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Abstract

We study anomaly mediated supersymmetry breaking in type IIB string theory and use our
results to test the supergravity formula for anomaly mediated gaugino masses. We compute 1-loop
gaugino masses for models of D3-branes on orbifold singularities with 3-form fluxes by calculating
the annulus correlator of 3-form flux and two gauginos in the zero momentum limit. Consistent
with supergravity expectations we find both anomalous and running contributions to 1-loop gaugino
masses. For background Neveu-Schwarz H-flux we find an exact match with the supergravity
formula. For Ramond-Ramond flux there is an off-shell ambiguity that precludes a full matching.
The anomaly mediated gaugino masses, while determined by the infrared spectrum, arise from an
explicit sum over UV open string winding modes. We also calculate brane-to-brane tree-level gravity
mediated gaugino masses and show that there are two contributions coming from the dilaton and
from the twisted modes, which are suppressed by the full T 6 volume and the untwisted T 2 volume
respectively.
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1 Introduction

Supersymmetry is both one of the most promising phenomenological ideas for Beyond-the-Standard-
Model physics and also an apparently crucial component of consistent ultraviolet physics. The
structure of supersymmetry breaking is an area where experimental results within the next few
years could plausibly give information as to the nature of Planck scale physics, in particular through
gravity mediation. This makes a thorough understanding of supersymmetry breaking essential, both
to understand observations from the Large Hadron Collider and to connect these observations with
theories of fundamental physics.

Once supersymmetry is broken in some sector it will be mediated to the observable sector thereby
inducing soft masses. Within a 4-dimensional N = 1 supergravity framework the Lagrangian is
specified by three functions, the holomorphic superpotential W , the holomorphic gauge kinetic
function f and the real Kähler potential K. The soft terms can be expressed in terms of the above
functions and the tree-level formulae for gravity mediation are well known, being found in e.g. [1].
For example the tree-level gaugino masses are given by

M tree
1/2 =

1

2Re f
F i∂if , (1)

with F i the F-terms for the supersymmetry breaking fields.

Tree-level expressions for soft terms are however often insufficient. This is particularly the case
if the tree-level soft terms vanish. While this will not occur for generic supergravity theories it does
occur for certain special cases, for example no-scale or sequestered supergravities. However these
are the cases relevant for string compactifications, where the effective supergravity often takes a
no-scale structure. In such cases the form of loop contributions to soft masses is crucial.

Loop corrections to soft masses are closely related to loop corrections to physical couplings, as
is known in field theory through techniques of analyticity in superspace [2, 3]. At 1-loop gauge
couplings are modified not just by conventional running but also by anomalous contributions that
are only generated at the loop level. In supergravity these anomalies arise from (for example) the
Konishi or Kähler-Weyl anomalies associated to non-canonical normalisation for matter or metric
kinetic terms. For the physical gauge couplings these are captured by the Kaplunovsky-Louis
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formula [4, 5]

g−2
a (Φ, Φ̄, µ) = Re(fa(Φ)) +

(
∑

r nrTa(r)− 3Ta(G))

8π2
ln

(

MP

µ

)

+
T (G)

8π2
ln g−2

a (Φ, Φ̄, µ)

+
(
∑

r nrTa(r)− T (G))

16π2
K̂(Φ, Φ̄)−

∑

r

Ta(r)

8π2
ln detZr(Φ, Φ̄, µ). (2)

Here a is a gauge group index, µ is the running scale and the matter kinetic matrix Z is only for
fields charged under the gauge group.1 One would expect that anomalies in the gauge couplings also
appear as anomalous contributions to gaugino masses. Anomalous gaugino masses appear implicitly
in [4], where the gaugino masses are said to be given by

Ma =
1

2
F i∂i ln g

−2
a , (3)

with g−2
a given by (2).

One further source of anomalous loop-generated soft masses was proposed by Randall and Sun-
drum and by Giudice, Luty, Murayama and Rattazzi in [6,7]. These are associated to the conformal
compensator of supergravity (or F-terms associated to the supergravity multiplet) and give a con-
tribution to gaugino masses of

Ma = g2a
ba

16π2
m3/2 = − g2a

16π2
(3T (G)− T (R))m3/2. (4)

This contribution is often called ‘anomaly mediation’. Within general supergravity theories the
physics of this was further studied in [8–11]. In [8] an expression was given for the 1-loop anomaly-
induced gaugino masses in a general supergravity theory:

m1/2 = − g2

16π2

[

(3TG − TR)m3/2 − (TG − TR)KiF
i − 2TR

dR
F i∂i (ln det Z)

]

. (5)

This includes both the term (4) and also some of the terms of (3).

Let us establish our conventions on nomenclature. The gaugino mass contribution of (4) is often
simply called ‘anomaly mediation’ and much of the phenomenological analysis of anomaly mediation
makes use purely of this term. However the other terms in (5) are also generated by anomalies and
are of similar importance to (4), with a characteristic magnitude of the gravitino mass suppressed
by a loop factor. These terms are phenomenologically just as important as the term given in (4)
and there is no real reason to ignore them. We shall use ‘anomaly mediation’ to refer to all terms
that contribute at 1-loop to gaugino masses and have magnitudes that are characteristically given
by the gravitino mass suppressed by a loop factor.

The Kaplunovsky-Louis expression (2) has been studied extensively in the context of string
theory, in particular in the context of gauge threshold corrections. However the same is not true
of the expression (5). In fact there has been only a very limited direct study of anomaly-mediated

1The TR and TG stand for the usual quantities appearing in the beta functions and dR is the dimension of the
representation.
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gaugino masses in string theory. This is surprising. First, gravity-mediated supersymmetry break-
ing is one of the most plausible loci for string theory and phenomenology to intersect. Secondly,
anomaly mediation is associated to the UV physics of supergravity and superstring theory is the
only known UV consistent completion of supergravity. Therefore studying how anomaly media-
tion arises within superstring theory is of crucial importance to having a complete picture of the
phenomenon. Finally, string theory has the useful feature that it is calculationally decoupled from
supergravity. The covariant Neveu-Schwarz-Ramond formalism of the superstring is in some sense
a dual calculational formalism to supergravity, as the spacetime symmetries are not manifest on the
worldsheet. The calculations therefore provide a check of the supergravity results in a technically
independent fashion.

The need for an understanding of anomaly mediation in string theory is further amplified by
some previous studies in the literature. Indeed, as far as we are aware, the only direct study of
anomaly mediation in string theory prior to this work was performed in [12,13] in which it was argued
that anomaly mediation does not occur in perturbative string theory.2 More recently, arguments
were also presented in [14,15] that the ‘superconformal anomaly’ term in (5) directly proportional
to m3/2 is absent.

In this paper we perform the first detailed study of the expression (5) in a string theory context.
The overall aim of the paper is to compute 1-loop gaugino masses for gauge theories living on
D-branes in a supersymmetry breaking flux background. Our setup is that of D3 branes on a Z4

orbifold singularity as studied in [16]. We study annulus diagrams with two gaugino vertex operators
on the boundary. The flux background can be accounted for by the insertion of the appropriate
vertex operators in the bulk corresponding to 3-form fluxes (NSNS or RR). As is well known, the
worldsheet NSR theory cannot be consistently formulated in the presence of background RR fluxes
(the RR vertex operators cannot be exponentiated into the worldsheet action) and even an NSNS
flux background is difficult to work with. However the flux vertex operators are well-defined and
we can probe the 1-loop gaugino masses in a fluxed background by using the CFT appropriate
to a fluxless background and inserting the flux vertex operator. In a similar way, we can probe
supersymmetry breaking effects in a supersymmetric background. This same approach has been
used in [17] to study the tree-level gaugino masses on D3 branes that are induced by fluxes. At a
technical level, the study of 1-loop gaugino masses then requires the computation of the correlators
〈λλH3〉 and 〈λλF3〉 on the annulus.

There is a non-zero amount of technical machinery that goes into this computation. In section
2 we review the basic CFT building blocks that are needed for the computation. This section
establishes notation and convention, as well as reviewing bosonic and fermionic correlators on the
torus and annulus. Although most of this is standard there are some results which we have not
otherwise found in the literature, for example the twisted bosonic correlators. In section 3 we
introduce the model that we study throughout this paper, fractional D3 branes on the C

3/Z4

orbifold.

In section 4 we study an example of tree-level gravity mediated soft terms: the annulus correlator
of an open string superpotential with two gaugini, 〈φ1φ2φ3λλ〉. The ‘susy breaking sector’ of φ1φ2φ3

2There are of course many more papers which study the properties and phenomenology of anomaly-mediated
gaugino masses in the effective supergravities that descend from string theory.
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and the gaugini λλ are on separate brane stacks. This is a toy model of the communication of susy
breaking from a distant ‘susy breaking brane’ to a visible sector. Although this is an annulus
diagram it turns out it should actually be regarded as tree-level supersymmetry breaking, mediated
by the closed strings exchanged in the open string ultraviolet limit. The field theory expectations
can then be found via tree-level supergravity. This amplitude (an annulus 5-point amplitude) is
technically quite similar to the flux computations that are our ultimate focus. We use it as a test
both of the CFT formalism and also to show that susy breaking masses can be accurately found by
computations performed in a supersymmetric background. We find agreement between the string
computations and the supergravity expectations.

In section 5 we come to our main focus, the test of the formula (5) and the study of 1-loop gaugino
masses in string theory. String theory makes no reference to Kähler potentials or superpotentials
and so one could never ‘derive’ the formula (5) from a string computation. Instead we study the
supergravity predictions of (5) for 1-loop gaugino masses from background NS-NS and RR 3-form
fluxes, and compare with the results of the string computations.

In appendix A we study 1-loop gauge threshold corrections for gauginos. This is a new calcula-
tion but its main purpose is simply to serve as a check on our formalism. In appendix B we present
an analysis of the string coupling for the two-gaugini three-boson tree-level gravity mediation am-
plitude to show that although it is an annulus amplitude it still corresponds to tree-level physics. In
appendix C we present an important check on the anomaly mediated mass induced by NS H-flux by
calculating a 4-point amplitude where one of the gaugini is decomposed into a scalar and a fermion.
In appendix D we present the details of the RR-flux calculation. Finally in appendix E we collect
some useful mathematical expressions.

Summary of results regarding anomaly mediation

As the calculations are technically involved we present here a brief summary of our methodology
and key results regarding the anomaly mediation formula (5).

Firstly we find that the formula (5) is incomplete and actually needs an additional term corre-
sponding to the supersymmetrisation of the NSVZ term in the gauge couplings:

m1/2 = − g2

16π2

[

(3TG − TR)m3/2 − (TG − TR)KiF
i − 2TR

dR
F i∂i (ln det Z) + 2TGF

I∂I ln

(

1

g20

)]

.

(6)
This term has previously appeared in the expression (3) (from [4]) and also in field theory studies
of higher-order contributions to gaugino masses [3], which is related to earlier work of [18]. In the
string computation the presence of this term can be discerned almost trivially from the requirement
for the group factors TG and TR to match that in the Chan-Paton trace. It is an interesting test of
(6) that the relative coefficients of the last three terms of (6) must take the form they do to match
the Chan-Paton traces.

We pay particular attention to verifying the presence of the term (4) which is the first term of
(6). This is most accurately probed by considering only NSNS flux. It turns out that in this case
there is a cancellation between the Kähler, Konishi and NSVZ anomalies (the last three terms of
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(6)). A non-zero anomalous mass term in the string computation can then occur if and only if the
term (4) is present. We do find such an anomalous mass term, with a coefficient that is proportional
to the beta function of the gauge theory, exactly as predicted. Further, the supergravity formula
also predicts the relative sign and magnitude of this term to the 1-loop running mass of the gauginos
which is probed by the same string calculation and indeed we find an exact match also for this.
Therefore the string calculation provides two independent checks on the validity of the formula (6).

The anomaly mediated mass term arises as follows in the string calculation. The annulus ampli-
tude 〈λλH3〉 gives the 1-loop gaugino mass and so includes both the anomaly mediated contribution
and the running mass. We find that up to unimportant overall factors the amplitude takes the form

A ∼ (3TG − TR)m3/2

∫ ∞

0

dt

t

(

−Z(t) + t
d

dt
Z(t)

)

. (7)

The parameter t is the annulus modulus, where t → 0 is the open string UV or the closed string
IR (which is a long cylinder), and t → ∞ is the open string IR and closed string UV (which is a
thin annulus). Z(t) is the internal N = 2 classical partition function which is a sum over winding
modes in the untwisted torus of the orbifold

Z(t) = ZInt,Cl(t) =
∑

i

∑

n,m

δie
− t

4πα′ |∆Xi(m,n)|2 ,

∆Xi(m,n) ≡ 2π

√

Im T

Im U
(n+ Um+Xi) . (8)

Here n and m sum over the winding modes, T and U are the torus (along the untwisted direction)
Kähler and complex-structure moduli. We have added a sum over i which stands for the different
brane stacks present in the construction so that Xi denote the separation between the gaugino
brane stack and another stack at the other end of the cylinder. We denote the gaugino brane stack
i = 0 and the sum over all the states includes the Xi=0 = 0 states and also the states which are
strings stretching between the stack and other ones required for tadpole cancellation. The factor δi
accounts for the Chan-Paton traces so that tadpole cancellation implies Z (t→ 0) → 0.

The amplitude can be integrated exactly and gives

∫ ∞

0

dt

t

(

−Z(t) + t
d

dt
Z(t)

)

= [Z (∞)− Z (0)]−
∫ ∞

0

dt

t
Z(t) . (9)

The first term is the anomaly mediated mass and the second term is the running mass, with the
relative factors exactly matching the supergravity prediction. We concentrate here on the first
term. Tadpole cancellation implies that in the UV t→ 0 limit the partition function vanishes which
guarantees finiteness and so

Z(0) = 0 . (10)

In the IR t→ ∞ only the massless modes can contribute which gives

Z(∞) = 1 . (11)
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It is worth looking a little closer at the anomaly mediated contribution

Z(0)− Z(∞) = lim
t→0

∑

∆Xi 6=0

∑

n,m

e−
t

4πα′ |∆Xi(m,n)|2 (12)

≡
∫ ∞

0
dt
∑

i

∑

n,m

δi
|∆Xi(m,n)|2

4πα′ e−
t

4πα′ |∆Xi(m,n)|2 . (13)

We see that although the UV part Z(0) vanishes leaving just a contribution from the IR piece
Z(∞), we can think of this as the contribution from all the heavy modes not present in the IR limit
i.e. Z(0) = 0 only if we also include the IR modes. Another way to see this is to note that in (13)
all contributing terms must have ∆Xi 6= 0 and so arise from a heavy string mode with non-zero
winding. Furthermore since values of t larger than |∆Xi|−2 give only an exponentially suppressed
contribution, we see the dominant contribution arise from values of the loop parameter t ∼ |∆Xi|−2.
In that sense the anomaly mediated contribution comes purely from the heavy (open string) modes
in the theory that lead to the finite UV completion. Of course in a closed string picture these are
related to light IR degrees of freedom.

We conclude here the brief summary and refer to the main text for more details. We do note
though that for the RR flux the string computation is substantially more complicated and we are
only able to recreate some of the expected results. While we do obtain both anomalous and running
masses there is an ambiguity in the off-shell continuation that precludes extracting full numerical
results. We also note that in both the RR and NSNS cases there is a technical issue with picture
changing both gaugini, for which we cannot obtain any anomalous mass term. We discuss these
issues in much more detail in the text.

To follow the calculations it is essential to read section 2 and the mathematical appendix E. A
reader purely interested in anomaly mediation and 1-loop susy breaking could skip section 4 and
just focus on 5. If uninterested in the details of the string computations we suggest reading simply
the sections on supergravity predictions and then the overall result of the string computation.

2 CFT Building Blocks

The computation of the amplitudes requires the evaluation of various CFT correlators between
world-sheet fields that are introduced through the vertex operators. In this section we collate the
relevant correlators and also other miscellaneous CFT results that are used. Some of the results
presented, such as the twisted bosonic correlators, are new to our knowledge while others can be
found within the list of useful references [19–28]. All the amplitudes evaluated in this paper are
cylinder (annulus) amplitudes and so all correlators are on this topology. We therefore begin with
a brief description of this geometry before describing the relevant correlators.

The cylinder has a single real modulus t and is parameterised by a complex coordinate z.
The circles at each end of the cylinder are positioned at Re (z) = 0, 12 and are parameterised by
0 ≤ Im z ≤ t

2 . The long cylinder limit is given by t → 0 and corresponds to the open string UV
and the closed string IR. The long strip limit is t → ∞ and gives the open string IR and closed
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string UV. There is a single conformal Killing vector corresponding to translations parallel to the
boundary.

The target space coordinates are the real worldsheet bosons xM (z, z̄) where M = 0, ..., 9. We
further decompose xM = {xµ, xm} with µ = 0, .., 3 denoting external directions and m = 4, .., 9
denoting internal directions. It will also be useful to group the directions into complex pairs and
we define

Xi = x2i−2 + ix2i−1 , (14)

where i = 1, ..., 5. To save on clatter we usually drop the indices on the coordinates unless needed
and denote

X = x1 + ix2 . (15)

There are two basic boundary conditions that can be imposed at each end of the cylinder

Neumann: ∂nX(z, z̄) ≡ 1

2
(∂ + ∂̄)X(z, z̄) = 0, (16)

Dirichlet: ∂tX(z, z̄) ≡ 1

2
(∂ − ∂̄)X(z, z̄) = 0. (17)

We have also defined the normal and tangential derivatives. In principle we can consider different
boundary conditions at each end of the annulus but since we are only studying D3 branes we restrict
either to NN or DD boundary conditions. Henceforth to save on clatter we denote the coordinate
dependence X(z) without implying holomorphic properties.

The cylinder can be obtained from the torus by quotienting under the identification z → 1− z̄,
with boundaries at z = 1− z̄. This is useful for relating bosonic (X(z, z̄)) correlators on the torus to
those on the cylinder. The method of images can then be used to obtain the cylinder correlators by
starting with torus correlators and adding an image field at 1− z̄ for any field at z. The sign of the
image correlator is positive for Neumann boundary conditions and negative for Dirichlet boundary
conditions. The torus modular parameter τ is related to the cylinder modulus by τ = it

2 .

2.1 Vertex operators

The amplitudes are calculated by inserting the vertex operators of appropriate pictures into the
partition function integral. In this section we briefly summarise the expressions for the vertex
operators. We also note that we are always calculating cylinder amplitudes for which the ghost
charge should be zero so that the sum of all the vertex operator ‘pictures’ should vanish.

The bosonic vertex operator for a four-dimensional scalar φ is given in the (−1) picture as

V−1
φ (z) = tae−φψieik·x (z) . (18)

Here z denotes the point on the worldsheet at which the vertex operator is inserted (which we
integrate over). The scalar Chan-Paton wavefunction is denoted ta and the field φ is the ghost from
bosonising the (β, γ) CFT. The field ψi can be bosonised in terms of free fields Hi so that

ψi = eiHi(z) . (19)
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Here i labels the complex direction. Note that this bosonisation is purely local as the ψi correlators
depend on the spin structure and so cannot be globally bosonised. However these amplitudes (which
we give in section 2.3 below) are fixed uniquely in terms of this local bosonisation. For economy of
notation we typically suppress the CP index and wavefunction so that for a four-dimensional scalar
we have the (-1)-picture vertex operator

V−1
φ (z) = e−φψieik·x (z) . (20)

The four-dimensional gauge field vertex operator is given by

V−1
A (z) = Aae−φǫµψ

µeik·x (z) . (21)

Here again ψµ can be bosonised with H-charge of ±1 and ǫµ is the polarisation vector of the gauge
boson which satisfies ǫ · k = 0.

The fermion vertex operator in the −1
2 picture is given by

V− 1
2

λ (z) = λae−
φ
2 S10e

ik·x (z) . (22)

Here S10 is the ten-dimensional spin field which can be locally bosonised to

S10 =

5
∏

i=1

eiq
iHi , (23)

where the H-charges qi are given by the spin ±1
2 of the complex direction components of the spinor.

To bring the amplitude into the appropriate zero ghost charge picture we can change pictures
following the prescription of Friedan, Martinec and Shenker [20] using

V i+1 (z) = lim
z→w

eφ(z,z̄)TF (z)V i (w) , (24)

where we have the picture changing operator

TF (w) =
1

2

(

ψi∂X
i
(w) + ψi∂X

i (w)
)

. (25)

In practice the picture changing is evaluated using the operator product expansions (OPE)

eiaH(w)eibH(z) = (w − z)ab ei(a+b)H(z) + ... , (26)

eiaφ(w)eibφ(z) = (w − z)−ab ei(a+b)φ(z) + ... , (27)

∂X (w) eikX(z) = − iα
′

2
k+ (w − z)−1 eikX(z) + ... , (28)

∂X (w) eikX(z) = − iα
′

2
k− (w − z)−1 eikX(z) + ... , (29)

where the ellipses denote less divergent terms. Recall that the Hi are free fields and so only
OPEs with the same direction are non-vanishing. We have also introduced the notation of complex
momenta k± = k1 ± ik2 and defined

kX (z) ≡ 1

2

(

k+ ·X (z) + k− ·X (z)
)

, (30)

so that in complex notation we can write

k · x (z) = kiX
i (z) . (31)
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2.2 Bosonic Correlators

We first evaluate the bosonic correlators, namely those involving the worldsheet bosons X(z, z̄).
Since the bosons are free worldsheet fields, for a correlator to be non-vanishing it must involve the
same complex directions. Therefore such a correlator can be labeled by the associated direction:
correlators involving X1,2 are labeled external, while X3,4,5 are internal.

Internal correlators are either twisted or untwisted. Twisted correlators involve directions in
which an orbifold twist acts whereas untwisted directions have no orbifold action. Twisted correla-
tors have no zero modes (as these are projected out by the orbifold) and so there is only a quantum
contribution to the correlator coming from the path integral over the string oscillator modes. In
addition to the quantum contribution untwisted correlators may also have a classical contribution
coming the zero mode solutions. For the case of D3 branes studied here, this is associated to winding
modes in the compact space.

For external modes with Neumann boundary conditions, the classical contribution instead comes
from momentum modes whereas the quantum correlator is the same as for internal directions except
with Neumann boundary conditions. We now proceed to calculate the correlators according to the
preceding classification.

2.2.1 Internal untwisted quantum correlators

The quantum bosonic correlator on the cylinder can be derived from that on the covering torus
(denoted by a subscript T ) which reads

〈X(z)X(w)〉T ,Qu = −α′ log |θ1(z − w)|2 + 2πα′

Im τ
(Im (z − w))2 . (32)

Here τ is the torus modular parameter. For comparison with say [19] note that X here is a
complexified coordinate. As only correlators involving the same directions are non-vanishing

〈X(z)X(w)〉T ,Qu = 0 , (33)

as the two real directions give equal contributions of opposite sign. From (32) one can obtain
correlators on the cylinder (denoted by a subscript A) through use of the method of images.

