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Abstract

We present in detail a technique to extract the potential between a

static quark and anti-quark pair from Wilson loops measured on dynamical

configurations. This technique is based on HYP smearing and leads to an

exponential improvement of the noise-to-signal ratio of Wilson loops. We

explain why the correct continuum potential is obtained and show numerical

evidence that the cut-off effects are small. We present precise results for the

non-perturbative potential. As applications, we determine the scale r0/a

and study the shape of the static potential in the range of distances around

r0, where it can be compared with phenomenological potential models.
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1 Introduction

The potential V (r) between a static (infinitely massive) quark and anti-quark pair

separated by distance r can be computed from lattice quantum chromodynamics

(QCD). It is extracted from the expectation values of Wilson loops, which are

traces of products of links along rectangular paths extending in Euclidean time

and one spatial direction. In this article we consider only on-axis Wilson loops

but off-axis (non-planar) Wilson loops can also be used. Alternatively the static

potential can be extracted from the correlator of two Polyakov loops. Due to

confinement, the signal of Wilson loops falls exponentially with the area of the

loop (until string breaking sets in) but their variance is approximately constant.

In the statistical average of standard Monte Carlo lattice simulations, the signal

of Wilson loops is the result of strong cancellations between positive and negative

contributions. This leads to an exponentially growing noise-to-signal ratio which

prevents the calculation of the potential at large distances.

In pure gauge theory this problem has a cure. An exponential suppression of

the statistical noise of Wilson loops can be achieved by the multi-hit (or one-link)

method [1] and much further by the multilevel algorithm [2]. These algorithms

are not applicable in presence of dynamical fermions due to the non-locality of the

effective gauge action when the logarithm of the fermion determinant is included.

In [3] a smearing technique called hypercubic (HYP) smearing was introduced

which can also be used to measure Wilson loops in the presence of dynamical

fermions [4]. In pure gauge theory it was demonstrated in [5] that the use of HYP

smeared links leads to a determination of the static potential comparable in preci-

sion to the multi-hit method. In [6] a new action for static quarks was proposed,

which uses HYP smeared links in the time covariant derivative of the Eichten-

Hill action. This leads to an exponential reduction (compared with using the

Eichten-Hill action) of the noise-to-signal ratio for heavy-light correlation func-

tions. This effect is due to the fact that HYP smearing in the static action reduces

the coefficient of the divergent part of the self-energy of a static quark [7, 8].

The interest in the determination of the static potential V (r) through lattice

simulations is twofold. On the one side, there is the possibility to set the scale

(i.e., determine the lattice spacing) through the scale r0 introduced in [9]. The

latter is defined from the static force F (r) = V ′(r) as the solution of

r2 F (r)
∣

∣

r=r0
= 1.65 . (1.1)

A physical value for the scale r0 ≈ (0.45 . . . 0.5) fm can only be determined through

phenomenological potential models. It is desirable for an absolute determination

of the lattice spacing to use a quantity which is directly accessible from experiment
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and replace r0 by a quantity like a hadron mass or decay constant. But still, r0 is

very useful for a relative scale setting.

On the other side, the static potential is an interesting observable by itself

for phenomenology (see the conclusions) and to study the structure of gauge

theories [10–13]. It exhibits clear effects of dynamical fermions, such as string

breaking [14], see the latest study in QCD [15] and high precision studies with

multilevel algorithms in other models [16]. In order to study the potential at the

distances where the string breaks, operators which dominantly create static-light

meson pairs have to be included in addition to the Wilson loops and we plan to

do so in the future. In this article we will concentrate on the determination of the

static potential at distances smaller than the string breaking distance rb ≈ 3 r0
[17]. We will study the quantity

c(r) =
1

2
r3 F ′(r) . (1.2)

It is a physical, renormalized quantity, which can be used to define a running

coupling. In [18] c(r) has been determined with high precision in pure gauge

theory using a multilevel technique. We will compute it in this article for QCD

with Nf = 2 flavors of quarks.

In section two we will describe our techniques to extract the static potential

from HYP smeared Wilson loops. We explain why this procedure leads to a de-

termination of the continuum static potential up to O(a2) lattice artifacts, which

appear to be small. In section three we present our results for the static poten-

tial, the scale r0/a and the quantity c(r) determined on a configuration ensemble

generated with Wilson gauge action and Nf = 2 flavors of O(a) improved Wilson

quarks at β = 5.3. The quark mass corresponds to a pseudoscalar mass value

close to r0mPS = 1 and we get a value r0/a = 6.75(6).

2 Techniques

2.1 Static potential with HYP smearing

We measure r/a × T/a on-axis Wilson loops W (r, T ) on gauge configurations

generated with Nf = 2 dynamical fermions. The technique is based on HYP

smearing and was introduced in [3]. Before measuring the Wilson loops, we replace

all the gauge links by HYP-smeared ones. We consider two choices of the HYP-

smearing parameters: one is

α1 = 0.75 , α2 = 0.6 , α3 = 0.3 , (2.1)
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t = T 

t = 0

Figure 1: Schematic representation of the measurement of Wilson loops. In the first

step (left figure) only the spatial Wilson lines are HYP-smeared: this corresponds to

the definition of an operator Ô† that creates a |QQ(r)〉 state. In the second step (right

figure) the temporal Wilson lines are HYP-smeared: this corresponds to the choice of

the static quark action (and a modification of the operator Ô).

which we refer to as HYP, and the other is

α1 = 1.0 , α2 = 1.0 , α3 = 0.5 , (2.2)

which we refer to as HYP2. We adopt the approximate projection onto SU(3) as

described in [7] and always use Eq. (2.24) and four iterations of Eq. (2.25) in [7].

