple collinear counterterm

The collinear-triple collinear counterterm involves two successive collinear mappings, which

leads to exact phase space factorisation in the iterated form

dφm+2({p};Q) = dφm({ p̃ }(k̂t r̂ ,kt);Q)[dp
(k̂t r̂ )
1;m ( p̂ r, p̃ k̂t r̂

;Q)][dp
(kt)
1;m+1(pk, p̂ kt;Q)] . (D.28)
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The one-parton factorized phase spaces [dp
(kt)
1;m+1(pk, p̂ kt;Q)] and [dp

(k̂t r̂ )
1;m ( p̂ r, p̃ k̂t r̂

;Q)]

are given explicitly by eq. (C.2) after appropriate changes in labelling, including the re-

placement m → m− 1 in the second case. The Altarelli-Parisi splitting functions and the

factor z(1− z) in eq. (D.27) can be expressed as linear combinations of powers of momen-

tum fractions. Consequently, the integral over the factorized phase space [dp
(kt)
1,m+1] in the

integrated collinear-triple collinear counterterm is written in terms of collinear functions

I1(xk̂t, ǫ, α0, d0; k) of eq. (C.1). In order to compute the subsequent integrals over [dp
(k̂t r̂ )
1,m ],

{
I(1)
C , I(2)

C , I(3)
C

}
=

16π2

Sǫ
Q2ǫ

∫
[dp

(k̂t r̂ )
1,m ]

1

s
k̂t r̂

{
(1− z

r̂ ,k̂t
)l, zl

r̂ ,k̂t
,
y
k̂t r̂

y2
k̂tQ

}

× f(α0, αk̂t r̂
, d(m, ǫ))I1(xk̂t, ǫ, α0, d0; k) ,

(D.29)

the variable x
k̂t

= y
k̂tQ

needs to be expressed in terms of p̃ µ
ktr instead of p̂ µ

kt (see eq. (C.8)

with proper changes in labelling),

x
k̂t

= y
k̂tQ

= α
k̂t r̂

+ (1− α
k̂t r̂

)x
k̃tr

v
k̂t r̂

. (D.30)

Then using the abbreviations α = α
k̂t r̂

, v = v
k̂t r̂

(the integration variable corresponding

to 1 − z
r̂ ,k̂t

) and x ≡ x
k̃tr

, the integral representations (C.3) and (C.9), we find that the

integrated collinear-triple collinear counterterm can be expressed using the following three

types of integrals:

I(1)
C (x; ǫ, α0, d0; k, l) = x

∫ α0

0
dα(1− α)2d0−3+2ǫα−1−ǫ(α+ (1− α)x)−1−ǫ

×
∫ 1

0
dv v−ǫ(1− v)−ǫ

(
α+ (1− α)xv

2α+ (1− α)x

)l

(D.31)

× I1(α+ (1− α)xv, ǫ, α0, d0; k) , k, l = −1, 0, 1, 2 ,

I(2)
C (x; ǫ, α0, d0; k, l) = x

∫ α0

0
dα(1− α)2d0−3+2ǫα−1−ǫ(α+ (1− α)x)−1−ǫ

×
∫ 1

0
dv v−ǫ(1− v)−ǫ

(
α+ (1− α)x(1 − v)

2α+ (1− α)x

)l

(D.32)

× I1(α+ (1− α)xv, ǫ, α0, d0; k) , k, l = −1, 0, 1, 2 ,

and

I(3)
C (x; ǫ, α0, d0; k) = x

∫ α0

0
dα(1− α)2d0−3+2ǫα−ǫ(α+ (1− α)x)−ǫ

×
∫ 1

0
dv v−ǫ(1− v)−ǫ(α+ (1− α)xv)−2 (D.33)

× I1(α+ (1− α)xv, ǫ, α0, d0; k) , k = 1, 2 .

– 62 –



We can use the relations

I(2)
C (x; ǫ, α0, d0; k, 0) = I(1)

C (x; ǫ, α0, d0; k, 0) , (D.34)

I(2)
C (x; ǫ, α0, d0; k, 1) = I(1)

C (x; ǫ, α0, d0; k, 0) − I(1)
C (x; ǫ, α0, d0; k, 1) , (D.35)

and

I(2)
C (x; ǫ, α0, d0; k, 2) = I(1)

C (x; ǫ, α0, d0; k, 0) − 2I(1)
C (x; ǫ, α0, d0; k, 1)

+ I(1)
C (x; ǫ, α0, d0; k, 2) , (D.36)

to reduce the explicit computation of the I(2)
C integral to the case l = −1.

In terms of the functions I(i)
C (i = 1, 2 and 3) we find the result given in eq. (4.2).

D.4 Collinear-double collinear counterterm

The collinear-double collinear counterterm also involves two successive collinear mappings,

which leads to exact phase space factorisation in an iterated form similar to that in

eq. (D.28). The integral over the factorized phase space measure [dp
(kt)
1,m+1] leads to the

same collinear integrals as in eq. (C.1). Then the necessary integrals over [dp
( î r̂ )
1,m ] are

I(4)
C =

16π2

Sǫ
Q2ǫ

∫
[dp

( î r̂ )
1,m ]

1

s î r̂

zl
r̂ , î

, f(α0, α î r̂ , d(m, ǫ))

× I1(xk̂t, ǫ, α0, d0; k) .

(D.37)

Again, x
k̂t

needs to be expressed in terms of p̃ µ
kt instead of p̂ µ

kt,

x
k̂t

=
2 p̂ kt ·Q

Q2
=

2(1 − α î r̂ ) p̃ kt ·Q
Q2

= (1− α î r̂ )x k̃t
. (D.38)

Setting α ≡ α î r̂ , v ≡ v î r̂ , x ≡ x
k̃t
, y = x ĩr , and using the v ↔ 1 − v symmetry of the

integration measure, we find that the integrated collinear-double collinear counterterm can

be expressed as a linear combination of the integrals

I(4)
C (x, y; ǫ, α0, d0; k, l) = y

∫ α0

0
dα(1− α)2d0−3+2ǫα−1−ǫ[α+ (1− α)y]−1−ǫ

×
∫ 1

0
dv v−ǫ(1− v)−ǫ

(
α+ (1− α)yv

2α+ (1− α)y

)l

× I1((1− α)x, ǫ, α0, d0; k) , k, l = −1, 0, 1, 2 .

(D.39)

In terms of the functions I(4)
C (x, y; ǫ, α0, d0; k, l) we find the result given in eq. (4.7).
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D.5 Collinear-soft-collinear-type counterterms

The collinear-soft-collinear-type counterterms in eqns. (4.8), (4.12) and (4.10), involve a

collinear mapping followed by a soft mapping of the phase space, which leads to an exact

factorisation of the original m+ 2-particle phase space in the form

dφm+2({p}) = dφm({ p̃ }( r̂ ,kt))[dp( r̂ )1,m( p̂ r;Q)][dp
(kt)
1,m+1(pt, p̂ kt;Q)] , (D.40)

where the factorized phase space measures [dp
(kt)
1,m+1] and [dp

( r̂ )
1,m] are given in eqs. (C.2)

and (C.12) after appropriate changes in labelling, including the replacement m → m − 1

in the second case. The integral over [dp
(kt)
1,m+1] gives the same collinear function as in

eq. (C.1). In order to compute the subsequent integrals over the measure [dp
( r̂ )
1,m],

{
I(5)
C , I(6)

C , I(7)
C

}
= −16π2

Sǫ
Q2ǫ

∫
[dp

( r̂ )
1,m]

{
1

2
S
ĵ l̂

( r̂ ),
2

s î r̂

z î , r̂

z r̂ , î

,
2

s
k̂t r̂

z
k̂t, r̂

z
r̂ ,k̂t

}

× f(y0, y r̂ Q, d
′(m, ǫ))I1(xk̂t, ǫ, α0, d0; k) ,

(D.41)

we have to express the invariants of the dependent momenta (with hat) with those of the

independent ones (with tilde):

s
ĵ l̂

= (1− y r̂ Q)s j̃ l̃
, s

k̂ r̂
= s

k̃ r̂
, for k̂ = î , ĵ , k̂t, l̂ ,

s
k̂ Q

= (1− y r̂ Q)s k̃ Q
+ s

k̃ r̂
, for k̂ = î , k̂t,

(D.42)

which also implies

x
k̂t

= (1− y r̂ Q)x k̃t
+ y

k̃t r̂
. (D.43)

Furthermore,
z î , r̂

z r̂ , î

=
y î Q

y r̂ Q
=

(1− y r̂ Q)y ĩ Q + y ĩ r̂

y r̂ Q
, (D.44)

with a similar expression for z
k̂t, r̂

/z
r̂ ,k̂t

.