〈X(z)X(w)〉A =
1

2

[

〈X(z)X(w)〉T ± 〈X(1 − z̄)X(w)〉T ± 〈X(z)X(1− w̄)〉T + 〈X(1 − z̄)X(1− w̄)〉T
]

,

(34)
where the plus sign applies for Neumann boundary conditions and the minus sign applies for Dirich-
let boundary conditions. We can write the Neumann and Dirichlet correlator explicitly as

〈X(z)X(w)〉NA,Qu = −α′
(

log |θ1(z − w)|2 + log |θ1(z + w)|2
)

+
8πα′

t
(Im (z − w))2 , (35)

〈X(z)X(w)〉DA,Qu = −α′
(

log |θ1(z − w)|2 − log |θ1(z + w)|2
)

. (36)

Here we have used the relation τ = it
2 for the modular parameters of the cylinder and the covering

torus. The Dirichlet correlator has no zero mode since the string center of mass is fixed, whereas
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for Neumann boundary conditions the string can take any position. Note also that when restricted
to the boundary the Dirichlet correlator vanishes

〈X(z)X(w)〉DA,Qu

∣

∣

Boundary
= 0 . (37)

Vertex operator computations with the bosonic fields normally involve not the bare fields but
rather their derivatives. For operators on the boundary, under Neumann boundary conditions the
vertex operators involve tangential derivatives ∂tX whereas for Dirichlet boundary conditions vertex
operators involve normal derivatives ∂nX. The relevant boundary correlators are

〈∂tX(z)∂tX(w)〉NA,Qu = −α
′

2
(∂z∂w log θ1(z − w) + c.c.) +

4πα′

t
, (38)

〈∂nX(z)∂nX(w)〉DA,Qu = −α
′

2
(∂z∂w log θ1(z − w) + c.c.) . (39)

It is important to note that the Neumann correlator (38) is obtained as the derivative of a function
periodic under z → z+ it

2 , and is therefore exact on integration around the boundary of the annulus:

∫ it
2

0
dz 〈∂tX(z)∂tX(w)〉NA,Qu = 0. (40)

As (38) and (39) differ only by the zero mode term this also implies that

∫ it
2

0
dz 〈∂nX(z)∂nX(w)〉DA,Qu = −2πiα′. (41)

We will also encounter correlators involving a single derivative but with some of the operators
being closed string vertex operators inserted in the bulk of the cylinder. If we denote boundary
positions by zi and bulk position with w (for left moving and w̄ for right moving) we have

〈

∂X(z1)X(z2)
〉N

Qu
= −2α′ θ′1(z1−z2)

θ1(z1−z2) ,
〈

∂X(z1)X(z2)
〉D

Qu
= 0 ,

〈

∂X(z1)X(w)
〉N

Qu
= −α′

[

θ′1(z1−w)
θ1(z1−w) +

θ′1(z1+w̄)
θ1(z1+w̄)

]

,
〈

∂X(z1)X(w)
〉D

Qu
= −α′

[

θ′1(z1−w)
θ1(z1−w) −

θ′1(z1+w̄)
θ1(z1+w̄)

]

,
〈

∂X(w)X(z1)
〉N

Qu
= −2α′ θ′1(w−z1)

θ1(w−z1) ,
〈

∂X(w)X(z1)
〉D

Qu
= 0 ,

〈

∂X(w)X(−w̄)
〉N

Qu
= −α′ θ′1(w+w̄)

θ1(w+w̄)
,

〈

∂X(w)X(−w̄)
〉D

Qu
= −α′ θ′1(w+w̄)

θ1(w+w̄)
.

(42)

2.2.2 Internal twisted quantum correlators

In some cases we also require bosonic correlators along directions that are twisted by the orbifold
action and satisfy

X(z + τ) = e−2πiθX(z) . (43)

Here τ can be the modulus parameter of the covering torus or the associated cylinder. To evaluate
the corresponding correlator we use the covering torus and then map it to the cylinder through the
method of images. We denote the correlator on the torus as

GT
θ (z − w) ≡ 〈∂X(z)∂X(w)〉T ,Qu . (44)

12



The correlator satisfies the following boundary conditions

GT
θ (z − w + τ) = e−2πiθGT

θ (z −w) ,

GT
θ (z − w + 1) = GT

θ (z − w) . (45)

We also know that since it involves two derivatives acting on the coordinate correlator it satisfies
the operator product expansion (OPE)

lim
z→w

GT
θ (z − w) ∼ α′

(z − w)2
+ α′〈T (0)〉 . (46)

where T (0) is the stress-energy tensor for the compact dimensions. There is no zero mode because
of the twist θ. These conditions are enough to determine the correlator exactly. First we use the fact
that any meromorphic function on a complex torus is given by a ratio of translated theta functions,
the particular ratio can be determined using the transformation property

θ1 (z + θ + τ) = e−πiτe−2πi(z+θ)θ1 (z + θ) . (47)

This gives3

GT
θ (z − w) ∼ α′

(

θ′1(0)
θ1 (z − w)

)2 [θ1 (z − w + θ − U) θ1 (z −w + U)

θ1 (θ − U) θ1 (U)

]

. (48)

Here and henceforth in this section ∼ denotes up to a constant. U is defined as the solution to

θ′1 (θ − U)

θ1 (θ − U)
+
θ′1(U)

θ1(U)
= 0 . (49)

This follows from the requirement that (48) matches the OPE (46) with no single poles. It is
manifest that (49) has solutions: the left hand side is a periodic function of U on the torus with
two poles, and since any meromorphic function on the torus has as many zeros as poles, it must
also have two zeros.4

There is a very useful way to write the twisted correlator (48):

GT
θ (z −w) ∼ −α′∂z

[

θ1(z − w + θ)

θ1(θ)

θ′1(0)
θ1(z − w)

]

. (52)

3Note that although the correlator GT
θ (z − w) is not a periodic function on the torus it does have the same phase

transformation as (48) and so the two can still be identified.
4We can check the result for the twisted correlator (48) by studying the θ → 0 limit which should lead to the

untwisted correlator (32) without the zero mode. Expanding (49) for small θ to first order gives the constraint

θ′′1 (U)

θ1(U)
−

(

θ′1(U)

θ1(U)

)2

= 0. (50)

This equation can be written as
∂z∂w log θ1(z − w)|±U = 0 , (51)

which implies that the untwisted correlator (32) has zeros at z − w = ±U . These are also the zeros of (48) in the
θ → 0 limit and so since the two functions share zeros and poles and have the same periodicity they can be identified.
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To see this, note that (52) has the correct double pole at z − w = 0, no single pole (z − w)−1 (the
two terms cancel upon expanding), and zeros when

θ′1(z − w + θ)

θ1(z − w + θ)
− θ′1(z − w)

θ1(z − w)
= 0 . (53)

Using (49) we see that this is solved by z−w+ θ = U and z−w = −U . We therefore see that (52)
has the same periodicity, zeros and poles as (48) and so the two must be identified.

To complete the check that this is indeed the correlator, we use the fact that [19]

1

4π
Re (〈T (0)〉) = ∂t logZ(t) . (54)

Here Ztw(t) is the twisted bosonic partition function which is given by

Ztw(t) =
η(it/2)

θ1(θ)
. (55)

From expanding (52) we find

GT
θ (z − w) ∼ α′

(z − w)2
− α′

[

1

2

θ′′1(θ)
θ1(θ)

− 1

6

θ′′′1 (0)
θ′1(0)

]

. (56)

For one compact twisted complex dimension the derivative of the bosonic partition function is

∂t logZtw =
1

8π

[

1

3

θ′′′1 (0)
θ′1(0)

− θ′′1(θ)
θ1(θ)

]

. (57)

Comparing the two above we find complete agreement.

Unlike the untwisted case the expression (52) is not a total derivative as it stands since the part
in the bracket is not periodic under z → z + τ , and so (52) does not integrate to zero around the
annulus. However when we use the twisted amplitudes in section 4.2 we will see that there is an
additional phase factor from the Chan-Paton matrices, and once this is taken into account (52) does
indeed integrate to zero.

Finally we use the method of images to construct the Neumann and Dirichlet correlators on the
cylinder which gives

〈∂tX(z)∂tX(w)〉NA,Qu,θ = 〈∂nX(z)∂nX(w)〉DA,Qu,θ =
1

2

(

GT
θ (z − w) + c.c.

)

. (58)

2.2.3 Internal classical correlators

There is also a classical contribution to the untwisted Dirichlet correlator 〈∂nX(z)∂nX(w)〉DA,Cl

which comes from the winding modes along the compact internal directions.5 We first of all evaluate

5There are no open string twisted winding modes and since we are considering only space-filling D3 branes there
are no internal Kaluza-Klein modes.

14



the partition function of the winding modes. This exists as part of the identity correlator 〈1〉 and
contributes as an overall factor even for the quantum correlator.

In general we can write the change in the target space coordinates as we go around a path C
on the string worldsheet as

∆X =

∫

C
dX =

∫

C

[

dz∂X + dz̄∂X
]

. (59)

We can split the path C into a component that comes from integrating around the circle on the
boundary of the cylinder A ≡ [0, it/2] and a component coming from integrating from one end of
the cylinder to the other B ≡ [0, 1/2]. The former contribution can be seen to vanish using the
Dirichlet boundary conditions

∫

A
dX =

∫ t/2

0
idy

[

∂X − ∂X

]

= 2

∫ t/2

0
idy ∂tX = 0 . (60)

The full contribution comes from the B path which gives

∆X =

∫

B
dX =

∫ 1/2

0
dx

[

∂X + ∂X

]

. (61)

Since the classical contribution is just linear on the worldsheet we can use (61) to write6

∆X = ∂X = ∂X . (62)

For a rectangular torus with diameters 2πR1 and 2πR2 we can write

∆X = (2πnR1 + x1) + i(2πmR2 + x2) , (63)

where x1+ ix2 is the location of a D3-brane on the other boundary or is zero for branes at the same
singularity. The winding numbers n and m are integers. For a complex torus this generalises to

∆X = 2π

√

Im T

Im U
(n+ Um+X0) , (64)

where T = iR1R2 sinα and U = R2
R1
eiα are the Kähler and complex structure moduli. The complex

D3 position is X0 ≡ 1
2π

√

Im U
Im T (x1 + ix2).

Let us first evaluate the partition function. The worldsheet action is given by

S =
1

2πα′

∫

d2z
1

2

(

∂X∂X + ∂X∂X
)

. (65)

Evaluating this over the cylinder we have
∫

d2z = 2
∫

1
2
0 dx

∫
t
2
0 dy so that from the classical contri-

bution we obtain

S =
1

2πα′
t

2
|∆X|2 . (66)

6The relation ∂X = ∂X comes from the fact that winding modes couple with opposite signs to left moving and
right moving sectors.
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Therefore the classical part of the partition function associated to the internal directions is given
by the sum over the winding modes

ZInt,Cl =
∑

n,m

e−
t

4πα′ |∆X(m,n)|2 . (67)

We can now evaluate the correlator

〈∂nX(z)∂nX(w)〉DA,Cl = 〈|∆X|2〉
=

∑

n,m

|∆X|2e− t
4πα′ |∆X(m,n)|2 . (68)

We note this can be written as

〈∂nX(z)∂nX(w)〉DA,Cl = −4πα′∂tZInt,Cl . (69)

This implies the full Dirichlet correlator (classical plus quantum parts) can be written as

〈∂nX(z)∂nX(w)〉DA,full = −4πα′(
1

t
+ ∂t)ZInt,Cl . (70)

2.2.4 Momentum exponential correlators and pole structures

We also encounter correlators involving exponentials eikX . These are most easily calculated using
real coordinates xM and momenta kM . The relevant correlator

〈
∏

i

eiki·x(z,z̄)〉 , (71)

is evaluated by contracting the scalars using the real forms7 of the cylinder correlators (35) and
(36). In general this is given by

∏

i<j

e−ki·kjG(zi−zj), (72)

where G(zi − zj) is the bosonic correlator.

However, we also provide more explicit expressions in the case we only require the Neumann
correlator in the limit zi → zj , where we can drop the zero mode piece of (35). This is given by

〈
∏

i

eiki·x(zi,z̄i)〉NA =
∏

i<j

∣

∣

∣

∣

θ1 (zij)

θ′1(0)

∣

∣

∣

∣

α′kikj

. (73)

We may also write (73) in complex co-ordinates and momenta as

〈
∏

i

eikiX(zj)〉NA =
∏

i<j

∣

∣

∣

∣

θ1 (zij)

θ′1(0)

∣

∣

∣

∣

α′

2 (k
+
i k

−

j +k−i k
+
j )

. (74)

7These are simply related to the complex versions by a factor of 1
2
.
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where we recall that the complex notation kiX (z) is defined in (30).

Another correlator that we require is

〈∂X(w)
∏

i

eikiX(zj)〉NA = −iα′∏

i<j

k+j
θ′1 (w − zj)

θ1 (w − zj)

∣

∣

∣

∣

θ1 (zij)

θ′1(0)

∣

∣

∣

∣

α′

2 (k
+
i k

−

j +k−i k
+
j )

, (75)

which can be deduced by acting on (73) with a derivative.

At this point we discuss a principle which greatly simplifies our calculations. The important
point is that since we are probing non-derivative terms in the action we do not need to know the full
amplitude but rather only its zero momentum limit ki → 0. Given this it seems naively that bosonic
correlators such as (75) vanish. However it is also possible to generate a pole in the amplitude which
when combined with the correlator (73) can generate inverse powers of momenta that cancel against
the momenta in the amplitude leaving a result that is non-vanishing in the zero momentum limit.
To see this consider the amplitude factor

A ⊃ lim
k1·k2→0

[

(k1 · k2)
∫

dz1

∣

∣

∣

∣

θ1 (z1 − z2)

θ′1 (0)

∣

∣

∣

∣

k1·k2 ( θ′ (0)
θ1 (z1 − z2)

)

]

=
(k1 · k2)
(k1 · k2)

= 1 , (76)

where we have used
θ1 (z)

θ′1 (0)
= z +O

(

z3
)

. (77)

The pole at z1 = z2 has canceled the vanishing momentum prefactor. In practice this means that
evaluating certain amplitudes can simply amount to analysing their pole structure.

2.3 Fermionic and Ghost Correlators

The amplitudes also involve correlators of spin fields, which after bosonisation as in (23) corre-
spond to correlators of H fields. This includes the case of the ψ correlators which are spin fields
with ±1 H charge. The correlators depend on the spin structure, denoted by indices (αβ) =
{(00) , (10) , (01) , (11)}, and read

〈
∏

i

eiaiH(zi)〉 = Kαβ





∏

i<j

(

θ1 (zij)

θ′1 (0)

)aiaj



 θαβ

(

∑

i

aizi + θI

)

, (78)

where θI is the orbifold twist in torus I. The constants Kαβ are determined for each amplitude by
the factorisation limit. This amounts to taking the limit zi → zj for all i, j so that the amplitude
factorises to the field theory amplitude times the string partition function. The spin structure is
then matched to that of the partition function. Note that using (26) we deduce that only correlators
where the total H-charge is zero are non-vanishing. This is known as H-charge conservation. These
correlators were derived by Atick and Sen by considering their OPEs with the stress tensor, giving
a set of differential equations that can be solved to obtain the correlator. The details can be found
in [21,22,24].
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The ghost correlators can be found by the same method [21, 22]. The resulting correlators are
very similar to the fermionic correlators except with signs and powers reversed,

〈
∏

i

eiaiφ(zi)〉 = Kαβ





∏

i<j

(

θ1 (zij)

θ′1 (0)

)−aiaj


 θ−1
αβ

(

−
∑

i

aizi

)

. (79)

Again, the factors Kαβ are determined by factorisation onto the partition function limit.

2.4 Partition functions

In the 2, 3, 4 spin structures - those involving θ00, θ01, and θ10 - the partition functions for the
non-compact dimensions are given as follows

Bosonic :
1

η4(it)

1

(4π2α′t)2
,

Fermionic :

(

θν(0)

η(it)

)2

,

bc ghosts :η2(it),

βγ ghosts :
η(it)

θν(0)
,

Total :
θν(0)

η3(it)

1

(4π2α′t)2
. (80)

For the 1 spin structure, which involves θ11, the above expressions must be changed, and they
become

Bosonic :
1

η4(it)

1

(4π2α′t)2
,

Fermionic :

(

η4(it)

)2

,

bc ghosts :η2(it),

βγ ghosts :
1

η2(it)
,

Total :
1

(4π2α′t)2
. (81)

which assumes that the zero modes in the fermionic sector are saturated. If this is not the case
that the partition function vanishes due to integrating over the fermionic zero modes. Note that we
require no additional insertions for the βγ ghosts; their zero modes must be explicitly excluded. In
practice however the effect of the fermionic and ghost partition functions are already incorporated
into the correlators (78) and (79).
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The partition function for one compact torus I with twist θI 6= 0 is8

ZI = (−2 sin πθI)
θν(θI)

θ1(θI)
, (82)

while for an untwisted torus of area T2 and complex structure U = U1 + iU2 it is

ZI = Z(t)×
{

θν(0)
η3(it/2)

ν = 2, 3, 4

1 ν = 1
, (83)

where

Z(t) ≡
∞
∑

n,m=−∞
exp[−t πT2

α′U2
|n+ Um|2]. (84)

This assumes that both ends of the string are attached to the same brane stack, hence there is a
zero mode as t→ ∞. If one end is on a stack displaced from the first by a (complex) displacement

z, then we should modify |n+Um|2 → |n+Um+ z
2π

√

U2
T2
|2 and there is no such zero mode. In the

following we shall define Z(t) to be equal to 1 when there is no N = 2 sector in the amplitude.

3 The Model

Although many of our results for the scattering amplitudes hold in an arbitrary D3-brane setting the
complete evaluation requires an embedding in an explicit model. To this end we now introduce the
model that we will use throughout this paper. The model is a Z4 toroidal orbifold with fractional
D3 branes at fixed point singularities. Before describing this model in detail we note that our
expressions only rely on certain elements of the model. In particular, results concerning threshold
corrections of tree-level quantities only rely on the local behaviour of the model near the singularity.
This is in the spirit of [16, 29] where the threshold correction can be extracted as the coefficient of
the appropriate logarithmic divergence. For the purpose of such calculations we could equally well
work in a non-compact setting C

3/Z4.

The expressions for tree-level and anomaly-mediated quantities rely on the use of N = 2 winding
modes. Therefore in this case the compact global completion of the model is important and in
particular it is important that all the N = 2 tadpoles are canceled, which requires the third torus
to be compactified. We will choose our distribution of D3-branes so that this is the case. As we do
not introduce orientifolds the global N = 4 tadpole remains uncancelled. One way to deal with this
is to not compactify the first two complex tori, as we are never sensitive to the global structure of
these tori. Alternatively, we can note that as we are studying effects that depend on the β-functions
of a gauge theory, and N = 4 sectors do not involve running couplings, our calculations are not
sensitive to N = 4 tadpoles and so remain unaffected. Therefore, although strictly the model is
incomplete, it is sufficient for our purposes.

8For the partition function derivation see [16,29] for example
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Figure 1: The Z4 quiver.

3.1 Local aspects

We begin by describing the local properties of the model near a C
3/Z4 singularity. This model

has been previously studied in [16] and orientifolded versions of it have been analysed in [29]. The
advantages of this model are that despite being very simple it still has chiral matter with running
gauge couplings. Locally the orbifold is C3/Z4, with the orbifold action θi given by θ : (z1, z2, z3) →
(e2πi/4z1, e

2πi/4z2, e
−2πi/2z3). The orbifold twist vector is then 1

4 (a1, a2, a3) = 1
4(1, 1,−2). The

non-Abelian part of the gauge group is SU(n0)× SU(n1)× SU(n2)× SU(n3) and the spectrum is

3
∑

i=0

3
∑

r=1

(ni, n̄i+ar) , (85)

where (ni, n̄i+ar) denotes matter in the bi-fundamental representation of SU (ni)×SU (ni+ar). The
quiver diagram for the model is shown in figure 1. The superpotential is given by

W =

3
∑

i=0

3
∑

r,s,t=1

ǫrstTr
(

Φri,i+arΦ
s
i+ar ,i+ar+asΦ

t
i+ar+as,i

)

, (86)

where we define
Φri,i+ar = (ni, n̄i+ar) . (87)

The indices r, s, t denote the plane that the bosonic field corresponds to (in terms of vertex operators
this is equivalent to the plane in which the boson has non-zero H charge). Local tadpole cancellation
(equivalently cancellation of non-Abelian anomalies) requires

n0 = n2 , n1 = n3 , (88)

and after imposing these the β functions for the local gauge groups are given by

βn0 = βn2 = −βn1 = −βn3 =
1

16π2
(2n1 − 2n0) . (89)
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Figure 2: The T 6/Z4 orbifold. Dark circles correspond to θ fixed points and hollow squares corre-
spond to θ2 fixed points.

The Chan-Paton realisation of the orbifold twist is given for N = 1 and N = 2 sectors by

ΘN=1 = diag (1n0 , in1 ,−1n2 ,−in3) , (90)

ΘN=2 = diag (1n0 ,−1n1 , 1n2 ,−1n3) , (91)

where 1ni corresponds to the unit ni × ni matrix. The embedding of the CP factors λninj of the
gauginos and Φrs into the full CP matrix of the singularity are given by

G1,2 = diag (λn0n0 , λn1n1 , λn2n2 , λn3n3) ,

Φ1,2 =









0 λn0n1 0 0
0 0 λn1n2 0
0 0 0 λn2n3

λn3n0 0 0 0









,

Φ3 =









0 0 λn0n2 0
0 0 0 λn1n3

λn2n0 0 0 0
0 λn3n1 0 0









. (92)

Note that the matrices satisfy the following

ΦiΘ = ΘΦie2πiθ
i
. (93)

3.2 Global aspects

We now turn to more global aspects of the model. Although the particular compact completion
will not affect our general results it is useful to have a concrete realisation in mind and so we will
use the T 6/Z4 orbifold of [16] shown in figure 3.2. We will introduce an additional brane stack to
cancel twisted tadpoles. As a compact space this orbifold has h1,1 = 31, h2,1 = 7. The 31 elements
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of h1,1 decomposes as 5 untwisted 2-cycles, 16 θ1 twisted cycles stuck at the 16 Z4 fixed points, 6
θ2 twisted cycles stuck at Z4 invariant combinations of θ2 fixed points, and 4 θ2 twisted cycles at
Z4 fixed points and propagating across the third T 2.

The primary use of this explicit global completion is to give an explicit cancellation of the N = 2
twisted tadpoles. Recall that tracing over the N = 2 sector gives a factor of n0 − n1 + n2 − n3.
Therefore we place a single stack of fractional branes at the origin (0, 0, 0) (point A) of multiplicity
(nA0 , n

A
1 , n

A
2 , n

A
3 ) = (N,M,N,M) and a stack of fractional branes on the (0,0,i/2) (point B) of

multiplicity (nB0 , n
B
1 , n

B
2 , n

B
3 ) = (M,N,M,N). This configuration cancels the N = 2 tadpoles and

importantly for our purposes implies that the classical partition function vanishes once all the
winding modes are taken into account. Explicitly, for this configuration, from section 2.2.3 we have
that the classical partition function of the N = 2 winding modes takes the form

Z(t) =
∑

m,n

(

e−(m
2+n2)R2t − e−(m

2+(n+1/2)2)R2t
)

, (94)

where the first term comes from AA strings and the second from AB strings. Using Poisson
resummation (376) we can write this as

Z(t) =
( π

R2t

)

∑

m,n

e−
m2+n2

R2t

(

1− enπi
)

. (95)

The coefficient vanishes for (m,n) = (0, 0), while all other terms vanish in the limit t → 0 which
is the open string UV or closed string IR. An important property which we will use throughout is
that Z(∞) = 1 and Z(0) = 0. Note also that only the details of the third torus has entered into
the computation.

In section 4 we also require the winding mode partition function for the case of a double trace
operator. This differs from the previous case in that there is no trace over an open end of the string
which means it is not connected to tadpole cancellation. The primary difference is then the absence
of the last factor of (95) so that in the closed string channel the n = 0 mode can also contribute.