In the following we show that this procedure leads to a determination of the

potential between quark and anti-quark sources that agrees with the continuum

potential up to O(a2) effects (after renormalization). The ingredients in this

demonstration are the selfadjoint positive transfer matrix of the lattice gauge

theory with Wilson fermions and Wilson plaquette action (rigorously proven [19])

as well as the existence and universality of the continuum limit of the lattice

theory with a static quark (lowest order of heavy quark effective theory [20]). The

latter property is generally assumed and has been tested frequently (see [21] for

a longer discussion).

For the purpose of showing Eq.(2.6), we split the HYP-smearing of the links

used in building a Wilson loop into two steps, which are schematically represented

in Fig. 1. In the first step we consider Wilson loops where only the space-like links

are HYP smeared. The smearing involves links at time-slices1 t = −a, 0, a and

t = T − a, T, T + a and corresponds in the Hamiltonian formalism to an operator

Ô† and Ô that creates or annihilates a state |ψQQ(r)〉 consisting of a static quark

1 In total there are Nt time-slices and periodic boundary conditions are imposed in all

directions.
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and anti-quark pair at time-slices t = a and t = T − a respectively. The static

sources are separated by a distance r along one of the spatial directions. The

path integral average of this Wilson loop can be written as a quantum mechanical

expectation value

〈W (r, T )〉 =
Tr

{

T
Nt−T/a−2
0 ÔTqq̄(r)

T/a−2Ô†
}

Tr
{

T
Nt

0

} , (2.3)

where T0 is the transfer matrix in the gauge-invariant (or zero charge) sector

of the Hilbert space, Tqq̄(r) the transfer matrix in the sector with a quark and

an anti-quark source separated by r and Tr is the operator trace in the Hilbert

space. We denote the transfer matrix in the temporal gauge (where the time-

like links are set to identity) by Ttemp. The Hamiltonian H is defined through

aH = − ln{Ttemp}. For the theory with Wilson quarks without a clover term

Ttemp has been constructed in [19]. The transfer matrix in a specific charge sector

is obtained by multiplying Ttemp with the projectors onto that charge sector.

Note that the representation Eq. (2.3) differs from the usual one only in that the

operators Ô represent fields in the path integral on three timeslices, not one. If

written down explicitly in the form of [19] they involve integration kernels. But

their explicit form is not relevant here. Using the spectral decomposition of the

transfer matrices (see for example [22]) and taking the limit Nt → ∞, Eq. (2.3)

becomes

〈W (r, T )〉
Nt→∞
∼

∑

n

cnc
∗
ne

−Vn(r)(T−2a) , (2.4)

where cn = 〈n ; qq̄|Ô†|0〉 are the overlaps of states obtained by applying the oper-

ator Ô† to the vacuum |0〉 with the eigenstates |n ; qq̄〉 of the Hamiltonian (with

eigenvalues E
(qq̄)
n (r)) in the sector with a quark and an anti-quark source. In

Eq. (2.4) we use Vn(r) = E
(qq̄)
n (r) − E

(0)
0 , where E

(0)
0 is the vacuum energy. For

example V0(r) is the static potential and V1(r) its first excitation.

In the second step we rewrite the Wilson loop as a path integral expectation

value

〈W (r, T )〉 = −
1

2

〈

ψh(a,~0)P−(a,~0; a, rk̂)γ5ψh̄(a, rk̂)

ψh̄(T − a, rk̂)P †
+(T − a,~0;T − a, rk̂)γ5ψh(T − a,~0)

〉

, (2.5)

where ψh, ψh and ψh̄, ψh̄ are the static quark and anti-quark fermion fields re-

spectively2 and P±(t,~0; t, rk̂) represents the gauge parallel transporter made from

2 The prefactor − 1

2
and the gamma-matrices are due to our choice of treating the static

quark fields as 2-component static fermion fields, see for example [21].
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a product of space-like HYP-links at time t± a and temporal links at time t± a

in ∓-direction (dashed lines in Fig. 1).

After integration over the static fields, the static quark propagator generates

the time-like links in the observable, cf. Eq. (2.4) in [7], and one recovers the Wil-

son loops. Different choices for the static quark action can be made, in particular

we consider here the one where the covariant derivative in time involves HYP or

HYP2 links3 [6]. It was shown in [23] that static potential differences (where the

self energy is canceled) have O(a2) leading lattice artifacts, essentially due to the

automatic O(a) improvement of heavy quark effective theory [24]. This is true in

the theory with dynamical fermions provided that they are O(a) improved.4 We

therefore conclude

V HYP/HYP2
n (r)− 2E

HYP/HYP2
stat = V continuum

n (r)− 2Econtinuum
stat +O(a2) , (2.6)

where for convenience we have subtracted V (∞) = 2Estat. Here Estat is the

binding energy of a meson made of a static and a light dynamical quark.

In order to investigate the magnitude of the lattice artifacts we compare in the

left panel of Fig. 2 the qq-coupling αqq(r) = r2F (r)/CF for the HYP and HYP2

actions. The static force F (r) is obtained from the static potential F (r − a/2) =

[V (r) − V (r − a)]/a. Details about the extraction of the static potential from

correlation functions of Wilson loops are presented in the next section. We use the

dynamical configurations described in Section 3. The difference of the couplings

is given, to leading order in the cut-off effects, by a2/r2G(Λr,mr). The function

G describes the r-dependence and quark-mass-dependence of the cut-off effects.

