
ar
X

iv
:1

00
8.

18
01

v3
  [

as
tr

o-
ph

.H
E

] 
 9

 F
eb

 2
01

1

DESY 10-131

Inverse Compton gamma-rays from Galactic dark

matter annihilation: Anisotropy signatures

Le Zhang1, Francesco Miniati2 and Günter Sigl1

1 II. Institut für theoretische Physik, Universität Hamburg, Luruper Chaussee 149,

D-22761 Hamburg, Germany
2 Physics Department, Wolfgang-Pauli-Strasse 27, ETH Zürich, CH-8093 Zürich,
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Abstract. High energy electrons and positrons from annihilating dark matter can

imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton

scattering off the interstellar radiation field. We develop a numerical tool to compute

gamma-ray emission from such electrons and positrons produced in the smooth host

halo and in substructure halos with masses down to 10−6M⊙. We show that the

angular power spectrum from inverse Compton scattering is exponentially suppressed

below an angular scale determined by the diffusion length of electrons and positrons.

We also find that the total flux and the shape of the angular power spectrum depends

sensitively on the spatial distribution of subhalos in the Milky Way. Finally, the

contribution from the smooth host halo component to the gamma-ray mean intensity

is negligibly small compared to subhalos.
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1. Introduction

The existence of nonbaryonic dark matter in modern cosmology is strongly supported by

several independent signatures [1], including the cosmic microwave background (CMB),

gravitational lensing and large scale structure surveys. However, the nature of dark

matter remains a mystery. To reproduce the correct relic density, it is naturally assumed

that dark matter is composed of weakly interacting massive particles (WIMPs) such as

the supersymmetric neutralino which is one of the most popular candidates [2, 3]. Since

the self-annihilation rate is proportional to the dark matter number density squared,

potential signals from dark matter annihilation are most likely to be detected in highly

dense regions such as the centers of galaxies. It is also expected that the energy released

in dark matter annihilation in the early Universe can influence CMB anisotropies. With

the high precision CMB data from the WMAP satellite [4], strong constraints on the

properties of dark matter can be obtained [5, 6, 7]. A multi-wavelength analysis of dark

matter annihilations has been proposed recently in Ref. [8, 9].

Recently, several cosmic ray and gamma-ray experiments provided new windows to

detect the signatures of dark matter. In particular, the PAMELA satellite [10] reported

an “excess” of the positron fraction above 10 GeV. Also the e−+e+ spectra above a few

hundred GeV from the Fermi-LAT [11] and HESS measurements [12] are significantly

harder than expected [13, 14]. These striking observations were often interpreted in

terms of dark matter annihilation or decay which can contribute to the flux of high

energy electrons and positrons [15, 16, 17, 18, 19, 20]. However, standard astrophysical

sources, such as pulsars [21, 22] and supernova remnants [23, 24, 25] also provide a

possible explanation for these excesses.

The high energy electrons and positrons induced by WIMP annihilation produce

gamma-rays through inverse Compton scattering (ICS) off the low energy background

photons in the interstellar radiation field (ISRF) and through bremsstrahlung emissions

due to the interaction with the ionized interstellar medium. These components add

to the prompt gamma-ray radiation accompanying pairs emitted in the annihilation

event [26]. Gamma-ray dark matter signatures could be identified by the Fermi Large

Area Telescope [27], due to its unprecedented angular and energy resolution, despite the

fact that the gamma-ray spectrum is dominated by conventional astrophysical sources,

such as pulsars, supernovas, blazars [28, 29] and perhaps structure formation shocks [30].

Many efforts [31, 32, 33, 34, 35, 36, 37] have been devoted to extract indirect dark matter

signatures or to set limits on a large class of WIMP models by investigating the Fermi-

LAT diffuse gamma-ray measurements. Especially, a universal model-independent

method can be used to place constraints on any dark matter model [38, 39] through

convolving response functions of signal-to-background with a specific injection energy

spectrum of electrons and positrons.

In the WIMP cold dark matter scenario, the dark halos can form at very high

redshift, z ≈ 60, with a minimum mass of ∼ 10−6M⊙ [40, 41, 42, 43] determined by the

free-streaming limit and collisional damping leading to a cutoff of the primordial power
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spectrum. This suggests that if they can survive until the present day, an enormous

number of dark matter clumps (subhalos) are expected to be embedded in our Galaxy.

Recent numerical simulations [44, 45, 46] confirm this prediction, although the role of

the tidal effects from the baryonic component has yet to be quantified and there is no

direct test by observations. Nevertheless, several references have discussed the resulting

signals pointing out that subhalos can boost annihilation rates and produce a distinct

radial distribution of emissions [33, 47, 48, 49, 50].

Alternatively, a statistical analysis of the full-sky emission map can be used to

identify dark matter signatures, which can be promising if, e.g., one can identify features

in the anisotropy power spectrum that characterize uniquely the dark matter spatial

distribution with respect to other astrophysical sources. In this respect, one is interested

in quantifying the anisotropy signatures from annihilating dark matter which can be

different from those of astrophysical origin particularly at small scales.

The first calculations of this kind were performed analytically for gamma-

ray background anisotropies induced by both annihilating extragalactic dark matter

halos [51, 52] as well as Galactic subhalos [53]. Analytic calculations were also performed

for the anisotropic radio signatures from decaying dark matter [54] and compared with

the mean intensity and angular power spectrum of the astrophysical and cosmological

radio background.

More recently anisotropies of the diffuse gamma-ray background from annihilating

dark matter in galactic subhalos have been computed using a numerical approach in

Ref. [55]. According to their results, Fermi-LAT should be sensitive enough to constrain

the amount of dark matter substructure through the anisotropy signal discussed above.

The same numerical approach as in [55] can be extended to the anisotropies from

both the galactic and extragalactic dark matter contributions [56, 57, 58, 59, 60].

In general, however, both the mean flux and anisotropy signal are contaminated

by ordinary astrophysical sources including galactic and extragalactic resolved point

sources, structure formation shocks [61, 62], and normal galaxies [63, 64]. Removal of

such contributions [65], can greatly improve the detectability for searches of dark matter.