3.3 Kähler potential

In order to compare the string calculations to the supergravity formulae we also need the Kähler
potential for the matter and moduli fields. The inheritance property of orbifold models implies the
tree-level Kähler potential for the matter fields is inherited from that for position moduli of D3
branes. The Kähler potential for the motion of D3 branes on our orbifold can therefore be read off
from the results of [30, 31] which gives

K = − ln(S + S̄)−
3
∑

I=1

ln

(

(TI + T̄I)(UI + ŪI)−
1

6
(ΦI + Φ̄I)

2

)

. (96)

Here ΦI are the position loci of the D-branes, TI are the Kähler moduli and UI the complex structure
moduli. This implies a matter metric of the from

KΦI Φ̄Ī
≡ ZI =

1

(TI + T̄I)(UI + ŪI)
. (97)
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We note this is consistent with expectations since starting from the holomorphic Yukawa coupling
(86), which we note always has one contribution from each direction, and computing the physical
Yukawa couplings Ŷαβγ using the standard supergravity formula

Ŷαβγ = eK/2
Yαβγ

√

ZαZβZγ
, (98)

we obtain

Ŷαβγ =
1

(S + S̄)
1
2

Yαβγ = gYMYαβγ . (99)

This is precisely the correct behaviour of the N=4 SYM Yukawa couplings, in particular the factor

of g
1
2
s = gYM . We can then use the Kähler potential (96) to determine the supergravity predictions

for gaugino masses.

4 Gravity mediated gaugino masses

The primary motivation for this work is of course to study terms induced by supersymmetry breaking
and in particular through anomaly mediation. As discussed in the introduction one way to approach
this, for example as in [12,13], is to start from a background with broken supersymmetry and directly
calculate the gaugino mass term in that background. However such an approach is limited by the
fact that there are very few backgrounds with no supersymmetry for which a CFT description is
available.

In this paper we take a different approach. We consider a supersymmetric setting but instead
compute correlators such that once one of the fields involved develops a background expectation
value supersymmetry is broken. This is analogous to the computations of tree-level flux supersym-
metry breaking in [17] or for computations of supersymmetry breaking in gauge mediation [2]. In
section 5 we use this method to obtain the anomaly mediated gaugino masses associated to a vev
for flux. However initially we would like to test this method in a better understood setting: gaugino
masses induced by tree-level gravity mediation.

4.1 The supergravity prediction

We consider two stacks of branes, and study the communication of non-zero susy breaking on one
stack to generate gaugino masses on the other stack. The tree-level gravity induced gaugino mass
is given by the formula

mtree
1/2 =

1

2Re f
F i∂if . (100)

Here f is the holomorphic gauge kinetic function of the associated gauge group which in the case
of bulk D3-branes at tree-level takes the universal form

f = S , (101)
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with S the dilaton superfield. In the case that the D3 branes are fractional branes living on orbifold
singularities the gauge kinetic function can take the form

f = S +
∑

i

λiMi, (102)

where Mi are twisted fields associated to the singularity.

We define
Ki = ∂iK , F i = eK/2Kij̄

(

∂j̄W̄ +Kj̄W̄
)

, m̄3/2 = eK/2W̄ . (103)

where m3/2 is denoted the gravitino mass and is given by the scalar components of the superfields
in the superpotential. Provided the dilaton does not enter the superpotential, we can use (96) and
(86) to obtain

FS = −(S + S̄)m̄3/2 . (104)

Putting all this together gives the dilaton-induced gaugino masses

mtree,S
1/2 = −m̄3/2 . (105)

There is also a gaugino mass induced via the twisted fields. Since the N = 1 twisted modes have
a canonical Kähler potential they also have vanishing F-terms at the singularity where they have a
vanishing vev. The N = 2 twisted modes can have non-vanishing F-terms and therefore contribute
to the gaugino masses. 9

This implies an interaction of the form

Tr (λλ)
3
∑

i=0

3
∑

r,s,t=1

ǫrstTr
(

φri,i+arφ
s
i+ar ,i+ar+asφ

t
i+ar+as,i

)

, (106)

where φ denotes the scalar component of the superfield Φ. The full expression (106) includes the
particular term

L0 ≡ Tr (λn3n3λn3n3)Tr
(

φ1n0n1
φ2n1n2

φ3n2n0

)

. (107)

These terms are essentially the correlator of the field theory superpotential with two gauginos. The
fields are chosen so that the gauginos and bosons are not charged under any common gauge group.

9The N = 2 chiral superfields that appear in the gauge kinetic function come from reducing B2 + iC2 on the
collapsed 2-cycle. In order to determine their F-terms we require knowledge of how they appear in the Kähler
potential - knowledge which we do not yet have. However we still expect them to lead to a non-vanishing F-term.
Further we expect that this F-term comes solely from the piece eK/2KMiΦ̄i∂Φ̄i

W̄ while the piece eK/2KMiX̄iKX̄i
W̄

vanishes. Here the Φi are the matter fields appearing in the superpotential and Xi denote any superfields that appear
in the Kähler potential. If this conjecture is true then we note that there is no contribution to the tree-level gaugino
masses in the absence of a Φi vev and in particular for the flux case. Now we discuss why we expect this F-term
behaviour. Imagine separating the brane stacks of the gauginos and the bosons in the first 2 tori. This means that in
the partition function there are no zero modes and the first modes are the ‘winding’ modes stretching between the two
branes. However these are now winding along a twisted direction which means that when we sum over the orbifold
actions in the partition function their contribution sums to zero. Hence the resulting amplitude vanishes. This can
only be matched by the supergravity formula if the F-term contribution is as described above. In that case since the
N = 2 twisted blow-up mode only couples to the bosons on its own singularity it does not couple to the bosons on
the other singularity and so KMΦ vanishes and the resulting F-term vanishes.
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Furthermore, the gauginos and bosons can be placed on separate stacks, implying the absence of
any massless open string modes connecting the two stacks.

Our aim is to recreate the interaction (107) by studying the zero momentum limit of a string
scattering amplitude. Note that since the gauginos and bosons are not charged under any common
gauge groups this interaction must be induced by gravity. Note also that since this is a double trace
operator, within the global picture of the orbifold we can place the gauginos and bosons on different
singularities. For now we do not specify this and return to these possibilities later.

4.2 The string amplitude

The relevant string scattering amplitude involves two gauginos and three bosons at vanishing mo-
mentum. Although the operator is tree-level the appropriate topology is not the disc but rather
the cylinder. This can be heuristically seen in two ways. First, since this is a double trace operator
we require two boundaries to have any non-zero answer. Second, since it is gravity mediated it is
tree-level in the closed string channel which is 1-loop in the open string channel. The latter reason
is a little subtle since it depends on whether the vertex operators themselves are open or closed
string but since in this case they are all open string operators the reasoning is valid. There is also
a more formal way to determine the topology which is by counting powers of the string coupling.
This is carried out in appendix B where it is shown that indeed the cylinder reproduces the correct
dilaton dependence for a tree level amplitude.

To specify the vertex operators in the amplitude we require the spin structure or H-charge of
the gauginos and bosons. These are given by

g
−1/2
1 (z1) =

1

2
(+,+,+,+,+) ,

g
−1/2
2 (z2) =

1

2
(−,−,+,+,+) ,

b−1
1 (z3) =

1

2
(0, 0,−−, 0, 0) ,

b−1
2 (z4) =

1

2
(0, 0, 0,−−, 0) ,

b−1
3 (z5) =

1

2
(0, 0, 0, 0,−−) , (108)

where as usual the zi denote the insertion points on the worldsheet and the superscripts give the
ghost charges. In the canonical picture as in section 2.1 the vertex operators give a total ghost
charge of -4 which means that we require 4 picture changing operators to reach the correct picture
on the cylinder. In order to conserve H-charge the 4 PCOs split into 2 pairs of opposite H-charge.
We choose the PCOs to act on the second gaugino and on the 3 bosons. Each PCO can act in an
internal or external direction and we decompose the calculation into parts according to this action.
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Amplitudes with no internal PCOs

We first consider the case where all picture changing operators act on the external coordinates.
There are many combinatorial options here. We only do one case in detail but shall then explain
how the other cases promote this to a Lorentz-invariant structure and state the overall result.

The example we do corresponds to the picture-changed H-charges

g
−1/2
1 (z1) =

1

2
(+,+,+,+,+) ,

g
+1/2
2 (z2) =

1

2
(−,− −−,+,+,+) ,

b01(z3) =
1

2
(0,++,−−, 0, 0) ,

b02(z4) =
1

2
(++, 0, 0,−−, 0) ,

b03(z5) =
1

2
(−−, 0, 0, 0,−−) , (109)

The superscripts give the picture-changed ghost charges of the operators. We now proceed to
evaluate the correlators coming from the vertex operators and PCOs using the results of section 2.
The spin structure dependent part from fermion and ghost fields gives

∑

ηαβ

θ[α
β
](z1−z22 + z4 − z5)θ[

α
β
](z1−3z2

2 + z3)

θ[α
β
](z1−z22 )

×θ[α
β
](
z1 + z2

2
− z3 + θ1)θ[

α
β
](
z1 + z2

2
− z4 + θ2)θ[

α
β
](
z1 + z2

2
− z5 + θ3) . (110)

Here the θi are the orbifold twisting angles. The spin structure independent part (for fermion and
ghost fields) gives

η3

θ1(z1 − z5)

η3

θ1(z4 − z5)

η6

θ1(z2 − z3)2
η3

θ1(z2 − z4)
. (111)

Now these correlators are supplemented by the bosonic correlators and are multiplied by a mo-
mentum factor coming form the picture changing of k2+2 k2−3 k1−4 k1+5 . The other external picture
changing possibilities promote this to the Lorentz-invariant structure (k2 · k3)(k4 · k5). As discussed
in section 2.2.4, we should cancel these factors with poles in the amplitude. Since the gauginos and
bosons are on opposite ends of the cylinder it is not possible to bring them together which means
it is not possible to generate poles from functions such as θ1 (z1 − z5). Therefore from (110) and
(111) we see that it is not possible to cancel the momentum factors by poles alone. However we
shall see that in the UV limit of the amplitude the momentum factors will still be canceled leaving
a finite answer. We begin by using the pole from θ1(z4 − z5) to cancel the factor of (k4 ·k5). In that
case we set z4 = z5 and remove the term (k4 · k5)η3/θ1(z4 − z5). The resulting combined amplitude,
after using the Riemann summation formula (368) reads

− 2 (k2 · k3) η12
θ1 (−z2 + z5 + θ1) θ1 (−z2 + z3 + θ2) θ1 (−z2 + z3 + θ3)

θ1 (−z2 + z5) θ1 (−z2 + z3) θ1 (−z2 + z3)
. (112)

26



To extract a non-vanishing contribution from such an amplitude let us consider the N = 4 sector
first and we return to the other possibilities later. In that case we can set θ1 = θ2 = θ3 = 0. We also
need to include the extra factor coming from the bosonic partition function of η−12 and also Z(t)
from the winding string partition function, where Z(t) is the trace over winding states stretching
between the two stacks of branes. There is also a factor 〈∏i e

iki·X(zi)〉 from the bosonic correlators.
The overall amplitude is then given by

A = A0(k2 · k3)
∫

dt

t

1

(t/2)2

∫

dz1dz2dz3dz5〈
∏

i

eiki·X(zi)〉Z(t) . (113)

Here A0 is an unimportant constant normalisation factor. Let us temporarily neglect the 〈∏i e
ik·X〉

terms to study the divergence structure. After performing the z integrals we would be left with

A ∼ (k2 · k3)
∫

dt t Z(t). (114)

Naively this appears finite in the limit that t→ 0. However, as discussed in section 3, for a compact
space the winding mode partition function, in the case of a double trace operator, behaves as (recall
that we are in the N = 4 sector so all the tori are untwisted)

Z(t) ∼
∏

i

(

∑

ni,mi

e−((∆R)2+(n2
i+m

2
i )R

2
i )t

)

→t→0
1

R2
1R

2
2R

2
3t

3

∑

n,m

e−(n2
i+m

2
i )/(R

2
i t) (115)

using the Poisson resummation formula (375). In the limit that t → 0 the amplitude therefore
behaves as

k2 · k3
∫

1

R6

dt

t2
(116)

giving an ultraviolet divergence as t → 0 which is the open string UV. However there are also the
factors of

〈
∏

i

eik·X〉 =
∏

i<j

e−ki·kjG(zi−zj) (117)

which need to be taken into account. From section 2 we have that

G(zi − zj) = −2α′ ln |θ1 (zi − zj) |2 +
8πα′

t
(Im(zi − zj))

2 , (118)

where recall that the correlator can only be in the external Neumann directions because of the
vanishing internal momentum. Using the transformation property

θ1(z, τ) = i(−iτ)−1/2e−πiz
2/τθ1(z/τ,−1/τ) , (119)

we have that in the limit t→ 0

θ1(z, t) →
√

2

t
e−2πz2/te−π/2t

(

e2πz/t − e−2πz/t
)

. (120)

Now we are interested in studying the leading contribution in this limit to the bosonic correlators.
There are two distinct possibilities: either the two operators are on the same end of the cylinder,
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in which case z = ixt/2 or on opposite ends of the cylinder which gives z = 1/2 + ixt/2. Here x is
some constant fraction which gives the relative separation between the operators on the boundary.
Now for x 6= 1 we have that as t→ 0

G(zi − zj) →
{

πα′

t for operators on same end
2α′ ln t for operators on opposite ends

(121)

As a result the dominant contributions to 〈eik·X〉 come from operators on the same end of the
cylinder, and we obtain

〈
∏

i

eiki·X(zi)〉 ∼ e−πα
′ (k1+k2)

2

t ≡ e−πα
′ (k3+k4+k5)

2

t . (122)

The divergence then takes the form

k2 · k3
R6

∫

dt

t2
e−πα

′ k1·k2
t → 1

R6

k2 · k3
k1 · k2

. (123)

The fact that the zero behaves as (k2 · k3) is simply an artifact of which terms we evaluated in the
PCO (as there is a symmetry in k3, k4, k5). It is easy to see that other choices of picture changing
give identical results with k3 → k4, k5. Summing all contributions the pole structure then becomes

k2 · (k3 + k4 + k5)

k1 · k2
1

R6
=
k2 · (−k1 − k2)

k1 · k2
1

R6
→ 1

R6
(124)

in the on-shell limit.

This R−6 behaviour of the induced gaugino mass is fully in accord with supergravity expecta-
tions, as it corresponds to mediation via the propagation of the dilaton, which is suppressed by
V−1 = R−6 as the dilaton probes the entirety of the compact space.

Finally we can return to the N = 1 and N = 2 contributions to (112). From the results above
we see that for operators on opposite ends of the cylinder we have that as t → 0, θ1(z, t) →

√

2/t.
Therefore the extra contributions of t3/2 and t for N = 1 and N = 2 sectors respectively compared
to the N = 4 sector mean that the UV divergence is regulated and so the amplitude vanishes due
to the momentum factors.

There is also a (potential) infrared divergence in (114) as t → ∞. This divergence is present
only in the case that the bosons and the gauginos are on the same stack, so that Z(t) → 1 as t→ ∞.
This divergence is likewise regulated by the exponentials from the 〈eik·X〉 correlator. This regulator
gives schematically

∫

tdte−ki·kjt ∼ 1

(ki · kj)2
, (125)

giving a double pole in momentum. The overall infrared divergence is then given by a single pole,
behaving as (ki · kj)−1. This divergence is not associated to the induced soft gaugino masses but
rather can be understood in field theory as arising from the pentagon diagram of figure 3. In the
limit that all external momenta vanish the pentagon loop integral diverges as

∫

d4k
1

k6
∼ 1

µ2
, (126)
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(Diagonal scalar)

Figure 3: The field theory diagram giving the infrared divergence. B denotes a bosonic field and G
a gaugino.

consistent with the pole found in (ki · kj)−1. However the integral over the vertex operator coordi-
nates is less straightforward as in the large t limit

θ1(z, t) = −2e−πt/8 sin(πz) , (127)

and so the integral over z does not decouple.

Amplitude with internal PCOs

We now consider the case where at least one PCO is internal, which by H-charge conservation
implies that a conjugate pair of PCOs must be internal.

First consider the case where this pair of PCOS acts on a pair of bosons. Since in any particular
internal direction only one boson has H-charge it must be that for one boson the PCO contractions
must involve the derivative term ∂Xi rather than the ψi. In the external direction case this could
contract with the external momentum to generate a picture-changed operator. However this is not
possible for the internal directions since we have D3 branes and there are no internal momentum
modes. This term must therefore vanish.

The only other possibility is to have one external pair of PCOs acting on bosons and one internal
pair of PCOs acting on a boson and a gaugino. Let us take this latter pair for now as g2(z2) and
b3(z5) and remember that we subsequently need to sum over cyclic permutations of the bosons. In
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this case we have the picture changed H-charges

g1(z1) =
1

2
(+,+,+,+,+) ,

g2(z2) =
1

2
(−,−,+,+,−) ,

b1(z3) =
1

2
(++, 0,−−, 0, 0) ,

b2(z4) =
1

2
(−−, 0, 0,−−, 0) ,

b3(z5) =
1

2
(0, 0, 0, 0, 0) , (128)

As before there are similar cases that complete the above amplitude into a Lorentz covariant struc-
ture.

The spin structure dependent part is

θ[α
β
](
z1 − z2

2
+ z3 − z4)θ[

α
β
](
z1 + z2

2
− z3 + θ1)θ[

α
β
](
z1 + z2

2
− z4 + θ2)θ[

α
β
](
z1 − z2

2
+ θ3)

= 2θ1(z1 − z4)θ1(θ1)θ1(z3 − z4 + θ2)θ1(−z2 + z3 + θ3). (129)

This clearly vanishes for the N = 4 sector due to the presence of the θ1(θ1) term. The spin structure
independent part is

η3

θ1(z1 − z4)

η3

θ1(z2 − z3)

η3

θ1(z3 − z4)
(130)

This gives for the combined spin and ghost systems

2
θ1(z3 − z4 + θ2)

θ1(z3 − z4)

θ1(−z2 + z3 + θ3)

θ1(z2 − z3)
θ1(θ1)η

9. (131)

It will turn out that the only relevant case is the N = 2 sector where θ3 = 0. To see this, let us
consider the contributions of the bosonic fields in the case that the X5 direction is twisted.

Twisted N = 1 and N = 2 sectors

The N = 1 and N = 2 sectors have two types of contributions according to whether the direction
is twisted or untwisted. All the N = 1 directions are twisted and there is a single N = 2 untwisted
direction. We return to the latter case in the next section and consider first the twisted contributions
which we show vanishes. The analysis applies to any twisted direction but for explicitness we denote
the direction X5.

First note that since b3 (z5) has no H-charge, no ghost charge and has vanishing internal mo-
mentum z5 does not appear in the amplitude apart from in the correlator

AN=1,2 ∼
∫

dz5

〈

∂nX
5(z2)∂nX

5
(z5)

〉

. (132)
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Since the direction is twisted there is no classical contribution from winding modes and there is only
the quantum contribution which is given by (52). Since (52) is a total derivative we can perform the
z5 integral exactly. However before doing this explicitly we should note an important contribution
coming from the Chan-Paton factors which read

Tr
(

Φ1Φ2Φ3Θ
)

, (133)

where Φi denote the CP factors of the three bosons and Θ is the CP factor of the twisting angle
of X5, see section 3. The important point is that as we integrate the position of b3 around the
boundary circle we have to commute Φ3 and Θ which, using (93), gives an extra factor of e2πiθ3

compared to the pure bosonic correlator. Taking this factor into account (132) gives

AN=1,2 ∼
[

(

θ1(z2 + θ3)

θ1(θ3)

θ′1(0)
θ1(z2)

)

− e2πiθ3

(

θ1(z2 − it
2 + θ3)

θ1(θ3)

θ′1(0)

θ1(z2 − it
2 )

)]

= 0 , (134)

where we take the bosons to be on the boundary at Re z = 0 and used the transformation property
(47). The CP phase essentially cancels the phase from the twisted bosonic correlator, and as a
result all such twisted contributions integrate to zero and vanish.

Untwisted N = 2 sectors

The upshot of this is that the only contributions can come from the N = 2 sector with θ3 = 0. This
implies that the bosonic oscillator partition function takes the form

1

θ1(θ1)θ1(θ2)η6

and so (131) becomes

− 2
η3θ1(z3 − z4 + θ1)

θ1(z3 − z4)θ1(θ1)
. (135)

Summing over all choices of PCOs now completes the amplitude into a Lorentz covariant structure,
giving for the full amplitude

AUntwisted
N=2 = A0Tr (g1g2)Tr (Φ1Φ2Φ3)

∫ ∞

0

dt

t

1

(it/2)2

∫

dz1dz2dz3dz4dz5

×
[

−8 sin2 (πθ)
θ1 (z34 − θ)

θ1 (θ)

θ′1 (0)
θ1 (z34)

〈

∏

i

eiki·X(zi)∂nX
5 (z2) ∂nX

5
(z5)

〉]

×
(

− 1

16

)

(

k1+3 k1−4 + k1−3 k1+4 + k2+3 k2−4 + k2−3 k2+4
)

. (136)

Here A0 is a normalisation. The traces are over the Chap-Paton indices. We then have the integrals
over the cylinder modulus, having already included the external partition function to give the inverse
powers of t, and the positions of the vertex operators. The part in the square brackets comes from
the bosonic and spin correlators as in section 2. Here θ = 1

2 denotes the N = 2 twisting angle on
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the first and second internal directions. The factor of 1
16 comes from the 4 PCOs. The momentum

factors come from contracting the derivatives in the PCOs with the exponentials. Finally we are
left with the derivative correlator which is in an internal direction and so is given by the Dirichlet
correlator.

There is a pole as z3 → z4 which cancels the factor of k3 · k4 and effectively puts z3 = z4.
Extracting this pole using (76) and (41) the amplitude further simplifies to

AUntwisted
N=2 = −A0Tr (g1g2)Tr (Φ1Φ2Φ3)

∫ ∞

0

dt

t3

∫

dz1dz2dz3dz4

〈

∏

i

eik·X(zi)∂nX
5 (z2) ∂nX

5
(z5)

〉

.

(137)
If we temporarily neglect the eik·X factors then this amplitude simplifies to

AUntwisted
N=2 = −A0Tr (g1g2) Tr (Φ1Φ2Φ3) πα

′
∫ ∞

0
dt (ZInt,Cl + t∂tZInt,Cl) . (138)

= −A0Tr (g1g2) Tr (Φ1Φ2Φ3) πα
′
∫ ∞

0
dt∂t (tZInt,Cl)

= −A0Tr (g1g2) Tr (Φ1Φ2Φ3) πα
′ [tZInt,Cl]

t=∞
t=0 . (139)

In the case that ZInt,Cl = 1 + . . . (i.e. when the gauginos and bosons are on the same brane
stack) there is an infrared divergence as t → ∞. This divergence is similar to the one previously
encountered for the case of external picture-changing. It is regulated by the exponentials and gives
a pole of order 1

ki·kj and its field theory origin is presumably the pentagon diagram of figure 3. For

the case of separate brane stacks the loop of the pentagon involves massive fields and the t → ∞
divergence is absent consistent with this interpretation.