The size of the cut-off effects is small but with our errors they are significantly

different from zero for r < r0. They happen to be most significant at r ≈ r0/2.

In Section 2.3 we describe how improved observables can be defined such that

these cut-off effects are eliminated at tree level and are substantially reduced non-

perturbatively [23]. The right panel of Fig. 2 is the same as the left but using the

improved definition of the force Eq. (2.14). The cut-off effects are visibly reduced.

We emphasize that the figure is not sufficient to exclude cutoff effects which are

independent of the choice of static action. Different lattice spacings are needed

to study those.

Our choice of the static quark action and the smearing of the spatial links

is with parameters HYP2 Eq. (2.2). It gives a static potential with a somewhat

3 We smear also the temporal links contained in the definition of the parallel transporters

P± in Eq. (2.5). This corresponds to a change in the definition of the operator Ô in Eq. (2.3)

and has no consequences for the argument presented here.
4For Wilson fermions improvement is achieved by adding the clover term [25–27] or by using

a twisted mass term [28] “at maximal twist” [29].
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Figure 2: The qq-coupling αqq(r = 1/µ) obtained from the static force F (r − a/2) =

[V (r) − V (r − a)]/a with two different choices of the static action (left panel). In

Section 2.3 we give an improved definition of the force which is free of cutoff effects at

tree level of perturbation theory (right panel).

better statistical precision than with parameters HYP. This can be understood

in perturbation theory: the HYP2 parameters are such that they approximately

minimize the one-loop coefficient of the 1/a self-energy contribution of a static

quark [7, 8]. Our data show that this property remains true non-perturbatively:

we find V HYP2 − V HYP ≈ −0.07/a ≈ 2(EHYP2
stat − EHYP

stat ). For the last statement

we use the results for Estat of reference [30].

2.2 Variational basis

On the HYP2-smeared gauge link configurations {U(x, µ)}, we measure a corre-

lation matrix of on-axis Wilson loops at fixed spatial extension r/a and temporal

extension T/a:

Clm(T ) =
〈

tr
{

P (l)(0; rk̂)P (rk̂; rk̂ + T 0̂)P (m)†(T 0̂; rk̂ + T 0̂)P †(0, T 0̂)
}〉

,

(2.7)

where P (x, y) represents the product of links connecting y to x. Neglecting the

superscripts on the spatial P ’s, Eq. (2.7) is equivalent to Eq. (2.5) after integrat-
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ing out the static fields. In the product of spatial links, the superscript P (l) means

that the links Ul(x, k) used in the product are obtained by applying the spatial

smearing SsHYP operator nl times

Ul(x, k) = (SsHYP)
nl U(x, k) . (2.8)

SsHYP means smearing with only two levels of HYP blocking with staples re-

stricted to spatial directions and therefore it needs two parameters, which we

set to α2 = 0.6 and α3 = 0.3. In the argument of the previous section the fat

parallel transporters P (l) correspond to operators Ôl implementing trial states

|ψQQ
l (r)〉 = Ô†

l |0〉. In [31] a formula for suitable smearing parameters nl is given

in the case of APE smearing. In order to choose nl for spatial HYP smearing,

we use the result of [32], that the mean squared extension of APE smearing is

approximately αAPE nl,APE a
2/3, and require that this is equal to nla

2 for HYP

smearing. We get an approximate formula for a good range of HYP smearing

levels

nl ≈
l

12

(r0
a

)2

. (2.9)

For our data on the configuration ensemble E5g (see Section 3) we have computed

a large correlation matrix using smearing levels n0,1,2,3,5. We find that this basis

can be reduced to an optimal subset of M = 3 levels

n2 = 8 , n3 = 12 , n5 = 20 , at β = 5.3 . (2.10)

The higher smearing levels improve the determination of the energy levels.

We use the generalized eigenvalue method [31, 33–35] to extract the ground

state potential as follows. We first solve the generalized eigenvalue problem

C(t)ψα = λα(t, t0)C(t0)ψα . (2.11)

Then we perform a fit to

Eα(t+
a

2
, t0) ≡ ln (λα(t, t0)/λα(t+ a, t0)) = Eα + βαe

−(EM−Eα)(t+
a

2
) , (2.12)

with fit parameters Eα, βα and EM , simultaneously for α = 0, 1 (α = 0 corre-

sponds to the ground state, α = 1 to the first excited state), t0/a = 2, 3, 4 and

t0 + a ≤ t ≤ 2t0 (the latter constraint is necessary for eq.(2.12) to hold [35] ), i.e.,

we have 18 data points Eα(t +
a
2
, t0) for 5 fit parameters.

The values of the ground state potential V (r) as a function of r are determined

from a plateau average of the corresponding effective masses E0(t, t0) starting at

8
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Figure 3: Effective masses E0(t, t0) (filled blue circles for t0/a = 5, empty black dia-

monds for t0/a = 2) for the ground state potential at r = 7a. The red dotted line is the

fit Eq. (2.12). The blue line is the plateau average from the points in the blue shaded

area (the blue dashed-dotted lines are the plateau errors).

the value t = 2t0 +
a
2
, where the fixed value t0 is determined by the requirement

that

σsys(E0(2t0 +
a

2
, t0)) ≡ β0e

−(EM−E0)(2t0+
a

2
) .

1

4
σstat(E0(2t0 +

a

2
, t0)) , (2.13)

where σsys(·) and σstat(·) denote the systematic and statistical error respectively.

