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We study the effect of a potential fourth quark generation on the upper and lower Higgs boson
mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice
Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector
of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson
version of the underlying SU(2)L × U(1)Y symmetry, being a global symmetry here due to the
neglection of gauge fields in this model. We present our results on the modification of the upper and
lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark
doublet. Finally, we compare these findings to the standard scenario of three fermion generations.

I. INTRODUCTION

The Sakharov explanation for the matter anti-matter asymmetry of the universe suffers from the
CP-violating phase of the Standard Model (SM3) falling short by at least 10 orders of magnitude. In
addition to this concern the Sakharov picture demands a sufficiently strong first order electroweak
phase transition, which is also objected in the framework of the SM3. However, both of the above
caveats might be addressable [1, 2] by the inclusion of a new fourth fermion generation into an extended
version of the Standard Model (SM4). Despite the arguments against the existence of a fourth fermion
generation such a scenario nevertheless remains attractive for two reasons. Firstly, there is a strong
conceptual interest, since a new fermion generation would need to be very heavy, leading to rather
large Yukawa coupling constants and thus to potentially strong interactions with the scalar sector of
the theory. Secondly, it has been argued [1, 3] (and the references therein) that the fourth fermion
generation is actually not excluded by electroweak precision measurements, thus leaving the potential
existence of a new fermion generation an open question.
In our contribution, however, we do not present any statement arguing in favour or disfavour of a

new fermion generation. Here, we simply assume its existence and focus on the arising consequences
on the Higgs boson mass spectrum. With the advent of the LHC this question will become of great
phenomenological interest, since the Higgs boson mass bounds, in particular the lower bound, depend
significantly on the heaviest fermion mass. Demonstrating this effect will be the main objective of the
present work.
Due to the large Yukawa coupling constants of the fourth fermion generation a non-perturbative

computation is highly desirable. For this purpose we employ a lattice approach to investigate the
strong Higgs-fermion interaction. In fact, we follow here the same lattice strategy that has already
been used in Ref. [4–6] for the non-perturbative determination of the upper and lower Higgs boson
mass bounds in the SM3. This latter approach has the great advantage over the preceding lattice
studies of Higgs-Yukawa models (see eg. Refs. [7–13] and the references therein) that it is the first
being based on a consistent formulation of an exact lattice chiral symmetry [14], which allows to
emulate the chiral character of the Higgs-fermion coupling structure of the Standard Model on the
lattice in a conceptually fully controlled manner. The interest in lattice Higgs-Yukawa models has
therefore recently been renewed [4–6, 15–20].
The actual details of the considered lattice model will be given in section II. In the following

section III the paper elaborates on the pursued simulation strategy for the determination of the upper
and lower Higgs boson mass bounds, i.e. the selection procedure for the bare lattice parameters.
The obtained lattice results together with their extrapolations to the infinite volume limit are then
presented and discussed in section IV before the paper ends with some outlook and conclusions in
section V.

http://arxiv.org/abs/1011.1648v1
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II. THE MODEL

In order to evaluate the Higgs boson mass bounds we have implemented a lattice model of the
pure Higgs-fermion sector of the Standard Model. To be more precise, the Lagrangian of the targeted
Euclidean continuum model we have in mind is given as

LHY = t̄′∂/t′ + b̄′∂/b′ +
1

2
∂µϕ

†∂µϕ+
1

2
m2

0ϕ
†ϕ+ λ

(

ϕ†ϕ
)2

+ yb′
(

t̄′, b̄′
)

L
ϕb′R + yt′

(

t̄′, b̄′
)

L
ϕ̃t′R

+ c.c. of Yukawa interactions, (1)

where we have constrained ourselves to the consideration of the heaviest quark doublet, i.e. the fourth
generation doublet, which is labeled here (t′, b′). This restriction is reasonable, since the dynamics of
the complex scalar doublet ϕ (ϕ̃ = iτ2ϕ

∗, τi : Pauli-matrices) is dominated by the coupling to the
heaviest fermions. For the same reason we also neglect any gauge fields in this approach. The quark
fields nevertheless have a colour index which actually leads to Nc = 3 identical copies of the fermion
doublet appearing in the model. However, for a first exploratory study of the fermionic influence on
the Higgs boson mass bounds we have set Nc to 1 for simplicity.
Since the Yukawa interaction has a chiral structure, it is important to establish chiral symmetry

also in the lattice approach. This has been a long-standing obstacle, which was finally found to
be circumventable by constructing the lattice equivalent of ∂/ as well as the left- and right-handed
components of the quark fields t′L,R, b

′
L,R on the basis of the Neuberger overlap operator [14, 21, 22].