In the ultraviolet limit t→ 0 we obtain a finite answer by Poisson resummation of the classical
partition function:

A =− 1

8π3
Tr[CP]

[

t
∑

n,m

exp[−πt
α′
T2
U2

∣

∣

∣

∣

n+ Um+ z

∣

∣

∣

∣

2]∞

0

=− 1

8π3
Tr[CP]

α′

T2

∑

n′,m′

exp

[

− πα′

tT2U2
|n′ − Um′|2 − 2πi

U2
ℑ
(

z(n′ −m′U)

)]∣

∣

∣

∣

t=0

=− 1

8π3
α′

T2
Tr[CP]. (140)

This term is associated to generation of the gaugino mass by propagation of the N = 2 twisted
mode in the third toroidal direction. We note that this contribution scales only as ∼ 1

T2
, where T2

is the area of the third torus. This is substantially larger than the contribution due to the dilaton,
which scaled as ∼ 1

V , associated to the propagation of the dilaton in the entirety of the compact
space. This is consistent as the twisted N = 2 mode can only propagate along a single torus and
so has a wavefunction that is much less diluted than that of the dilaton.

In summary, the study of the three boson amplitude 〈φ1φ2φ3λλ〉 is fully consistent with field
theory expectations. In the ultraviolet limit t → 0 the string amplitudes give two sources of gaugino
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masses, one associated to mediation by the dilaton and one associated to mediation by the N = 2
twisted mode. The latter gives a much larger contribution than the former, consistent with the
localisation of its wavefunction onto a single torus. In the case that gauginos and bosons are on
coincident brane stacks the amplitudes also diverge in the infrared limit, which is understood as a
field theory effect associated to a divergent pentagon loop diagram.

5 Anomaly mediated gaugino masses

In the last section we showed that string amplitudes can recreate the supersymmetry breaking effects
induced by tree-level gravity mediation. In this section we apply the same principle to anomaly
mediation. For the case of the 5-pt open string amplitude, the cylinder was the lowest topology
for which a non-zero amplitude was possible, and so represented the tree level amplitude. For the
case of 3-form fluxes, the lowest possible topology is the disk with a flux vertex operator in the
interior and 2 gaugini on the boundary (studied in [17]). To study anomaly mediated contributions
the appropriate amplitude is then the cylinder with closed string vertex operators in the bulk and
two open string gaugino vertex operators on the boundary. It is well known that in type IIB
string theory turning on background flux can break supersymmetry. We can therefore study the
anomaly mediated gaugino masses induced by a non-supersymmetric background flux by studying
the cylinder amplitude with gaugini on the boundary and a flux vertex operator in the interior.
This case is of particular interest due to the role of flux compactifications in moduli stabilisation.

We begin the section with a discussion regarding the predictions of anomaly mediation and pick
out the particular aspects that we wish to test with a string calculation. We then perform the string
calculation for NSNS and RR flux separately.

5.1 Anomaly mediation in supergravity

In [4, 5] gaugino masses were calculated for general supersymmetry breaking effects by studying
Weyl, Kähler and Konishi anomalies in supergravity. However in [6, 7] a new contribution to the
gaugino masses (also to other soft terms) was proposed which is often labeled anomaly mediation.
This contribution was implemented into the full supergravity framework in [8] where the expression
for the gaugino masses was given as

m1/2 = − g2

16π2

[

(3TG − TR)m3/2 − (TG − TR)KiF
i − 2TR

dR
F i∂i (ln det Z)

]

. (141)

It is the first term proportional to m3/2 that was pointed out in [6, 7]. Here we have

Ki = ∂iK , F i = eK/2Kij̄
(

∂j̄W̄ +Kj̄W̄
)

, m3/2 = eK/2W̄ . (142)

An important point is that the kinetic matrix Z should only be for fields charged under the gauge
group of the gaugino. The TR and TG stand for the usual quantities appearing in the beta functions
and dR is the dimension of the representation.
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We shall in fact see that the formula (141) cannot be correct as it does not incorporate the effect
of the NSVZ term in the 1PI gauge couplings. We therefore modify (141) to

m1/2 = − g2

16π2

[

(3TG − TR)m3/2 − (TG − TR)KiF
i − 2TR

dR
F i∂i (ln det Z) + 2TGF

I∂I ln

(

1

g20

)]

.

(143)
This last term is proportional to the tree-level gaugino masses and so is expected to be always
subleading. Nevertheless it is present and is important in reconciling the supergravity prediction
with the string calculation. We use ‘anomaly mediation’ to refer to the full content of equation
(143).

We wish to check (143) through a string calculation. First we should extract the predictions of
(143) for the case of background flux. Recall that the three-form flux and superpotential are given
by

G = F − iSH, W =

∫

G3 ∧Ω . (144)

Using (96) and (97) for the Kähler potential and matter metrics the anomaly mediation formula
(143) gives

m1/2 = − g2

16π2

[

− (TG − TR)
(

KSF
S +KUF

U
)

− 2

3
TRKUF

U − 2TGKSF
S

]

. (145)

There is a subtlety here due to the presence of the blow-up modes. Although they do not affect the
first 3 terms of (143) they could affect the last term since they appear in the gauge kinetic function.
However, as discussed in footnote 9, we do not expect an F-term to be induced for them by the
flux. It is simple to show that

KSF
S =

∫

G ∧ Ω . (146)

Also using
∂UΩ = − (∂UK) Ω + χ(2,1) , (147)

which simply follows from K ∼ ln
∫

Ω ∧ Ω, we find

KUF
U = −9

(

U + Ū
)

∫

G ∧ χ(1,2) . (148)

We therefore obtain the following field theory expectations for flux-induced gaugino masses

G(0,3)(F T 6= 0) → mλ = 0 , (149)

G(1,2)(FU 6= 0) → mλ ∼ (3TG − TR)m3/2 = βm3/2 = TrΘN=2m3/2 , (150)

G(2,1)(unbroken susy) → mλ = 0 , (151)

G(3,0)(FS 6= 0) → mλ ∼ (3TG − TR)m3/2 = βm3/2 = TrΘN=2m3/2 . (152)

Here the indices on the flux refer to the complex type. β refers to the beta function of the gauge
group of the gauginos and TrΘN=2 is the trace over the N = 2 CP indices. Note that this provides
the first non-trivial check on the validity of the formula (143): the group factors combine to give

34



the N = 2 CP trace which arises from the end of the cylinder which does not have the gaugino
vertex operators and so, apart from the orbifold twist operator, is empty. Tracing over an empty
end of the string gives no contribution from N = 1 sectors (in the absence of orientifolds) since this
is the tadpole condition. This just leaves the N = 2 and N = 4 sectors, the latter of which we shall
show vanishes.

The purpose of the string calculation is to study (143) and how it arises in string theory. Some
parts of (143) are closely related to the analogous anomalous contributions to gauge couplings. One
part for which this is not the case is the first term of (143). So one of our focuses in the string
computation will be to extract particular predictions coming from this term and check them in a
string calculation. We also find that rather than working with the complex flux G we find it simpler
to work with the NSNS and RR pieces separately. Further we only study the case where G has
(0, 3) and (3, 0) components, which implies H and F are composed of (3, 0) and (0, 3) components.
So the complex-structure moduli F-terms always vanish. Therefore we would like to extract the
coupling of the first term in (143) to this type of NSNS and RR flux.

First recall that we do not expect a string computation to be sensitive to the c0 part of the
complex 3-form flux G as this would correspond to an amplitude with two closed string insertions
(the 3-form flux and the RR 0-form). So for practical purposes

G3 = F3 − iSH3 → F3 −
i

gs
H3. (153)

Let us add a factor of δAM to the first term of (143)

m1/2 = − g2

16π2

[

δAM (3TG − TR)m3/2 − (TG − TR)KiF
i − 2TR

dR
F i∂i (ln det Z) + 2TGF

I∂I ln

(

1

g20

)]

,

(154)
so that δAM = 1(0) for the cases where this term is present (absent). Now consider the case where
we only turn on NSNS flux. In this case we have

W = −iS
∫

H3 ∧ Ω, W̄ = iS̄

∫

H ∧ Ω̄. (155)

We also have the no-scale structure KTF
T = 3m̄3/2 where we abuse notation and let T run over

the blow-up moduli as well. The dilaton F-term reads

FS = eK/2KSS̄(∂S̄W̄ + (∂S̄K)W̄ ) = (S + S̄)m̄3/2, (156)

and so KSF
S = −m̄3/2. The tree-level gaugino mass is therefore

Mλ,tree =
FS

2Re(S)
= m̄3/2. (157)

In this case we have at one loop

1. Running gauge couplings

1

g2(µ)
=

1

g2tree

(

1 +
g2ba
16π2

ln

(

M2
W

µ2

))

. (158)
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2. Running gaugino masses (using field theory running of gaugino masses)

Mλ,running = m̄3/2

(

1−
(

g2ba
16π2

)

ln

(

M2
W

µ2

))

. (159)

3. Anomaly-induced masses

Mλ,anomaly =
g2ba
16π2

δAMm̄3/2 . (160)

Note that here ba refers to the beta function of the gaugino gauge group which is given by the CP
trace over the N = 2 sector (152). From (159) and (160) we gain two sharp predictions that depend
on δAM which we can test. The first is that there should be a mass term of the form (160). If this
is present, δAM = 1. If it is not, δAM = 0. It is a very clean test. The second prediction is this
mass term should be of equal magnitude and opposite sign to the running mass term. It is these
two predictions that we calculate and verify in section 5.2.

We can repeat a similar analysis for RR flux although the predictions turn out to be not as
clean as the NSNS case. Suppose we only have RR flux. Then

W =

∫

F3 ∧ Ω, W̄ =

∫

F3 ∧ Ω̄ (161)

Then
KTF

T = 3m̄3/2 ,KSF
S = m̄3/2 . (162)

At tree-level we have using the standard supergravity formulae

Mλ,tree =
FS

2Re(S)
= −m̄3/2. (163)

At one-loop we therefore have

1. Running gauge couplings

1

g2(µ)
=

1

g2tree

(

1 +
g2ba
16π2

ln

(

M2
W

µ2

))

. (164)

2. Running gaugino masses (using field theory running of gaugino masses)

Mλ,running = −m̄3/2

(

1−
(

g2ba
16π2

)

ln

(

M2
W

µ2

))

. (165)

3. Anomaly-induced masses

Mλ,anomaly =
g2ba
16π2

(δAM − 2)m̄3/2. (166)

So we can probe the existence of the δAM term from the relative magnitude of the running gaugino
mass and the anomaly-induced gaugino mass. We study this in section 5.3.

For the case of RR flux the existence of an anomalous mass term is not in itself a check on the
parameter δAM , as we instead need the relative sign and magnitude of the running and anomalous
mass terms.
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5.2 NSNS flux

We seek to compute a correlator 〈λλH〉 which involves two gaugino vertex operators on the boundary
and one flux vertex operator in the bulk of the cylinder. The basic vertex operator for an NSNS
potential is [19]

V(−1,−1)
B = e−φ−φ̃Bjkψ

jψ̃keik·X(z,z̄). (167)

We require a constant field strength profile, H = H345(dX
3 ∧ dX4 ∧ dX5 + dX̄3 ∧ dX̄4 ∧ dX̄5). This

can be achieved by taking

B = H345

(

X5dX3 ∧ dX4 + X̄5dX̄3 ∧ dX̄4
)

. (168)

This profile is sufficient to generate the required field strength. Although permissible, we do not
need to consider terms of the form B45 ∼ X3, B53 ∼ X4. For convenience we recall the gaugino
vertex operator

V− 1
2

λ (z) = e−
φ
2 S10e

ik·x (z) . (169)

In their canonical pictures the H-charges of the gauginos are given by

g
−1/2
1 (z1) =

1

2
(+,+,+,+,+) ,

g
−1/2
2 (z2) =

1

2
(−,−,+,+,+) . (170)

For an H-charge conserving amplitude we require the anti-holomorphic part of the flux H in (168) so
that the bosonic operators in (167) have negative H-charges. The extra H-charge changes required
for neutrality is induced by the 3 PCO insertions. The full anti-holomorphic part of the vertex
operator is then

V(−1,−1)
B = H345e

−φ(w)−φ̃(w̄)X
5
(w, w̄)

(

ψ3(w)ψ̃4(w̄)− ψ4(w)ψ̃3(w̄)
)

eik·X(w,w̄). (171)

We have introduced the left-moving and right-moving vertex operator insertion positions on the
cylinder w and w̄.

For the Annulus amplitude we need to picture change to the (0, 0) picture. When we picture
change V−1,−1

B to V0,−1
B , we get

V(0,−1)
B =

1

2
H345e

−φ̃(w̄)eik·X(w)
[

−α′ψ5(w)
(

ψ3(w)ψ̃4(w̄)− ψ4(w)ψ̃3(w̄)
)

+ X
5
(w)

(

∂X
3
(w) − iα′

2
(k · ψ)ψ3(w)

)

ψ̃4(w̄)

− X
5
(w)

(

∂X
4
(w) − iα′

2
(k · ψ)ψ4(w)

)

ψ̃3(w̄)

]

. (172)
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We have introduced the notation k ·ψ =
(

k+ · ψ + k− · ψ
)

. For the (0, 0) picture we therefore obtain

V(0,0)
B =

1

4
H345e

ik·X
[

−α′ψ5

(

ψ3

(

∂X̃4 − iα′

2

(

k · ψ̃
)

ψ̃4

)

− ψ4

(

∂X̃3 − iα′

2

(

k · ψ̃
)

ψ̃3

))

− α′ψ̃5

((

∂X
3 − iα′

2
(k · ψ)ψ3

)

ψ̃4 −
(

∂X
4 − iα′

2
(k · ψ)ψ4

)

ψ̃3

)

+ X
5
((

∂X
3 − iα′

2
(k · ψ)ψ3

)(

∂X̃
4
− iα′

2

(

k · ψ̃
)

ψ̃4

)

−
(

∂X
4 − iα′

2
(k · ψ)ψ4

)(

∂X̃
3
− iα′

2

(

k · ψ̃
)

ψ̃3

))]

. (173)

The computation is on an annulus with Dirichlet boundary conditions on the boundary for internal
directions and Neumann boundary conditions for external directions. We can deal with these
by replacing ψ̃(w̄) by −ψ(−w̄) (Dirichlet) and ψ̃(w̄) by ψ(−w̄) (Neumann). Also the amplitude
computation requires us to picture change a single gaugino and the structure of the internal gaugino

H-charges implies the (0, 0) picture B vertex operator must contain at least two internal ψ, ψ̃ fields
to be able to give a non-vanishing amplitude. Applying these two constraints gives the effective
(0, 0) picture flux operator as

V(0,0)
B (w,−w̄) =

1

4
H345e

ik·X
[

−α′ψ5(w)

(

−ψ3(w)

(

∂X4(−w̄)− iα′

2
(k · ψ(−w̄))ψ4(−w̄)

)

+ ψ4(w)

(

∂X3(−w̄)− iα′

2
(k · ψ(−w̄))ψ3(−w̄)

))

− α′ψ5(−w̄)
((

∂X3(w)− iα′

2
(k · ψ(w))ψ3(w)

)

ψ4(−w̄)

−
(

∂X4(w)− iα′

2
(k · ψ(w))ψ4(w)

)

ψ3(−w̄)
)

(174)

+

(

α′

2

)2

X5(w, w̄) (k · ψ(w)) (k · ψ(−w̄))
(

ψ4(w)ψ3(−w̄)− ψ3(w)ψ4(−w̄)
)

]

.

There are three different kind of terms in the vertex operator (174) that can give a non-zero ampli-
tude.

The first case are terms of the form

(k · ψ(w))ψ4(w) (k · ψ(−w̄))ψ3(−w̄) . (175)

A non-zero amplitude requires picture changing of the gaugino in the internal direction, with the
resulting H-charges being (for example)

g
−1/2
1 (z1) =

1

2
(+,+,+,+,+) ,

g
+1/2
2 (z2) =

1

2
(−,−,+,+,−) ,

ψ(w) =(+1, 0,−1, 0, 0) ,

ψ(−w̄) =(−1, 0, 0,−1, 0) . (176)
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This carries a coefficient k1−3 k1+3 from the external PCOs. There are three similar terms with
different external PCOs which complete the coefficient of this term into k3 · k3. The spin-structure
dependent part gives

2θ1(z1 + w̄)θ1(−z2 +w)θ1(w + w̄ − θ)θ1(θ)k3 · k3. (177)

Here θ is the orbifold twist along the first internal direction and −θ is the twist along the second.
The last direction is untwisted since we know the N = 1 sectors vanish from the CP trace. Note
that setting θ = 0 which corresponds to the N = 4 sector gives a vanishing contribution. The
spin-structure independent part of the fermionic amplitude is

θ1(z1 + w̄)−1θ1(z2 − w)−1θ1(w + w̄)−1, (178)

and so overall we get (including the bosonic part)

A = A0

∫

dt

t

1

(t/2)2

∫

dz1dz2d
2w

θ1(w + w̄ − θ)θ1(θ)

θ1(w + w̄)θ1(θ)θ1(−θ)
k3 · k3〈∂nX5

(z2)X
5(w,−w̄)〉 . (179)

Here A0 is some overall normalisation factor which does not play a role in the calculation. There
are two non-vanishing contributions from this expression associated to the classical and quantum
correlator pieces. The quantum correlator is given in (42) which we recall here for convenience

〈∂nX5
(z2)X

5(w,−w̄)〉DA,Qu = −α′
[

w + w̄

(z2 − w)(z2 + w̄)

]

. (180)

We see that this induces a pole when w → z2 which takes the form

− α′k3 · k3
∫

d2w
1

(z2 − w)(z2 + w̄)
= −2πα′

∫

dr

r
, (181)

where have introduced z2−w = reiθ and integrated over the θ = {0, π} region (note d2w = 2rdrdθ).
Note that w → z2 also implies w → −w̄ which gives a pole in (179) from the θ1(w + w̄)−1 factor
that cancels against the zero in (180). In this limit the exponential terms 〈eik2·X(z2)eik3·X(w,−w̄)〉
regularise the divergence, giving a pole in 2k2 ·k3 + k3 ·k3. So overall this term gives (for the vertex
operator integrals)

A1 = A0

∫

dt

t

1

(t/2)2
−2πα′k3 · k3

2k2 · k3 + k3 · k3

∫

dz1dz2 , (182)

where ki · kj = 1
2

(

k+i · k−j + k−i · k+j
)

.

The second contribution comes from the classical correlator which from (62) reads

〈∂nX 5̄(z2)X
5(w,−w̄)〉DA,Qu = ∆X̄5(z2)X

5(w,−w̄) . (183)

The pole comes from w + w̄ → 0 which can occur on either boundary of the annulus. Here
θ1(w+ w̄) ∼ (w+ w̄)θ

′

1(0). Note that even though this involves the closed string fields a single pole
is sufficient here, as the divergence occurs as we take the one-dimensional limit of moving the fields
to the boundary. In fact there are two possible ways of doing this, one by taking Re(w) → 0 and
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the other by taking Re(w) → 1
2 . There are then poles on either end of the annulus: Re(w) → 0

(when w + w̄ > 0) and when Re(w) → 1
2 (when w + w̄ < 0). The resulting poles look like (note:

d2w = 2dw1dw2 with w1 and w2 being the real and imaginary parts of w)

∫ t/2

0
dw2

∫ 1/2

0

dw1

w1
|2w1|k3·k3 → 1

k3 · k3
(near w1 = 0) ,

→ −1

k3 · k3
(near w1 = 1/2) . (184)

We then obtain for the vertex operator integral

∫

dz1dz2dw2〈∂nX5
(z2)

(

X5(iw2)−X5(1/2 + iw2)
)

〉. (185)

Now we can write

(X5(iw2)−X5(
1

2
+ iw2)) = −∆X5(iw2) . (186)

So we then obtain (69)

−
∫

dz1dz2dw2 |∆X|2 = 2πα′
∫

dz1dz2 t
d

dt
Z(t) , (187)

Here Z(t) is the internal partition function summing over all the winding modes. Combining (182)
with (187), we have overall

A1 +A2 = A0

∫

dt

t

2πα′

(t/2)2

[ −k3 · k3
2k2 · k3 + k3 · k3

∫

dz1dz2Z(t) +

∫

dz1dz2t
d

dt
Z(t)

]

= 2πα′A0

∫

dt

t

[ −k3 · k3
2k2 · k3 + k3 · k3

Z(t) + t
d

dt
Z(t)

]

. (188)

The second set of terms from (174) that could contribute have the form

ψ5(w)ψ3(w)∂̄X4(−w̄) . (189)

The form of the H-charges also require the gaugino to be picture changed in the internal dimensions.
The H-charge structure of these is given by

g
−1/2
1 (z1) =

1

2
(+,+,+,+,+) ,

g
+1/2
2 (z2) =

1

2
(−,−,+,−,+) ,

ψ(w) =(0, 0,−1, 0,−1) ,

ψ(−w̄) =(0, 0, 0, 0, 0) . (190)

The spin structure dependent parts give

2θ1(z1 − z3)θ1(θ)θ1(−z2 + z3 − θ)θ1(0). (191)
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and so these terms vanish automatically.10

The final possible case corresponds to terms in (174) of the schematic form

ψ5(w)ψ3(w) (k · ψ(−w̄))ψ4(−w̄) . (192)

In this case picture changing has to be in the external directions and there are two basic sub-options.
The first sub-option has the following H-charges:

g
−1/2
1 (z1) =

1

2
(+,+,+,+,+) ,

g
+1/2
2 (z2) =

1

2
(−3,−,+,+,+) ,

ψ(w) =(0, 0,−1, 0,−1) ,

ψ(−w̄) =(+1, 0, 0,−1, 0) . (193)

with a coefficient of k1+2 k1−3 . The spin structure dependent parts give

2θ1(z1 − w)θ1(−z2 − w̄ + θ)θ1(−z2 + w − θ)θ1(−z2 − w̄) . (194)

The spin structure independent parts give

θ1(z1 − w)−1θ1(z2 − w)−1θ1(z2 + w̄)−2 . (195)

The fermionic modes combine into

− 2k1+2 k1−3
θ1(−z2 − w̄ + θ)θ1(−z2 + w − θ)

θ1(θ)θ1(−θ)θ1(z2 − w)θ1(z2 + w̄)
. (196)

There are no bosonic contractions to be done. These have a clear pole as w → z2 giving11

A3 = 2πα′A0
(−k1+2 k1−3 − k2+2 k2−3 )

2k2 · k3 + k3 · k3

∫

dt

t
Z(t) . (197)

We have included the contribution from the similar H-charge configuration along the second external
direction.

The second sub-option (and final case overall) can have contractions between the PCO derivative
piece and the second gaugino exponential piece. The H-charges are

g
−1/2
1 (z1) =

1

2
(+,+,+,+,+) ,

PCO(u) =(+1, 0, 0, 0, 0) ,

g
+1/2
2 (z2) =

1

2
(−,−,+,+,+) ,

ψ(w) =(0, 0,−1, 0,−1) ,

ψ(−w̄) =(−1, 0, 0,−1, 0) . (198)

10If we had allowed B45 and B53 to be non-zero, then these terms could give a contribution. However as we only
have B34 non vanishing, there is no term of the form ψ3ψ4∂̄X5, in which case all terms of this form vanish after the
spin structure summation.

11Note again that for an N = 4 sector there is no pole and the contribution vanishes. The θ1(θ) factor in the
denominator come from the bosonic sector and are not present in the N = 4 case.
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The spin structure dependent term gives

2θ1

(

z1 +
1

2
u+

1

2
z2 −w + w̄

)

θ1

(

1

2
u− 1

2
z2 + θ

)

θ1

(

1

2
u− 1

2
z2 + w + w̄ − θ

)

θ1

(

1

2
u− 1

2
z2

)

.