For our data, Eq. (2.13) is satisfied for t0/a = 5 for all values of r. The plateau

average is stopped before the time, when either the difference of the effective mass

with the one at t = 2t0 +
a
2
is larger than the statistical error of the latter or the

statistical error of the effective mass is larger than twice the one of the effective

mass at t = 2t0+
a
2
. The effective masses E0(t, t0) (filled blue circles) together with

the fit Eq. (2.12) (red dotted line) and the plateau average (blue line with error

band marked by blue dashed-dotted lines) for r = 7a ≈ r0 are shown in Fig. 3.

The plateau average comprises three points at t/a = 10.5, 11.5, 12.5. The error of

the plateau average is the sum of the statistical and the systematic errors, with the

latter being given by the left-hand side of Eq. (2.13). For comparison, we also plot

in Fig. 3 the effective masses obtained using t0/a = 2 (empty black diamonds).
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Figure 4: Effective masses E1(t, t0) (filled blue circles for t0/a = 4, empty black dia-

monds for t0/a = 2) for the first excited state potential at r = 7a. The dashed black line

represents the value 2aEstat, the meaning of the other curves is as explained in Fig. 3.

They are part of the data set fitted using Eq. (2.12). At the times when they

are both defined, the effective masses for t0/a = 5 and t0/a = 2 agree with each

other, which is somewhat surprising since non-leading corrections certainly have

a dependence on t0.

In principle the excited potentials can be determined in the same way. How-

ever, the analysis is complicated by the dynamics of string breaking. From model

studies [36–38] as well as from [15], we know that an extraction of the potentials

requires the inclusion of operators which dominantly create static-light meson

pairs in addition to the string-like operators we use here. Only then does the

ground state at large distances r > rb contribute significantly to the spectral de-

composition of the correlation function matrices at the accessible time separations

(cf. [39]). While we are not concerned here with this string breaking region, it is

known [15, 38] that for r < rb the first excited state is an (approximate) meson-

anti-meson state at V1 ≈ 2Estat. This state is not well seen in our computation

which does not include the meson pair operators. In Fig. 4 we show the effective

masses E1 for r = 7a ≈ r0. The dashed black line represents 2aEstat = 0.7007(14),

10



the meaning of the other curves is as explained for Fig. 3. Although the effective

masses seem to form a plateau at times t = 8.5a and t = 9.5a, they drop at values

t ≥ 10.5a, but the statistical errors are too large in this region to determine an

energy level. For r < r0 we see plateaus for E1 which are compatible with 2aEstat.

This deficiency of our variational basis also affects the estimate of the ground

state potential, but here the only concern is the description of the corrections to

the asymptotic plateau of the form β0e
−(EM−E0)t. These enter the final numbers

and errors only to estimate where we start the plateau average such that excited

state contaminations are small compared to our statistical error. A very precise

determination of EM or in general of the excited states is not necessary for this

purpose. Furthermore, the effective mass figures show that our plateau selection

is rather conservative; the extracted ground state potential is reliable within the

cited errors.

2.3 Tree level improved force

In order to determine the scale r0 [9] from Eq. (1.1) we will need the static force

F (r). An improved definition of the force on the lattice is [9, 23, 31]

F (rI) = [V (r)− V (r − a)]/a , (2.14)

where rI = r − a/2 + O(a2) is chosen such that at tree level in perturbation

theory [40] one has

Ftree(rI) = CF
g20

4πr2I
, (2.15)

where CF = 4/3 for gauge group SU(3). The formula for rI depends on the static

quark action and it is given in Appendix A for HYP actions.

An improved lattice definition of the quantity c(r) in Eq. (1.2) is given by [18]

c(r̃) =
1

2
r̃3[V (r + a) + V (r − a)− 2V (r)]/a2 , (2.16)

where r̃ = r +O(a2) is chosen such that

ctree(r̃) = −CF
g20
4π

. (2.17)

The formula for r̃ depends on the static quark action and it is given in Appendix

A for the HYP actions. In Appendix B we give the 4-loop beta function for the

coupling αc = −c(r)/CF which we will use to generate perturbative curves for

c(r) to be compared with the lattice data.
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larger than EM (here M = 3) determined from Eq. (2.12).

3 Results

We compute the static potential on the lattice ensemble E5g generated by the

CLS (“Coordinated Lattice Simulations”) project5 at β = 5.3, κ = 0.13625 with

geometry 64 × 323 and periodic boundary conditions for all fields apart from

anti-periodic boundary conditions for the fermions in time. The value of the

pseudo-scalar mass is amPS = 0.15. The algorithm used in CLS is the deflation

accelerated DD-HMC algorithm [41, 42]. The trajectory length is τ = 4 and we

separate the measurements of Wilson loops by 4 trajectories. Given the block size

84, the active links represent 37% of all links. Hence the separation in molecular

dynamics time between measurements is approximately 6 units (when all links are

changed). We have a statistics of about 1000 measurements.

In Fig. 5 we show the ground state potential V , and for illustration the

rough estimate of the excitation EM (here M = 3) in Eq. (2.12). In order to

get renormalized quantities we subtract twice the binding energy Estat of a meson

made of a static and a light dynamical quark. Everything is made dimensionless

5 https://twiki.cern.ch/twiki/bin/view/CLS/WebHome
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rI/a a2F (rI) r̃/a c(r̃)

3.55805 0.05776(12) 4.046306 -0.3596(41)

4.52674 0.04690(19) 5.026094 -0.391(15)

5.50073 0.04074(35) 5.999703 -0.405(41)

6.48362 0.03699(48) 6.977869 -0.519(99)

7.47397 0.03393(75) 7.917429 -0.35(22)

8.46922 0.0325(12)

9.46734 0.0295(13)

10.4670 0.0287(19)

11.4676 0.0310(25)

12.4685 0.0248(53)

13.4697 0.0285(48)

14.4709 0.0373(75)

15.4721 0.030(11)

Table 1: The values of the force F (r) in lattice units and the physical quantity c(r) at

the accessible improved distances rI and r̃ respectively. We do not include values that

require the potential V (r = 2a), since it may be affected by large cut-off effects.

by appropriate powers of r0 extrapolated to the chiral limit, see below. The first

excited state potential is not shown due to the difficulties described above.