Following the proposition in Ref. [14] we have constructed a lattice Higgs-Yukawa model with a global
SU(2)L × U(1)Y symmetry.
The fields considered in this model are the aforementioned doublet ϕ as well as Nc quark doublets

represented by eight-component spinors ψ̄(i) ≡ (t̄′(i), b̄′(i)), i = 1, ..., Nc. With D(ov) denoting the
Neuberger overlap operator the fermionic action SF can be written as

SF =

Nc
∑

i=1

ψ̄(i) Mψ(i), M = D(ov) + P+φ
† diag (yt′ , yb′) P̂+ + P− diag (yt′ , yb′)φP̂−, (2)

where yt′,b′ denote the Yukawa coupling constants and the scalar field ϕx has been rewritten here as
a quaternionic, 2× 2 matrix φ†x = (ϕ̃x, ϕx), with x denoting the site index of the L3

s ×Lt-lattice. The

left- and right-handed projection operators P± and the modified projectors P̂± are given as

P± =
1± γ5

2
, P̂± = 1±γ̂5

2 , γ̂5 = γ5

(1− 1

ρ
D(ov)

)

. (3)

The free Neuberger overlap operator can be written as

D(ov) = ρ

{

1 +
A√
A†A

}

, A = D(W ) − ρ, 0 < ρ < 2r (4)

where ρ is a free, dimensionless parameter within the specified constraints that determines the radius
of the circle formed by the eigenvalues of D(ov) in the complex plane. The operator D(W ) denotes
here the Wilson Dirac operator defined as

D(W ) =
∑

µ

γµ∇s
µ − r

2
∇b

µ∇f
µ, (5)

where∇f,b,s
µ are the forward, backward and symmetrized lattice nearest neighbour difference operators

in direction µ, while the so-called Wilson parameter r is chosen here to be r = 1 as usual.
The overlap operator was proven to be local in a field theoretical sense also in the presence of

QCD gauge fields at least if the latter fields obey certain smoothness conditions [23, 24]. The locality
properties were found to depend on the parameter ρ and the strength of the gauge coupling constant.
At vanishing gauge coupling the most local operator was shown to be obtained at ρ = 1. Here, the
notion ’most local’ has to be understood in the sense of the most rapid exponential decrease with
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the distance |x − y| of the coupling strength induced by the matrix elements D(ov)
x,y between the field

variables at two remote space-time points x and y. For that reason the setting ρ = 1 will be adopted
for the rest of this work.
The introduced action now obeys an exact global SU(2)L × U(1)Y lattice chiral symmetry. For

ΩL ∈ SU(2) and ǫ ∈ IR the action is invariant under the transformation

ψ → UY P̂+ψ + UY ΩLP̂−ψ, ψ̄ → ψ̄P+Ω
†
LU

†
Y + ψ̄P−U

†
Y , (6)

φ→ UY φΩ
†
L, φ† → ΩLφ

†U †
Y (7)

with the compact notation UY ≡ exp(iǫY ) denoting the representations of the global hypercharge
symmetry group U(1)Y for the respective field it is acting on. In the continuum limit Eqs. (6-7)
eventually recover the (here global) continuum SU(2)L ×U(1)Y chiral symmetry.
Finally, the purely bosonic part Sϕ of the total lattice action S = SF + Sϕ is given by the usual

lattice ϕ4-action

Sϕ =
∑

x

1

2
∇f

µϕ
†
x∇f

µϕx +
1

2
m2

0ϕ
†
xϕx + λ

(

ϕ†
xϕx

)2
, (8)

with the bare mass m0, the forward difference operator ∇f
µ in direction µ, and the bare quartic

coupling constant λ. For the practical lattice implementation, however, a reformulation of Eq. (8)

in terms of the hopping parameter κ and the lattice quartic coupling constant λ̂ proves to be more
convenient. It reads

SΦ = −κ
∑

x,µ

Φ†
x [Φx+µ +Φx−µ] +

∑

x

Φ†
xΦx + λ̂

∑

x

(

Φ†
xΦx −Nc

)2
, (9)

and is fully equivalent to Eq. (8). This alternative formulation opens the possibility of explicitly
studying the limit λ = ∞ on the lattice. The aforementioned connection can be established through
a rescaling of the scalar field Φx ∈ IR4 and the involved coupling constants according to