(199)
We require to take the limit u → z2 in which case the following vanishes linearly which cancels
against the pole obtained in contracting ∂X(u) with eik2·X(z2). Therefore we have a momentum
factor multiplying the amplitude of k1−2 k1+3 . The spin structure dependent part then gives

− k1−2 k1+3 θ1 (z1 + z2 − w + w̄) θ1 (θ) θ1 (w + w̄ − θ) . (200)

The spin-structure independent part gives

θ1(z1 − z2)θ1(z1 − w)−1θ1(z1 + w̄)−1θ1(z2 + w̄)−1θ1(z2 − w)−1 , (201)

so that overall we obtain, adding the bosonic piece,

− k1−2 k1+3
θ1 (z1 + z2 − w + w̄) θ1 (w + w̄ − θ) θ1(z1 − z2)

θ1(z1 − w)θ1(z1 + w̄)θ1(z2 + w̄)θ1(z2 − w)θ1(−θ)
. (202)

This has a poles as w → z1 and as w → z2 (which also imply w + w̄ → 0) giving a factor

πα′A0

( −k1−2 k1+3
2k2 · k3 + k3 · k3

+
k1−2 k1+3

2k1 · k3 + k3 · k3

)∫

dt

t
Z(t) . (203)

After using 2k2·k3+k3·k3 = − (2k1 · k3 + k3 · k3), this combines with a similar H-charge combination
along the second external direction and with (197) to give a Lorentz covariant expression

A3 +A4 = 2πα′A0
−2k2 · k3

2k2 · k3 + k3 · k3

∫

dt

t
Z(t) . (204)

Finally combining (204) and (188) gives the overall amplitude

A = 2πα′A0

∫

dt

t

(

−Z(t) + t
d

dt
Z(t)

)

. (205)

This amplitude contains the information we require to test the predictions of section 5.1.

Therefore the only contribution comes from the N = 2 sector for which the CP trace in A0 gives
the correct group theory factors to match (159) and (160). This is all we need to extract from the
prefactors of the amplitude (205) and now turn to looking at the t integral

∫ ∞

0

dt

t

(

−Z(t) + t
d

dt
Z(t)

)

= [Z (∞)− Z (0)]−
∫ ∞

0

dt

t
Z(t) . (206)

It is worth recalling the form of the internal classical open string partition function that appears in
(205)

Z(t) = ZInt,Cl(t) =
∑

i

∑

n,m

δie
− t

4πα′ |∆Xi(m,n)|2 ,

∆Xi(m,n) ≡ 2π

√

Im T

Im U
(n+ Um+Xi) . (207)
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Here n and m sum over the winding modes, T and U are the torus (along the untwisted direction)
Kähler and complex-structure moduli. We have added a sum over i which stands for the different
brane stacks present in the construction so that Xi denote the separation between the gaugino
brane stack and another stack at the other end of the cylinder. We denote the gaugino brane stack
i = 0 and the sum over all the states includes the Xi=0 = 0 states and also the states which are
strings stretching between the stack and other ones required for tadpole cancellation. The factor δi
accounts for the Chan-Paton traces so that tadpole cancellation implies that in the UV t → 0 the
partition function vanishes, see section 3 for more detail, which guarantees finiteness and so12

Z(0) = 0 . (208)

In the IR t→ ∞ only the massless modes can contribute which gives

Z(∞) = 1 . (209)

We see that the expression
∫

dtdZdt has the key features of anomaly mediation: it arises in the
ultraviolet, but its value is determined purely by the infrared spectrum. The last term of (206)
gives the field theory running as well as the threshold corrections. Below the winding modes scale
MW we can write (206) as

Z(∞)



1−
∫ 1

µ2

1

M2
W

dt

t
= 1− ln

(

M2
W

µ2

)



 , (210)

where µ is an IR regulator. Using all the above we see that (206) precisely reproduces the field
theory predictions of (159) and (160): we find an anomaly mediated contribution and a running
mass of equal magnitude and opposite sign.

It is worth looking a little closer at the anomaly mediated contribution

Z(0)− Z(∞) = lim
t→0

∑

∆Xi 6=0

∑

n,m

e−
t

4πα′ |∆Xi(m,n)|2 (211)

≡
∫ ∞

0
dt
∑

i

∑

n,m

δi
|∆Xi(m,n)|2

4πα′ e−
t

4πα′ |∆Xi(m,n)|2 . (212)

We see that although the UV part Z(0) vanishes leaving just a contribution from the IR piece
Z(∞), we can think of this as the contribution from all the heavy modes not present in the IR limit
i.e. Z(0) = 0 only if we also include the IR modes. Another way to see this is to note that in (212)
all contributing terms must have ∆Xi 6= 0 and so arise from a heavy string mode with non-zero
winding. Furthermore since values of t larger than |∆Xi|−2 give only an exponentially suppressed
contribution, we see the dominant contribution arise from values of the loop parameter t ∼ |∆Xi|−2.
In that sense the anomaly mediated contribution comes purely from the heavy (open string) modes
in the theory that lead to the finite UV completion. This point of view is perhaps more appropriate

12Since we have not introduced orientifolds strictly speaking the partition function does not vanish due to the N = 4
untwisted tadpole. However the N = 2 tadpoles are canceled and so do not contribute in the UV.
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in the closed string channel where these heavy open string modes become the light closed string
modes that are interacting with the flux as in the supergravity analysis of section 5.1.

We present further evidence for our result in appendix C. There we probe the anomaly mediated
mass by studying a 4-point amplitude where one of the gaugini is decomposed into a scalar and
fermion, see figure 4. The advantage of a 4-point calculation is that the open string momenta can
all be taken on-shell from the start of the calculation. From a formal perspective this is more robust
than the 3-point calculation presented above in which the open-string momenta are taken on-shell
only at the end, as it avoids the need to have off-shell intermediate steps. We find precisely the
same result with the anomaly mediated mass arising in the same way.

Infrared properties

We here briefly discuss some of the infrared properties of our expressions and connect to field theory
discussions of anomaly mediation.

First note that the expressions (196) and (202) take the form where in the IR limit t→ ∞ they
give a finite contribution. This is a field theory effect first pointed out in [33–35] and a stringy
realisation of it for the case of Yukawa couplings was studied in [32]. The schematic reason is that,
in (196) for example, if we take z2 − w = ixt/2 where x is their relative separation then as t → ∞
the expression (196) tends to a constant factor times the momentum, which is Lorentz completed
to k2 · k3. Then if we also include the bosonic correlators the full amplitude takes the schematic
form

k2
∫ ∞

0
dte−k

2t . (213)

This integral evaluates to a finite constant value. To see this consider the different ranges of the
values of t. For t≪ 1

k2
we have that the exponential is essentially 1 and therefore the contribution

to the integral goes like k2t which is very small. Near the range t ∼ 1
k2

the integral gets an order 1
contribution. In the limit t≫ 1

k2
the integrand vanishes due to the exponential factor and so again

there is no substantial contribution to the integral. Therefore we see that the contribution comes
from modes around t ∼ 1

k2
. Since in the on-shell limit k2 → 0 this is a strict IR effect. This is a

sign that this term, while real, should be associated with the 1PI action: it requires the existence
of massless particles and comes from the k → 0 limit of the loop integral.

The field theory interpretation of such terms is as 1
�
diagrams in the 1PI action. In [10] anomaly

mediation is understood as an ultraviolet counter term to such infrared divergences: while the mass
term is generated in the ultraviolet, it appears as a necessary counterterm to cancel the effect of
certain infrared loops. This is a similar structure as appears in the expressions in [8], where the
anomalous Lagrangian term is

−g2
256π2

∫

d2Θ2EWαWα
1

�

(

D̄2 − 8R
) [

4(TR − 3TG)R
+
]

. (214)

It is interesting to note that our results are consistent with this discussion, as the anomaly-mediated
mass term arises from a sum over (ultraviolet) winding modes while the infrared limit of the am-
plitude has 1

�
terms. In principle we could hope to obtain a full match to the formalism of [10] by

computing the coefficient of all the infrared 1
�

terms, however we leave this to future work.
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5.3 RR Flux

We now describe the analogous computation for the case of RR flux. While to some extent the
techniques are similar, overall this computation is much more involved both technically and concep-
tually. We shall therefore simply present a summary of the calculation in this section while giving
the full details in appendix D.

The first aspect which makes the RR computation more involved is that the comparison with
supergravity expectations is not so simple. As with the NSNS case, we expect to find both a
running and an anomalous mass term in the string computation. With the NSNS case, the presence
of the pure m3/2 term was equivalent to the presence of an anomalous mass term in the string
computation, due to a cancellation in the other contributions. In the RR case this is no longer the
case, and a probe of the pure m3/2 term can only be done via both the relative sign and magnitude
of the running and anomalous mass terms.

The vertex operator for the RR field strength is given by

V
(−1/2,−1/2)
F = NF gse

−φ/2−φ̃/2FmnpΘ(z)CΓmnpΘ̃(z̃), (215)

where a factor of gs is included as we take the sphere to have a factor g−2
s . The differing factors of

gs between RR and NS-NS vertex operators relate to the fact that the RR vertex operator directly
involves the field strength Fmnp whereas the NS-NS operator involves the 2-form potential. Θ, Θ̃
are ten-dimensional spin fields and C the charge conjugation operator, given by

C = Γ0Γ3Γ5Γ7Γ9, (216)

and hence since Θ and Θ̃ have the same chirality only odd forms are allowed, as we expect from
IIB. The form of the CΓmnp structure determines the relative H-charges of the two spinors Θ and
Θ̃, as it raises and lowers the H-charges of the individual operators.

In the on-shell zero-momentum limit the 3-form flux takes the simple form

Fmnp = F345

(

dX3 ∧ dX4 ∧ dX5 + dX̄3 ∧ dX̄4 ∧ dX̄5

)

.

However as we have already seen we must work at non-zero momentum and only take the k → 0
limit at the end of the computation. In this case the 3-form field strength we must use is given by

F3 =
(

dX3 ∧ dX4 ∧ dX5e
ik·X + iX5 (k · dX) ∧ dX3 ∧ dX4e

ik·X + c.c
)

. (217)

The second term is necessary to satisfy the Bianchi identity dF3 = 0. In contrast to the NS-NS
computation, there are then two separate flux contributions which must be individually computed
and then summed.

For each of these options there are many picture-changing possibilities. In appendix D we
compute these, and obtain the following results. The first flux term in eq. (217) gives an overall
amplitude of (from (315))

πα′
∫

dt

t

[

(4 + 4t
d

dt
)Z(t) +

k2 · k3 + 2k2 · k2
2k2 · k3 + k3 · k3

Z(t)

]

. (218)
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The second flux term in (217) ends up giving (from (360))

2πα′
∫

dt

t
Z(t)− 2πα′

∫

dt
d

dt
Z(t). (219)

There are some points to draw from this expression. First, we see that we do find both anomalous
and running mass terms present in this amplitude, as we would expect based on the general super-
gravity structure. However there is one crucial difference compared to the NS-NS amplitude. In the
NS-NS amplitude, there was no ambiguity in how to return from the off-shell limit to the on-shell
theory (where the combination of equations (204) and (188) led to a cancellation of all off-shell
quantities). However in (218) the off-shell terms do not cancel and so it is not clear how to extract
a precise numerical answer. Similar behaviour has been seen in the calculation of 3-point Yukawa
couplings, where the off-shell ambiguity can be resolved by going to a 4-point calculation where all
particles can be put on shell [32].

In principle a 4-point calculation could also be performed for the case of RR flux, analogous to
that presented in appendix C. However here given the calculational intricacy already present in the
3-point calculation, without some improved technical methods the 4-point RR calculation seems
prohibitive.

5.4 2 gaugino picture changing

At this point we also discuss a technical issue in the calculations. This occurs when we try and
cancel the H-charges by picture changing both gaugini fields into the +1/2 picture. If this is done,
it turns out that there is no source of anomalous mass terms for either the NS-NS or RR flux
computations. This is not consistent with (154) for any value of δAM and so must be erroneous.

We do not fully understand the reason for this (although we note that the arguments for picture-
changing independence in [20] apply directly to worldsheets without boundaries and do not seem to
generalise straightforwardly to mixed open-closed amplitudes). However we suspect the following.

The aim of the computation is to compute gaugino masses in a 3-form flux background. Properly,
the computation of gaugino masses in a flux background would require formulating the worldsheet
CFT in the 3-form flux background. As described, we can evade this by inserting the flux vertex
operators on the worldsheet. However we should still be able to view this as a leading term in an
expansion in powers of flux of a worldsheet action in which the flux vertex operator is exponentiated
into the worldsheet. If it is possible to ‘integrate in’ the flux vertex operator, or view it as a
perturbation on a flux-less background, then it would appear that the flux operator should carry a
net picture charge of zero. This would be necessary as, integrated in, there would be no flux vertex
operator and the gaugini would have to carry vanishing ghost charge by themselves. In this case an
amplitude with both gaugini picture changed (and so carrying non-zero ghost charge) would not be
an appropriate picture to compute in.
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6 Summary

In this paper we have studied supersymmetry breaking effects from a string theory perspective
by calculating string scattering amplitudes on a Z4 orbifold with D3-branes on singularities. We
have taken the approach of calculating predictions from supergravity formulae regarding gaugino
masses and then checked these predictions by evaluating the appropriate correlators on the annulus.
We could recreate brane-to-brane gravity mediated tree-level soft gaugino masses and showed that
there are two contributions coming from the N = 4 and N = 2 open string winding modes which
correspond to dilaton and blow-up mode mediation respectively.

The main result of this work concerns the supergravity formula for anomaly mediated gaugino
masses

m1/2 = − g2

16π2

[

(3TG − TR)m3/2 − (TG − TR)KiF
i − 2TR

dR
F i∂i (ln det Z) + 2TGF

I∂I ln

(

1

g20

)]

.

(220)
We performed the first detailed check of this formula from a string theory approach. After noting
the presence of the last term (which was not presented in [8]) we set out to probe the presence
of the first term associated to the ‘superconformal anomaly’ induced by supersymmetry breaking
closed-string fluxes. For the case of NS H-flux the supergravity analysis predicts that if and only if
the first term of (220) is present should there be a 1-loop mass term for the gauginos. We probed
this mass term by calculating the correlator 〈Hλλ〉 and showed that the mass term is present.13

Further, the string calculation also agreed with the predicted relative coefficient between this mass
term and the 1-loop running of the tree-level mass.

Our results show how this mass term arises in string theory. We showed that it comes from a
sum over UV open-string winding modes, which can be written as a total derivative of a partition
function ZCl with respect to the annular modular parameter. Integrated over all values of the
modular parameter, the overall result is given purely by the difference ZCl(∞) − ZCl(0). The
former is determined purely by the massless spectrum and gives the β-function, whereas the latter
vanishes due to tadpole cancellation. In this way we obtain the fact that the anomaly-mediated
mass is an ultraviolet effect determined purely by infrared physics.

For the case of RR-flux the results were not complete. The reason is that the supergravity
prediction is less clean since a mass term arises with or without the first term of (220) which
means that the formula can only be fully checked by the relative coefficient between the 1-loop
mass term and the 1-loop running of the tree-level mass term. This requires precise knowledge
of all the numerical factors. However in calculating a 3-point amplitude there is sometimes an
ambiguity in the off-shell formulation to do with the cancellation of the momentum factors in
the on-shell limit (see [32] for another example). This arose in the RR calculation which means
that determining the precise numerical factors was not possible and would require a higher point
computation. Nonetheless, although we could not reproduce their relative coefficient, we were able
to recreate the presence of a mass term and a running term as predicted. It would be very interesting
to try and resolve this issue with a higher point computation.

13We checked this further by calculating a 4-point amplitude with one of the gaugini decomposed into a scalar and
a fermion.
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It would be interesting to see how these results are modified by the presence of orientifolds,
where at 1-loop there are also the Mobius strip and Klein bottle diagrams. The inclusion of such
diagrams would modify the calculation as in their presence the N = 1 Chan-Paton trace is non-
vanishing and is given by the orientifold charge. This means that there may be new contributions
coming from N = 1 string oscillator modes. There should also be field redefinitions for the twisted
modes in going from the string to the supergravity calculation.

It would of course be very interesting to study the formula for soft scalar masses with a string
calculation. However since these come from the scalar potential they should involve two flux inser-
tions which would make their calculation even more difficult than the gaugino masses, in addition
to the possible need to do a 2-loop computation.
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A Gaugino threshold corrections

Here we calculate threshold corrections for gauginos. This provides confidence in our ability to work
with the gaugino vertex operators in a situation where the answer is already known; for supersym-
metry should ensure that we obtain the same result as with gauge boson operators. This check is
important as the gaugino running plays a role in the anomaly mediation supergravity predictions; in
particular, the calculation implies that “ghost derivative” terms should be explicitly excluded from
the off-shell extension (this point is moot for an on-shell calculation as their contributions then nec-
essarily cancel). As a bonus, the calculation below can be easily extended to non-supersymmetric
models where the gaugino threshold corrections are not identical to the gauge thresholds, for ex-
ample when there are antibranes. This also applies to the calculation of kinetic mixing between
gauginos located on different (anti)branes. We proceed by computing the correlator 〈λ̄λ〉.
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The gaugino vertex operators are given in the (-1/2)-picture by

V
−1/2
λ =e−φ/2uαSαe

ik·X
5
∏

i=3

e
i
2
Hi

V
−1/2

λ
=e−φ/2uα̇Sα̇e

ik·X
5
∏

i=3

e−
i
2
Hi (221)

Sα, Sα̇ are chiral and anti-chiral 4d Weyl spinors e±
i
2
(H1+H2), e±

i
2
(H1−H2). The H-charges of these

operators are (+,+,+,+,+) and (+,−,−,−,−). The annulus requires vanishing ghost charge and
so we need to picture change one of the operators.

For the amplitude the only allowed Lorentz structure is uγµu, since uγγγu is equivalent. The
picture-changing operator eφ∂Xµψ

µ(w) may in general act on either internal or non-compact direc-
tions, but in order to conserve H-charge must in this case act only on the non-compact directions.
In principle we could use the ready-made part of the +1/2 operator from Frieden, Martinec and
Shenker [20]:

V
+1/2
λ = uαeφ/2

[

∂Xµ + 2iα′(k · ψ)ψµ
]

γµαβS
βeik·X . (222)

Note that this is four-component spinor notation, and raised indices are conjugate to lowered ones,
so

SαS
β ∼ (z − w)−1/2δβα. (223)

However, we will find that this is not the most useful approach, since it involves taking correlators
with extra ψ operators and then extracting the finite parts. The most straightforward approach is
instead to calculate the full amplitude before taking the picture-changing limit. However there are
two crucial details. The first is that the most singular part of the amplitude must be excluded:

eφ∂Xµψµ(z)V
−1/2(w) ∼ 2α′(z − w)−1eφ/2uαγ

µ
αβkµe

ik·X + ... = 0 + ... (224)

This originates in the fact that picture-changing is a contour integral around a vertex operator, and
the most singular terms (which correspond to O(z − w)−2 double poles) should be excluded.

The second, directly related to the first, is that we immediately replace eφ(z)e−φ(w)/2 with
(z −w)1/2eφ(w)/2 and do not consider subleading terms from the ghost OPE. This is because ghost
derivative terms are eliminated from the vertex operator by the equations of motion for the fermion;
as we can see from the equation above there would be terms of the form

eφ∂Xµψµ(z)V
−1/2(w) ⊃ eφ/2

1

2
∂φ(uαγ

µ
αβkµ)e

ik·X (225)

which vanish by uαγ
µ
αβkµ = 0. One source of worry might be that since we are continuing the

momenta off-shell we should in fact retain these terms. However, the reader can convince themself
that this is not correct by performing a four-point calculation similar to that in [32] or section (C).

However, we do need to include the subleading parts from the ∂X and ψ correlators, and in fact
these will give us the result. Note that the above subtleties only arise because we are computing
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a two-point correlator; for four point amplitudes and above the on-shell conditions can be imposed
more easily. It is however generally the case that for fermionic fields we should compute the full
amplitude before performing the picture-changing; otherwise contributing terms are missed.

We now evaluate the amplitude, placing the gaugino vertex operators at z1 and z2 and the
picture-changing operator at w. We find (continued off-shell)

〈V −1/2

λ
V

+1/2
λ 〉 =uγµukµ lim

w→z2
(w − z2)

1/2〈e−φ/2(z1)eφ/2(z2)〉〈eik·X(z1)∂X(w)e−ik·X(z2)〉

× 〈e i
2
H(z1)e−

i
2
H(z2)〉〈e− i

2
H(z1)eiH(w)e

−i
2
H(z2)〉

3
∏

i=1

〈e− i
2
Hi(z1)e

i
2
Hi(z2)〉. (226)

It is straightforward to write down the correlators using (78)

〈e−φ/2(z1)eφ/2(z2)〉 =
(

θ1(z1 − z2)

θ′1(0)

)1/4 1

θα(
z2−z1

2 )
,

〈e i
2
H(z1)e−

i
2
H(z2)〉 =

(

θ1(z1 − z2)

θ′1(0)

)−1/4

θα(
z1 − z2

2
),

〈eik·X(z1)∂X(w)e−ik·X(z2)〉 =ikν
(

∂wG
µν(z1 − w)− ∂wG

µν(w − z2)

)

exp[Gρκ(z1 − z2)kρkκ],

〈e− i
2
H(z1)eiH(w)e

−i
2
H(z2)〉 =

(

θ1(z1 − z2)

θ′1(0)

)1/4(θ1(z1 − w)

θ′1(0)

)−1/2(θ1(w − z2)

θ′1(0)

)−1/2

θα(w − z1 + z2
2

).

(227)

Now, when performing the contour integration we require the fact that

∂wG
µν(w − z2) ∼ −ηµν 2α′

w − z2
+O(w − z2), (228)

whereas

〈e− i
2
H(z1)eiH(w)e

−i
2
H(z2)〉 ∼(w − z2)

−1/2

(

θ1(z1 − z2)

θ′1(0)

)−1/4 [

1 +
1

2
(w − z2)

θ′1(z1 − z2)

θ1(z1 − z2)

]

×
[

θα(
z2−z1

2 )

θα(0)
+ (w − z2)

θ′α(
z2−z1

2 )

θα(0)

]

. (229)

Thus the whole amplitude is

〈V −1/2

λ
V

+1/2
λ 〉 =iuγµu

(

θ1(z1 − z2)

θ′1(0)

)−1/4

exp[Gρκ(z1 − z2)kρkκ]

×
∑

α

δα

[{

α′kµ
θ′1(z1 − z2)

θ1(z1 − z2)
+ ∂z2k

νGµν(z1 − z2)

}

θα(
z2 − z1

2
)

+ 2α′kµθ
′
α(
z2 − z1

2
)

]

1

η3(it)

1

(4π2α′t)2

3
∏

i=1

〈e− i
2
Hi(z1)e

i
2
Hi(z2)〉α. (230)
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Clearly the last line has a structure familiar from supersymmetric gauge threshold corrections,
while the middle line is different and thus should vanish in the supersymmetric limit. We have also
indulged in a change of sign in the θα functions; as the θ-functions are either even or odd this is
consistent provided the numbers of such changes is zero modulo two.