All of the above analyses were based on the gamma-rays from direct annihilation

into photons. However, the ICS radiation from energetic electron and positron pairs

produced by annihilation of dark matter also generates unique gamma-ray signatures,

in an energy range that depends on the dark matter model. Thus in the present

paper we study the gamma-ray anisotropies produced by this “secondary” emission,

which can be regarded as a new target for indirect searches of signatures induced by

Galactic substructure halos. The important point is that the properties of the angular

anisotropies for emission from secondary electrons and positrons will be different in

general than for prompt emission, because the former will be affected by propagation

effects in the Galaxy. In fact, by adopting a spatial diffusion model typical for high

energy electrons and positrons in the Galaxy, we show that the angular power spectrum

is suppressed at small angular scales corresponding to the distance diffusively traveled

by the charged particles during their energy loss time. As a result, for a typical dark



4

matter model with mass of 1 TeV and a canonical thermal freeze-out cross section

3× 10−26cm3/s, the angular power spectrum from inverse Compton scattering peaks at

large angular scales.

The remainder of this paper is organized as follows. In Sect. 2, we set up the

formalism used in this paper for calculating the mean intensity and angular power

spectrum of gamma-rays induced by dark matter annihilation and develop a robust

numerical scheme to simulate the small subhalos with masses down to ∼ 10−6M⊙. We

present the results of our calculations in Sect. 3. Finally, we summary our paper in

Sect. 4. We will use natural units in which c = 1 throughout.

2. Formalism

2.1. Diffusion models

The propagation of high energy electrons and positrons in the turbulent Galactic

magnetic field can be described as a diffusion-energy loss equation [66] for the electron-

positron number density ne, neglecting the convection and re-acceleration terms which

are only relevant for electrons and positrons below 10 GeV [67]:

∂ne

∂t
= ∇ · (D(E, r)∇ne) +

∂

∂E
(b(E, r)ne) +Q(E, r) . (1)

Here, the spatial diffusion coefficient is taken as D(E, r) = D0(E/GeV)δ; b(E, r) is the

energy loss term and Q(E, r) the source term, both of which are described in more

details below. In the following we will often use the term electron as a short hand for

both electrons and positrons. With the assumption that spatial diffusion and energy

loss coefficients are spatially independent, for a given source distribution and boundary

conditions, the propagation equation can be solved analytically. We assume the diffusion

zone to be a cylinder with half-height L of a few kpc and radius R >∼ 20 kpc. In this

paper, we adopt the widely used MED model which, compared to other models, i.e.

the MIN and MAX models, predicts intermediate values for the antiproton flux when

fitted to reproduce the B/C ratio [68] with D0 = 1.28 × 1027cm2/s, δ = 0.7, and the

half-height of the diffusion zone L = 4 kpc. The MIN and MAX propagation models

would decrease and increase the predicted gamma-ray fluxes roughly by a factor of

three and two, respectively. However, we verified that the shape of the angular power

spectrum predicted by these three propagation models is basically the same. Since in

the present paper we mainly focus on a new “suppression” feature in angular power

spectrum of the gamma-ray component from ICS, we will use the MED model in the

following calculations.

In this study, we investigate only the case in which electrons and positrons can

escape freely at the boundaries of the diffusion zone. If the diffusion coefficient increases

exponentially instead of the free-escape boundary condition, we expect that the angular

power spectrum would be modified only at multipoles l ≪ 10 since the diffusion of

electrons and positrons would flatten their distribution at length scales even larger than
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the whole diffusion zone. This implies that the angular power spectrum produced in

the region of extremely large diffusion coefficient can not significantly influence the

signature in the full-sky angular power spectrum we found at l ∼ 10. In other words,

the anisotropies weakly depend on different boundary conditions.

2.1.1. Energy losses At energies above 10 GeV, the dominant energy losses are

synchrotron radiation and inverse Compton scattering (ICS) on the interstellar radiation

field. Therefore, in the Thomson limit we write b(E, r) = b0 E
2 [for a more complicated

treatment of energy loss see Ref.[69]], where b0 = 3 × 10−16GeV/s for starlight (SL) ,

infrared (IR), CMB photons and a magnetic field of 3µG. The Inter-Stellar Radiation

Field (ISRF) can be approximately characterized as a superposition of three blackbody-

like spectra with different temperatures and normalization factors relative to a true

black-body emitter: one for the CMB with TCMB = 2.73K, for the IR with TIR = 40.61K

and for the SL with TSL = 3800K [32]. The typical normalization of the SL and IR

fields of radiation depends on the position in the Galaxy. The averaged normalizations

of ISRF photon densities per energy used in this paper are 8.9 × 10−13, 1.3 × 10−5

and 1 for SL, IR and CMB, respectively [32]. Although these normalizations are valid

only in the region with latitude 20◦ > |b| > 10◦, we have checked that changing the

normalization of the ISRF affects the gamma-ray emissions only weakly because an

increased emission is partly compensated by a decrease of the density of electrons and

positrons as energy losses increase. We also verified that the deviation from the detailed

numerical simulation with Galprop [70] is less than a factor of two for a realistic spatial

distribution of the ISRF [71].

2.1.2. Dark matter model In the annihilating dark matter scenario, the source term

can be written as

Q(r, E) =
1

2
〈σv〉

(

ρ(r)

mχ

)2

fe(E), (2)

where fe(E) is the annihilation spectrum into electrons and positrons at energy E. For

simplicity, we assume mono-energetic injection of the positron and electron in case of

CP conservation, namely fe = 2δ(E −mχ). We choose mχ = 1TeV, which can well fit

the PAMELA excess [15] while not in conflict with gamma-ray observations by Fermi-

LAT [32]. Finally, we use 〈σv〉 = 3 × 10−26cm3/s to reproduce the correct relic density

for thermal freeze-out. By convolving our results for the gamma-ray spectra with the

pair energy, our computational approach can be easily adapted to pair spectra different

from mono-energetic injection, such as from dark matter annihilating into µ±, τ±, and

W±.

2.2. Green’s function

As most of the electrons escape towards the z−direction, we impose the Dirichlet

boundary condition n(x, y, z = |L|) = 0, at which the particles can freely escape. We
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thus model the diffusion zone as an infinite slab of half thickness L, and we take L = 4kpc

for the MED diffusion model. The free-space Green’s function [33] for Eq. (1) is

Gfree [r, r
′, λD(E,E

′)] =
1

b(E)

1

(πλ2D)
3/2

e−(r−r
′)2/λ2

D , (3)

where we have defined the diffusion length as

λ2D(E,E
′) ≡ 4

∫ E′

E

D(E)

b(E)
dE = 4D0

GeV

b0

(

(E/GeV)δ−1 − (E ′/GeV)δ−1

1− δ

)

,(4)

which is the average distance e+e− diffuse through during their energy loss time. Then,

the Green’s function satisfying appropriate boundary conditions can be obtained by

considering a series of image charges at positions xi = x, yi = y, zi = (−1)iz + 2i · L.