To write explicit integral representations of I(i)
C (i = 5, 6 and 7), we choose the specific

Lorentz frame of eq. (C.11) with a different orientation for each function.

Integrated collinear-soft-collinear counterterm. Here and in the following, we will

use the partial fraction identity below to disentangle the singularities associated with the

factors of 1/s ĵ r̂ and 1/s
l̂ r̂

, appearing in the eikonal factor (first term in the braces in

eq. (D.41)):

s
ĵ l̂

s ĵ r̂ s l̂ r̂

=
1− y r̂ Q

Q2

y
j̃ l̃

y j̃ r̂ y l̃ r̂

=
1− y r̂ Q

Q2
4Y

j̃ l̃ ,Q

y j̃ Qy l̃ Q

4 y j̃ r̂ y l̃ r̂

=

=
1− y r̂ Q

Q2
4Y

j̃ l̃ ,Q

(
y j̃ Q

2y j̃ r̂

+
y
l̃ Q

2y
l̃ r̂

)(
2y j̃ r̂

y j̃ Q

+
2y

l̃ r̂

y
l̃ Q

)−1

.

(D.45)

This is useful when computing the integral via iterated sector decomposition, while the

original form is better suited to derive the Mellin–Barnes representation. Since ‘undoing’
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the partial fractioning is trivial, below we will show the more elaborate form of the integrals,

which are directly suited to treatment with sector decomposition.

The convenient frame for integrating the first term in eq. (D.45) is

p̃ µ
j = E j̃ (1, . . . , 1) , p̃ µ

l = E
l̃
(1, . . . , sinχ

l̃
, cos χ

l̃
) ,

p̃ µ
kt = E

k̃t
(1, . . . , sinφ

k̃t
sinχ

k̃t
, cosφ

k̃t
sinχ

k̃t
, cosχ

k̃t
) ,

(D.46)

while for the second term we choose a frame where j and l are interchanged as compared to

eq. (D.46). In terms of the scaled energy-like variable y r̂ Q and the angular variables ϑ, ϕ

and η, the two-particle phase space dφ2( p̂ r,K;Q) is given by eq. (C.12). The two-particle

invariants y j̃ r̂ , y l̃ r̂
, y

k̃t r̂
have to be expressed in terms of the integration variables, i.e.

2y j̃ r̂

y j̃ Q

= y r̂ Q(1− cos ϑ) , (D.47)

2y
l̃ r̂

y
l̃ Q

= y r̂ Q(1− sinχ
l̃
sinϑ cosϕ− cosχ

l̃
cos ϑ) , (D.48)

y
k̃t r̂

=
1

2
y
k̃tQ

y r̂ Q(1− sinφ
k̃t

sinχ
k̃t

sinϑ sinϕ cos η

− cosφ
k̃t

sinχ
k̃t

sinϑ cosϕ− cosχ
k̃t

cos ϑ) .

(D.49)

Furthermore, writing out the definition, eq. (2.23), of all Y
ĩ k̃ ,Q

’s in the specific Lorentz

frames, we easily find that the fixed angles can be expressed with invariants as

cosχ
l̃
= cosχ(Y

j̃ l̃ ,Q
) , cosχ

k̃t
= cosχ(Y

j̃ k̃t ,Q
) , (D.50)

cosφ
k̃t

= cosφ(Y
j̃ l̃ ,Q

, Y
j̃ k̃t ,Q

, Y
l̃ k̃t ,Q

) , (D.51)

with

cosχ(Y ) = 1− 2Y , sinχ(Y ) = 2
√

Y (1− Y ) ,

cosφ(Y1, Y2, Y3) =
Y1 + Y2 − Y3 − 2Y1Y2

2
√

Y1(1− Y1)Y2(1− Y2)
.

(D.52)

Using (C.12) and the expressions for the ratios of kinematic invariants in eqs. (D.47)–(D.51),
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we find the following explicit expression for I(5)
C :

I(5)
C (x, Y1, Y2, Y3;ǫ, α0, d0, y0, d

′
0; k) = −

(−22ǫǫ

2π

)
4Y1

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−1+ǫ

×
∫ 1

−1
d(cos ϑ) d(cosϕ) d(cos η)(sinϑ)−2ǫ

× (sinϕ)−1−2ǫ(sin η)−2−2ǫ(1− cos ϑ)−1

×
(
2− cos ϑ− sinχ(Y1) sinϑ cosϕ− cosχ(Y1) cos ϑ

)−1

×
[
I1
(
[(1− y)x+ y

k̃t r̂
(y, x, Y1, Y2, Y3, ϑ, ϕ)]; ǫ, α0, d0; k

)

+ I1
(
[(1− y)x+ y

k̃t r̂
(y, x, Y1, Y3, Y2, ϑ, ϕ)]; ǫ, α0, d0; k

)]
,

(D.53)

which we need for k = −1, 0, 1, 2. Above, x ≡ x
k̃t
, Y1 ≡ Y

j̃ l̃ ,Q
, Y2 ≡ Y

j̃ k̃t ,Q
, and

Y3 ≡ Y
l̃ k̃t ,Q

. The second term in the squared brackets in eq. (D.53) corresponds to the

second term in the partial fractions of eq. (D.45). The integral representations of the two

terms are formally identical, only the kinematic variables Y2 and Y3 are interchanged.

In terms of the functions I(5)
C we find the result given in eq. (4.9). In writing eq. (D.53),

we have tacitly assumed that p̃ µ
j , p̃ µ

l and p̃ µ
kt are all distinct (massless) momenta, whose

kinematics is furthermore unconstrained. For processes involving two or three hard final

state partons, this is not the case, so the integral I(5)
C with full kinematic dependence, as

written above, first appears in computing NNLO corrections to processes with at least four

hard final state partons.

When there are only three hard partons in the final state, the kinematics of the event is

constrained because momentum conservation forces the final state momenta to be coplanar.

Thus, in eq. (D.46) we have sinφ
k̃t

= 0, and the parametrisation of p̃ j , p̃ l and p̃ kt

simplifies accordingly:

p̃ µ
j = E j̃ (1, . . . , 1) , p̃ µ

l = E
l̃
(1, . . . , sinχ

l̃
, cosχ

l̃
) ,

p̃ µ
kt = E

k̃t
(1, . . . ,− sinχ

k̃t
, cosχ

k̃t
) ,

(D.54)

where we choose cosφ
k̃t

= −1, so that we may assume sinχ
l̃
and sinχ

k̃t
to be non-

negative. As a result of the constrained kinematics, we can first of all perform the cos η

integration in eq. (C.12) using eq. (C.13). Second, out of the four kinematic invariants (x
k̃t
,

Y
j̃ l̃ ,Q

, Y
j̃ k̃t ,Q

, and Y
l̃ k̃t ,Q

) of the general case in eq. (D.53), only two are independent.

(Momentum conservation implies three constraints among the five variables E j̃ , E l̃
, E

k̃t
,

cosχ
l̃
and cosχ

k̃t
.) However, it is convenient to leave the formal dependence on all four

variables, with the constraints

Y
l̃ k̃t ,Q

= Y
j̃ l̃ ,Q

+ Y
j̃ k̃t ,Q

− 2Y
j̃ l̃ ,Q

Y
j̃ k̃t ,Q

+ 2
√

Y
j̃ l̃ ,Q

(1− Y
j̃ l̃ ,Q

)Y
j̃ k̃t ,Q

(1− Y
j̃ k̃t ,Q

) ,

(D.55)
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and

x
k̃t

=

√
Y
j̃ l̃ ,Q

(1− Y
j̃ l̃ ,Q

)

Y
j̃ l̃ ,Q

√
Y
j̃ k̃t ,Q

(1− Y
j̃ k̃t ,Q

) + Y
j̃ k̃t ,Q

√
Y
j̃ l̃ ,Q

(1− Y
j̃ l̃ ,Q

)
. (D.56)

The physical region for Y
j̃ l̃ ,Q

and Y
j̃ k̃t ,Q

is 0 ≤ Y
j̃ l̃ ,Q

, Y
j̃ k̃t ,Q

≤ 1 and Y
j̃ l̃ ,Q

+Y
j̃ k̃t ,Q

≥ 1.