Let us now evaluate this. For an N = 1 supersymmetric orbifold without N = 2 sectors the
amplitude then simplifies to

〈V −1/2

λ
(z1)V

+1/2
λ (z2)〉 =iuγµu exp[Gρκ(z1 − z2)kρkκ]

1

(4π2α′t)2

×
[{

3α′kµ
θ′1(z1 − z2)

θ1(z1 − z2)
+ ∂z2k

νGµν(z1 − z2)

}

+ 2α′kµ

3
∑

i=1

θ′1(θi)
θ1(θi)

]

. (231)

To compute the whole amplitude, we must integrate over the modulus t and the operator positions
(fixing if desired one at the origin); we find that the piece in curly brackets vanishes on integration
as an odd function. We are then left with

〈λ̄λ〉 =
∫ ∞

0
dt

1

(4π2α′t)2

∫ it/2

0
dz1〈V −1/2

λ
(z1, k)V

+1/2
λ 〉(0,−k)

=iuγµukµ

∫ ∞

0

dt

t

1

(4π2α′)2
4(α′)2

3
∑

i=1

θ′1(θi)
θ1(θi)

. (232)

Including the Chan-Paton trace, we find this is equal to the result for gauge thresholds [16, 32] on
using the theta identity (372). In particular it is straightforward to repeat the last steps for N = 2
sectors of orbifolds, and find that as expected [16, 32, 37] the gauge couplings as measured by the
gauginos run to the winding scale of the compactification. Note that if we were to erroneously
include the “ghost derivative” terms then we would actually find that this term would be cancelled.
Since this is the entire contribution for the supersymmetric case, we confirm our assertion that
they should be excluded! Finally, for non-supersymmetric setups we will find contributions from all
sectors, including the untwisted sector, where the result (231) is qualitatively the same as for the
gauge bosons but clearly quantitatively different.

B Powers of coupling constants

The gravity mediated contribution to the gaugini masses studied in section 4 is computed on the
annulus. However, from a supergravity perspective it is still a ‘tree-level’ mass corresponding to
FS∂Sfa, rather than a 1-loop one. In this appendix we make this statement precise by studying
the dependence on the string coupling gs of the amplitude.

We will work in conventions where no powers of gs are included in the vertex operators. This
will mean that fields are in general not canonically normalised, and this we will do at the end. The
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powers of gs then come from the diagram we are computing. These are

Sphere g−2
s (233)

Disc g−1
s (234)

Annulus g0s (235)

Gauge and gaugino kinetic terms can be computed on the disk (tree-level) couplings and on the
annulus (threshold corrections). These generate amplitudes that look like (disk)

Gauge kinetic terms:

∫

d4x
1

gs
FµνF

µν Gaugino kinetic terms:

∫

d4x
1

gs
λ̄σµ∂µλ.

and (annulus)

Gauge kinetic terms:

∫

d4xβ ln

(

Λ2

µ2

)

FµνF
µν Gaugino kinetic terms:

∫

d4xβ ln

(

Λ2

µ2

)

λ̄σµ∂µλ.

Canonically normalised gauge and gaugino fields are then
Aµ√
gs

and λ√
gs
.

The scalar and fermion kinetic terms are also generated on the disk (as we are dealing with D3
branes and an underlying N=4 structure, these fields are just the extension of the above to include
internal indices). So these terms look like

1

gs

∫

d4x∂µφ∂
µφ =

∫

d4x∂µ

(

φ√
gs

)

∂µ
(

φ√
gs

)

≡
∫

d4x∂µφ̂∂
µφ̂. (236)

1

gs

∫

d4xχ̄σµ∂µχ =

∫

d4x

(

χ̄√
gs

)

σµ∂µ

(

χ√
gs

)

≡
∫

d4x ¯̂χσµ∂µχ̂. (237)

Here φ̂ and χ̂ are canonically normalised fields.

The tree-level Yukawa coupling is generated on the disk and so takes the form

1

gs

∫

d4xφχχ =

∫

d4x

(

φ√
gs

)(

χ√
gs

)(

χ√
gs

)√
gs ≡

∫

d4xφ̂χ̂χ̂
√
gs . (238)

The one-loop Yukawa coupling from the annulus has the form

K ln

(

M2
W

µ2

)∫

d4xφχχ = K ln

(

M2
W

µ2

)∫

d4x

(

φ√
gs

)(

χ√
gs

)(

χ√
gs

)

g3/2s

≡ K ln

(

M2
W

µ2

)
∫

d4x
(

φ̂χ̂χ̂
)

g3/2s . (239)

This is down by a factor of gs compared to the tree-level term.

The sphere diagram gives the graviton and gravitino kinetic terms. The sphere is normalised as
g−2
s , so we should get schematically (linearising about flat space time to extract only the fluctuation
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of the graviton about Minkowski space, so indices are raised and lowered using the Minkowski
metric)

Graviton: e−2φ
∫

d4x ∂µh∂
µh =

∫

d4x∂µ

(

h

gs

)

∂µ
(

h

gs

)

≡
∫

d4x ∂µĥ∂
µĥ

Gravitino: e−2φ
∫

d4x ψ̄3/2∂ ψ3/2 =

∫

d4x

(

ψ̄3/2

gs

)

∂

(

ψ3/2

gs

)

≡
∫

d4x
(

ˆ̄ψ3/2

)

∂
(

ψ̂3/2

)

.(240)

What is the gravitino mass? From a string perspective we would compute this by computing the
5-point amplitude 〈φ1φ2φ3ψ3/2ψ3/2〉 on the disk. We assume here that this amplitude is non-zero.
This corresponds to the gravitino mass induced by turning on the three boson fields. There are
volume factors that would require a more detailed computation but the overall prefactor must be
g−1
s from the disk factor. This should then give

1

gs
〈φ1φ2φ3ψ3/2ψ3/2〉 = λg5/2s

(

φ1√
gs

)(

φ2√
gs

)(

φ3√
gs

)(

ψ3/2

gs

)(

ψ3/2

gs

)

. (241)

As the fields in brackets are canonically normalised, in terms of the string fields that enter the
vertex operator, the gravitino mass is then given by

m3/2 = λg5/2s

(

φ1√
gs

)(

φ2√
gs

)(

φ3√
gs

)

, (242)

where λ is independent of the string coupling. Now consider the amplitude we compute, which is
〈φ1φ2φ3λ1λ2〉 evaluated on the annulus. This will give

〈φ1φ2φ3λλ〉 = κφ1φ2φ3λ1λ2 (243)

= κg5/2s

(

φ1√
gs

)(

φ2√
gs

)(

φ3√
gs

)(

λ√
gs

)(

λ√
gs

)

(244)

∼ m3/2

(

λ√
gs

)(

λ√
gs

)

. (245)

This therefore gives a term in the Lagrangian which is a gaugino mass term directly proportional
to the gravitino mass, without any additional factors of the string coupling. This is consistent with
the amplitude we have computed representing a tree-level gaugino mass, despite the fact we are on
the cylinder notwithstanding.

C Higher-Point NS-NS Flux Computation

In this appendix we present a calculation of the NS H-flux anomaly mediated mass term using a
4-point amplitude. This is formally more robust than the 3-point calculation presented in the main
text as the open string momenta can be taken on-shell from the start. As discussed in [32], the
off-shell extension of a 3-point calculation can lead to ambiguous momentum prefactors (although
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the amplitude is unambiguous).14 For example we could obtain ratios k2i /k
2
j which should become

1 as we take the momenta to zero. In section 5.2 we did not have such ambiguous ratios, but
nonetheless performing the four-point check confirms that those results correct.

We compute the higher-point amplitude and then factorise onto the relevant sub-diagram in
order to obtain the relevant prefactors. Here we shall compute a four-point amplitude where a
boson φ and fermion ψ factorise in an appropriate limit onto one of the gaugini λ, as illustrated in
figure C

A = 〈V +1/2
λ (z1, k1)V

−1/2

ψ̃
(z2, k2)V

0
φ̃
(z5, k5)V

0,0
NS−NS(z3, z4, k3)〉 (246)

where B = X5dX3 ∧ dX4 + X
5
dX

3 ∧ dX
4
; for convenience we write z3, z4 for the closed string

coordinates with the understanding that z4 = −z̄3; and

V
−1/2

ψ̃
=e−φ/2eik·Xuα̇S̃

α̇e−
i
2
H3+

i
2
H4+

i
2
H5 ,

V −1

φ̃
=e−φeik·Xψ3,

V
−1/2
λ =e−φ/2eik·XvαS

αe
i
2
H3+

i
2
H4+

i
2
H5 ,

V −1,−1
NS−NS =e−φ−φ̃eik·X

(

X5(ψ3ψ̃4 − ψ4ψ̃3) +X
5
(ψ

3
ψ̃
4
− ψ

4
ψ̃
3
)

)

. (247)

X5 is the untwisted direction. Sα, Sα̇ are chiral and anti-chiral 4d Weyl spinors e±
i
2
(H1+H2),

e±
i
2
(H1−H2).

To reproduce the lower-point gaugino mass sub-diagram, we consider taking z5 ∼ z2 and extract
the pole in k2 · k5 where

V
−1/2

ψ̃α̇
(z2)V

0
φ (z5) =e

−φ/2eik·Xuα̇S̃
α̇Θ(z2)V

0
φ

∼ (z2 − z5)
−1+2α′k2·k5k5µ(Γ

µ)αα̇V
−1/2
λα . (248)

Thus when we integrate over z5, we we find a pole at z2

A→
k5µ(Γ

µ)αα̇

2α′k2 · k5
uα̇V

−1/2
λα

→ 1

2α′
1

/k2 + /k5
uα̇V

−1/2
λα (249)

since /k2u = 0; this is what we expect from figure (C). So to extract the gaugino mass diagram
we retain the piece proportional to k5µ(Γ

µ)αα̇/k2 · k5 from the amplitude and neglect the remaining
terms.

We can clearly ignore the Xψψ̃ terms in the NS-NS operator due to H-charge - we have only
four PCOs - and so we retain only the second half of the flux operator. Moreover, we can readily

14In [38] it is claimed that there is a uniquely preferred way to go off-shell for 3-point closed string amplitudes.
However the arguments presented there involve modular invariance in a crucial way, and so do not seem to generalise
to open string amplitudes where modular invariance does not play a key role in the consistency of the theory.
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Figure 4: Field theory limit of the four-point string diagram. The double scalar line denotes the
flux insertion.

see that we require either one or three PCOs to act on the external dimensions. In these case from
considering the most general Lorentz structures possible the correlators must take the form

〈SαS̃α̇ψµ〉 =A1(CΓµ)αα̇

〈SαS̃α̇ψµψνψρ〉 =A2(CΓµ)αα̇η
νρ +B2(CΓν)αα̇η

µρ +C2(CΓρ)αα̇η
µν +D2(CΓµΓνΓρ)αα̇, (250)

where C is the charge-conjugation matrix, and the functions A1, B2, C2,D2 depend upon the PCO
and vertex operator positions and in principle Lorentz-invariant functions of the momenta. Then in
the first case we need only compute one amplitude to determine A1, whereas for three external PCOs
we must compute four amplitudes in order to completely determine all of the functions. Computing
further amplitudes will yield no further information. In the former case, we can see that by choosing

Sα = e−
i
2
H1e−

i
2
H2 ≡ | − −〉, S̃α̇ = e−

i
2
H1e+

i
2
H2 ≡ | −+〉, µ = 1+ we find 〈S−−S̃−+ψ1+〉 = A1.

To compute the three-PCO amplitudes, we have:

α = | − −〉, α̇ = |+−〉, µ = 1−, ν = 1+, ρ = 2+ →− 1

2
C2

α = | − −〉, α̇ = |+−〉, µ = 1−, ν = 2+, ρ = 1+ →− 1

2
B2

α = | − −〉, α̇ = |+−〉, µ = 2+, ν = 1−, ρ = 1+ →− 1

2
A2

α = | − −〉, α̇ = |+−〉, µ = 2+, ν = 1+, ρ = 1− →− 1

2
A2 −D2

α = | − −〉, α̇ = |+−〉, µ = 1+, ν = 2+, ρ = 1− →− 1

2
B2 +D2

α = | − −〉, α̇ = |+−〉, µ = 1+, ν = 1−, ρ = 2+ →− 1

2
C2 −D2. (251)

We need only compute four of these.

Once we have computed the fermionic part of the amplitudes, we recall that the PCOs contain
a bosonic part, so total amplitude is given by the contraction of the Lorentz indices µ, ν, ρ with
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〈ẊµẊνẊρ
∏

eik·X〉 and then take the limit as the PCOs approach their vertex operators. When
acting upon the NS-NS flux or the scalar, these yield simple factors of k3, k5 but for the gaugino
there may be derivative terms.

In fact, since bosonic correlators in twisted directions vanish when integrated, we may only have
the situation with three external PCOs; in one configuration the internal PCO acts on the gaugino,
in another it acts on the NS-NS operator. So we must calculate 8 amplitudes. However, we can in
fact reduce these to the set which contain the appropriate pole between the boson and fermion; we
can thus consider only four amplitudes. Choosing ρ to be associated with the boson means that
only C2 and D2 survive.

Now in computing the four-point function the aim would be that we can take all vertex operators
on shell, so we would think we could take for example k23 = 0. However, once we have closed string
operators on the annulus we find that there exist poles when the vertex operator approaches the
boundary. If we were to go on shell then we would need to include explicit contact terms in
the amplitude [36]; we shall simply follow the standard procedure of analytically continuing the
momenta, and take the limit k23 → 0 afterward. However, we are free to take the open string
momenta on shell and use their equations of motion to simplify the calculation.

Internal PCO on gaugino

Here we label ρ→ φ, (µ, ν) → VNSNS and so

A ⊃ −i(k3)µ(k3)ν(k5)ρ〈Sα(z1)S̃α̇(z2)ψµ(z3)ψν(z4)ψρ(z5)〉 (252)

multiplying the internal correlators. Here we can always use the four-theta identity, since in the X5

direction the fermionic charges cancel the ghost charges.

µ = 1−, ν = 1+, ρ = 2+

We compute with the H-charges

ψ+1/2(z1) =
1

2
(−,−,+,+,−) ,

ψ−1/2(z2) =
1

2
(+,−,−,+,+) ,

g(z3) =(−1, 0,−1, 0, 0) ,

g(z4) =(+1, 0, 0,−1, 0) ,

φ0(z5) =(0,+1,+1, 0, 0) . (253)

This yields C2 with momentum kµ3 k
ν
3k

ρ
5 , giving k

2
3k

ρ
5CΓρ.

The amplitude gives

2(u1C/k5u2)k
2
3

θ1(−z3 + z4 + θ)θ1(z2 − z5 − θ)

θ1(z2 − z5)θ1(z3 − z4)θ1(θ)θ1(−θ)
〈∂nX5X

5〉 (254)
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This clearly contains the required pole in z2 − z5, which we can factorise onto to obtain

2
(u1C/k5u2)k

2
3

k2 · k5
θ1(−z3 + z4 + θ)

θ1(z3 − z4)θ1(θ)
〈∂nX5X

5〉. (255)

This is the main expression for the anomaly-mediated mass in the main body of the paper, and
shows that the prefactor of k23 used there is correct. It is equivalent to computing with H-charges

ψ+1/2(z1) =
1

2
(−,−,+,+,−) ,

ψ−1/2(z2) =
1

2
(+,+,+,+,+) ,

g(z3) =(−1, 0,−1, 0, 0) ,

g(z4) =(+1, 0, 0,−1, 0) .

(256)

µ = 2+, ν = 1+, ρ = 1−

We compute with the charges

ψ+1/2(z1) =
1

2
(−,−,+,+,−) ,

ψ−1/2(z2) =
1

2
(+,−,−,+,+) ,

g(z3) =(0,+1,−1, 0, 0) ,

g(z4) =(+1, 0, 0,−1, 0) ,

φ0(z5) =(−1, 0,+1, 0, 0) . (257)

This yields D2 with momentum kµ3 k
ν
3k

ρ
5 , giving k

µ
3k

ν
3k

ρ
5CΓµΓνΓρ = k23k

ρ
5CΓρ. However, this yields

zero upon Riemann summation.

Internal PCO on NSNS

Here µ becomes the PCO acting on the gaugino, ν on the LHS of the NSNS field, and ρ still on the
boson.

A ⊃ −i(k3)ν(k5)ρ lim
u→z1

(u− z1)
1/2

[

〈Ẋµ(u)
∏

eik·X〉〈Sα(z1)S̃α̇(z2)ψµ(u)ψν(z4)ψρ(z5)〉
]

. (258)
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µ = 1−, ν = 1+, ρ = 2+

We compute with the charges

ψ+1/2(z1) =
1

2
(−,− −−,+,+,+) ,

ψ−1/2(z2) =
1

2
(−,−,−,+,+) ,

g(z3) =(+1, 0,−1, 0, 0) ,

g(z4) =(0, 0, 0,−1,−1) ,

φ0(z5) =(0,+1,+1, 0, 0) . (259)

This yields C2 with momentum prefactor kµ1 k
ν
3k

ρ
5 → k1 · k3kρ5CΓρ. Extracting the pole piece we

have the prefactor exactly as in the body of the paper (where we exchange k1 ↔ k2) and compute
with the charges

ψ+1/2(z1) =
1

2
(−,− −−,+,+,+) ,

ψ−1/2(z2) =
1

2
(−,+,−,+,+) ,

g(z3) =(+1, 0,−1, 0, 0) ,

g(z4) =(0, 0, 0,−1,−1) (260)

and the conjugate

ψ+1/2(z1) =
1

2
(−,− −−,+,+,+) ,

ψ−1/2(z2) =
1

2
(−,+,−,+,+) ,

g(z3) =(+1, 0, 0,−1, 0) ,

g(z4) =(0, 0,−1, 0,−1) . (261)

These contributions can be calculated using the five-theta summation formula and are shown in
section (5.2) to yield running masses.

µ = 2+, ν = 1+, ρ = 1−

We compute with the charges

PCO(u) =(0,+1, 0, 0, 0) ,

ψ+1/2(z1) =
1

2
(−,−,+,+,+) ,

ψ−1/2(z2) =
1

2
(+,−,−,+,+) ,

g(z3) =(+1, 0,−1, 0, 0) ,

g(z4) =(0, 0, 0,−1,−1) ,

φ0(z5) =(−1, 0,+1, 0, 0) . (262)
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If we consider D2 then we see that if it is contracted with k1 then it vanishes by the equations of
motion. However, this is exactly what we find preceding derivative terms. So we see that we must
compute with the charges

ψ+1/2(z1) =
1

2
(−,+,+,+,+) ,

ψ−1/2(z2) =
1

2
(+,−,−,+,+) ,

g(z3) =(+1, 0,−1, 0, 0) ,

g(z4) =(0, 0, 0,−1,−1) ,

φ0(z5) =(−1, 0,+1, 0, 0) (263)

multiplying

(ikµ2 ∂z1G12 + ikµ3 ∂z1G13 + ikµ5 ∂z1G15)k
ν
3k

ρ
5 . (264)

Extracting the pole term we can compute with the charges

ψ+1/2(z1) =
1

2
(−,+,+,+,+) ,

ψ−1/2(z2) =
1

2
(−,−,+,+,+) ,

g(z3) =(+1, 0,−1, 0, 0) ,

g(z4) =(0, 0, 0,−1,−1) ,

(265)

which, when we perform the Riemann summation, vanishes.

C.1 Alternative Choice of Flux

Since the previous calculation required us to take the limit as k23 becomes on-shell, rather than
insisting on this from the outset, here we demonstrate that the result is correct by calculating with

a different choice of flux. Namely we take X
3
(ψ

4
ψ̃
5
−ψ5

ψ̃
4
), equivalent to B2 = X3dX4∧dX5+ c.c.

The relevant term has both PCOs acting internally on the NSNS flux giving ψ
1
ψ
2
∂X

3
, and one

acting internally on the gaugino in the X3 direction. We have the charges

ψ+1/2(z1) =
1

2
(−,−,+,+,−) ,

ψ−1/2(z2) =
1

2
(+,−,−,+,+) ,

g(z3) =(0, 0,−1,−1, 0) ,

g(z4) =(0, 0, 0, 0, 0) ,

φ0(z5) =(0,+1,+1, 0, 0) . (266)
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The amplitude also contains the correlator 〈∂nX5(z1)∂̄X̄
5(z4)〉. When contracted we have the pole

proportional to C/k5/k2 · k5 as required, and can then compute with the charges

ψ+1/2(z1) =
1

2
(−,−,+,+,−) ,

ψ−1/2(z2) =
1

2
(+,+,+,+,+) ,

g(z3) =(0, 0,−1,−1, 0) ,

g(z4) =(0, 0, 0, 0, 0) . (267)

After we perform the Riemann summation we find that all dependence upon the position of the
vertex operator positions drops out and we have

A ⊃∝ 1

k2 · k5
(u1/k5u2)

∫

dt∂tZ(t) (268)

which gives us exactly an anomaly mediation mass term.

For completeness, here we can include the case where there are three PCOs acting externally.

µ = 1−, ν = 1+, ρ = 2+

We compute with the charges

ψ+1/2(z1) =
1

2
(−,−,+,+,+) ,

ψ−1/2(z2) =
1

2
(+,−,−,+,+) ,

g(z3) =(−1, 0,−1,−1, 0) ,

g(z4) =(+1, 0, 0, 0,−1) ,

φ0(z5) =(0, 1,+1, 0, 0) . (269)

This multiplies −2k23(u1C/k5u2). We see that it may contain a pole in k23 so we must treat it carefully.
It reduces to the choice of charges

ψ+1/2(z1) =
1

2
(−,−,+,+,+) ,

ψ−1/2(z2) =
1

2
(+,+,+,+,+) ,

g(z3) =(−1, 0,−1,−1, 0) ,

g(z4) =(+1, 0, 0, 0,−1) . (270)

Since this is not multiplied by any internal bosonic correlators this may not contribute to the
anomaly mediated mass, since there is no derivative term for the partition function here. This may
only contribute running mass terms.
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µ = 2+, ν = 1+, ρ = 1−

We compute with the charges

ψ+1/2(z1) =
1

2
(−,−,+,+,+) ,

ψ−1/2(z2) =
1

2
(+,−,−,+,+) ,

g(z3) =(0,+1,−1,−1, 0) ,

g(z4) =(+1, 0, 0, 0,−1) ,

φ0(z5) =(−1, 0,+1, 0, 0) . (271)

This also multiplies −k23(u1C/k5u2). It reduces to the choice of charges

ψ+1/2(z1) =
1

2
(−,−,+,+,+) ,

ψ−1/2(z2) =
1

2
(−,−,+,+,+) ,

g(z3) =(0,+1,−1,−1, 0) ,

g(z4) =(+1, 0, 0, 0,−1) , (272)

which vanishes by Riemann summation.

D RR Flux computation

In this section we give the details of the RR flux computation that were omitted in the main text.
The relevant correlator involves 2 gauginos and one flux vertex operator 〈λλF 〉. The vertex operator
for the RR field strength is given by

V
(−1/2,−1/2)
F = NF gse

−φ/2−φ̃/2FmnpΘ(z)CΓmnpΘ̃(z̃), (273)

where a factor of gs is included as we take the sphere to have a factor g−2
s . The differing factors of

gs between RR and NS-NS vertex operators relate to the fact that the RR vertex operator directly
involves the field strength Fmnp whereas the NS-NS operator involves the 2-form potential. NF is
a normalisation factor that is not important for our purposes. Θ, Θ̃ are ten-dimensional spin fields;
C is the charge conjugation operator, given by

C = Γ0Γ3Γ5Γ7Γ9, (274)

and hence since Θ and Θ̃ have the same chirality only odd forms are allowed, as we expect from
IIB. The form of the CΓmnp structure then determines the relative H-charges of the two spinors Θ
and Θ̃.