One can verify that

G2L(r, r
′, λ) =

∞
∑

i=−∞

(−1)iGfree(r, r
′
i, λ) (5)

fulfills the Dirichlet boundary condition. Thus, the general solution to Eq. (1), in the

limit of time-independent sources and electron/positron number densities which already

reached equilibrium, is given by

ne(r, E) =
1

b(E)

∫

d3r′
∫ ∞

E
dE ′G2L(r− r′, λD(E,E

′))Q(r′, E ′) . (6)

For the diffuse gamma-ray emission we are more interested in the column density

of electrons,

σe(l, b, E) =
∫ lmax

0
dℓ n(r, E) , (7)

than in the local space density of electrons. The observer is located at the solar system.

In galactic coordinates, a point in cartesian coordinates (x, y, z) at a distance ℓ from

the observer is given by

x = ℓ cos b cos l, (8)

y = ℓ cos b sin l, (9)

z = ℓ sin b , (10)

where l and b are the galactic longitude and latitude, respectively. We truncate the

integral in Eq. (7) at the edge of the diffusion zone, beyond which particles are not

confined, zmax = L or ℓmax = L/| sin b|. The line-of-sight integral can directly act on

the free Green’s function [33],

Gσ
free(l, b, r

′, λD) =
∫ ℓmax

0
dℓGfree(ℓn, r

′, λD) = (11)

=
e[(n·r

′)2−(r′)2]/λD

2πλ2Db(E)

[

erf

(

ℓmax − n · r′

λD

)

− erf

(

−n · r′

λD

)]

,

where we have defined the unit-vector n ≡ r/ℓ. The Green’s function satisfying the

boundary condition is thus

Gσ
2L(l, b, r

′, λ) =
∞
∑

i=−∞

(−1)iGσ
free(l, b, r

′
i, λ) . (12)
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The column density of electrons therefore reads

σe(l, b, E) =
1

b(E)

∫

d3r′
∫

∞

E
dE ′ Gσ

2L [l, b, r
′, λD(E,E

′)]Q(r′, E ′) . (13)

In the limit of λD ≫ rs, where rs is the scale radius of the subhalo profile, the subhalo

can be regarded as a point-like source. Eq.( 13) can then be simplified to

σe(l, b, E) =
∑

k

1

b(E)

∫

∞

E
dE ′ Gσ

2L [l, b, rk, λ(E,E
′)] jk(rk), (14)

where jk(E) =
∫

d3r Qk(r, E) for a given subhalo source Qk located at rk. For the

largest subhalos with masses larger than ≃ 109M⊙, their radius rs can be somewhat

larger than the diffusion length λD. Nevertheless, their contribution to the total flux

is a factor ∼ 104 smaller than the flux from the smaller subhalos. Therefore, neither

the mean intensity nor the dimensional angular power spectrum (see Sect. 2.6) relies

significantly on the distribution of electrons in the largest subhalos. As a result, for our

purposes we can apply Eq. (14) to all subhalos even if rs > λD.

2.3. Halo function

Alternatively, for primary electrons and positrons from the smooth host dark matter

halo, the Bessel-Fourier scheme [72, 73] can require less computational time than the

Green’s function. The electron and positron number density after propagation can be

expressed as

ne(r, z, E) =
1

b(E)

∫ Mχ

E
dE ′ fe(E

′) I(r, z, E, E ′), (15)

and I(r, z, E, E ′) is the halo function defined by

I(r, z, E, E ′) =
∑

i

∑

n

J0

(

αir

R

)

sin

[

nπ(z + L)

2L

]

e
−

[

(nπ
2L )

2

+
α2

i

R2

]

λ2
D
4

Ri,n . (16)

Here, the αi are the zeros of the Bessel function J0 and Ri,n are the coefficients of the

Bessel-Fourier transform of the source term.

2.4. Diffuse Emission: Inverse Compton spectrum

For relativistic electrons and positrons with energy E up scattering background photons

from energy ǫ to Eγ , the emitted inverse Compton power per energy interval is

PIC(Eγ , E) = Eγ

∫

dǫ n(ǫ)
dσ

dEγ
(Eγ , ǫ, E) , (17)

where n(ǫ) is the differential ISRF photon number density, while the differential cross

section (dσ/dEγ)(Eγ, ǫ, E) is given by the Klein-Nishina formula [74]. Folding PIC with

the spectral distribution of the equilibrium number density of electrons and positrons,

we get the emissivity of IC photons of energy Eγ,

jIC(Eγ) =
∫

dE ne(E) PIC(Eγ, E), (18)
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which yields the IC intensity at energy Eγ by the line-of-sight integral

IIC(Eγ) =
1

4π

∫

dℓ jIC(Eγ , r) . (19)

According to the Eq. (13), the IC intensity from the electrons and positrons can be

simplified to

IIC(l, b, Eγ) =
1

4π

∫

dE PIC(Eγ , E) σe(l, b, E) . (20)

There is a well known “delta-function approximation” where an electron with energy

E inverse Compton scattering black-body photons with temperature T emits photons

with a characteristic energy Eγ in both the Thomson and extreme Klein-Nishina

limits [75], i .e., PIC(Eγ, E) = PIC(E)δ[Eγ − Ec(E)], where PIC(E) is the total IC

energy loss rate of the electron. The numerical calculations show that Ec(E) may

be approximated by Ec(E) ≃ 4kBT (E/me)
2 and in the Thomson regime one has

PIC(E) = (16e4π/3)ubE
2/m4

e, where e is the electron charge and ub is the background

photon energy density. Eq. (20) can thus be simplified to

IIC(l, b, Eγ) =
1

16π
σe(l, b, E)

mePIC(E)
√

EγkBT
, (21)

where the electron/positron energy E is related to the gamma-ray energy Eγ through

the following condition: Eγ = Ec(E). This relation reproduces the known slope

IIC(Eγ) ∝ E−(s−1)/2
γ for an electron spectrum of σe(E) ∝ E−s. In the Thomson limit

and for our choice of monoenergetic injection of electron-positron pairs, the index s ≃ 2

in the stationary situation if the energy loss term dominates on the right hand side of

Eq. (1), as is usually the case for electron energies above 10 GeV. For E <∼TeV we are

always in the Thomson limit.