The range of string breaking is not yet reached. We can estimate it from the

condition V (rb) = 2Estat to be

2.4 ≤ rb
r0

∣

∣

∣

r0 mPS=1.0
≤ 2.6 . (3.1)

For comparison, in [15] rb/r0 ≈ 2.5 was found at a larger quark mass corresponding

to r0mPS = 1.7, albeit in the theory without O(a) improvement.

The scale r0 is defined from the condition Eq. (1.1). The static force is

computed from Eq. (2.14) using the improved distance rI in Eq. (A.1). In Table 1

we list the values of the force in lattice units. We do not include the force at

rI/a = 2.58875 because it requires the potential at distance r = 2a, which may be

affected by relatively large cut-off effects. We determine the solution of Eq. (1.1)

by interpolation of the force F , using a 2-point interpolation F (r) = f0 + f2/r
2

and a 3-point interpolation adding a f4/r
4 term to control the systematic error

(it is found to be negligible). We obtain

r0
a

∣

∣

∣

amPS=0.15
= 6.747(59) (β = 5.3) . (3.2)
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Figure 6: Auto-correlation function ρ(t) and integrated auto-correlation time τint of r0.

The Monte-Carlo time is in units of molecular dynamics time.

The error is determined by taking the upper bound τint = 6 (see below) and

neglecting the systematic error (due to excited state contributions), which is much

less than the statistical one (due to condition Eq. (2.13)). In [43] we presented a

preliminary value r0/a = 7.05(3) extrapolated to the chiral limit. Throughout this

article we use this value (without errors) for the purpose of plotting dimensionless

quantities.

In [44] it was shown that the auto-correlation time of the topological charge

suffers from critical slowing down proportional to a−5 in the present range of

lattice spacings. However, in the same reference it was shown that Wilson loops

are affected by a much milder critical slowing down, implying that their coupling

to the slow modes of the Monte Carlo simulation is small. A method for correcting

the error analysis, by adding a tail to the auto-correlation function that takes into

account the coupling to slow modes, was presented in [44]. We use this method in

our data analysis and we set τexp = 39 in molecular dynamics units6 from Table

4 of [44]. In Fig. 6 we show the auto-correlation function ρ(t) and the integrated

6 In these units, the DD-HMC molecular dynamics time is multiplied by the ratio of active

links, which in our case is 37%.
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Figure 7: The physical quantity c(r) in Eq. (1.2). Comparison of Nf = 2 (circles) with

Nf = 0 (pluses) Monte Carlo data (for Nf = 0 taken from [18]) and perturbation theory.

Also the value c = −0.52 in the Cornell [46] potential and the curve (dotted) derived

from the Richardson [47] potential are plotted.

autocorrelation time τint of r0, determined with the program7 of [44] implementing

the method of [44, 45]. The vertical dashed lines in the plots mark the applied

summation windows, the lower one is used when we add the tail due to the slow

modes, while the larger one comes from using the method of [45]. Adding to the

summed autocorrelation function the correction due to the slow modes leads to

the upper curve and upper bound on τint, which we take for all quantities in our

analysis. The lower curve corresponds to τint determined from [45]. For r0 we

get an upper bound τint = 6 which is a factor 6.5 smaller than τexp, but a factor

1.5 larger than without accounting for effects of undetected slow modes (lower

bound).

In Fig. 7 we plot our result for the physical quantity c(r) computed from

Eq. (2.16) using the improved distance r̃ in Eq. (A.5). The numbers are given in

Table 1. In order to compare our Nf = 2 results (circles), we plot them together

with the Nf = 0 data (pluses) of [18] and with the perturbative curves obtained

7http://www-zeuthen.desy.de/alpha/
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using the 4-loop beta function (continued line for Nf = 2, dashed-dotted line for

Nf = 0). The perturbative formula for c(r) is presented in Appendix B and we

used the preliminary updated value of the Λ parameter presented in [43]. The

spread of the perturbative curve reflects the uncertainty of the Λ parameter. For

a comparison with our Monte Carlo data, it is legitimate to plot the perturbative

curve of c(r) in massless perturbation theory, since quark mass corrections are

of order α2 × (mqr)
2 and are expected to be negligible at our small quark mass.

The distances in Fig. 7 are normalized by r0 extrapolated to the chiral limit. As

the perturbative curves already indicate, the value of c for Nf = 2 is found to

be lower than for Nf = 0. In pure gauge theory, c(r) starts approaching the

asymptotic value c(∞) = −π/12 with corrections of order 1/r as predicted from

the effective bosonic string theory [48, 49]. Our data for Nf = 2 have quite large

errors when r/r0 ≥ 1. We compare them with the value c = −0.52 that it takes

in the phenomenological Cornell potential [46] and with the curve obtained from

the Richardson potential [47]. Our data seem to follow the Richardson curve for

r . r0 quite closely. It is not yet possible to tell whether there is a plateau region

around or above r0 before string breaking sets in. We will return to this quantity

in our future studies.