The fact that Fmnp is itself the field strength implies that there are two distinct contributions
to the RR vertex operator. The physical state conditions are dFmnp = d ∗ Fmnp = 0. As for the
NS-NS 2-form potential, we take the RR 2-form potential to be

C2 = X5dX3 ∧ dX4e
ik·X + c.c. (275)
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This implies that the 3-form field strength has the form

F3 = dC2 = dX3 ∧ dX4 ∧ dX5e
ik·X + iX5kidXi ∧ dX3 ∧ dX4e

ik·X + c.c. (276)

Although the second term naively vanishes as k → 0, it is necessary to include it as momentum poles
in 1/k · k can give a non-vanishing contribution in this limit. As long as we work at non-zero k the
second term is necessary to satisfy the Bianchi identity, and it is only at the end of the computation
that we can send k → 0. Both terms in (276) need to be considered separately, as they involve
different H-charge structures among the flux spinors. We shall consider the first (‘standard’) case
to start with, and then subsequently consider the second (‘non-standard’) possibility.

As described in appendix A, we do not include ghost derivative terms when evaluating the
amplitudes.

D.1 Standard Case

As discussed in section 5.1 we turn on RR flux of type (3, 0) + (0, 3). In this case only one choice of

spinors is non-vanishing, since
(

Γ345 ± Γ3̄4̄5̄
)

| ± 1
2 ,±1

2 ,±1
2〉 is only non-vanishing for spinors that

are either ‘all plus’ or ‘all minus’. As the gauginos have internal H-charges | + 1
2 ,+

1
2 ,+

1
2〉, this

implies the flux H-charges are restricted to the case | − 1
2 ,−1

2 ,−1
2〉 ⊗ | − 1

2 ,−1
2 ,−1

2 〉.
From the preceding discussion the ‘canonical picture’ vertex operators then have charges

g
−1/2
1 (z1) =

1

2
(−,−,+,+,+) ,

g
−1/2
2 (z2) =

1

2
(+,+,+,+,+) ,

Θ−1/2(w) =
1

2
(+,−,−,−,−) ,

Θ̃−1/2(w̃) =
1

2
(−,+,−,−,−) . (277)

There is also a very similar case where we take (+−) → (−+) and vice-versa. This gives identical
expressions but with 1 and 2 directions interchanged. Canceling the ghost charge requires two PCOs
which we take to act on g2(z2) and Θ̃(w̃). There are a total of five separate cases which we evaluate
in turn, with the final amplitude given by the sum of all cases.

The computation is on an annulus with Dirichlet boundary conditions on the boundary for
internal directions and Neumann boundary conditions for external directions. As for the NSNS case,
we can deal with these by replacing Θ̃(w̃) by −Θ(−w̄) (Dirichlet) and Θ̃(w̃) by Θ(−w̄) (Neumann).
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Case 1 (Internal Picture Changing)

The first amplitude corresponds to the PCOs acting on the internal direction. This gives the charges

g
−1/2
1 (z1) =

1

2
(−,−,+,+,+) ,

g
+1/2
2 (z2) =

1

2
(+,+,+,+,−) ,

Θ−1/2(w) =
1

2
(+,−,−,−,−) ,

Θ̃+1/2(−w̄) =1

2
(−,+,−,−,+) . (278)

There are two other cases trivially related to this by modifying the internal direction on which the
picture changing acts. The fermionic modes give a factor of15

2θ1(θ1)θ1(θ2)θ1(−z2 − w̄ + θ3)

θ1(z2 + w̄)
. (279)

This vanishes unless θ3 = 0, and so the expression requires picture-changing in the untwisted N = 2
direction. In this case the fermionic part reduces simply to a constant. Including the bosonic factors
as in (73) then gives

A1 =A0

∫

dt

t

1

(t/2)2

∫

dz1dz2d
2w〈∂nX5(z2)∂̄X

5
(−w̄)〉

=2πα′A0

∫

dt

t
(1 + t

d

dt
)Zcl(t). (280)

Note that the PCO applied to the RR field involves a ∂̄ rather than a ∂n, as the RR field is a
bulk field and the PCO only applies to the antiholomorphic component Here A0 is a normalisation
constant and we have used (41) and (69) to evaluate the bosonic correlator.

Case 2A (External Picture Changing)

We now consider picture changing applied to the external directions, for which there are four
possibilities. In these cases derivative terms arise and must be dealt with carefully. These occur
when the OPE of the picture changing operator with the vertex operator has a pole as its leading
term, and it is necessary to consider higher order terms in the OPE.16 The higher order terms
can come from contracting the derivative terms in the PCOs either with each other or with the
momentum exponentials. To take this into account, we treat the PCO itself as a vertex operator
and take the corresponding contraction limit of the PCO onto the vertex operator only at the end.17

15Throughout the calculations we often use the identity θ[ α
β
](x)θ[ α

β
](y) = θ[ α

β
](−x)θ[ α

β
](−y) to manipulate the

amplitude to a form where the spin structure summation can be performed.
16Specifically, these arise from the OPE of eφ∂X · ψ(z) with e−φ/2eik·X ψ̄(w), which has as its leading term ik

z−w
.

17Based on the calculation of gaugino threshold corrections, we only include derivative terms from the bosonic and
fermionic fields (not from the ghosts). We discuss this in more detail in appendix A.
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The first case is given by the H-charges

g
−1/2
1 (z1) =

1

2
(−,−,+,+,+) ,

PCO(x) =(−1, 0, 0, 0, 0) ,

g
+1/2
2 (z2) =

1

2
(+,+,+,+,+) ,

Θ−1/2(w) =
1

2
(+,−,−,−,−) ,

PCO(y) =(+1, 0, 0, 0, 0) ,

Θ̃+1/2(−w̄) =1

2
(−,+,−,−,−) . (281)

For notational convenience we use z3 = w and z4 = −w̄ in order to make the pole structure clearer.
It is possible to perform the spin-structure sums directly, with the aid of the 4-theta Riemann
identity. Defining δ2 ≡ x− z2, δ4 ≡ −w̄ − y, we have for an N = 2 sector

2θ1(z1 − z3 +
x+ z2 − y − z4

2
)

3
∏

i=1

θ1(
x−z2+z4−y

2 + θi)

θ1(θi)

=− 2π(δ2 + δ4)θ1(z1 − z3 + z2 − z4)

[

1 +
1

2
(δ2 + δ4)

θ′1(z1 − z3 + z2 − z4)

θ1(z1 − z3 + z2 − z4)

]

. (282)

Now we turn to the spin-structure independent pieces from the fermionic correlators:

θ1(z1 − z2)
1/2θ1(z1 − z3)

−1θ1(z1 − z4)
−1/2θ1(z1 − x)1/2θ1(z1 − y)−1/2

× θ1(z2 − z3)
−1/2θ1(z2 − z4)

−1θ1(x− z2)
−1/2θ1(z2 − y)1/2θ1(x− y)−1

× θ1(z3 − z4)
1/2θ1(x− z3)

−1/2θ1(z3 − y)1/2θ1(x− z4)
1/2θ1(z4 − y)−1/2

=δ
−1/2
2 δ

−1/2
4 θ1(z1 − z2)θ1(z3 − z4)θ1(z1 − z3)

−1θ1(z1 − z4)
−1θ1(z2 − z3)

−1θ1(z2 − z4)
−1

×
[

1 +
1

2
δ2

{

− θ′1(z1 − z2)

θ1(z1 − z2)
− θ′1(z2 − z3)

θ1(z2 − z3)
− θ′1(z2 − z4)

θ1(z2 − z4)

}

+
δ4
2

{

− θ′1(z1 − z4)

θ1(z1 − z4)
− θ′1(z2 − z4)

θ1(z2 − z4)
+
θ′1(z3 − z4)

θ1(z3 − z4)

}]

. (283)

The final part we need is the bosonic correlator, and the poles in δ2 and δ4 that it contains. This
is given by

〈

∂tX
1(x)∂̄X

1
(y)
∏

i

eiki·X(zi)

〉

=

(

α′

2

)2

k1+2 k1−3
1

δ2δ4

+
α′

4

[

k1+2
δ2

(

k1−1 G1
∂̄(−w̄, z1) + k1−2 G1

∂̄(−w̄, z2) + k1−3 G1
∂̄(−w̄, w)

)

− k1−3
δ4

(

k1+1 G1(z2, z1) + k1+3 G1(z2, w) + k1+3 G1(z2,−w̄)
)

]

.(284)
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Here we have defined

G1 (z1, z2) ≡
〈

∂tX
1(z1)X

1
(z2)

〉

= −α
′

2

[

θ
′

1(z1 − z2)

θ1(z1 − z2)
+
θ
′

1(z1 + z̄2)

θ1(z1 + z̄2)
− θ

′

1(z̄1 − z̄2)

θ1(z̄1 − z̄2)
− θ

′

1(z̄1 + z2)

θ1(z̄1 + z2)
+ ...

]

,

G1
∂̄ (z1, z2) ≡

〈

∂̄X
1
(z1)X

1(z2)
〉

= −α′
[

θ
′

1(z̄1 − z̄2)

θ1(z̄1 − z̄2)
+
θ
′

1(z̄1 + z2)

θ1(z̄1 + z2)
+ ...

]

, (285)

where the ellipses denote non singular terms.

We now want to analyse the pole structure of these terms. In principle there can be terms
involving zero, one or two derivatives (equivalently, zero, one or two powers of δ2 and δ4). The
zero derivative term clearly vanishes due to the powers of δ in (282). We now analyse the other
derivative terms.

First consider the case of the ‘double pole’ that comes from the term 1
δ2δ4

. As z3/4 → z1 there
is a momentum pole, coming from terms of the form

1

2

(

− θ1(z34)

θ1(z14)θ1(z13)θ1(z14)
+

θ1(z34)

θ1(z14)θ1(z13)θ1(z34)

)

(286)

=
1

2

(−(ǫ+ ǭ)

ǫǭǭ
+

(ǫ+ ǭ)

ǫǭ(ǫ+ ǭ)

)

→ 0, (287)

using the fact that
∫

dǫdǭ 1
ǫ2

= 0 due to the angular integral. As z3/4 → z2 we get in the same
fashion

∫

dǫdǭ
(ǫ+ ǭ)

ǫǭ

(

1

ǫ
+

2

(−ǭ) +
1

(ǫ+ ǭ)

)

= 0. (288)

There are also ‘single pole’ terms involving only a single factor of δ−1
2 or δ−1

4 . As z3/4 → z1 we
have

(ǫ+ ǭ)

ǫǭ

(

2k1−1 k1+2
1

ǭ
+ k1+2 k1−3

1

ǫ+ ǭ

)

θ1(z12)θ1(z12)θ1(z12)
−1θ1(z12)

−1 (289)

=
(2k1−1 k1+2 + k1−3 k1+2 )

ǫǭ
. (290)

As z3/4 → z2 we have

ǫ+ ǭ

ǫǭ

(

k1−3 k1+3
2

(

−1

ǫ
+

1

ǭ

)

+ 2
k1+2 k1−2

ǭ
+
k1+2 k1−3
ǫ+ ǭ

)

θ1(z21)θ1(z12)θ1(z12)
−1θ1(z12)

−1(291)

= −
(

2k1+2 k1−2 + k1+2 k1−3
ǫǭ

)

. (292)

The differing factor of θ1(z21) comes from θ1(z1 + z2 − z3 − z4) as z3/4 → z2. Both (289) and (291)

are naively divergent, as
∫

dǫdǭ 1
ǫǭ = ∞.

As z3/4 → z1 the divergence is regulated by the term from the bosonic 〈eik·X〉 correlator,

|ǫ|2k1·k3+k3·k3 . (293)
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As z3/4 → z2 the regularisation is

|ǫ|2k2·k3+k3·k3 , (294)

giving overall
(2k1−1 · k1+2 + k1+2 · k1−3 )

(2k1 · k3 + k3 · k3)
− 2k1+2 · k1−2 + k1+2 · k1−3

2k2 · k3 + k3 · k3
= 0. (295)

once we use k1 + k2 + k3 = 0.

We then conclude that this method of PCOs does not contribute to the amplitude.

Case 2B (External Picture Changing)

In this case the H-charges are given by

g
−1/2
1 (z1) =

1

2
(−,−,+,+,+) ,

g
+1/2
2 (z2) =

1

2
(+ + +,+,+,+,+) ,

Θ−1/2(w) =
1

2
(+,−,−,−,−) ,

Θ̃+1/2(−w̄) =1

2
(−−−,+,−,−,−) . (296)

There are no derivative terms since the PCO derivatives must be contracted with the exponentials
as the H-charges of the PCOs and the vertex operators are the same sign. In this case the Riemann
summation of the spin structure dependent parts gives

2θ1(z1 − w)
3
∏

i=1

θ1(z2 + w̄ − θi) . (297)

The spin structure independent parts give

θ1(z1 − w)−1θ1(z2 + w̄)−3 . (298)

Including the bosonic factors, we find overall for the N = 2 sector

2θ1(z2 + w̄ + θ)θ1(z2 + w̄ − θ)

θ1(z2 + w̄)2θ1(θ)θ1(−θ)
.

This expression can be simplified using (370). Alternatively, the amplitude has an overall prefactor
of k2 · k3 and to get a non-zero answer we need to identify a pole as w → z2. However, the angular
integral vanishes

∫

d2w
1

(w − z2)2
∼
∫

dr
1

r

[

e−2iθ
]π

0
= 0 . (299)

In consequence we conclude that this possibility of PCOs also does not contribute to the amplitude.
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Case 2C (External Picture Changing)

In this case the H-charges are given by

g
−1/2
1 (z1) =

1

2
(−,−,+,+,+) ,

PCO(u) = (0,−1, 0, 0, 0) ,

g
+1/2
2 (z2) =

1

2
(+,+,+,+,+) ,

Θ−1/2(z3) =
1

2
(+,−,−,−,−) ,

Θ̃+1/2(z4) =
1

2
(−,+++,−,−,−) . (300)

This has an overall momentum factor of k2−3 from picture changing Θ̃. There are derivative terms
we need to take into account. The spin structure summation can be evaluated using the identity
(373), which allows it to be converted into a form which can be evaluated using the 4-theta Riemann
identity. If we denote δ = z2−u, then after a bit of manipulation the spin-structure dependent part
becomes

δθ1(z2 − z1)θ1(z1 − z4)θ
′

1(0)θ1(
1
2 (z2 + z1 − z3 − z4))θ1(−z3 + z4 + θ)θ1(z3 − z4 + θ)

θ1(z2 − z1 − z3 + z4)θ1(z1 − z3)
(301)

+
2θ1(z2 − z3)θ1(z3 − z4)θ1(z1 − z3 + δ/2)θ1(z2 − z4 − δ/2)θ1(z1 − z4 − δ/2 − θ)θ1(z1 − z4 − δ/2 + θ)

θ1(z2 − z1 − z3 + z4)θ1(z1 − z3)
.

We can write this as

2
θ1(z2 − z3)θ1(z3 − z4)θ1(z2 − z4)θ1(z1 − z4 − θ)θ1(z1 − z4 + θ)

θ1(z2 − z1 − z3 + z4)
[1+ (302)

δ

2

(

θ
′

1(z1 − z3)

θ1(z1 − z3)
− θ

′

1(z2 − z4)

θ1(z2 − z4)
− θ

′

1(z1 − z4 − θ)

θ1(z1 − z4 − θ)
− θ

′

1(z1 − z4 + θ)

θ1(z1 − z4 + θ)

)]

−δθ1(z2 − z1)θ1(z1 − z4)θ
′

1(0)θ1(
1
2 (z2 + z1 − z3 − z4))θ1(z3 − z4 − θ)θ1(z3 − z4 + θ)

θ1(z2 − z1 − z3 + z4)θ1(z1 − z3)
.

The spin structure independent part gives

θ1(z2 − z1)θ1(z2 − z4)
−2θ1(z1 − z3)

−1θ1(z1 − z4)
−1

×
[

1 +
δ

2

(

θ
′

1(z2 − z1)

θ1(z2 − z1)
+
θ
′

1(z2 − z3)

θ1(z2 − z3)
− 3

θ
′

1(z2 − z4)

θ1(z2 − z4)

)]

. (303)

The bosonic correlator is

〈

∂tX
2+(x)eik·X

〉

= −α
′

2

[

k2+1 G1(x, z1) + k2+2 G1(x, z2) + k2+3 G1(x, z3)
]

, (304)

where the correlator G1(z1, z2) is defined in (285).
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For non-derivative terms, the combination of the fermionic parts gives

2θ1(z2 − z3)θ1(z3 − z4)θ1(z2 − z1)θ1(z1 − z4 − θ)θ1(z1 − z4 + θ)

θ1(z2 − z1 − z3 + z4)θ1(z1 − z3)θ1(z1 − z4)θ1(z2 − z4)
. (305)

It is not difficult to see that no pole can be obtained from this expression.

To get a non-zero answer we must go the derivative terms that depend on δ. In this case we can
obtain a pole using the second contraction in (304), in the limit where z3/4 → z1. Evaluating this,
we find a contribution of

πα′
∫

dt

t

k2−3 k2+2
2k2 · k3 + k3 · k3

Z(t). (306)

Case 2D (External Picture Changing)

The final consistent way of picture changing external coordinates is given by

g
−1/2
1 (z1) =

1

2
(−,−,+,+,+) ,

g
+1/2
2 (z2) =

1

2
(+,+ ++,+,+,+) ,

Θ−1/2(z3) =
1

2
(+,−,−,−,−) ,

PCO(x) = (0,−1, 0, 0, 0) ,

Θ̃+1/2(z4) =
1

2
(−,+,−,−,−) . (307)

At the end we can replace z3 and z4 by w and −w̄. Let us denote δ = z4 − x. Then again using the
identity (373) the spin-structure dependent part for the N = 2 sector can be written as

−2
θ1(z2 − z1)θ1(z1 − z4)θ1(z2 − z4)θ1(z2 − z3 − θ)θ1(z2 − z3 + θ)

θ1(z2 − z1 − z3 + z4)
[1+

δ

2

(

θ
′

1(z2 − z4)

θ1(z2 − z4)
− θ

′

1(z1 − z3)

θ1(z1 − z3)
+
θ
′

1(z2 − z3 − θ)

θ1(z2 − z3 − θ)
+
θ
′

1(z2 − z3 + θ)

θ1(z2 − z3 + θ)

)]

−δθ1(z2 − z3)θ1(z3 − z4)θ
′

1(0)θ1(z2 + z1 − z3 − z4)θ1(z2 − z1 + θ)θ1(z2 − z1 − θ)

θ1(z2 − z1 − z3 + z4)θ1(z1 − z3)
. (308)

The spin structure independent part gives

θ1(z2 − z4)
−2θ1(z3 − z4)θ1(z2 − z3)

−1θ1(z1 − z3)
−1

×
[

1 +
δ

2

(

θ
′

1(z1 − z4)

θ1(z1 − z4)
+
θ
′

1(z3 − z4)

θ1(z3 − z4)
− 3

θ
′

1(z2 − z4)

θ1(z2 − z4)

)]

.

The bosonic correlator is 〈∂̄X2+(x)
∏

i e
ik·X(zi)〉, which gives

k2−2

〈

∂̄X2+(x)eik·X
〉

= −α
′

2
k2−2

[

k2+1 G1
∂̄(x, z1) + k2+2 G1

∂̄(x, z2) + k2+3 G1
∂̄(x, z3)

]

. (309)
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The correlator G1
∂̄
(z1, z2) is defined in (285).

Without the inclusion of derivative terms, the fermionic terms give

2θ1(z2 − z1)θ1(z1 − z4)θ1(z3 − z4)θ1(z2 − z3 − θ)θ1(z2 − z3 + θ)

θ1(z2 − z1 − z3 + z4)θ1(z2 − z3)θ1(z2 − z4)θ1(z1 − z3)
. (310)

This has a potential pole as z3/4 → z2. We can obtain this pole in two ways, using either the first
or third term of (309). These give a momentum structure of the form (using 2k2 · k3 + k3 · k3 =
−2k1 · k3 − k3 · k3)

πα′
∫

dt

t
2

(

k2+3 k2−2 + 2k2+2 k2−2
)

2k2 · k3 + k3 · k3
. (311)

We also need to include the derivative terms of O(δ). Evaluating these we find that there is again
a pole as z3/4 → z2. Evaluating this we obtain

πα′
∫

dt

t
− k2−2 k2+3

2k2 · k3 + k3 · k3
Z(t). (312)

Combining (312) and (311) we get

πα′
∫

dt

t

k2+3 k2−2 + 2(k2+2 k2−2 + k2−2 k2+2 )

2k2 · k3 + k3 · k3
Z(t). (313)

If we now combine all the standard cases, we have

πα′
∫

dt

t
(2 + 2t

d

dt
)Z(t) +

k2+3 k2−2 + k2−3 k2+2 + 2(k2+2 k2−2 + k2−2 k2+2 )

2k2 · k3 + k3 · k3
Z(t). (314)

This term should be Lorentz completed by including the case where the external H-charges of the
flux spinors Θ and Θ̃ are exchanged. This will give an identical contribution except with 1 and 2
directions interchanged. We then finally emerge with

πα′
∫

dt

t

[

(4 + 4t
d

dt
)Z(t) +

k2 · k3 + 2k2 · k2
2k2 · k3 + k3 · k3

Z(t)

]

. (315)

D.2 Non-standard Case

We now consider contributions from the non-standard case. There are again two basic options for
the flux H-charges in the canonical picture, coming from k1+3 dX1− and k2+3 dX2−. We consider these
separately.
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Case 3A

In this case we start with H-charges

g
−1/2
1 (z1) =

1

2
(−,−,+,+,+) , [−1/2]

g
−1/2
2 (z2) =

1

2
(+,+,+,+,+) , [−1/2]

Θ−1/2(z3) =
1

2
(−,−,−,−,+) , [−1/2]

Θ̃−1/2(z4) =
1

2
(−,+,−,−,−) , [−1/2] (316)

There is a bosonic factor of k1+3 X5(z, z̄), which pairs with Γ1+.18 The factor of Γ1+ then fixes
the H-charges of the RR vertex operator due to the structure ΘCΓαβγΘ̃eαβγ . Γ

1+ raises the −1/2
component of Θ̃ before it is lowered again by C.

We will apply PCOs to operators 2 and 4. There are two basic options. In the first we picture
change

g
−1/2
2 (z2) =

1

2
(+,+,+,+,+) [−1/2] → 1

2
(+ + +,+,+,+,+) [+1/2],

Θ̃−1/2(z4) =
1

2
(−,+,−,−,−) [−1/2] → 1

2
(−,+,−,−,− −−), [+1/2]

In the second we picture change

g
−1/2
2 (z2) =

1

2
(+,+,+,+,+) [−1/2] → 1

2
(+,+,+,+,−) [+1/2],

Θ̃−1/2(z4) =
1

2
(−,+,−,−,−) [−1/2] → 1

2
(+,+,−,−,−)[+1/2].

We start with the first case, where the H-charges behave as

g
−1/2
1 (z1) =

1

2
(−,−,+,+,+) , [−1/2] → 1

2
(−,−,+,+,+) [−1/2], (317)

g
−1/2
2 (z2) =

1

2
(+,+,+,+,+) [−1/2] → 1

2
(+ + +,+,+,+,+) [+1/2],

Θ−1/2(z3) =
1

2
(−,−,−,−,+) , [−1/2] → 1

2
(−,−,−,−,+) [−1/2],

Θ̃−1/2(z4) =
1

2
(−,+,−,−,−) [−1/2] → 1

2
(−,+,−,−,−−−)[+1/2].