ϕx =
√
2κ

(

Φ2
x + iΦ1

x

Φ0
x − iΦ3

x

)

, λ =
λ̂

4κ2
, m2

0 =
1− 2Ncλ̂− 8κ

κ
. (10)

III. SIMULATION STRATEGY

Due to the triviality of the Higgs sector the targeted Higgs boson mass bounds actually depend
on the non-removable, intrinsic cutoff parameter Λ of the considered Higgs-Yukawa theory, which
can be defined as the inverse lattice spacing, i.e. Λ = 1/a. To determine these cutoff dependent
bounds for a given phenomenological scenario, i.e. for given hypothetical masses of the fourth quark
generation, the strategy is to evaluate the maximal interval of Higgs boson masses attainable within
the framework of the considered Higgs-Yukawa model being in consistency with this phenomenological
setup. The free parameters of the model, being the bare scalar mass m0, the bare quartic coupling
constant λ, and the bare Yukawa coupling constants yt′,b′ thus have to be tuned accordingly. The
idea for the latter fixation is to employ the assumed fourth generation quark masses mt′,b′ as well as
the phenomenological knowledge of the renormalized vacuum expectation value of the scalar field ϕ
(vev). The latter is used to determine the physical scale 1/a according to

246GeV =
vr
a

≡ v√
ZG · a , (11)

where ZG denotes the Goldstone renormalization constant and v is the lattice vev.
Concerning the hypothetical masses of the fourth fermion generation quarks, we target here a mass

degenerate setup with mt′/a = mb′/a = 700GeV, which is somewhat above its tree-level unitarity
upper bound [25]. The degenerate setting, being unproblematic from a numerical perspective, is owed
here to the existence of a fluctuating complex phase in the opposite scenario, i.e. in the non-degenerate
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case [6]. However, it is remarked that we are currently also investigating a set of other mass settings
to study in particular the quark mass dependence of the Higgs boson mass bounds.
In lack of an additional matching condition a one-dimensional freedom is left open here, which can be

parametrized in terms of the quartic coupling constant λ. This freedom finally leads to the emergence
of upper and lower bounds on the Higgs boson mass. As expected from perturbation theory, one also
finds numerically [5] that the lightest and heaviest Higgs boson masses are obtained at vanishing and
infinite bare quartic coupling constant, respectively. The lower mass bound will therefore be obtained
at λ = 0, while λ = ∞ will be adjusted to derive the upper bound.
However, in the given lattice model the expectation value 〈ϕ〉 would always be identical to zero

due to the symmetries in Eqs. (6-7). The identification v ≡ 〈ϕ〉 would therefore not yield meaningful
results in Eq. (11). The reason is that the lattice averages over all ground states of the theory, not only
over that one which Nature has selected in the broken phase. To study the mechanism of spontaneous
symmetry breaking nevertheless, one usually introduces an external current J , selecting then only
one particular ground state. This current is finally removed after taking the thermodynamic limit,
leading then to the existence of symmetric and broken phases with respect to the order parameter
〈ϕ〉 as desired. An alternative approach, which was shown to be equivalent in the thermodynamic
limit [26–28], is to define the vacuum expectation value v as the expectation value of the rotated field
ϕrot given by a global transformation of the original field ϕ according to

ϕrot
x = U [ϕ]ϕx (12)

with the SU(2) matrix U [ϕ] selected for each configuration of field variables {ϕx} such that

∑

x

ϕrot
x =





0
∣

∣

∣

∣

∑

x
ϕx

∣

∣

∣

∣



 . (13)

Here we use this second approach. According to the notation in Eq. (8), which already includes a
factor 1/2, the relation between the vev v and the expectation value of ϕrot is then given as

〈ϕrot〉 =
(

0
v

)

. (14)

In this setup the unrenormalized Higgs mode hx and the Goldstone modes g1x, g
2
x, g

3
x, can then directly

be read out of the rotated field according to

ϕrot
x =

(

g2x + ig1x
v + hx − ig3x

)

. (15)

The great advantage of this approach is that no limit procedure J → 0 has to be performed, which
simplifies the numerical evaluation of the model tremendously.
The so far lacking prescriptions for calculating the Goldstone renormalization constant ZG, the