The two-particle invariant y
k̃t r̂

becomes independent of φ
k̃t
,

y
k̃t r̂

=
1

2
y
k̃tQ

y r̂ Q(1 + sinχ
k̃t

sinϑ cosϕ− cosχ
k̃t

cos ϑ) , (D.57)

therefore, the dependence on Y
j̃ l̃ ,Q

, Y
j̃ k̃t Q

and Y
l̃ k̃t Q

enters only through the angles

cosχ
l̃
= cosχ(Y

j̃ l̃ ,Q
) , cosχ

k̃t
= cosχ(Y

j̃ k̃t ,Q
) (D.58)

for the first term in the partial fraction and the angles

cosχ j̃ = cosχ(Y
j̃ l̃ ,Q

) , cosχ
k̃t

= cosχ(Y
l̃ k̃t ,Q

) (D.59)

in the second one (with eq. (D.52) for cosχ(Y )). Integrating out cos η as in eq. (C.13), the

integral (D.53) simplifies to

I(5)
C ,3j(x, Y1, Y2, Y3;ǫ, α0, d0, y0, d

′
0; k) = −4Y1

Γ2(1− ǫ)

2πΓ(1− 2ǫ)

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−1+ǫ

×
∫ 1

−1
d(cos ϑ) d(cosϕ) (sinϑ)−2ǫ(sinϕ)−1−2ǫ(1− cos ϑ)−1

×
(
2− cos ϑ− sinχ(Y1) sinϑ cosϕ− cosχ(Y1) cos ϑ

)−1

×
[
I1
(
[(1− y)x+ y

k̃t r̂
(y, x, Y2, ϑ, ϕ)]; ǫ, α0, d0; k

)

+ I1
(
[(1− y)x+ y

k̃t r̂
(y, x, Y3, ϑ, ϕ)]; ǫ, α0, d0; k

)]
,

(D.60)

(k = −1, 0, 1, 2) and it replaces the function I(5)
C in eq. (4.9).

Further simplifications emerge if the three labels j, l and kt are not all distinct and

e.g. l = kt, which is the only case relevant for processes with only two hard final state

partons. (Note that j 6= l, so up to j ↔ l interchange, this is the only option.) Then

Y
l̃ k̃t Q

→ Y
l̃ l̃ Q

= 0 and the integral (D.53) depends only on two kinematic variables,

x
k̃t

and Y
j̃ l̃ ,Q

= Y
j̃ k̃t ,Q

. The parametrisation of the two hard momenta p̃ j and p̃ kt in

eq. (D.46) simplifies to:

p̃ µ
j = E j̃ (1, . . . , 1) , p̃ µ

kt = E
k̃t
(1, . . . , sinχ

k̃t
, cosχ

k̃t
) , (D.61)

so

y
k̃t r̂

=
1

2
y
k̃tQ

y r̂ Q(1− sinχ
k̃t

sinϑ cosϕ− cosχ
k̃t

cos ϑ) , (D.62)
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and the dependence on Y
j̃ k̃t Q

enters through the angle

cosχ
k̃t

= cosχ(Y
j̃ k̃t ,Q

) (D.63)

for the first term in the partial fraction and through

cosχ j̃ = cosχ(Y
j̃ k̃t ,Q

) (D.64)

in the second one (with eq. (D.52) for cosχ(Y )). Integrating out cos η as in eq. (C.13), the

integral (D.53) reduces to

I(5)
C ,2j(x, Y1; ǫ, α0, d0, y0, d

′
0; k) = −4Y1

Γ2(1− ǫ)

2πΓ(1− 2ǫ)

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−1+ǫ

×
∫ 1

−1
d(cos ϑ) d(cosϕ) (sinϑ)−2ǫ(sinϕ)−1−2ǫ(1− cos ϑ)−1

×
(
2− cos ϑ− sinχ(Y1) sinϑ cosϕ− cosχ(Y1) cos ϑ

)−1

×
[
I1
(
[(1− y)x+ y

k̃t r̂
(y, x, Y1, ϑ, ϕ)]; ǫ, α0, d0; k

)

+ I1
(
[(1− y)x+ y

k̃t r̂
(y, x, 0, ϑ, ϕ)]; ǫ, α0 , d0; k

)]
,

(D.65)

(k = −1, 0, 1, 2) and it replaces the function I(5)
C in eq. (4.9).

Rest of the integrated collinear-soft-collinear-type terms. The convenient frame

for integrating the second term in the braces in eq. (D.41) is

p̃ µ
i = E ĩ (1, . . . , 1) , p̃ µ

kt = E
k̃t
(1, . . . , sinχ

k̃t
, cosχ

k̃t
) . (D.66)

The two-particle invariants are expressed with the integration variables as

2y ĩ r̂

y ĩ Q

= y r̂ Q(1− cos ϑ) , (D.67)

y
k̃t r̂

=
1

2
y
k̃tQ

y r̂ Q(1− sinχ
k̃t

sinϑ cosϕ− cosχ
k̃t

cosϑ) , (D.68)

where

cosχ
k̃t

= cosχ(Y
ĩ k̃t ,Q

) , (D.69)

with eq. (D.52) for cosχ(Y ). Then, using eq. (D.44) the integral in eq. (4.12) can be ex-

pressed as a linear combination of the integrals

I(6)
C (x, Y ;ǫ, α0, d0, y0, d

′
0; k) =

Γ2(1− ǫ)

πΓ(1− 2ǫ)

∫ y0

0
dy y−2ǫ(1− y)d

′

0−2+ǫ

×
∫ 1

−1
d(cosϑ) d(cosϕ) (sinϑ)−2ǫ(sinϕ)−1−2ǫ 2− y(1 + cos ϑ)

y(1− cos ϑ)

× I1
(
[(1− y)x+ y

k̃t r̂
(y, x, Y, ϑ, ϕ)]; ǫ, α0 , d0; k

)
, k = −1, 0, 1, 2 ,

(D.70)
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as in eq. (4.13).

Finally, the integral of the third term in the braces in eq. (D.41) is obtained by setting

î = k̂t in the previous case, which implies Y
ĩ k̃t ,Q

→ Y ĩ ĩ ,Q = 0, so the integration over ϕ

can be evaluated using eq. (C.14) and the integral in eq. (4.10) can be expressed as a linear

combination of the integrals

I(6)
C (x, 0; ǫ, α0, d0, y0, d

′
0; k) = 22ǫ

∫ y0

0
dy y−2ǫ(1− y)d

′

0−2+ǫ

×
∫ 1

−1
d(cos ϑ) (sin ϑ)−2ǫ 2− y(1 + cos ϑ)

y(1− cos ϑ)

× I1
(
[(1− y)x+ y

k̃t r̂
(y, x, 0, ϑ, ϕ)]; ǫ, α0 , d0; k

)
,

(D.71)

(k = −1, 0, 1, 2) as in eq. (4.11).

D.6 Integrated collinear-double soft-type counterterms

The collinear-double soft counterterm is defined by an iterated application of a collinear

and a soft momentum mapping, which results in an exact factorisation of the original

(m+2)-particle phase space very similar to that in eq. (D.40). The difference is that in the

present case the soft measure involves the momentum p̂ µ
kt instead of p̂ µ

r . The integrand of

the collinear integral is the spin-dependent splitting kernel of gluon splitting, with Lorentz

structure

1

CA
〈µ| P̂ (0)

fkft
(zk,t, zt,k, k⊥,k,t; ǫ)|ν〉 = −gµνa

(0)
fkft

(zt,k)− b
(0)
fkft

1− ǫ

2
zk,tzt,k

4kµ⊥,k,tk
ν
⊥,k,t

k2⊥,k,t

,

(D.72)

where

a(0)gg (z) = 2

(
z

1− z
+

1− z

z

)
, a

(0)
qq̄ (z) =

TR

CA
, (D.73)

and b
(0)
fkft

is defined in eq. (4.3), hence, the integral over the phase space measure [dp
(kt)
1,m+1]

involves both collinear functions I and Iµν. Introducing the abbreviation

Iµν
fkft

=
16π2

Sǫ
Q2ǫ

∫
[dp

(kt)
1,m+1(pt, p̂ kt;Q)]

1

skt
f(α0, αkt, d(m, ǫ))

× 1

CA
〈µ| P̂ (0)

fkft
(zk,t, zt,k, k⊥,k,t; ǫ)|ν〉 ,

(D.74)