In this case there are no derivative terms. The spin structure dependent part can be evaluated
easily using the 4-θ Riemann identity, and gives

θ1(z1 − z4)θ1(−z2 + z4 + θ)θ1(−z2 + z4 − θ)θ1(−z2 + z3). (318)

18This arises as the flux term is k1+3 dX1− ∧ dX3 ∧ dX4, and then the form of the RR vertex operator means this
flux is paired with a Γ1+.
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The spin structure independent parts give

θ1(z1 − z4)
−1θ1(z2 − z3)

−1θ1(z2 − z4)
−2, (319)

giving overall
θ1(−z2 + z4 + θ)θ1(−z2 + z4 − θ)

θ1(z2 − z4)2θ1(θ)θ1(−θ)
. (320)

This has no pole as the angular integral cancels as z4 → z2.

We now consider the second case, where the H-charges behave as

g
−1/2
1 (z1) =

1

2
(−,−,+,+,+) , [−1/2] → 1

2
(−,−,+,+,+) , [−1/2] (321)

g
−1/2
2 (z2) =

1

2
(+,+,+,+,+) [−1/2] → 1

2
(+,+,+,+,−) [+1/2],

Θ−1/2(z3) =
1

2
(−,−,−,−,+) , [−1/2] → 1

2
(−,−,−,−,+) [−1/2],

G(u) → (++, 0, 0, 0, 0)

Θ̃−1/2(z4) =
1

2
(−,+,−,−,−) [−1/2] → 1

2
(−,+,−,−,−)[+1/2].

As stated previously we only include derivative terms coming from the fermion and boson fields and
do not include ghost derivatives. We first evaluate the ghost + fermion contributions.

The spin structure dependent parts give

θαβ

(−z1 + z2 − z3 + z4
2

+ (u− z4)

)

θαβ

(−z1 + z2 − z3 + z4
2

)

θαβ

(

z1 + z2 − z3 − z4
2

+ θ

)

×θαβ
(

z1 + z2 − z3 − z4
2

− θ

)

. (322)

This gives

− θ1(z2 − z3)θ1(z1 − z4)θ1(θ)θ1(−θ)
[

1 +

(

u− z4
2

)

(

θ
′

1(z2 − z3)

θ1(z2 − z3)
+
θ
′

1(z1 − z4)

θ1(z1 − z4)

)]

. (323)

The spin structure independent parts give

θ1(z1 − z4)
−1θ1(z2 − z3)

−1

[

1 +
(u− z4)

2

(

θ
′

1(z1 − z4)

θ1(z1 − z4)
− θ

′

1(z2 − z4)

θ1(z2 − z4)
+
θ
′

1(z3 − z4)

θ1(z3 − z4)

)]

. (324)

So combined, the fermionic and ghost parts give

−
(

1 +
(u− z4)

2

[

θ
′

1(z2 − z3)

θ1(z2 − z3)
− θ

′

1(z2 − z4)

θ1(z2 − z4)
+

2θ
′

1(z1 − z4)

θ1(z1 − z4)
+
θ
′

1(z3 − z4)

θ1(z3 − z4)

])

(325)

Now lets consider the bosonic part. The basic bosonic correlator we want is

k1+3 〈(∂ + ∂̄)X̄5(z2)X
5(z3, z̄3)∂̄X

1−(u)eik·X(z1)eik·X(z2)eik·X(z3) (326)
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The X5 correlator is in the Dirichlet direction. This is given by

〈X̄3(z2)X
3(z3, z̄3)〉 = −α′ [ln θ1(z2 − z3) + ln θ1(z̄2 − z̄3)− ln θ1(z̄2 + z3)− ln θ1(z2 + z̄3)] . (327)

Therefore, using z2 = −z̄2 we have

〈(∂ + ∂̄)X̄5(z2)X
5(z3, z̄3)〉D,qu = −2α′

[

θ
′

1(z2 − z3)

θ1(z2 − z3)
− θ

′

1(z2 + z̄3)

θ1(z2 + z̄3)

]

. (328)

Note this vanishes when z3 is on the boundary.

Meanwhile, we also need the external correlator 〈∂̄X1−(u)eik·X(z1)eik·X(z2)eik·X(z3)〉. The Neu-
mann correlator is

〈X(u)X̄(z)〉 = −α′ [ln θ1(u− z) + ln θ1(ū− z̄) + ln θ1(u+ z̄) + ln θ1(ū+ z̄)] (329)

and so

〈∂̄X(u)X̄(z)〉 = −α′
[

θ
′

1(ū− z̄)

θ1(ū− z̄)
+
θ
′

1(ū+ z)

θ1(ū+ z)

]

. (330)

Then

〈∂̄X1−(u)eik·X(z1)eik·X(z2)eik·X(z3)〉 = −α′k1−3

[

θ
′

1(ū− z̄3)

θ1(ū− z̄3)
+
θ
′

1(z3 + z̄3)

θ1(z3 + z̄3)

]

−2α′k1−2
θ
′

1(z2 + z̄3)

θ
′

1(z2 + z̄3)
− 2α′k1−1

θ
′

1(z1 + z̄3)

θ1(z1 + z̄3)
. (331)

Now let’s combine the fermionic and bosonic parts. For non-derivative terms we have

〈(∂ + ∂̄)X̄5(z2)X
5(z3, z̄3)〉 × (−α′k1+3 k1−3

θ
′

1(z3 + z̄3)

θ1(z3 + z̄3)
) (332)

This gives a contribution

〈(∂ + ∂̄)X̄5(z2)∆X
5(z3, z̄3)〉 ×

α′k1+3 k1−3
2k3 · k3

, (333)

which is an anomalous mass term. The other contribution is

4α′2k1+3 k1−2
θ
′

1(z2 + z̄3)

θ
′

1(z2 + z̄3)

θ
′

1(z2 − z3)

θ
′

1(z2 − z3)
, (334)

which then gives a contribution to a running mass of

4πα′2 k1+3 k1−2
2k2 · k3 + k3 · k3

∫

dt

t
. (335)
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Now consider derivative terms. Here we have

α′k1−3 k1+3 〈(∂ + ∂̄)X̄5(z2)X
5(z3, z̄3)〉

1

2

(

θ
′

1(z2 − z3)

θ1(z2 − z3)
− θ

′

1(z2 − z4)

θ1(z2 − z4)
+

2θ
′

1(z1 − z4)

θ1(z1 − z4)
+
θ
′

1(z3 − z4)

θ1(z3 − z4)

)

.

(336)
As z3 → z4, we have

− α′k1−3 k1+3
4k3 · k3

〈(∂ + ∂̄)X̄5(z2)∆X
5(z3, z̄3)〉. (337)

This gives a mass term of opposite sign to the previous mass term.

As z3/4 → z2, we have

α′k1−3 k1+3
−2α′

2

(

1

z2 − z3
− 1

z2 + z̄3

)(

1

z2 − z3
− 1

z2 + z̄3

)

=
2πα′2k1−3 k1+3

2k2 · k3 + k3 · k3

∫

dt

t
Z(t). (338)

If we now combine equations (333), (335), (337) and (338) we get

2πα′ 2k
1+
3 k1−2 + k1−3 k1+3
2k2 · k3 + k3 · k3

∫

dt

t
Z(t)− 2πα′k1−3 k1+3

k3 · k3

∫

dt
d

dt
Z(t). (339)

Case 3B

We now consider the other contribution coming from the other set of H-charges. In this case we
start with H-charges

g
−1/2
1 (z1) =

1

2
(−,−,+,+,+) , [−1/2]

g
−1/2
2 (z2) =

1

2
(+,+,+,+,+) , [−1/2]

Θ−1/2(z3) =
1

2
(+,+,−,−,+) , [−1/2]

Θ̃−1/2(z4) =
1

2
(−,+,−,−,−) , [−1/2] (340)

The bosonic factor is now k2−3 X5(z, z̄). There are two basic options for the picture changing. The
first is to picture change to

g
−1/2
1 (z1) =

1

2
(−,−,+,+,+) , [−1/2]

g
−1/2
2 (z2) =

1

2
(+,+,+,+,−) , [+1/2]

Θ−1/2(z3) =
1

2
(+,+,−,−,+) , [−1/2]

PCO(u) =
1

2
(0,−−, 0, 0, 0) ,

Θ̃−1/2(z4) =
1

2
(−,+,−,−,−) , [+1/2] (341)
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The spin-structure dependent part of this amplitude is

θ1

(

z2 − z4 +
(z4 − u)

2

)

θ1

(

−z1 + z3 +
(z4 − u)

2

)

θ1(θ)θ1(−θ), (342)

which evaluates to

θ1(z2 − z4)θ1(−z1 + z3)θ(θ)θ(−θ)
[

1 +
(z4 − u)

2

[

θ
′

1(z2 − z4)

θ1(z2 − z4)
+
θ
′

1(−z1 + z3)

θ1(−z1 + z3)

]]

. (343)

In a similar way the spin structure independent part evaluates to

θ1(z1 − z3)
−1θ1(z2 − z4)

−1

[

1− (u− z4)

2

(

θ
′

1(z1 − z4)

θ1(z1 − z4)
+
θ
′

1(z2 − z4)

θ1(z2 − z4)
− θ

′

1(z3 − z4)

θ1(z3 − z4)

)]

. (344)

Combining these we have for the fermionic and ghost part

1− (u− z4)

2

[

2
θ
′

1(z1 − z4)

θ1(z2 − z4)
− θ

′

1(z1 − z3)

θ1(z1 − z3)
+
θ
′

1(z1 − z4)

θ1(z1 − z4)
− θ

′

1(z3 − z4)

θ1(z3 − z4)

]

. (345)

The bosonic correlator we want is k2−3 〈∂X̄5(z2)X
5(z3, z̄3)∂̄X2(u)

∏

eik·X〉. There are two basic con-
tributing parts here. First we have

〈∂X̄5(z2)X
5(z, z̄)〉Qu = −2α′

[

θ
′

1(z2 − z3)

θ1(z2 − z3)
− θ

′

1(z2 + z̄3)

θ1(z2 + z̄3)

]

. (346)

We also have

〈∂̄X2(u)
∏

eik·X(z)〉 = −α′k2+3

[

θ
′

1(ū− z̄3)

θ1(ū− z̄3)
+
θ
′

1(z3 + z̄3)

θ1(z3 + z̄3)

]

−2α′k2+2
θ
′

1(z2 + z̄3)

θ1(z2 + z̄3)
− 2α′k2+1

θ
′

1(z1 + z̄3)

θ1(z1 + z̄3)
. (347)

We now want to combine the bosonic and fermionic correlators. The non-derivative terms give a
mass term, coming from

〈(∂ + ∂̄)X̄5(z2)X
5(z3, z̄3)〉Cl ×−α′k2−3 k2+3

θ
′

1(z3 + z̄3)

θ1(z3 + z̄3)
. (348)

Factorising z3 onto the boundary then gives an anomalous mass term coming from

〈(∂ + ∂̄)X̄5(z2)∆X
5(z3, z̄3)〉Cl ×

α′k2−3 k2+3
2k3 · k3

. (349)

Here ∆X5(z3, z̄3) = X5(1/2 + iZ3) − X5(iZ3). The classical correlator then gives an anomalous
mass term.
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There is also a running mass term which comes from directly factorising z3/4 → z2. The
magnitude of this is given by

4πα′k2+2 k2−3
2k2 · k3 + k3 · k3

∫

dt

t
Z(t). (350)

We also need to consider the derivative terms. These give

−α′k2−3 k2+3 〈
(

∂ + ∂̄
)

X̄5(z2)X
5(z3, z̄3)〉

1

2

(

2θ
′

1(z2 − z4)

θ1(z2 − z4)
− θ

′

1(z1 − z3)

θ1(z1 − z3)
+
θ
′

1(z1 − z4)

θ1(z1 − z4)
− θ

′

1(z3 − z4)

θ1(z3 − z4)

)

.

As z3 → z4 we get an anomalous mass term of the form

− α′k2−3 k2+3
4k3 · k3

〈(∂ + ∂̄)X̄5(z2)∆X
5(z3, z̄3)〉Cl. (351)

As z3/4 → z2 we obtain a running mass term of the form

2πα′2k2+3 k2−3
2k2 · k3 + k3 · k3

∫

dt

t
Z(t). (352)

Equations (349), (350), (351) and (352) combine to give

2πα′ 2k
2+
2 k2−3 + k2+3 k2−3
2k2 · k3 + k3 · k3

∫

dt

t
Z(t)− 2πα′k2−3 k2+3

k3 · k3

∫

dt
d

dt
Z(t). (353)

Finally we need to consider the other picture changing option, which is

g
−1/2
1 (z1) =

1

2
(−,−,+,+,+) , [−1/2]

g
−1/2
2 (z2) =

1

2
(+,+,+,+,+) , [+1/2]

PC(u) =
1

2
(0,−−, 0, 0, 0) ,

Θ−1/2(z3) =
1

2
(+,+,−,−,+) , [−1/2]

Θ̃−1/2(z4) =
1

2
(−,+,−,−,−−−) , [+1/2] (354)

Here the bosonic factors are k2−3 ∂X2+(u), with us being interested in the limit u → z2. The spin
structure independent part is

θ1(z1 − z2)θ1(z1 − z3)
−1θ1(z1 − z4)

−1θ1(z2 − z4)
−1

×
[

1− 1

2
(u− z2)

[

θ
′

1(z1 − z2)

θ1(z1 − z2)
+
θ
′

1(z2 − z3)

θ1(z2 − z3)
+
θ
′

1(z2 − z4)

θ1(z2 − z4)

]]

. (355)

The spin structure dependent part is

θαβ(
−z1+z2+z3−z4

2 )θαβ(
−z1−z2+z3+z4

2 + (z2 − u))

θαβ(
z1−z2+z3−z4

2 )

×θαβ(
z1 + z2 − z3 − z4

2
+ θ)θαβ(

z1 + z2 − z3 − z4
2

− θ)θαβ(
z1 + z2 + z3 − 3z4

2
) . (356)
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This is a little tricky as there no direct way of doing the full sum. However we can still extract the
result by being careful. First, let’s evaluate this without the derivative term (i.e. with u = z2). In
this case we can rewrite the amplitude as

θαβ(
−z1+z2+z3−z4

2 )θαβ(
−z1−z2+z3+z4

2 + (z2 − u))

θαβ(
−z1+z2−z3+z4

2 )
(357)

×θαβ(
z1 + z2 − z3 − z4

2
+ θ)θαβ(

z1 + z2 − z3 − z4
2

− θ)θαβ(
−z1 − z2 − z3 + 3z4

2
) ,

which evaluates to

θ1(z2 − z4)θ1(−z1 + z4 + θ)θ1(−z1 + z4 − θ)θ1(z2 − z3)θ1(−z3 + z4)

θ1(−z1 + z2 − z3 + z4)
. (358)

The presence of the θ1(z3 − z4) zero means it is not possible to obtain a momentum pole from the
non-derivative terms, as when combined with the spin-structure independent terms and the bosonic
correlator 〈∂Xeik·X〉 we see that we can get at most a single pole as we factorise z3/4 onto z1 or z2.

We therefore need to consider derivative terms, for which the bosonic amplitude is simply
k2−3 k2+2 . The spin-structure independent fermionic terms are

θ1(z1−z2)θ1(z1−z3)−1θ1(z1−z4)−1θ1(z2−z4)−1

[

θ
′

1(z1 − z2)

θ1(z1 − z2)
+
θ
′

1(z2 − z3)

θ1(z2 − z3)
+
θ
′

1(z2 − z4)

θ1(z2 − z4)

]

. (359)

This shows potential poles as z3/4 → z1 and as z3/4 → z2. Note that a single zero is sufficient to
eliminate these poles. In this limit, z3 = z4 + O(ǫ). In the spin-structure dependent sum we can
therefore put z3 = z4, as any error in this approximation cannot contribute to a pole. Doing so, we
can simplify the spin structure dependent terms to

θαβ(
−z1 − z2 + 2z3

2
+ (z2 − u))θαβ(

z1 + z2 − 2z3
2

+ θ)θαβ(
z1 + z2 − 2z3

2
− θ)θαβ(

−z1 − z2 + 2z3
2

),

for which we can perform the Riemann summation to obtain

θ1

(

z2 − u

2

)

θ1(θ)θ1(−θ)θ1(−z1 − z2 + 2z3).

The zero as u → z2 cancels off against the pole in the derivative term, and we can now evaluate
the contributions. There are two separate contributions, one from the limit z3/4 → z2, and another
from the limit z3/4 → z1. The limit z3/4 → z2 has a prefactor

θ1(z1 − z2)θ(z1 − z2)

θ1(z2 − z1)θ1(z2 − z1)
→ 1,

and the limit z3/4 → z1 has a prefactor

θ1(z1 − z2)θ(z1 − z2)

θ1(z1 − z2)θ1(z1 − z2)
→ 1.
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Overall we then get

k2+3 k2−3

(

1

2k2 · k3 + k3 · k3
+

1

2k1 · k3 + k3 · k3

)

= 0

using k1 + k2 + k3 = 0. So then there is no contribution from this choice of picture changing,

We then combine (339) and (353), together with the analogous terms that come from exchanging
(+−) → (−+) H-charges for the fluxes which complete the Lorentz structure. These then give the
final contribution from the ’non-standard’ vertex operator terms,

2πα′
∫

dt

t
Z(t)− 2πα′

∫

dt
d

dt
Z(t). (360)

with a contribution from both running and anomalous mass terms.

D.3 Summary

Overall we then have from the standard case

πα′
∫

dt

t

[

(4 + 4t
d

dt
)Z(t) +

k2 · k3 + 2k2 · k2
2k2 · k3 + k3 · k3

Z(t)

]

. (361)

and from the non-standard case

2πα′
∫

dt

t
Z(t)− 2πα′

∫

dt
d

dt
Z(t). (362)

Let us make the important points about these expressions. First, we obtain both anomalous and
running contributions to gaugino masses. This is an important check on the general structure of
1-loop gaugino masses in flux backgrounds and in conjunction with the NSNS computation shows
how anomalous gaugino masses arise in string theory. However the expression is not unambiguous;
in contrast to the NSNS case the numerical result depends on the details of the off-shell prescription.
This means that it is not possible to extract the numerical relationship between the anomalous and
running mass which is necessary to test the formula (6) fully. This inherent conceptual ambiguity
sits on top of the non-trivial task of ensuring that given the calculational complexity no errant signs
or factors of 2 are present in the expressions (361) and (362). In principle the conceptual ambiguity
could be resolved by going to a higher point amplitude where all fields can be put on-shell, but this
appears calculationally prohibitive.

E Useful identities

The standard notation for the Jacobi Theta functions is:

θ

[

a
b

]

(z; τ) =

∞
∑

n=−∞
exp

[

πi(n+ a)2τ + 2πi(n + a)(z + b)

]

(363)
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A common definition is θαβ ≡ θ

[

α/2
β/2

]

, and

θ1 ≡ θ11 θ2 ≡ θ10

θ3 ≡ θ00 θ4 ≡ θ01. (364)

Expansions of the functions for q = eπiτ are

θ00(z, τ) = θ3 = 1 + 2
∞
∑

n=1

qn
2
cos 2πnz

θ01(z, τ) = θ4 = 1 + 2

∞
∑

n=1

(−1)nqn
2
cos 2πnz

θ10(z, τ) = θ2 = 2q1/4
∞
∑

n=0

qn(n+1) cos π(2n+ 1)z

θ11(z, τ) = ±θ1 = 2q1/4
∞
∑

n=0

(−1)nqn(n+1) sinπ(2n + 1)z

(365)

The Dedekind η function is defined as

η(τ) = q1/12
∞
∏

m=1

(1− q2m) (366)

=

[

θ′1(0, τ)
−2π

]1/3

. (367)

The generalised Riemann summation formula is

∑

α,β

(−1)α+β+αβ
4
∏

i=1

θ

[

α/2 + ci
β/2 + di

]

(zi, τ) = 2θ

[

1/2
1/2

]

(
∑

i

zi/2, τ)θ

[

1/2 + c2
1/2 + d2

]

(
z1 + z2 − z3 − z4

2
, τ)

× θ

[

1/2 + c3
1/2 + d3

]

(
z1 − z2 + z3 − z4

2
, τ)θ

[

1/2 + c4
1/2 + d4

]

(
z1 − z2 − z3 + z4

2
, τ). (368)

An identity useful in simplifying amplitudes after Riemann summation is

θ1(x+ y)θ1(x− y)(θ′1(0))
2

θ1(x)2θ1(y)θ1(−y)
=∂2y log θ1(y)− ∂2x log θ1(x). (369)

In particular,

(2α′)
θ1(−z1 + z2 + θ)θ1(−z1 + z2 − θ)θ′1(0)

2

θ1(z12)2θ1(θ)θ1(−θ)
=(2α′)∂2θ log θ1(θ) + ∂2z1G12 +

8πα′

t
. (370)
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We also have the five-theta identity [21]:

∑

ν

δνθν(z1)θν(z2)θν(z3)θν(z4)θν(z5)θ
−1
ν (z1 + z2 + z3 + z4 + z5)

= −2θ1(z1 + z2 + z3 + z4)θ1(z2 + z3 + z4 + z5)θ1(z1 + z3 + z4 + z5)

× θ1(z1 + z2 + z4 + z5)θ1(z1 + z2 + z3 + z5)θ
−1
1 (2[z1 + z2 + z3 + z4 + z5]). (371)

Another identity useful for threshold corrections is

∑

α

θ
′′

α(0)

η3

∏

i

θα(uI)

θ1(uI)
= −2π

3
∑

i=1

θ′
[

1/2
1/2

]

(θi, it)

θ

[

1/2
1/2

]

(θi, it)

. (372)

Yet another identity which is useful taken from [21] is

θαβ

(

1

2
(−z1 + z2 + z3 − z4)

)

θαβ

(

1

2
(z1 + z2 − z3 − z4)

)

=
θαβ

(

1
2(z1 − z2 + z3 − z4)

)

θ1(−z1 + z2 − z3 + z4)θ1(z1 − z3)
[

θαβ

(

1

2
(−z1 − z2 + 3z3 − z4)

)

θ1(−z1 + z2)θ1(z1 − z4)−

θαβ

(

1

2
(3z1 − z2 − z3 − z4)

)

θ1(z2 − z3)θ1(z3 − z4)

]

. (373)

An equivalent way of re-expresing this (by relabelling the zi) is

ϑν(
z1 − z2 + z3 − z4

2
)ϑν(

z1 + z2 − z3 − z4
2

) =
ϑν(

−z1+z2+z3−z4
2 )

θ1(z1 − z2 − z3 + z4)θ1(z2 − z3)
(374)

×
[

ϑν(
−z1 − z2 + 3z3 − z4

2
)θ1(z1 − z2)θ1(z2 − z4)

− ϑν(
−z1 + 3z2 − z3 − z4

2
)θ1(z1 − z3)θ1(z3 − z4)

]

.

The general Poisson resummation formula is

∑

ni

exp(−πtniAijnj) =
1

t
dim(A)

2 (detA)
1
2

∑

mi

exp(−π
t
miA

−1
ij mj) . (375)

A useful simple form is

∑

n

exp(−πtA(n+ c)2) =
1√
At

∑

m

exp(− π

At
m2 − 2πimc) . (376)
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