2.5. Galactic halo substructure

In the present section we discuss contributions to the source term Q(r, E) both from

the smooth host halo and the individual subhalos. The two most important features of

the subhalos are their mass distribution and their spatial distribution. In the following,

we briefly summarize the properties of subhalos used in our calculations for which we

adopt the same description as in Ref. [55], and references therein.

2.5.1. Subhalo radial distribution There are two widely used scenarios for describing

the subhalo radial distribution. One is unbiased relative to the Galactic smooth

component (host halo) with the NFW density profile [76] given by

ρNFW(r) =
ρs

x(1 + x)2
, (22)

with x ≡ r/rs, where rs is a scale radius and ρs is the characteristic density. For the

case where the subhalo distribution is anti-biased compared to the smooth component,
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we use the fitting formula of the subhalo radial distribution from Gao et al [45, 46]. The

cumulative fraction of subhalos within a given radius is

Nanti(< ζ)

Ntot

=
(1 + a c200) ζ

β

1 + a c200 ζγ
, (23)

with ζ ≡ r/r200, a = 0.244, β = 2.75, γ = 2 and c200 ≡ r200/rs is the host halo

concentration. Furthermore, Ntot is the total number of subhalos within virial radius

r200 of the host halo. For a host halo with the NFW density profile we adopted

ρs = 0.2 GeV/cm3, rs = 21.7 kpc and c200 = 12 [77].

2.5.2. The subhalo mass function Recent simulations suggest that the cumulative

number of subhalos above a given mass M in units of the solar mass can be fitted

simply by a power law [78],

N(> M) ≃ 64

(

M

108M⊙

)−αm

. (24)

In the present paper, we simulate the subhalos with mass down to around one Earth

mass, Mmin = 10−6M⊙ and choose αm = 0.9, as suggested by simulations. We find that

choosing αm between 0.8 and 1 [55] would change the mean intensity by roughly a factor

of 20.

2.5.3. The subhalo density profile More recent simulations suggest that the central

structure of dark matter halos deviates from the NFW profile in the innermost regions,

which can be well reproduced by an Einasto density profile. Therefore, here we use the

Einasto profile with the parameter α = 0.16 given by Gao et al [45],

ρ(r) = ρs exp
(

2

α

)

exp
[

−
2

α

(

r

rs

)α]

. (25)

The relation of halo concentration and mass is given by

c(M) = 398.1

(

M

M⊙

)−0.138

. (26)

The slope and normalization are consistent with those found by Bullock et al [79].

2.6. The angular power spectrum

The angular power spectrum of the emission maps can be calculated by using the

public HEALPix package [80]. We define the dimensionless quantity δI(ψ,Eγ) ≡

(I(ψ,Eγ) − 〈I〉)/〈I〉 as a function on the sphere, which can be expanded in spherical

harmonics Ylm as

δI =
lmax
∑

l=0

l
∑

m=−l

almYlm(ψ) , (27)
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where I(ψ) describes the gamma-ray intensity in the direction ψ. The dimensionless

angular power spectrum of δI is given by the coefficients

Cl =
1

2l + 1

l
∑

m=−l

|alm|
2 . (28)

Note that the measured dimensional amplitude CI
l of the total angular power spectrum

in units of intensity squared can be obtained by multiplying the dimensionless angular

power spectrum of a given component, Cl,i, with its mean intensity squared, 〈Ii〉
2 and

summing over the components,

CI
l =

∑

i

〈Ii〉
2Cl,i , (29)

where in our case the sum basically runs over the contributions of the smooth host halo,

the subhalo distribution and other astrophysical foregrounds and backgrounds. Here we

assumed that the different contributions are uncorrelated.

2.7. Numerical scheme

In numerical calculations, taking into account subhalos down to masses ∼ 10−6M⊙ in

the angular power spectrum would require the generation of ∼ 1016 subhalos within

the diffusion zone in a given Monte Carlo realization. This is not very practical and

severely limits the number of realizations one can simulate. Thus, we need to develop

a sound scheme to circumvent these computational limits. Here we take advantage

of a few simple facts: (i) Two terms contribute to the fluctuation anisotropies in

units of average intensity squared; the one-subhalo term (CI
1h) which is Poissonian

noise and the two-subhalo term (CI
2h) due to the cross-correlation of substructure

arising from their radial distribution within the host halo (see Eqs. (19) and (20) of

Ref. [53])). (ii) Qualitatively speaking, the two-subhalo term scales linearly with the

square of the average flux whereas the one-subhalo term is proportional to an integral

of squared luminosities of subhalos. Since subhalo luminosity Lsub is related to its

mass M via Lsub ∝
∫

dVshρ
2
sh(r,M) ≈ Mc(M)3, by using Eq. (26), the correlation

between gamma-ray luminosity and mass thus is positive, i.e., Lsub ∝ M0.6. One-

subhalo term and two-subhalo term per decade of subhalo mass then can be estimated

as CI
1h ∝ dN/d log(M)L2

sub ≈M0.3 and CI
2h ∝ (dN/d log(M)Lsub)

2 ≈M−0.6. Therefore,

large and relatively rare substructures dominate the one-subhalo term, but negligibly

to the two-subhalo term, and the small but numerous substructure halos dominate the

two-subhalo term.

There is thus a dividing mass of substructures, M0, below which their contribution

to one-subhalo term are negligible. The numerical value of this mass depends on the

assumed radial distribution of the substructure halos (see below). In any case, it turns

out that halos with M < M0 have a characteristic radius, rs, much smaller than the

diffusion length of the gamma-ray emitting electrons, i.e. λD ≫ rs. Thus, effectively all

halos belowM0 have the same image on the sky in ICS with a characteristic size given by

λD. This further simplifies our calculations because besides minor poissonian noise, the
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angular power spectrum from subhalos with M < M0 is simply obtained by convoluting

the subhalo spatial distribution with the mass-independent ICS subhalo image. Thus

the contribution from subhalos with M < M0 is taken into account straightforwardly as

follows: We generate a distribution of subhalos with mass in the decade 10−6−10−5M⊙

to obtain the full-sky map.