– 69 –



and using the result in eq. (C.6), we find that

Iµν
fkft

= −gµν
16π2

Sǫ
Q2ǫ

∫
[dp

(kt)
1,m+1]

1

skt
f(α0, αkt, d(m, ǫ))

×
(
a
(0)
fkft

(zt,k) + b
(0)
fkft

zk,tzt,k

)

+ b
(0)
fkft

(
p̂ µ
ktQ

ν +Qµ p̂ ν
kt

p̂ kt ·Q
− Q2

( p̂ kt ·Q)2
p̂ µ
kt p̂

ν
kt

)

× 16π2

Sǫ
Q2ǫ

∫
[dp

(kt)
1,m+1]

1

skt
zk,tzt,kf(α0, αkt, d(m, ǫ)) ,

(D.75)

where in the first integral we recognise the spin-averaged splitting kernel,

a
(0)
fkft

(zt,k) + b
(0)
fkft

zt,k(1− zt,k) = P
(0)
fkft

(zt,k; ǫ) . (D.76)

Therefore, Iµν
fkft

can be expressed as a linear combination of collinear functions I, with
Lorentz structure exhibited in eq. (D.75). After contraction with Sµν

ĵ l̂
(k̂t) (see eq. (4.14)),

we obtain

1

2
Sµν

ĵ l̂
(k̂t)Ifkft µν = −1

2
S
ĵ l̂

(k̂t)
16π2

Sǫ
Q2ǫ

∫
[dp

(kt)
1,m+1]

1

skt
P

(0)
fkft

(zt,k; ǫ)f(α0, αkt, d(m, ǫ))

+ b
(0)
fkft

(
s ĵ Q

s
k̂t ĵ

s
k̂tQ

+
s
l̂ Q

s
k̂t l̂

s
k̂tQ

− 2Q2

s2
k̂tQ

)

× 16π2

Sǫ
Q2ǫ

∫
[dp

(kt)
1,m+1]

1

skt
zt,k(1− zt,k)f(α0, αkt, d(m, ǫ)) .

(D.77)

In the integral of the complete collinear-double soft subtraction, eq. (D.77) is multiplied

with terms that are symmetric with respect to the interchange j ↔ l, and summed over

both j and l (cf. eqs. (3.2) and (3.6)). Therefore, the integrals of the terms

s ĵ Q

s
k̂t ĵ

s
k̂tQ

and
s
l̂ Q

s
k̂t l̂

s
k̂tQ

(D.78)

in the parenthesis give identical contributions, and it is sufficient to evaluate three types

of integrals:

{
I(7)
C , I(8)

C , I(9)
C

}
=

16π2

Sǫ
Q2ǫ

∫
[dp

(k̂t)
1,m]

1

s
k̂t r̂

{
−

s
ĵ l̂

s
ĵ k̂t

s
l̂ k̂t

,
2s ĵ Q

s
k̂t ĵ

s
k̂tQ

, − 2Q2

s2
k̂tQ

}

× f(y0, yk̂tQ, d
′(m, ǫ))I(x

k̂t
; ǫ, α0, d0; k) .

(D.79)

To compute the integrals in eq. (D.79), first we have to express the invariants of the

dependent momenta with those of independent ones:

s
ĵ l̂

= (1− y
k̂tQ

)s
j̃ l̃

, s
ĵ k̂t

= s
j̃ k̂t

, s
l̂ k̂t

= s
l̃ k̂t

,

s ĵ Q = (1− y
k̂tQ

)s j̃ Q + s
j̃ k̂t

, s
l̂ Q

= (1− y
k̂tQ

)s
l̃ Q

+ s
l̃ k̂t

.
(D.80)
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Then we can proceed as usual by writing the factorized phase space [dp
(kt)
1,m+1] explicitly.

We choose a Lorentz frame defined by

p̃ µ
j = E j̃ (1, . . . , 1) , p̃ µ

l = E
l̃
(1, . . . , sinχ

l̃
, cosχ

l̃
) , (D.81)

where the two-particle invariants are expressed in terms of the integration variables as

2y
j̃ k̂t

y j̃ Q

= y
k̂tQ

(1− cosϑ) ,
2y

l̃ k̂t

y
l̃ Q

= y
k̂tQ

(1− sinχ
l̃
sinϑ cosϕ− cosχ

l̃
cos ϑ) , (D.82)

with

cosχ
l̃
= cosχ(Y

j̃ l̃ ,Q
) , (D.83)

and eq. (D.52) for cosχ(Y ).

For the eikonal factor (first term in the braces in eqs. (D.84)–(D.86)) we use the partial

fraction identity (D.45) (with the substitution r̂ → k̂t), and the j ↔ l symmetry to

integrate only one term. Thus we are left with the following three integrals:

I(7)
C (Y ; ǫ, α0, d0; k) = −4Y

Γ2(1− ǫ)

2πΓ(1− 2ǫ)

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−1+ǫ

×
∫ 1

−1
d(cos ϑ) d(cosϕ) (sinϑ)−2ǫ(sinϕ)−1−2ǫ 2

1− cos ϑ
(D.84)

×
(
2− cosϑ− sinχ(Y ) sin ϑ cosϕ− cosχ(Y ) cos ϑ)

)−1

× I1(y; ǫ, α0, d0; k) , k = −1, 0, 1, 2

(here Y corresponds to Y
j̃ l̃ ,Q

),

I(8)
C (ǫ, α0, d0; k) = 22ǫ

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−1+ǫ

×
∫ 1

−1
d(cos ϑ) (sinϑ)−2ǫ 2− y(1 + cos ϑ)

1− cos ϑ
(D.85)

× I1(y; ǫ, α0, d0; k) , k = −1, 0, 1, 2,

and

I(9)
C (ǫ, α0, d0; k) = −2

Γ2(1− ǫ)

Γ(2− 2ǫ)

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−2+ǫ (D.86)

× I1(y; ǫ, α0, d0; k) , k = 1, 2.

(The cases k = −1, 0 in eq. (D.85) are needed for eq. (4.16), see next paragraph.) The final

result is presented in eq. (4.15).
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For the integrated collinear-triple collinear-double soft subtraction in eq. (4.16) the

phase space factorisation is the same as for the integrated collinear-double soft subtraction,

and we need to evaluate the integrals

16π2

Sǫ
Q2ǫ

∫
[dp

(k̂t)
1,m]

{
2

s
k̂t r̂

z
r̂ ,k̂t

z
k̂t, r̂

, − 2Q2

s2
k̂tQ

}

× f(y0, yk̂tQ, d
′(m, ǫ))I1(xk̂t; ǫ, α0, d0; k) .

(D.87)

Recalling the definition of the momentum fractions, in the first term we recognise twice the

second one in eq. (D.79) (after replacing j with r), while the second term is equal to the

last one in eq. (D.79). Thus we do not have to compute any new integrals, we can express

this integrated counterterm as a linear combination of the integrals defined in eqs. (D.85)

and (D.86). The final result is given in eq. (4.17).

E Integrating the soft-type terms

In this appendix, we discuss the integration of the soft-type counterterms of section 4.2.

In particular, we define and give an explicit integral representation of all I(i)
S functions

(i = 1, . . . , 12).

E.1 Soft-triple collinear-type counterterms

There are three integrated counterterms that involve a soft mapping of the momenta,

followed by a collinear one, which leads to an exact factorisation of the original m + 2-

particle phase space in the form

dφm+2({p}) = dφm({ p̃ }( î r̂ ,t)m )[dp
( î r̂ )
1,m ( p̂ r, p̃ ir;Q)][dp

(t)
1,m+1(pt;Q)] . (E.1)

The factorized phase space measures [dp
(t)
1,m+1(pt;Q)] and [dp

( î r̂ )
1,m ( p̂ r, p̃ ir;Q)] are given

in eqs. (C.12) and (C.2), with appropriate changes in labelling and the replacement of

m → m− 1 in the second case.

Integrated soft-triple collinear counterterm. We begin by noting that the soft func-

tions P
(S)
fifrft

(originally defined in ref. [1]), which appear in eq. (4.18) can be written in the

following unified form:

P
(S)
fifrft

= (Cfit + Cfrt − Cfir)
sir

sitsrt
+ (Cfir + Cfit − Cfrt)

1

sit

zi,rt
zt,ir

+ (Cfir + Cfrt −Cfit)
1

srt

zr,it
zt,ir

.