The comparison to the purely perturbative curve shows qualitative agree-

ment. A meaningful quantitative comparison requires a careful study of lattice

artifacts which may be quite noticeable in the region of small r, where perturba-

tion theory applies. Indeed perturbation theory by itself suggests that at least

r ≤ 1
2
r0 is necessary [50], in particular when the new 4-loop beta function is taken

into account as discussed in appendix B.

4 Conclusions

We have presented a detailed analysis of the static potential defined by the HYP2

action for the static quarks. Fig. 5 and Fig. 7 show the quality of our data. Judged

by a comparison of HYP and HYP2, cut-off effects in the potential appear to be

small. The scale r0/a can be determined with precision better than 1%. We

observe large effects due to dynamical fermions in the quantity c(r) defined in

Eq. (1.2).

As can be seen in Table 1 the error on the force grows faster with the distance

r as compared to the pure gauge case (see Table 2 of [18]). This effect is amplified

by r3 for the quantity c(r). It remains to be seen whether the inclusion of fermionic

correlators in the variational basis will lead to an improvement due to a larger

overlap with the ground state and the resulting earlier start of a plateau.

A precise study of the static potential is relevant for phenomenology in an
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indirect but important way. As reviewed in [51], there is an impressive effort

to apply potential non-relativistic QCD (pNRQCD) [52] to the top – anti-top

production in a future e+ e− collider and to many other processes. This effective

theory includes ultrasoft gluons and is treated perturbatively in the QCD coupling.

While the potential of pNRQCD is not the same as the static potential, the two

are intimately related; they differ only starting at NNNLO accuracy. It is hence

very useful to understand where the perturbative approximation to the static

potential can be trusted. Fig. 7 is a start for that, but a precise investigation

requires the removal of lattice artifacts [23]. In the future we plan to work both

on this connection to the perturbative regime of QCD and on the large distance,

string breaking, region.
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A Improvement

The tree level perturbative expression for the static potential, which is extracted

from Wilson loops where the static quark line is HYP smeared, is given in [4,53].

From it we easily derive the formula for rI defined from Eq. (2.15):

(4πr2I )
−1 = −[GHYP(r, 0, 0)−GHYP(r − a, 0, 0)]/a , (A.1)

with

GHYP(~r) =
1

a

∫ π

−π

d3p

(2π)3

∏3
j=1 cos(xjpj/a)× fsm(p)

∑3
j=1 p̂

2
j

, (A.2)

where ~r = (x1, x2, x3), p̂j = 2 sin(pj/2) and the smearing factor is

fsm(p) =

[

1−
α1

6

3
∑

j=1

p̂2jΩj0(p)

]2

(A.3)

Ωj0(p) = 1 + α2(1 + α3)−
α2

4
(1 + 2α3)(p̂

2
1 + p̂22 + p̂23 − p̂2j) +

α2α3

4

∏

τ 6=0,j

p̂2τ

(A.4)
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r/a rI/a r̃/a

HYP HYP2 HYP HYP2

4 3.48560 3.55805 3.97292 4.04631

5 4.45369 4.52674 4.93158 5.02609

6 5.44414 5.50073 5.91700 5.99970

7 6.44353 6.48362 6.91468 6.97787

8 7.44614 7.47397 7.91743 7.96350

9 8.44969 8.46922 8.92199 8.95537

10 9.45331 9.46734 9.92696 9.95146

11 10.4567 10.4670 10.9318 10.9501

12 11.4598 11.4676 11.9362 11.9503

13 12.4625 12.4685 12.9403 12.9512

14 13.4649 13.4697 13.9440 13.9527

15 14.4671 14.4709 14.9472 14.9543

16 15.4690 15.4721 15.9502 15.9560

17 16.4707 16.4733 16.9529 16.9576

18 17.4723 17.4745 17.9553 17.9593

19 18.4737 18.4755 18.9575 18.9609

20 19.4750 19.4765 19.9595 19.9624

21 20.4762 20.4775 20.9613 20.9638

22 21.4772 21.4784 21.9630 21.9651

23 22.4782 22.4792 22.9645 22.9664

24 23.4791 23.4800 23.9659 23.9676

25 24.4799 24.4807 24.9672 24.9687

26 25.4807 25.4814 25.9685 25.9698

27 26.4814 26.4820 26.9696 26.9708

28 27.4820 27.4826 27.9706 27.9717

29 28.4827 28.4831 28.9716 28.9726

30 29.4832 29.4837 29.9726 29.9734

31 30.4838 30.4842 30.9734 30.9742

32 31.4843 31.4846 31.9742 31.9749

Table 2: The values of the improved distances rI/a Eq. (A.1) and r̃/a Eq. (A.5) extrap-

olated to L/a → ∞ for the case of HYP and HYP2 smearings. We show 6 significant

digits for all values of r/a, where the last digit is rounded.
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(fsm = 1 for unsmeared static quark lines).

The distance r̃ defined from Eq. (2.17) is given in the case of HYP smeared

static quarks by

r̃−3 = 2π[GHYP(r + a) +GHYP(r − a)− 2GHYP(r)]/a
2 . (A.5)

In practice we evaluate the momentum integral in Eq. (A.2) by discrete momentum

sums over pj = 2πnja/L, nj = 0, 1, . . . , L/a− 1. In Table 2 we quote the results

for rI/a and r̃/a obtained from extrapolations L/a→ ∞. The latter are done with

the method explained in Appendix D of [54] and we consider lattice sizes larger

than L/a = 128 up to L/a = 512. Due to the symmetry under pj → −pj of the

integrand only odd powers of a/L can appear in the expansion in powers of a/L

and in general this evaluation of the integral is the application of a trapezoidal

rule, which has discretization errors of order (a/L)2. Thus the leading correction

is s1(a/L)
3. The data for rI/a and r̃/a are very well fitted by a polynomial

s0+ s1(a/L)
3+ s2(a/L)

5 and we added terms s3(a/L)
7+ s4(a/L)

9 to estimate the

systematic error of the extrapolations. In Table 2 we list the extrapolated values

with six significant digits.