The number of generated subhalos is typically much smaller than the actual value,

N(10−6 < M/M⊙ < 10−5), but is sufficiently large that the two-subhalo term divided

by the mean intensity squared has converged. The intensity of the map and the

corresponding two-subhalo term thus can be rescaled to the value appropriate for

N(10−6 < M/M⊙ < M0) halos. In this way, the simulated two-subhalo term of the

angular power spectrum can fairly approach the actual one.

Since the one-subhalo term is not linearly proportional to the square of the average

intensity and is contributed mostly by larger subhalos, we thus complete the calculation

by adding the contribution of subhalos with mass M > M0, which can now be done

with a direct Monte Carlo simulation. Specifically, we find that our calculation of the

angular power spectrum reaches convergence when we use at least 105 subhalos for each

mass decade from 10−6M⊙ to M0 within the diffusion zone, when we use M0 = 104M⊙

for the unbiased radial distribution and M0 = 102M⊙ for the anti-biased case.

Note that this method can not be applied to the angular power spectrum of the

direct annihilation component since in this case the profile of the emitting region depends

on the profile of each subhalo rather than on the identical diffusion length which just

depends on the energy of electrons and positrons for all subhalo masses.

3. Results for Galactic Dark Matter

In this section, we make use of the formalism derived in the previous section to compute

the gamma-ray mean intensity map and associated anisotropy power spectrum due to

both the smooth host halo component and the substructure halos. We also study how

the map morphology and anisotropies depend on the radial distribution of subhalos and

of the gamma-ray energy.

3.1. Diffuse Gamma-ray Emission

We first consider the gamma-ray emission produced by dark matter annihilating into

e+e− pairs scattering off the ISRF both in the smooth host halo and the subhalos.

Using the formalism developed in Sect. 2, the fluxes from the smooth host halo at 1

GeV, 10 GeV and 100 GeV are shown in Fig. 1. Here we use galactic coordinates,

where an observer is located at 8.5 kpc from the Galactic center. We adopt the

NFW density profile with the parameters given in Sect. 2.5, and find, as expected,

that most of the signal comes from the central Galactic region where the dark matter

is highly concentrated. The values of the mean gamma-ray intensity from both the

host halo and the substructure are also reported in Tab. 1 for the above three photon
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Figure 1. Sky maps of gamma-ray emission in Galactic coordinates at 1 GeV (top-

left), 10 GeV (top-right) and 100 GeV (bottom) due to ICS from the host halo. The

color scaling is logarithmic, and the unit is 1/s/cm2/sr.

energies. We find that in both cases the mean gamma-ray intensity decreases faster

than ∼ E−1/2
γ in Eq. (21). This is because there will be a high energy cut-off in Eγ

once the required energy of the parent pairs E ≃ me[Eγ/(4kBT )]
1/2 scattering off the

low energy background photons exceeds the maximum energy Mχ produced by dark

matter annihilation. The effect is even stronger when the delta-function approximation

for ICS is assumed, as in our case. As a consequence, all background photon energies

at CMB energies and above contribute to the 1 GeV ICS photon flux, whereas only

the IR and SL contribute to the 10 GeV photon flux and only the SL contributes

to the 100 GeV photon flux, as also summarized in Tab. 2. Furthermore, using the

relation between E and Eγ and the expression for PIC(E), for an electron spectrum

σe ∝ E−s Eq. (21) gives the scaling IIC(Eγ) ∝ ubE
(1−s)/2
γ T (s−3)/2. Using the different

normalizations for the CMB, IR and SL densities, then would suggest that the gamma-

ray intensity originating from e+e− pairs scattering off CMB photons is about 5 times

larger than the one from scattering off the IR photons and about 10 times lager than the

contribution from scattering off SL photons, provided there is no restriction from the

kinematics. However, the e+e− pairs produced by annihilating dark matter do have an

absolute cutoff at the parent particle energy. As a result, the more detailed numerical

results show that most of the gamma-ray intensity at 1 GeV is produced by pairs with

E ≃ 526 GeV scattering off the CMB, whereas pairs with E ≃ 431 GeV scattering off IR

photons dominate the 10 GeV gamma-ray flux and pairs with E ≃ 141 GeV scattering

off SL dominate ICS photons at 100 GeV.
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Figure 2. Sky maps of gamma-ray emission in Galactic coordinates at 1 GeV (top-

left), 10 GeV (top-right) and 100 GeV (bottom) due to ICS from one realization of

subhalos for the unbiased radial distribution and a minimum subhalo mass of 106M⊙.

The color scaling is logarithmic, and the unit is 1/s/cm2/sr.

Halo model Eγ = 1 GeV Eγ = 10 GeV Eγ =100 GeV

Mmin = 10−6M⊙ + unbiased 3.27× 10−7 2.03× 10−8 2.21× 10−9

Mmin = 10−6M⊙+ anti-biased 8.17× 10−9 5.07× 10−10 5.52× 10−11

Host halo 3.83× 10−10 2.44× 10−11 2.73× 10−12

Table 1. The mean gamma-ray intensities 〈I〉 at 1 GeV, 10 GeV and 100 GeV,

averaged over the sky, from subhalos with minimum mass Mmin = 10−6M⊙ for the

unbiased and anti-biased radial distribution and from the smooth host halo. The unit

is cm2/s/sr.

Eγ(GeV) SL (Tp =3800 K) IR (Tp =40.6 K) CMB (Tp =2.73 K)

1 14 GeV (2.28 kpc) 136 GeV (1.1 kpc) 526 GeV (0.48 kpc)

10 44 GeV (1.76 kpc) 431 GeV (0.65 kpc) 1665 GeV

100 141 GeV (1.26 kpc) 1365 GeV 5267 GeV

Table 2. The dependence of the characteristic electron energy E on the energy

Eγ of gamma-ray emission through inverse Compton scattering off the various black-

body components of the ISRF with temperatures Tp. For the cases E < 1TeV the

corresponding diffusion length λD(E) is also shown in braces.

In Fig. 2, we present the sky map of gamma-ray emission predicted by an

unbiased radial distribution of subhalos: in order to avoid saturation from the dominant
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Figure 3. Sky maps of gamma-ray emission at 1 GeV, 10 GeV and 100 GeV (from top

to bottom) due to ICS from one realization of subhalos for the unbiased (left panel) and

anti-biased radial (right panel) distribution. The minimum subhalo mass is 10−6M⊙.