Higgs boson mass mH , and the quark masses mt′,b′ have been discussed in detail in Ref. [5]. Here it
is only stated that ZG is computed from the slope of the inverse Goldstone propagator, the functional
form of which has been discussed at one-loop order in Ref. [6]. The latter propagator G̃G(p) is defined
as

G̃G(p) =
1

3

3
∑

α=1

〈g̃αp g̃α−p〉, (16)

g̃αp =
1

√

L3
s · Lt

∑

x

e−ipxgαx (17)

at the discrete lattice momenta pµ = 2πnµ/Ls,t, nµ = 0, . . . , Ls,t − 1. Correspondingly, the Higgs
boson mass mH is derived from the Higgs propagator given as

G̃H(p) = 〈h̃ph̃−p〉, (18)

h̃p =
1

√

L3
s · Lt

∑

x

e−ipxhx. (19)



5

Finally, it is remarked that the lattice results on the quark masses presented in this paper have
been computed from the decay of the fermionic time correlation functions Cf (∆t) at large Euclidean
time separations ∆t, where f = t′, b′ denotes the quark flavour here. On the lattice the latter time
correlation functions can be defined as

Cf (∆t) =
1

Lt · L6
s

Lt−1
∑

t=0

∑

~x,~y

〈

ReTr
(

fL,t+∆t,~x · f̄R,t,~y

)

〉

, (20)

where the left- and right-handed spinors are given through the projection operators according to

(

t′

b′

)

L

= P̂−

(

t′

b′

)

and (t̄′, b̄′)R = (t̄′, b̄′)P−. (21)

It is remarked that the given fermionic correlation function would be identical to zero due to the
exact lattice chiral symmetry obeyed by the considered Higgs-Yukawa model, if one would not rotate
the scalar field ϕ according to Eq. (12) as discussed above. This rotation is implicitly assumed in
the following. Furthermore, it is pointed out that the full all-to-all correlator as defined in Eq. (20)
can be trivially computed. This all-to-all correlator yields very clean signals for the t′, b′ quark mass
determination.

IV. NUMERICAL RESULTS

For the eventual determination of the cutoff dependent Higgs boson mass bounds several series of
Monte-Carlo calculations have been performed at different values of Λ and on different lattice volumes
as summarized in Tab. I. In order to tame finite volume effects as well as cutoff effects to an acceptable
level, we have demanded as a minimal requirement that all particle masses m̂ = mH ,mt′ ,mb′ in lattice
units fulfill m̂ < 0.5 and m̂ ·Ls,t > 3.5, at least on the largest investigated lattice volumes. Assuming
the Higgs boson mass mH to be around 500 − 750GeV this allows to reach cutoff scales between
1500GeV and 3500GeV on a 243 × 32-lattice. However, despite this setting strong finite volume
effects are nevertheless expected induced by the massless Goldstone modes. It is known that these
finite size effects are proportional to 1/L2

s at leading order [26–28]. An infinite volume extrapolation
of the lattice data is therefore mandatory.

κ Ls Lt Nc m2

0 λ yt′ = yb′

0.09442 12,16,20,24 32 1 2.5910 0 3.2122

0.09485 12,16,20,24 32 1 2.5430 0 3.2049

0.09545 12,16,20,24 32 1 2.4767 0 3.1949

0.09560 12,16,20,24 32 1 2.4603 0 3.1923

0.09605 12,16,20,24 32 1 2.4112 0 3.1849

0.21300 12,16,20,24 32 1 ∞ ∞ 3.3707

0.21500 12,16,20,24 32 1 ∞ ∞ 3.3550

0.22200 12,16,20,24 32 1 ∞ ∞ 3.1816

0.22320 12,16,20,24 32 1 ∞ ∞ 3.1730

0.22560 12,16,20,24 32 1 ∞ ∞ 3.1561

TABLE I: The model parameters underlying the lattice calculations performed in this study are presented.
The setting λ = 0 (λ = ∞) is employed for deriving the lower (upper) Higgs boson mass bound. Depending
on the lattice volume the available statistics ranges from NConf = 1, 000 to NConf = 20, 000.