(E.2)

This general form hides the fact that ft = g, which also implies Cfit = Cfi and Cfrt = Cfr

(used in eq. (4.39)). Furthermore, according to our definition of the momentum fractions,

we have
zi,jk
zj,ik

=
yiQ
yjQ

=
zi,j
zj,i

, (E.3)
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for any i, j and k. Therefore, performing the integration over the soft phase space

[dp
(t)
1,m+1(pt;Q)] first, we find that the three terms in eq. (E.2) all lead to known func-

tions. The eikonal term gives (−1) times the soft function J1(Y, ǫ, y0, d
′
0), while both soft

collinear terms give 1
2 times the same soft-collinear function, K1(ǫ, y0, d

′
0). For these func-

tions we have the integral representations discussed in appendix C. Hence, we can express

the integrated soft-triple collinear counterterms as linear combinations of two types of basic

integrals,

I(1)
S =

16π2

Sǫ
Q2ǫ

∫
[dp

( î r̂ )
1,m ( p̂ r, p̃ ir;Q)]

1

s î r̂

zk
r̂ , î

f(α0, α, d(m, ǫ))
1

2
K1(ǫ, y0, d

′
0) , (E.4)

and

I(2)
S = −16π2

Sǫ
Q2ǫ

∫
[dp

( î r̂ )
1,m ( p̂ r, p̃ ir;Q)]

1

s î r̂

zk
r̂ , î

f(α0, α, d(m, ǫ))J1(Y î r̂ ,Q; ǫ, y0, d
′
0) .

(E.5)

The soft-collinear function K does not depend on any kinematic variable, therefore,

it factorizes completely from the integral over [dp
( î r̂ )
1,m ]. The remaining integral can be

expressed with the collinear function I(x; ǫ, α0, d0 − 1 + ǫ, 0, k, 0, 1) (the parameter d0 is

shifted because this integral corresponds to m partons in the final state), so

I(1)
S (x; ǫ, α0, d0, y0, d

′
0; k) =

1

2
K1(ǫ, y0, d

′
0)I1(x; ǫ, α0, d0 − 1 + ǫ; k) . (E.6)

The soft integral depends on Y î r̂ ,Q, that has to be expressed with the integration

variables of [dp
( î r̂ )
1,m ]:

Y î r̂ ,Q(x ĩr
, α, v) =

α[α+ (1− α)x ĩr ]

[α+ (1− α)x
ĩr
v][α + (1− α)x

ĩr
(1− v)]

, (E.7)

where we used the usual abbreviations α = α î r̂ and v = v î r̂ . Clearly, Y î r̂ ,Q(x ĩr
;α, v), as

well as the phase space measure in eq. (C.2) is symmetric in v ↔ 1−v. Thus, it is sufficient

to consider only the following coupled collinear and soft integral,

I(2)
S (x; ǫ, α0, d0, y0, d

′
0; k) = −x

∫ α0

0
dα (1− α)2d0−3+2ǫα−1−ǫ[α+ (1− α)x]−1−ǫ

×
∫ 1

0
dv v−ǫ(1− v)−ǫ

(
α+ (1− α)xv

2α+ (1− α)x

)k

× J1(Y î r̂ ,Q(x, α, v); ǫ, y0, d
′
0) , k = −1, 0, 1, 2 .

(E.8)

In terms of the integrals I(1)
S and I(2)

S the integrated soft-triple collinear subtraction term

can be written as in eq. (4.19).
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Integrated soft-soft-collinear counterterm. To obtain the counterterm in eq. (4.20),

we again perform the integration over the factorized soft phase space [dp
(t)
1,m+1(pt;Q)] first.

Now, we must distinguish two cases: (i) j, l and ir are three distinct labels, (ii) j or l coin-

cide with ir. (We always have j 6= l.) In the first case, the integral over the factorized soft

phase space simply leads to the J1 function of eq. (C.10), and we find that the integrated

soft-soft-collinear counterterm can be expressed as a linear combination of the integrals

I(3)
S =

16π2

Sǫ
Q2ǫ

∫
[dp

( î r̂ )
1,m ]

1

s î r̂

zk
r̂ , î

f(α0, α î r̂ , d(m, ǫ))

×J1(Y ĵ l̂ ,Q
; ǫ, y0, d

′
0, 0) .

(E.9)

Using the collinear mapping formula p̂ µ
j,l = (1− α î r̂ ) p̃

µ
j,l, we find

Y
ĵ l̂ ,Q

=
s
ĵ l̂

s ĵ Qs l̂ Q

=
(1− α î r̂ )

2s
j̃ l̃

(1− α î r̂ )
2s j̃ Qs l̃ Q

= Y
j̃ l̃ ,Q

. (E.10)

Consequently, the collinear and soft integrals decouple, and we obtain

I(3)
S (x, Y ; ǫ, α0, d0, y0, d

′
0; k) = I1(x; ǫ, α0, d0 − 1 + ǫ; k)J1(Y ; ǫ, y0, d

′
0) . (E.11)

In case (ii) if e.g. j = (ir), the eikonal factor S(ir)l(t) evaluates as in eq. (2.22), and

the integral over the soft phase space leads to the one-mass soft function J (1m), defined in

eq. (C.22) and computed in eq. (C.25). Hence we find that the integrated soft-soft-collinear

counterterm can be expressed as a linear combination of the integrals

I(4)
S =

16π2

Sǫ
Q2ǫ

∫
[dp

( î r̂ )
1,m ]

1

s î r̂

zk
r̂ , î

f(α0, α î r̂ , d(m, ǫ))

×J (1m)(Y
( î r̂ ) l̂ ,Q

, β( î r̂ ); ǫ, y0, d
′
0) .

(E.12)

This time the collinear integral does not decouple because the parameters Y
( î r̂ ) l̂ ,Q

and

β( î r̂ ) depend on the collinear integration variables. Using the definition of p̃ µ
ir and p̃ µ

l ,

we have p̂ µ
(ir) = (1− α î r̂ ) p̃

µ
ir + α î r̂Q

µ and p̂ µ
l = (1− α î r̂ ) p̃

µ
l . Consequently,

Y
( î r̂ ) l̂ ,Q

(y
ĩr Q

, Y
ĩr l̃ ,Q

, α î r̂ ) =
1

2

(
1− β( î r̂ )(y ĩr Q

, α î r̂ )(1− 2Y
ĩr l̃ ,Q

)
)
,

β( î r̂ )(y ĩr Q
, α î r̂ ) =

(1− α î r̂ )y ĩr Q

2α î r̂ + (1− α î r̂ )y ĩr Q

,

(E.13)

and

I(4)
S (x, Y ; ǫ, α0, d0, y0, d

′
0; k) = x

∫ α0

0
dα (1− α)2d0−3+2ǫα−1−ǫ[α+ (1− α)x]−1−ǫ

×
∫ 1

0
dv v−ǫ(1− v)−ǫ

(
α+ (1− α)xv

2α+ (1− α)x

)k

× J (1m)(Y
( î r̂ ) l̂ ,Q

(x, Y, α), β( î r̂ )(x, α); ǫ, y0, d
′
0) ,

(E.14)

(k = −1, 0, 1, 2).

In terms of the integrals I(3)
S and I(4)

S , the integrated soft-soft-collinear counterterm

can be expressed as in eq. (4.21).
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Integrated soft-triple collinear-soft-collinear counterterm. When computing the

integrals in eq. (4.22), we first perform the integral over the soft phase space. Using the

same frame as in eq. (C.23), we find that the integral leads to the one-mass soft-collinear

function K(1m) defined in eq. (C.33) and computed in eq. (C.36). Thus the integrated soft-

triple collinear-soft-collinear counterterm can be expressed as linear combination of the

integrals

I(5)
S =

16π2

Sǫ
Q2ǫ

∫
[dp

( î r̂ )
1,m ]

1

s î r̂

zk
r̂ , î

f(α0, α î r̂ , d(m, ǫ))

×K(1m)(β( î r̂ )(x, α); ǫ, y0, d
′
0) .

(E.15)

The soft-collinear integral K(1m)(β) does not decouple from the collinear one because β =

β( î r̂ )(y ĩr Q
, α î r̂ ) depends on the collinear integration variable α î r̂ as in eq. (E.13). Thus,

I(5)
S (x; ǫ, α0, d0, y0, d

′
0; k) = x

∫ α0

0
dα (1− α)2d0−3+2ǫα−1−ǫ[α+ (1 − α)x]−1−ǫ

×
∫ 1

0
dv v−ǫ(1− v)−ǫ

(
α+ (1− α)xv

2α+ (1− α)x

)k

×K(1m)(β( î r̂ )(x, α); ǫ, y0, d
′
0) , k = −1, 0, 1, 2 .