The color scaling is logarithmic, and the unit is 1/s/cm2/sr.

population of small halos, in the figure we only include halos with mass above 106M⊙.

The most remarkable feature in Fig. 2 is that the diffuse emission regions can extend to a

few kpc in length scale, corresponding to a few tens of degrees on the sky. Furthermore,

the size of the brightest regions representing the largest intensity tends to increase with

increasing Eγ, which could give rise to an increase of the angular power spectrum on

corresponding angular scales. The size of the emitting region is basically determined by

the diffusion length λD which is the distance that the e+e− diffuses during their energy

loss time. This length scale can be estimated from Eq. (4), giving λD(E) ∝ E−0.15 for

the MED propagation model. This energy dependence of λD is shown in Tab. 2. The

typical diffusion length is 0.48 kpc, 0.65 kpc and 1.26 kpc for electron energies leading to

emission at Eγ = 1GeV, 10 GeV and 100 GeV, respectively, corresponding to an angular

scale θ ≃ λD/d with d ∼ few kpc the typical distance to the dark matter annihilation

source. These angular scales are roughly what one sees in Fig. 2 and the above estimate
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also applies to the smooth host halo case (see Fig. 1) and to the anti-biased radial

distribution of subhalos.

How does the mean intensity depend on Mmin? Empirically, we find that the mean

intensity roughly doubles with each decade of decreasing mass of subhalos, similar to

what has been found by Ref. [55]. In light of the subhalo mass function N(> M) in

Eq. (24) and the concentration parameter c(M) in Eq. (26), the annihilation rates per

decade of subhalo mass can be approximated by Lsub(M)dN/d log(M) ∝ c(M)3MN(>

M) ≃ M−0.3, which is fairly consistent with our detailed numerical calculation.

In order to determine the influence of the radial distribution of subhalos on the

intensity, in Fig. 3 the gamma-ray full-sky maps at 1 GeV, 10 GeV and 100 GeV for

the un-biased distribution are compared with the anti-biased distribution. For the anti-

biased radial distribution the mean intensities are roughly 50 times smaller than for

the unbiased case since the mean distance of subhalos to us is much larger than in the

unbiased case. One notices the important feature in Fig. 3 that the emission from the

spatially anti-biased distribution is much less centrally concentrated, and apparently

accumulates around the Galactic plane compared with the unbiased case. This can

be understood from the fact that only electrons and positrons confined within the

diffusion zone of scale height L = 4 kpc and radius R = 20 kpc for the MED model

can efficiently produce gamma-rays by ICS and the subhalos within the diffusion zone

are distributed much more isotropically for the anti-biased case compared to the more

central distribution of the unbiased case. Furthermore, ICS outside the diffusion zone

contributes less than 10% to the mean intensity [38, 81, 48].

3.2. The angular power spectrum

The dimensionless angular power spectra Cl of gamma-ray emission due to the ICS at

photon energies 1 GeV, 10 GeV and 100 GeV from the main components of Galactic

dark matter are presented in Fig. 4. Shown are the power spectrum for subhalos with

Mmin = 10−6M⊙ for the unbiased radial distribution and for the smooth host halo.

To clearly illustrate the effects of diffusion, the angular power spectra for spatially

unbiased subhalos with Mmin = 102M⊙ and for the host halo are also shown in absence

of diffusion. We recall that in order to obtain for a given component the contribution

to the angular power spectrum CI
l in units of intensity squared, according to Eq. (29)

one has to multiply the dimensionless power spectra Cl shown in Fig. 4 by the squared

total intensity 〈I〉2 of the corresponding component from Tab. 1.

Fig. 4 demonstrates the remarkable feature that the power spectrum of the ICS

component of galactic dark matter annihilation is exponentially suppressed for l >∼ 10

compared with what one would obtain without diffusion. Furthermore, the lower energy

gamma-rays have more angular power at l >∼ 10 corresponding to small angular scale.

This can be understood from the energy-dependence of the diffusion length: Intensity

fluctuations should be damped on length scales smaller than the diffusion length λD,

corresponding to a multipole l >∼ πd/λD, where d is the typical distance to the dark
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Figure 4. Dimensionless angular power spectrum Cl of the gamma-ray sky from dark

matter annihilation at Eγ = 1 GeV (green), 10 GeV (red) and 100 GeV (black),

respectively. Solid curves correspond to the case of substructures with minimum

subhalo massMmin = 10−6M⊙ for the unbiased radial distribution. Dotted and dashed

curves are for the smooth host halo with NFW profile, where the emissivity ∝ ρ2 and

∝ ρ, respectively. For comparison, the cyan curves show the power spectrum in absence

of diffusion, for the minimum subhalo mass Mmin = 102M⊙ and for the unbiased radial

distribution (see text for details). We find a strong suppression due to diffusion for

l >∼ 10. Each power spectrum is calculated exclusively from the contribution of the

indicated source component.

matter annihilation source. Based on the discussion in Sect.3.1, we can estimate the

diffusion length of the electrons and positrons emitting a given gamma-ray energy. When

doing so, one should keep in mind that the e+e− pairs interact with three different

photon backgrounds and that, as it turns out, unlike the case of a single background,

the lower the gamma-ray energy the higher the energy of the emitting electrons. Since

we found that the diffusion length decreases with the electron energy, λD(E) ∝ E−0.15,

we expect suppression of anisotropies to occur at smaller scales, or larger values of the

multipole l, for lower photon energy. For other propagation models such as the MIN and

MAX models which have a slightly different energy dependence of the spatial diffusion
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Figure 5. Comparison of the dimensionless angular power spectrum Cl of gamma-ray

emission from dark matter substructures for the unbiased radial distribution (solid)

and the anti-biased distribution (dotted) at Eγ = 1 GeV (green), 10 GeV (red) and

100 GeV (black) with Mmin = 10−6M⊙.

coefficient, the diffusion length would be slightly larger or smaller, respectively. This

would shift the suppression scale in the angular power spectrum by less than a factor

of two in the multipole l.

In fact, for the smooth host halo the typical distance is d ≃ 8.5 kpc, and the

suppression due to diffusion should occur at l ≃ 55, 47 and 28 for gamma-ray energies

of 1 GeV, 10 GeV and 100 GeV, respectively. This analysis can be applied to the case

of subhalos. For an unbiased spatial distribution of subhalos, the typical distance to a

subhalo is d ≃ 7 kpc which corresponds to diffusive suppression at relatively smaller l

compared to the host halo case. These simple estimates are consistent with our detailed

calculations shown in Fig. 4.