The finite volume data of the renormalized vacuum expectation value vr, the Higgs boson mass
mH , and the degenerate quark mass mt′ = mb′ resulting from the calculations specified in Tab. I are
presented in Fig. 1. These lattice data are plotted versus 1/L2

s and extrapolated to the infinite volume
limit by means of a linear fit ansatz according to the aforementioned leading order behaviour. Due
to the observed curvature arising from the non-leading finite volume corrections only those volumes
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with Ls ≥ 16 have been respected by the linear fit procedures. One finds that the intended infinite
volume extrapolation can indeed reliably be performed thanks to the multitude of investigated lattice
volumes reaching from 123 × 32 to 243 × 32-lattices here.

κ = 0.09442

κ = 0.09485

κ = 0.09545

κ = 0.09560

κ = 0.09605

1/L2

s

R
e
n
o
r
m

a
li
z
e
d

v
e
v

v r

0.0080.0060.0040.0020

0.16

0.14

0.12

0.1

0.08

0.06

0.04 κ = 0.09442
κ = 0.09485
κ = 0.09545
κ = 0.09560
κ = 0.09605

1/L2

s

H
ig

g
s

b
o
so

n
m

a
ss

m
H

0.0080.0060.0040.0020

0.35

0.3

0.25

0.2

0.15
κ = 0.09442
κ = 0.09485
κ = 0.09545
κ = 0.09560
κ = 0.09605

1/L2

s

Q
u
a
rk

m
a
ss

m
t
′

0.0080.0060.0040.0020

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

(a) (b) (c)

κ = 0.21300

κ = 0.21500

κ = 0.22200

κ = 0.22320

κ = 0.22560

1/L2

s

R
e
n
o
r
m

a
li
z
e
d

v
e
v

v r

0.0080.0060.0040.0020

0.13

0.12

0.11

0.1

0.09

0.08

0.07

0.06

0.05 κ = 0.21300
κ = 0.21500
κ = 0.22200
κ = 0.22320
κ = 0.22560

1/L2

s

H
ig

g
s

b
o
so

n
m

a
ss

m
H

0.0080.0060.0040.0020

0.4

0.35

0.3

0.25

0.2
κ = 0.21300
κ = 0.21500
κ = 0.22200
κ = 0.22320
κ = 0.22560

1/L2

s

Q
u
a
rk

m
a
ss

m
t
′

0.0080.0060.0040.0020

0.35

0.3

0.25

0.2

0.15

(d) (e) (f)

FIG. 1: The finite volume data of the renormalized vacuum expectation value vr (a,d), the Higgs boson mass
mH (b,e), and the degenerate quark mass mt′ = mb′ (c,f), as obtained from the lattice calculations specified in
Tab. I, are plotted versus 1/L2

s . The upper (lower) row corresponds to the setting λ = 0 (λ = ∞). The infinite
volume extrapolation is performed by fitting the data to a linear function. Due to the observed curvature
arising from the non-leading finite volume corrections only those volumes with Ls ≥ 16 have been respected
by the linear fit procedures.

The quality of the tuning procedure intending to hold the quark masses constant can then be
examined in Fig. 2b displaying the results of the infinite volume extrapolation ofmt′ . In the considered
SM4 scenario the fluctuation of the quark mass has been constrained to roughly mt′ = mb′ = 676±
22GeV. For later comparisons with the corresponding SM3 scenario we also present the analogous
summary plot of our earlier investigations [4, 5] of the latter setup where the degenerate quark masses
have been fixed to approximately mt = mb = 173± 3GeV as demonstrated in Fig. 2a.
The infinite volume results of the Higgs boson masses are finally presented in Fig. 3b. The numerical

data for the upper mass bound have moreover been fitted with the analytically expected functional
form of the cutoff dependence of the upper Higgs boson mass bound derived in Ref. [29]. It is given
as

mup
H

a
= Am ·

[

log(Λ2/µ2) +Bm

]−1/2
, (22)

with Am, Bm denoting the free fit parameters and µ being an arbitrary scale, which we have chosen
as µ = 1TeV here. One learns from this presentation that the obtained results are indeed in good
agreement with the expected logarithmic decline of the upper Higgs boson mass bound with increasing
cutoff parameter Λ.
The reader may want to compare these findings to the upper and lower Higgs boson mass bounds

previously derived in the SM3. The lattice results corresponding to that setup have been determined
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FIG. 2: The infinite volume extrapolations of the degenerate quark masses observed in the lattice calculations
specified in Tab. I are presented versus the cutoff parameter Λ. In the SM3 scenario (a) the fluctuation of the
quark mass has been constrained to mt = mb = 173± 3GeV, while mt′ = mb′ = 676 ± 22GeV is adjusted in
the SM4 scenario (b).