(E.16)

In terms of the integrals I(5)
S , we find the result as in eq. (4.23).

E.2 The soft-double soft-type counterterms

The remaining soft-type integrated counterterms involve two successive soft momentum

mappings, which leads to an exact factorisation of the original m+ 2-particle phase space

in the form

dφm+2({p}) = dφm({ p̃ }( r̂ ,t)m )[dp
( r̂ )
1,m(p r̂ ;Q)][dp

(t)
1,m+1(pt;Q)] . (E.17)

The factorized phase space measures [dp
( r̂ )
1,m] and [dp

(t)
1,m+1] are given in eq. (C.12), with

appropriate changes in labelling (including m → m− 1 in the first case). We often need to

express the two-particle scaled invariants of the momenta after the first mapping (‘hatted

momenta’) with the final momenta obtained after the second mapping (‘tilded momenta’).

The relevant formulae, collected here for later reference, are:

y
î l̂

= (1− y r̂ Q)y ĩ l̃
, y

k̂ r̂
= y

k̃ r̂
,

y
k̂ Q

= (1− y r̂ Q)y k̃ Q
+ y

k̃ r̂
, k = i, j, l .

(E.18)

Integrated soft-triple collinear-double soft counterterms. In computing the inte-

grals in eq. (4.24), we first perform the integration over the soft phase space factor [dp
(t)
1,m+1].

This integration leads to either the J1 soft function, or the K1 soft-collinear function of
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section C. Then the remaining integral over [dp
( r̂ )
1,m] involves

{
I(6)
S , I(7)

S

}
=

16π2

Sǫ
Q2ǫ

∫
[dp

( r̂ )
1,m]

2

s î r̂

z î , r̂

z r̂ , î

f(y0, y r̂ Q, d
′(m, ǫ))

×
{
K1(ǫ, y0, d

′
0), −J1(Y î r̂ ,Q; ǫ, y0, d

′
0)
}
.

(E.19)

When the result of the first integration is a K1 function, it decouples from the second

integral, which gives a soft-collinear function again. Thus we find that all terms in the

integrand of the type
1

sjl

zj,il
zl,ij

2

s î ĵ

z î , ĵ

z ĵ , î

(E.20)

integrate to the product of two soft-collinear integrals:

I(6)
S (ǫ, y0, d

′
0) =

1

2
K1(ǫ, y0, d

′
0 − 1 + ǫ)K1(ǫ, y0, d

′
0) . (E.21)

On the other hand, when the result of the first integration is a soft function J1, the

two integrals do not decouple. In order to compute the second integral over the phase

space factor [dp
( r̂ )
1,m], we choose the usual frame (C.11), with orientation specified by

p̃ µ
i = E ĩ (1, . . . , 1) . (E.22)

Using eq. (E.18), we compute

Y î r̂ ,Q =
y î r̂

y î Qy r̂ Q
=

y ĩ r̂

[(1− y r̂ Q)y ĩ Q + y ĩ r̂ ]y r̂ Q
=

1− cos ϑ

2− y r̂ Q(1 + cos ϑ)
. (E.23)

Then we find that the term in the integrand of the type

sir
sitsrt

2

s î ĵ

z î , ĵ

z ĵ , î

(E.24)

leads to the integral

I(7)
S (ǫ, y0, d

′
0) = −2

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−2+ǫ

×
∫ 1

0
dz z−1−ǫ(1− z)−ǫ(1− y + yz)

× J1

(
z

1− y + yz
; ǫ, y0, d

′
0

)
.

(E.25)

To write eq. (E.25) in the above form, we made the usual substitution of cos ϑ → 1− 2z.

In terms of the integrals I(6)
S (ǫ, y0, d

′
0) and I(7)

S (ǫ, y0, d
′
0) the integrated counterterm in

eq. (4.24) can be expressed as in eq. (4.25).
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Integrated soft-soft-collinear-double soft counterterm. In the case of the integral

in eq. (4.26), we begin by integrating the eikonal function 1
2Sjl(t) over the soft phase space

[dp
(t)
1,m+1]. However, whenever j or l is equal to ir (recall that j 6= l), the eikonal factor

evaluates as in eq. (2.22). Therefore, we have to distinguish two cases: (i) j, l and ir are

three distinct labels, thus the integration over the first soft phase space leads to a J1 soft

function and we obtain the integral

I(8)
S =

16π2

Sǫ
Q2ǫ

∫
[dp

( r̂ )
1,m]

2

s î r̂

z î , r̂

z r̂ , î

f(y0, y r̂ Q, d
′(m, ǫ))

× J1

(
Y
ĵ l̂ ,Q

; ǫ, y0, d
′
0

) (E.26)

and (ii) j or l coincide with (ir), hence the integration over the first soft phase space leads to

a J (1m) one-mass soft function and we find the integral (choosing j = ir for concreteness)

I(9)
S =

16π2

Sǫ
Q2ǫ

∫
[dp

( r̂ )
1,m]

2

s î r̂

z î , r̂

z r̂ , î

f(y0, y r̂ Q, d
′(m, ǫ))

× J (1m)
(
Y
( î r̂ ) l̂ Q

, β( î r̂ ); ǫ, y0, d
′
0

)
.

(E.27)

To proceed, we must express the parameters of the soft functions with independent mo-

menta. In the first case, using eq. (E.18), we can express Y
ĵ l̂ ,Q

as

Y
ĵ l̂ ,Q

= 4Y
j̃ l̃ ,Q

1− y r̂ Q

[2(1 − y r̂ Q) + 2y j̃ r̂ /y j̃ Q][2(1 − y r̂ Q) + 2y
l̃ r̂

/y
l̃ Q

]
. (E.28)

In the second case the one-mass soft function also depends on the velocity of the momentum

p̂ µ
i + p̂ µ

r ,

β( î r̂ ) =

√
1− 4y î r̂

y2
( î r̂ )Q

. (E.29)

Again using eq. (E.18), we find

β( î r̂ ) =

√[
2(1 − y r̂ Q) + 2y ĩ r̂ /y ĩ Q + 2y r̂ Q/y ĩ Q

]2
− 16y ĩ r̂ /y

2
ĩ Q

2(1− y r̂ Q) + 2y ĩ r̂ /y ĩ Q + 2y r̂ Q/y ĩ Q

, (E.30)

Y
( î r̂ ) l̂ ,Q

=
4(1− y r̂ Q)Y ĩ l̃ ,Q

+ 4y
l̃ r̂

/(y ĩ Qy l̃ Q
)

[
2(1 − y r̂ Q) + 2y ĩ r̂ /y ĩ Q + 2y r̂ Q/y ĩ Q

] [
2(1 − y r̂ Q) + 2y

l̃ r̂
/y

l̃ Q

] . (E.31)

Turning to the integral over [dp
( r̂ )
1,m], we use two different orientations of frames in the

two cases. In the first case, we fix the orientation such that

p̃ µ
j = E j̃ (1, . . . , 1) , p̃ µ

l = E
l̃
(1, . . . , sinχ

l̃
, cosχ

l̃
) , (E.32)

that implies

2y j̃ r̂

y j̃ Q

= y r̂ Q(1− cos ϑ) ,
2y

l̃ r̂

y
l̃ Q

= y r̂ Q(1− sinχ
l̃
sinϑ cosϕ− cosχ

l̃
cos ϑ) , (E.33)
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where

cosχ
l̃
= cosχ(Y

j̃ l̃ ,Q
) (E.34)

with eq. (D.52) for cosχ(Y ). Thus we see that although the integral over [dp
( r̂ )
1,m] is of

soft-collinear-type, we cannot trivially integrate over ϕ because Y
ĵ l̂ ,Q

depends on it. Thus

I(8)
S (Y, ǫ, y0, d

′
0) =

1

π

Γ2(1− ǫ)

Γ(1− 2ǫ)

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−2+ǫ

×
∫ 1

−1
d(cos ϑ) d(cosϕ) (sinϑ)−2ǫ(sinϕ)−1−2ǫ

× 2− y(1 + cos ϑ)

1− cos ϑ
J1

(
Y
ĵ l̂ ,Q

(Y, y, ϑ, ϕ); ǫ, y0, d
′
0

)
,

(E.35)

where the explicit dependence of the argument of the soft function (Y
ĵ l̂ ,Q

in eq. (E.28))

on the integration variables is

Y
ĵ l̂ ,Q

(Y, y, ϑ, ϕ) = 4Y (1− y)
(
2− y(1 + cos ϑ)

)−1

×
(
2− y(1 + sinχ(Y ) sin ϑ cosϕ+ cosχ(Y ) cos ϑ)

)−1
.