We also find that the amplitude of the dimensionless angular power spectrum Cl

from the smooth host halo is larger than that from the subhalos since the emissivity

profile from annihilation in the smooth halo is proportional to the density squared and

thus more peaked than annihilation in the subhalos which essentially follow the linear

density profile of an NFW profile, as we see in Fig. 4. We note that although the

smooth host halo has a large amplitude of the dimensionless angular power spectrum

Cl, its contribution to the total intensity is as small as ∼ 0.1% for the unbiased subhalo

distribution and ∼ 5% for the anti-biased distribution, as seen in Tab. 1. We can
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therefore safely neglect the contribution from the host halo both to the mean intensity

and to the dimensional angular power spectrum CI
l .

Finally, we show in Fig. 4 the dimensionless angular power spectrum Cl for a smooth

halo with emissivity tracing the density of the NFW profile instead of the squared density

that would be relevant for the contribution of the host halo in decay scenarios. This

shows that a smooth NFW profile describes the emission profile by a large number of

subhalos following an unbiased radial distribution very well, at a level of ∼ 0.1%. This

is not surprising since the number of subhalos within the diffusion zone with masses

below 104M⊙ is sufficiently large, > 105, for each mass decade to strongly suppress

any deviation from a smooth distribution. This conclusion is also true for the anti-

biased case. Despite the fact that the contribution of large subhalos in the mass range

of 104 − 1010M⊙ fluctuates strongly, their contribution to the total emission are three

orders of magnitude smaller which leads to fluctuations at 0.1% level in angular power

spectrum as seen in Fig. 4.

How does the radial subhalo distribution affect the angular power spectrum? In

Fig. 5 we compare results for the unbiased case and the anti-biased case. At small l the

angular power spectrum Cl for the anti-biased distribution is suppressed relative to the

unbiased case which is due to the more isotropic subhalo distribution at large angular

scales seen in Fig. 3. For l >∼ 10, the angular power spectrum induced by an anti-biased

distribution has more power than the unbiased case because the typical distance to

subhalos is larger for the anti-biased distribution, shifting power to larger l.

We should note that, of course, the electrons and positrons of ordinary astrophysical

sources, such as pulsars and supernova remnants, could also produce significant ICS

signals. At l >∼ 10 the corresponding angular power spectrum would be difficult to

distinguish from the one induced by dark matter because the large-l power spectrum is

highly suppressed and the suppression scale is mostly determined by the diffusion length

of electrons and positrons which is independent of wether their origin is astrophysical or

from dark matter. In contrast, the power spectrum at l <∼ 10 should contain information

on the sources of electrons and positrons due to the different spatial morphologies of dark

matter and astrophysical sources on these scales which are not significantly influenced

by diffusion. In addition, the ICS energy spectrum is in general significantly different

due to the harder pair spectrum from dark matter annihilation which would naturally

explain the e+e− excesses observed by PAMELA and Fermi-LAT. Although the nearby

astrophysical sources such as pulsars can also reproduce these excesses, pulsars are

mainly concentrated at the Galactic plane and the primary e+e− injected spectrum

have an exponential cutoff at high energies, both of which are quite different from

annihilating dark matter scenarios. Therefore, a combination of these two effects may

allow to discriminate between astrophysical sources and at least some dark matter

scenarios. For example, Ref. [82] proposed an energy dependence of an anisotropy

signature to distinguish Millisecond pulsars from heavy dark matter candidates. The

disentanglement of dark matter signals from astrophysical backgrounds is, however,

beyond the scope of the present paper.
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4. Conclusions

In this paper we have investigated the angular power spectrum of the gamma-ray

emission from inverse Compton scattering off low energy target photons of electrons

and positrons produced by dark matter annihilation. We considered two extreme cases

for the radial distribution of subhalos and simulated the full-sky gamma-ray maps at

three energies through realizations of a large number of subhalos with masses down to

10−6M⊙. The contributions to the angular power spectrum and to the total flux from

the smooth host halo were also calculated.

1. We point out a new feature in the angular power spectrum of photons produced

by inverse Compton scattering of pairs from annihilating dark matter that does not occur

in the power spectra of gamma-rays produced directly in annihilation, on which earlier

work often has focused: In contrast to the direct annihilation component for which the

Poisson noise dominates at large l, the angular power spectrum from inverse Compton

scattering is exponentially suppressed at l >∼ 10, because the diffusion of the high energy

parent electrons and positrons produced by dark matter annihilation strongly smears out

anisotropies of gamma-rays at small angular scales. This suppression scale is determined

by the diffusion length λD(E), evaluated at the energy E of the emitting electrons and

positrons. The energy E of the dominant emitters is determined by the low energy

target photon backgrounds and, in the presence of several background components, is

not a monotonic function of the gamma-ray energy. For the backgrounds used in this

paper, CMB, IR and SL, we find that the lower energy gamma-rays are produced by

the higher energy e+e− pairs (and vice-versa) so that when the energy dependence of

the spatial diffusion coefficient is taken into account, λD(E) ∝ E−0.15, power spectrum

suppression is found to occur at larger multipole l for lower photon energy.

2. The contribution to the absolute amplitude of the angular power spectrum

from the smooth host halo can be safely neglected which is due to its negligible mean

intensity compared to that from the subhalos. For subhalos, the intensity from an

unbiased subhalo distribution is ∼ 40 times larger than from an antibiased distribution.

At small l the dimensionless angular power spectrum for the anti-biased distribution is

suppressed relative to the unbiased case, whereas at large l >∼ 10 the opposite is true.

3. An enormous number of subhalos with the masses down to 10−6M⊙ can be well

described by a smooth halo whose emissivity follows the spatial distribution of subhalos.

That is not surprising, because diffusion of the emitting particles can smooth the whole

sky map if the number of subhalos is sufficiently large.