in Ref. [4, 5] and are summarized in Fig. 3a. The main finding is that especially the lower bound is
drastically shifted towards larger values in the presence of the assumed mass-degenerate fourth quark
doublet. The upper bound is also significantly increased by the fermionic contributions, however
less strongly. From this analysis it seems conclusive that the usually expected light Higgs boson is
incompatible with a very heavy fourth fermion generation.
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FIG. 3: Upper and lower Higgs boson mass bounds are shown for Nc = 1, mt = mb = 173 ± 3GeV (a) and
Nc = 1, mt′ = mb′ = 676 ± 22GeV (b). Both upper bounds are each fitted with Eq. (22). The lower bound
in (a) is also compared to a direct analytical computation depicted by the solid line as discussed in Ref. [4].
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V. OUTLOOK AND CONCLUSIONS

The aim of the present work has been the non-perturbative determination of the cutoff dependent
upper and lower mass bounds of the Higgs boson assuming the potential existence of a very heavy
fourth quark generation. Due to the potentially strong coupling nature of the associated Yukawa
coupling constants the lattice approach has been employed here to allow for a non-perturbative in-
vestigation of a Higgs-Yukawa model. It serves here as a reasonable simplification of the extended
Standard Model SM4, including a fourth fermion generation. The idea is that the considered model
contains only those fields and interactions which are most essential for the generation of the Higgs
boson mass, i.e. the scalar and quark fields and their mutual interactions. The model has been built
on the basis of Lüscher’s proposal [14] for the construction of chirally invariant lattice Higgs-Yukawa
models adapted, however, to the situation of ϕ being a complex doublet equivalent to one Higgs and
three Goldstone modes. The resulting chirally invariant lattice Higgs-Yukawa model, based here on
the Neuberger overlap operator, then obeys a global SU(2)L × U(1)Y symmetry, as desired.
The fundamental strategy underlying the determination of the cutoff dependent Higgs boson mass

bounds has then been the numerical evaluation of the maximal interval of Higgs boson masses attain-
able within the considered Higgs-Yukawa model in consistency with the assumed physical scenario in
terms of the masses of the fourth quark generation. Owing to the existence of a fluctuating complex
phase in the non-degenerate case [6], the t′, b′ quark masses have been assumed to be degenerate in
this work. Here we have considered a hypothetical physical scenario with degenerate fourth generation
quark masses at roughly 700GeV. To fix the physical scale of the performed lattice calculations we
have exploited the phenomenologically known value of the renormalized vacuum expectation value
(vev) of the scalar field
The aforementioned procedure has actually been simplified in this study by exploiting the - pertur-

batively expected and numerically confirmed [5] - knowledge that the largest attainable Higgs boson
masses are indeed observed in the case of an infinite bare quartic coupling constant, while the smallest
masses are obtained in the limit of vanishing bare quartic coupling constant. Consequently, the search
for the upper and lower Higgs boson mass bounds has been constrained to the bare parameter settings
λ = ∞ and λ = 0, respectively. The resulting finite volume lattice data on the Higgs boson mass,
the vacuum expectation value of the scalar field, and the quark masses turned out to be sufficiently
precise to allow for their reliable infinite volume extrapolation. The arising extrapolation results are
moreover sufficiently precise to resolve their cutoff dependence as demonstrated in Fig. 3. Concerning
the upper bound the obtained cutoff dependence is in good agreement with the analytically expected
logarithmic decline and thus with the triviality picture of the Higgs-Yukawa sector. The main find-
ing, however, is that the upper and lower bounds are both shifted towards larger values. While the
upper bound is only mildly shifted by roughly 25%, the lower bound is shifted very drastically to
roughly 500GeV. From this analysis it seems conclusive that the usually expected light Higgs boson
is incompatible with a very heavy fourth fermion generation.
For the future several connected questions should be further investigated. Firstly, it would be

interesting to repeat the present study at several other settings of the fourth generation quark masses
to compute the quark mass dependence of the Higgs boson mass bounds systematically. This should
be done in particular for the lower bound. Moreover, the implemented model allows to tune the bare
coupling parameters to arbitrarily large values. It would be of particular interest to determine the
largest possible quark mass attainable within the Higgs-Yukawa model beyond a perturbative unitarity
consideration. This can be done by evaluating the model in the limit of infinite bare Yukawa coupling
constants.
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