(E.36)

In the second case, the orientation of the frame is fixed by

p̃ µ
i = E ĩ (1, . . . , 1) , p̃ µ

l = E
l̃
(1, . . . , sinχ

l̃
, cosχ

l̃
) , (E.37)

that implies

2y ĩ r̂

y ĩ Q

= y r̂ Q(1− cos ϑ) ,
2y

l̃ r̂

y
l̃ Q

= y r̂ Q(1− sinχ
l̃
sinϑ cosϕ− cosχ

l̃
cos ϑ) , (E.38)

where

cosχ
l̃
= cosχ(Y

j̃ l̃ ,Q
) (E.39)

with eq. (D.52) for cosχ(Y ). Then

I(9)
S (x, Y, ǫ, y0, d

′
0) =

1

π

Γ2(1− ǫ)

Γ(1− 2ǫ)

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−2+ǫ

×
∫ 1

−1
d(cos ϑ) d(cosϕ) (sinϑ)−2ǫ(sinϕ)−1−2ǫ 2− y(1 + cos ϑ)

1− cos ϑ

× J (1m)
(
Y
( î r̂ ) l̂ ,Q

(x, Y, y, ϑ, ϕ), β( î r̂ )(y, ϑ, ϕ); ǫ, y0, d
′
0

)
,

(E.40)

where β( î r̂ ) and Y
( î r̂ ) l̂ ,Q

are given in eqs. (E.30) and (E.31), with the ratios of invariants

in eq. (E.38) (x corresponds to y ĩ Q, Y to Y
ĩ l̃ ,Q

and y to y r̂ Q).

Our final result for the integrated counterterm defined in eq. (4.26) is presented in

eq. (4.27).
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Integrated soft-triple collinear-soft-collinear-double soft counterterm. The in-

tegral over the soft phase space factor [dp
(t)
1,m+1] in eq. (4.28) is a one-mass soft-collinear

integral K(1m) of eq. (C.33), which is computed in eq. (C.36), where the velocity of the

momentum p̂ µ
i + p̂ µ

r is found in eq. (E.29). Then the integral over the measure [dp
( r̂ )
1,m],

I(10)
S =

16π2

Sǫ
Q2ǫ

∫
[dp

( r̂ )
1,m]

2

s î r̂

z î , r̂

z r̂ , î

f(y0, y r̂ Q, d
′(m, ǫ))

×K(1m)
(
β( î r̂ ); ǫ, y0, d

′
0

)
,

(E.41)

is again of soft-collinear-type, but the two integrals are coupled through β( î r̂ ) that de-

pends on the integration variables of the second integral as in eq. (E.30). The ratio of the

invariants 2y ĩ r̂ /y ĩ Q is
2y ĩ r̂

y ĩ Q

= y r̂ Q(1− cos ϑ) , (E.42)

in a frame whose orientation is fixed by setting

p̃ µ
i = E ĩ (1, . . . , 1) . (E.43)

Thus, [StCirtCSir;tS
(0)
rt ] is equal to the integral

I(10)
S (x; ǫ, y0, d

′
0) = 2

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−2+ǫ

×
∫ 1

0
dz z−1−ǫ(1− z)−ǫ(1− y + yz)

×K(1m)
(
β(x, y, z); ǫ, y0, d

′
0

)
,

(E.44)

with x corresponding to y ĩ Q, y to y r̂ Q and

β(x, y, z) =

√
(1− y + yz + y/x)2 − 4yz/x

1− y + yz + y/x
, (E.45)

where, as usual, we set cos ϑ → 1− 2z.

Our final result for the integrated counterterm defined in eq. (4.28) is presented in

eq. (4.29).

Integrated soft-double soft counterterms. There are two types of integrated soft-

double soft counterterms: an ‘abelian’ one in eq. (4.30) and a ‘non-abelian’ one in eq. (4.31).

Let us first consider the ‘abelian’ case. Performing the integral over [dp
(t)
1,m+1] first, we

obtain a soft function −J1(Y ĵ l̂ ,Q
, ǫ, y0, d

′
0). In order to compute the integral over [dp

( r̂ )
1,m],

I(11)
S ;ik,jl = −16π2

Sǫ
Q2ǫ

∫
[dp

( r̂ )
1,m]

1

4
S

î k̂
( r̂ )f(y0, y r̂ Q, d

′(m, ǫ))

× J
(
Y
ĵ l̂ ,Q

; ǫ, y0, d
′
0

)
,

(E.46)
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we must first express Y
ĵ l̂ ,Q

in terms of p̃ µ
j and p̃ µ

l as in eq. (E.28) (j, l 6= r), which is seen

to depend on the integration variables in [dp
( r̂ )
1,m] through the appearance of y j̃ r̂ and y

l̃ r̂

in the denominator. Thus, the integration over [dp
( r̂ )
1,m], which is of soft-type, is nontrivial.

Also, although i 6= k and j 6= l, there is no restriction on whether or not i, k is equal to

j, l. Thus we must consider the following three cases: (i) all of i, k, j and l are distinct,

(ii) only three of the four indices are distinct and, e.g. l = k, and (iii) only two indices are

distinct and e.g. j = i and l = k.

Case (i) requires at least four hard partons in the final state. Hence the corresponding

integrated counterterm, [StS
(0)
rt ]

(i,k)(j,l) with all labels distinct, does not enter a computation

of two- or three-jet quantities, and we will not consider it in this paper.

In case (ii), we have Y
ĵ l̂ ,Q

→ Y
ĵ k̂ ,Q

, and this is expressed with the independent

momenta as in eq. (E.28), after a l → k replacement. To evaluate the integral over [dp
( r̂ )
1,m]

in eq. (E.46), we use the partial fraction identity (D.45) for the eikonal factor S
î k̂

( r̂ ) (with

the substitutions j → i and l → k). Further, we restrict our attention to the case when

there are precisely three hard partons in the final state. As discussed around eq. (D.54),

this leads to a constrained kinematics for the three momenta p̃ µ
i , p̃

µ
k and p̃ µ

j , and we take

this into account below. It is convenient to introduce two different orientations of the frame

eq. (C.11) and integrate the two terms of the partial fraction in these different frames. In

the first, we set

p̃ µ
i = E ĩ (1, . . . , 1) , p̃ µ

k = E
k̃
(1, . . . , sinχik, cosχik) ,

p̃ µ
j = E j̃ (1, . . . ,− sinχij , cosχij) ,

(E.47)

so

2y ĩ r̂

y ĩ Q

= y r̂ Q(1− cos ϑ) , (E.48)

2y
k̃ r̂

y
k̃ Q

= y r̂ Q(1− sinχik sinϑ cosϕ− cosχik cos ϑ) , (E.49)

2y j̃ r̂

y j̃ Q

= y r̂ Q(1 + sinχij sinϑ cosϕ− cosχij cos ϑ) , (E.50)

where

cosχik = cosχ(Y
ĩ k̃ ,Q

) , cosχij = cosχ(Y ĩ j̃ ,Q) , (E.51)

with cosχ(Y ) given by eq. (D.52). In the second frame we exchange i and k, whose only
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effect on the integrand is to interchange χij and χjk. Thus we find

I(11)
S ;ik,jk(Y1, Y2, Y3;ǫ, y0, d

′
0) = −4Y1

Γ2(1− ǫ)

2πΓ(1− 2ǫ)

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−1+ǫ

×
∫ 1

−1
d(cos ϑ) d(cosϕ) (sinϑ)−2ǫ(sinϕ)−1−2ǫ(1− cos ϑ)−1

×
(
2− cos ϑ− sinχ(Y1) sinϑ cosϕ− cosχ(Y1) cos ϑ

)−1

×
[
J
(
Y
ĵ k̂ ,Q

(Y1, Y2, y, ϑ, ϕ); ǫ, y0, d
′
0

)

+ J
(
Y
ĵ k̂ ,Q

(Y1, Y3, y, ϑ, ϕ); ǫ, y0, d
′
0

)]
,

(E.52)

where

Y
ĵ k̂ ,Q

(Y1, Y2, y, ϑ, ϕ) = 4Y3(1− y)

×
(
2− y[1 + sinχ(Y1) sinϑ cosϕ+ cosχ(Y1) cos ϑ]

)−1

×
(
2− y[1− sinχ(Y2) sinϑ cosϕ+ cosχ(Y2) cos ϑ]

)−1
.