B Perturbation theory for c(r)

We consider QCD with Nf massless dynamical quark flavors. The quantity c(r)

in Eq. (1.2) defines a renormalized coupling (CF = 4/3),

ḡ2c (µ) = −
4π

CF
c(r) , µ = 1/r . (B.1)

It is very similar to ḡ2qq(µ) =
4π
CF
r2F (r) , µ = 1/r discussed in [50]. The relation is

ḡ2c = ḡ2qq + ḡqqβqq . (B.2)

For a perturbative evaluation of one-scale quantities such as c(r) it is natural8 to

just integrate the renormalization group equation

µ
d

dµ
ḡc(µ) = βc(ḡc(µ)) . (B.3)

We do this in the precise form of

Λc

µ
=

(

b0ḡ
2
c

)−b1/(2b20) e−1/(2b0 ḡ2c ) exp

{

−

∫ ḡc

0

dx

[

1

βc(x)
+

1

b0x3
−

b1
b20x

]}

,

(B.4)

8It has also been observed in more than one case that it also yields a good perturbative

description of the non-perturbative behavior.
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where for βc the truncated perturbative expansion is inserted, but the integral is

(numerically) evaluated as it stands. The Lambda-parameter in the c-scheme is

Λc = e−1/2Λqq = ΛMSe
k1/(8πb0)− 1/2 , (B.5)

where k1 = 1
4π
(a1 + a2Nf), a1 = −35/3 + 22γE and a2 = 2/9 − 4γE/3 [55] . We

now turn to the perturbative beta function.

B.1 Perturbative beta function in the c-scheme

The expansion of the potential in the MS coupling is now known to a high accuracy.

After the ḡ6
MS

term [56, 57], the resummation of the infrared divergent diagrams

appearing first at the next order was performed [52,58], yielding a ∼ ḡ8
MS

log(ḡ2
MS

)

term. Recently also the full three-loop computation was finished by two groups

[59, 60]. Due to the ḡ8
MS

log(ḡ2
MS

) term in the potential [52, 58], the beta function

has a perturbative expansion

βc(ḡc) = −ḡ3c [
3

∑

n=0

b(c)n ḡ2nc + b
(c)
3,l ḡ

6
c log(CAḡ

2
c/(8π)) + O(ḡ8c )] , (B.6)

with the universal coefficients (CA = 3)

b
(c)
0 = b0 =

1

(4π)2
(11CA/3− 2Nf/3) , (B.7)

b
(c)
1 = b1 =

1

(4π)4
(34C2

A/3− 10CANf/3− 2CFNf) . (B.8)

We now describe how the non-universal coefficients are obtained from the

results in the literature. Our starting point is Eq. (40) of [61], which is the

expansion of the static potential V (r), denoted “static energy” in [61], in the

MS strong coupling αs = ḡ2
MS

(1/r)/(4π) derived from the above mentioned work.

Introducing the notation V (r) = −CFG(αs)/r, we obtain an expansion for αc =

ḡ2c/(4π) :

αc =
1

2
r2G′′(αs)− r G′(αs) +G(αs) (B.9)

= αs + d1 α
2
s + d2 α

3
s + d3 α

4
s + d3,l α

4
s ln

(

CAαs

2

)

+O(α5
s ) , (B.10)

where the primes in the first equation mean derivatives with respect to r and the

coefficients of the expansion are

d1 =
1

4π

(

ã1 − 3b0(4π)
2
)

, (B.11)
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d2 =
1

(4π)2
(

ã2,s + 4b20(4π)
4 − 3b1(4π)

4 − 6ã1b0(4π)
2
)

(B.12)

d3 =
1

(4π)3
(

a3 + 12ã1b
2
0(4π)

4 − 6ã1b1(4π)
4 + 10b0b1(4π)

6

−3b2(4π)
6 − 9ã2,sb0(4π)

2
)

, (B.13)

d3,l =
C3

A

12π
. (B.14)

The coefficients b2 and b3 of the beta function in the MS scheme, βMS(ḡMS) ∼

−ḡ3
MS

∑

n≥0 ḡ
2n
MS
bn, can be found in [62,63]. The coefficient ã1 is defined in Eq. (7)

and the coefficient ã2,s in Eq. (8) of [61], they both depend on Nf . The coefficient

a3 is

a3 =
44

3CF

(

c0(Nf) + 2γEc1(Nf) + (4γ2E + π2/3)c2(Nf)

+(8γ3E + 2π2γE + 16ζ(3))c3(Nf)
)

(B.15)

where

c0(Nf) = 219.59 +
(

a
(1)
3 Nf + a

(2)
3 N2

f + a
(3)
3 N3

f

)

/43 . (B.16)

From [61, 64] we get9 c0(0) and the coefficients a
(1)
3 , a

(2)
3 and a

(3)
3 are given in Eq.

(6) of [65]. The coefficients c1(Nf), c2(Nf) and c3(Nf) are defined in Eqs. (10),

(11) and (12) of [66] respectively.