(E.53)

Above, Y1 ≡ Y
ĩ k̃ ,Q

, Y2 ≡ Y ĩ j̃ ,Q and Y3 ≡ Y
j̃ k̃ ,Q

. The two terms in the square bracket

in eq. (E.52) correspond to the two terms of the partial fraction in eq. (D.45). Their in-

tegral representations are formally identical, only the kinematic invariants Y2 and Y3 are

interchanged.

In terms of the integral I(11)
S ik,jk the integrated subtraction term defined in eq. (4.30)

can be expressed as in eq. (4.32).

Finally, case (iii) is obtained trivially from the previous one. Setting j = i implies

Y ĩ j̃ ,Q → Y ĩ ĩ ,Q = 0 , Y
j̃ k̃ ,Q

→ Y
ĩ k̃ ,Q

, (E.54)

therefore, I(11)
S ;ik,ik depends only on Y

ĩ k̃ ,Q
. Then integral (E.52) simplifies to

I(11)
S ;ik,ik(Y1; ǫ, y0, d

′
0) = −4Y1

Γ2(1− ǫ)

2πΓ(1− 2ǫ)

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−1+ǫ

×
∫ 1

−1
d(cos ϑ) d(cosϕ) (sinϑ)−2ǫ(sinϕ)−1−2ǫ(1− cos ϑ)−1

×
(
2− cos ϑ− sinχ(Y1) sinϑ cosϕ− cosχ(Y1) cos ϑ

)−1

× 2J
(
Y
î k̂ ,Q

(Y1, y, ϑ, ϕ); ǫ, y0, d
′
0

)
,

(E.55)

and it replaces I(11)
S ;ik,jk in eq. (4.32). Above

Y
î k̂ ,Q

(Y1, y, ϑ, ϕ) = 4Y1(1− y)
(
2− y[1 + cos ϑ]

)−1

×
(
2− y[1 + sinχ(Y1) sinϑ cosϕ+ cosχ(Y1) cos ϑ]

)−1
.

(E.56)
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Turning now to the ‘non-abelian’ contribution, eq. (4.31), we see that we need to con-

sider a single new integral,

I(12)
S ;ik =

16π2

Sǫ
Q2ǫ

∫
[dp

( r̂ )
1,m]

1

2
S
î k̂

( r̂ )f(y0, y r̂ Q, d
′(m, ǫ))

× J1(Y î r̂ ,Q, ǫ, y0, d
′
0)

(E.57)

(obtained by performing the integral over [dp
(t)
1,m+1] as before). We must express Y î r̂ ,Q in

terms of p̃ µ
i (see eq. (E.18)),

Y î r̂ ,Q =
y î r̂

y î Qy r̂ Q
=

1

y r̂ Q

2y ĩ r̂ /y ĩ Q

2(1 − y r̂ Q) + 2y ĩ r̂ /y ĩ Q

. (E.58)

We use the partial fraction identity (D.45) to write the eikonal factor as a sum of two

terms, and choose two different orientations of the frame (C.11) for each term. In the first

one we set

p̃ µ
i = E ĩ (1, . . . , 1) , p̃ µ

k = E
k̃
(1, . . . , sinχ

k̃
, cosχ

k̃
) , (E.59)

thus

2y ĩ r̂

y ĩ Q

= y r̂ Q(1− cos ϑ) ,
2y

k̃ r̂

y
k̃ Q

= y r̂ Q(1− sinχ
k̃
sinϑ cosϕ− cosχ

k̃
cos ϑ) , (E.60)

where

cosχ
k̃
= cosχ(Y

ĩ k̃ ,Q
) , (E.61)

with eq. (D.52) for cosχ(Y ). The second frame is obtained by the interchange i ↔ k, which

again implies change only in the argument of the soft function. Then the integral I(12)
S ;ik

equals

I(12)
S ;ik(Y ;ǫ, y0, d

′
0) = 4Y

Γ2(1− ǫ)

2πΓ(1 − 2ǫ)

∫ y0

0
dy y−1−2ǫ(1− y)d

′

0−1+ǫ

×
∫ 1

−1
d(cos ϑ) d(cosϕ) (sinϑ)−2ǫ(sinϕ)−1−2ǫ(1− cos ϑ)−1

×
(
2− cosϑ− sinχ(Y ) sin ϑ cosϕ− cosχ(Y ) cos ϑ

)−1

×
[
J1

(
1− cos ϑ

2− y(1 + cos ϑ)
; ǫ, y0, d

′
0

)

+ J1

(
1− sinχ(Y ) sinϑ cosϕ− cosχ(Y ) cos ϑ

2− y(1 + sinχ(Y ) sinϑ cosϕ+ cosχ(Y ) cos ϑ)
; ǫ, y0, d

′
0

)]
.

(E.62)

In terms of the integrals I(11)
S ik,ik and I(12)

S ;ik, the integrated subtraction term defined in

eq. (4.31) can be expressed as in eq. (4.33).
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F Integrating the soft-collinear-type terms

In this appendix, we discuss the integration of the soft-collinear-type counterterms of sec-

tion 4.3. In particular, we define and give an explicit integral representation of all I(i)
CS

functions (i = 1, . . . , 3).

F.1 Soft-collinear-triple collinear-type counterterms

The soft-collinear-triple collinear-type counterterms involve a soft momentum mapping

followed by a collinear one, which leads to an exact factorisation of the originalm+2-particle

phase space in the form of eq. (E.1). To evaluate the integrals of eqs. (4.34) and (4.35)

over the factorized one-particle phase space measures in eq. (E.1), we first observe that the

integral over the soft measure is a K1 soft-collinear function, and the remaining the integral

over the collinear measure can be expressed as linear combination of the integrals

I(1)
CS =

16π2

Sǫ
Q2ǫ

∫
[dp

( î r̂ )
1,m ]

1

s î r̂

zk
r̂ , î

f(α0, α î r̂ , d(m, ǫ))K1(ǫ, y0, d
′
0) , (F.1)

which is just twice the integral in eq. (E.4), computed in eq. (E.6), thus

I(1)
CS (x; ǫ, α0, d0, y0, d

′
0; k) = 2I(1)

S (x; ǫ, α0, d0, y0, d
′
0; k) . (F.2)

F.2 Soft-collinear-double soft-type counterterms

The soft-collinear-double soft-type counterterms involve two successive soft momentum

mappings, which leads to an exact factorisation of the original m+ 2-particle phase space

in the form of eq. (E.17). To evaluate the integrals of eqs. (4.36), (4.37) and (4.38) over the

factorized one-particle phase space measures in eq. (E.17), we first observe that the integral

over the soft measure [dp
(t)
1,m+1] is again a K1 soft-collinear function, and the remaining

integral over the second soft measure contains either an eikonal factor or its collinear limit,

{
I(2)
CS , I(3)

CS

}
=

16π2

Sǫ
Q2ǫ

∫
[dp

( r̂ )
1,m]

{
− 1

2
S

ĵ l̂
( r̂ ),

2

s î r̂

z î , r̂

z r̂ , î

}
f(y0, y r̂ Q, d

′(m, ǫ))

×K1(ǫ, y0, d
′
0) ,

(F.3)

where in I(3)
CS we recognise (twice) the function already defined in eq. (E.19), hence

I(3)
CS (ǫ, y0, d

′
0) = 2I(6)

S (ǫ, y0, d
′
0) . (F.4)

The second integral decouples from the first one also for I(2)
CS because K1 is independent

of the kinematics. Then, the final integral over [dp
( r̂ )
1,m] gives a soft function J1, so in this

case,

I(2)
CS (Y ; ǫ, y0, d

′
0) = J1(Y ; ǫ, y0, d

′
0 − 1 + ǫ)K1(ǫ, y0, d

′
0) , (F.5)

where Y corresponds to Y
j̃ l̃ ,Q

.

In terms of the functions I(i)
CS , (i = 1, 2, 3) we find the results given in eq. (4.39).
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