The non-universal coefficients b
(c)
2 and b

(c)
3 as well as the coefficient b

(c)
3,l may

now be computed by differentiating βc = 2π
ḡc
µdαc

dµ
with αc of Eq. (B.10), where

the MS beta function is used. This first yields βc as a function of αs from

which we change to βc(ḡc) by inserting the inverted Eq. (B.10), αs = αc + . . . −

d3,l α
4
c ln

(

CAαc

2

)

.

Carrying this out in MAPLE we find

b
(c)
2 = b2 − 5b30 + ã2,sb0(4π)

−4 − ã1b1(4π)
−2 − ã21b0(4π)

−4 (B.17)

= (4π)−3[0.98165− 0.16738Nf − 0.00212N2
f + 0.00026N3

f ]

b
(c)
3 = b3 − 2ã1b2(4π)

−2 + 2a3b0(4π)
−6 +

1

3
C3

Ab0(4π)
−4 − 25b20b1

−6ã1ã2,sb0(4π)
−6 + ã21b1(4π)

−4 − 36b40 + 4ã31b0(4π)
−6 (B.18)

= (4π)−4[0.12206 + 0.09696Nf − 0.01899N2
f + 0.0004458N3

f

+0.0000195N4
f ]

b
(c)
3,l =

2

3
C3

Ab0(4π)
−4 = (4π)−4[1.25385− 0.07599Nf] . (B.19)

9We thank the authors of [61] for communication on the value of c0(0).
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Figure 8: The perturbative running of the quantity c(r) obtained from Eq. (B.4) using

the 2-loop (dotted lines), 3-loop (dashed lines) and 4-loop (continued lines) beta function

βc(ḡc) for Nf = 0, 2.

As in the MS scheme the coefficients (4π)n+1bn are of order one and thus the beta

fuction has a well-behaved expansion up to couplings αc of the order of 1/3. The

perturbative running of c(r) is shown in Fig. 8.

The ”asymptotic convergence” of the series Eq. (B.10) is not good. It can

be substantially improved by matching the couplings at a different scale, i.e.,

by expressing αc(s/r) as a function of αs(1/r) and choosing s = s0 = Λc/ΛMS

(“fastest apparent convergence”, cf. [50, 55]). The resulting curves for αc are

hardly distinguishable from the ones shown in Fig. 8.

B.2 Perturbative beta function in the qq-scheme

In the same way one obtains the beta function in the qq-scheme. We update the

formulae given in [55] to include the 4-loop term:

b
(qq)
2 = (4π)−3[1.6524− 0.28933Nf + 0.00527N2

f + 0.00011N3
f ] (B.20)

b
(qq)
3 = (4π)−4[4.94522− 1.07965Nf + 0.079107N2

f − 0.002774N3
f

+0.000051N4
f ] (B.21)
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b
(qq)
3,l =

2

3
C3

Ab0(4π)
−4 = (4π)−4[1.25385− 0.07599Nf ] . (B.22)

Perturbation theory in the c-scheme appears much better behaved than in the

qq-scheme. Since this can only be considered an accident we come to the same

conclusion as [55], namely that the perturbative description of the static poten-

tial is accurately valid only at rather small values of r, where αqq(1/r) ≈ 1/4.

Unfortunately these distances are close to present lattice spacings. In particular

the data presented in this paper are not good enough to extract the Λ parameter

through Eq. (B.4) or variants thereof.
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[42] M. Lüscher, JHEP 12 (2007) 011, 0710.5417.

[43] B. Leder and F. Knechtli, (2010), arXiv:1012.1141.

[44] S. Schaefer, R. Sommer and F. Virotta, (2010), arXiv:1009.5228.

[45] ALPHA, U. Wolff, Comput. Phys. Commun. 156 (2004) 143, Erratum-

ibid.176:383,2007, hep-lat/0306017.

[46] E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane and T.M. Yan, Phys. Rev.

D21 (1980) 203.

[47] J.L. Richardson, Phys. Lett. B82 (1979) 272.
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[57] Y. Schröder, Phys. Lett. B447 (1999) 321, hep-ph/9812205.

[58] N. Brambilla, A. Pineda, J. Soto and A. Vairo, Phys.Rev. D60 (1999) 091502,

hep-ph/9903355.

[59] A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Phys.Rev.Lett. 104 (2010)

112002, arXiv:0911.4742.

[60] C. Anzai, Y. Kiyo and Y. Sumino, Phys.Rev.Lett. 104 (2010) 112003,

arXiv:0911.4335.

[61] N. Brambilla, A. Vairo, X. Garcia i Tormo and J. Soto, Phys.Rev. D80 (2009)

034016, arXiv:0906.1390.

[62] T. van Ritbergen, J. Vermaseren and S. Larin, Phys.Lett. B400 (1997) 379,

hep-ph/9701390.

[63] M. Czakon, Nucl.Phys. B710 (2005) 485, hep-ph/0411261.

[64] N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo, Phys.Rev.Lett. 105

(2010) 212001, arXiv:1006.2066.

[65] A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Phys.Lett. B668 (2008)

293, arXiv:0809.1927.

[66] F. Chishtie and V. Elias, Phys.Lett. B521 (2001) 434, hep-ph/0107052.

26


	1 Introduction
	2 Techniques
	2.1 Static potential with HYP smearing
	2.2 Variational basis
	2.3 Tree level improved force 

	3 Results 
	4 Conclusions
	A Improvement 
	B Perturbation theory for c(r) 
	B.1 Perturbative beta function in the c-scheme
	B.2 Perturbative beta function in the qq-scheme