Finally we remark that we have assumed homogeneous and isotropic magnetic

fields and interstellar radiation field. However, for the more realistic case where the

radiation and magnetic fields depend on the position in the Galaxy [84], the angular

power spectrum should be modified at least at large angular scales. In particular, the

small scale fluctuations of the magnetic field could affect the distribution of electrons

and positrons [85], influencing the angular power spectrum at all scales. Moreover, a

space-dependence of the diffusion length could also lead to a directional dependence of
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the angular power spectrum. Obviously detecting the differential effect of the anisotropy

signal across the Galactic latitude would be even more difficult than detecting the signal

integrated over the whole sky. However, it could introduce subtle effects when part of

the sky is masked out, e.g. to avoid the contribution from the galactic plane. These

complications should be investigated more thoroughly in the future by performing a

real 3D simulation through numerically solving the transport equation for electrons

and positrons. While the formalism developed in this paper can be extended to

the anisotropies of the radio sky, the small scale structure of the magnetic field is

more important for synchrotron emission and should be treated in more detail. In

addition, our work could also be extended to inverse Compton gamma-ray emission

from extragalactic dark matter halos.

Acknowledgements

We acknowledge use of the HEALPix [80] software and analysis package for deriving the

results in this paper. This work was supported by the Deutsche Forschungsgemeinschaft

through the collaborative research centre SFB 676 Particles, Strings and the Early

Universe: The Structure of Matter and Space-Time, and by the State of Hamburg,

through the Collaborative Research program Connecting Particles with the Cosmos

within the framework of the Landesexzellenzinitiative (LEXI). We thank Luca Maccione

and Enrico Borriello for reading the manuscript and for very useful comments.

References

[1] G. Bertone, D. Hooper and J. Silk, “Particle dark matter: Evidence, candidates and constraints,”

Phys. Rept. 405, 279 (2005) [arXiv:hep-ph/0404175].

[2] G. Jungman, M. Kamionkowski and K. Griest, “Supersymmetric dark matter,” Phys. Rep. 267,

195 (1996) [arXiv:hep-ph/9506380].

[3] D. Hooper and S. Profumo, “Dark matter and collider phenomenology of universal extra

dimensions,” Phys. Rep. 453, 29 (2007) [arXiv:hep-ph/0701197].

[4] E. Komatsu et al. [WMAP Collaboration], “Five-Year Wilkinson Microwave Anisotropy Probe

Observations:Cosmological Interpretation,” arXiv:0803.0547 [astro-ph].

[5] X. L. Chen and M. Kamionkowski, “Particle decays during the cosmic dark ages,” Phys. Rev. D

70, 043502 (2004) [arXiv:astro-ph/0310473].

[6] L. Zhang, X. Chen, M. Kamionkowski, Z. g. Si and Z. Zheng, “Contraints on radiative dark-matter

decay from the cosmic microwave background,” Phys. Rev. D 76, 061301 (2007) [arXiv:0704.2444

[astro-ph]].

[7] L. Zhang, X. L. Chen, Y. A. Lei and Z. G. Si, “The impacts of dark matter particle annihilation

on recombination and the anisotropies of the cosmic microwave background,” Phys. Rev. D 74,

103519 (2006) [arXiv:astro-ph/0603425];

[8] S. Colafrancesco, S. Profumo and P. Ullio, “Multi-frequency analysis of neutralino dark matter

annihilations in the Coma cluster,” Astron. Astrophys. 455, 21 (2006) [arXiv:astro-ph/0507575].

[9] S. Profumo and P. Ullio, “Multi-wavelength Searches for Particle Dark Matter,” arXiv:1001.4086

[astro-ph.HE].

[10] O. Adriani et al. [PAMELA Collaboration], “Observation of an anomalous positron abundance in

the cosmic radiation,” arXiv:0810.4995 [astro-ph].



21

[11] A. A. Abdo et al. [The Fermi-LAT Collaboration], “Measurement of the Cosmic Ray e+ plus e-

spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope,” Phys. Rev. Lett. 102,

181101 (2009) [arXiv:0905.0025 [astro-ph.HE]].

[12] F. Aharonian et al. [H.E.S.S. Collaboration], “The energy spectrum of cosmic-ray electrons at TeV

energies,” Phys. Rev. Lett. 101, 261104 (2008) [arXiv:0811.3894 [astro-ph]].

[13] D. Grasso et al. [FERMI-LAT Collaboration], “On possible interpretations of the high energy

electron-positron spectrum Astropart. Phys. 32 (2009) 140 [arXiv:0905.0636 [astro-ph.HE]].

[14] G. Di Bernardo, D. Gaggero, D. Grasso and f. L. collaboration, “The High Energy Cosmic

Ray Electron Spectrum measured by Fermi Gamma-Ray Space Telescope: some possible

interpretations,” arXiv:0912.3887 [astro-ph.HE].

[15] M. Cirelli, M. Kadastik, M. Raidal and A. Strumia, “Model-independent implications of the e+,

e-, anti-proton cosmic ray spectra on properties of Dark Matter,” Nucl. Phys. B 813, 1 (2009)

[arXiv:0809.2409 [hep-ph]].

[16] I. Cholis, L. Goodenough, D. Hooper, M. Simet and N. Weiner, “High Energy Positrons From

Annihilating Dark Matter,” arXiv:0809.1683 [hep-ph].

[17] V. Barger, W. Y. Keung, D. Marfatia and G. Shaughnessy, “PAMELA and dark matter,”

arXiv:0809.0162 [hep-ph].

[18] R. Harnik and G. D. Kribs, “An Effective Theory of Dirac Dark Matter,” arXiv:0810.5557 [hep-ph].

[19] A. E. Nelson and C. Spitzer, “Slightly Non-Minimal Dark Matter in PAMELA and ATIC,”

arXiv:0810.5167 [hep-ph].

[20] Y. Bai, M. Carena and J. Lykken, “The PAMELA excess from neutralino annihilation in the

NMSSM,” Phys. Rev. D 80, 055004 (2009) [arXiv:0905.2964 [hep-ph]].

[21] D. Malyshev, I. Cholis and J. Gelfand, “Pulsars versus Dark Matter Interpretation of

ATIC/PAMELA,” arXiv:0903.1310 [astro-ph.HE].

[22] S. Profumo, “Dissecting Pamela (and ATIC) with Occam’s Razor: existing, well-known Pulsars

naturally account for the ’anomalous’ Cosmic-Ray Electron and Positron Data,” arXiv:0812.4457

[astro-ph].

[23] T. Kobayashi, Y. Komori, K. Yoshida and J. Nishimura, “The most likely sources of high

energy cosmic-ray electrons in supernova remnants,” Astrophys. J. 601, 340 (2004) [arXiv:astro-

ph/0308470].

[24] N. J. Shaviv, E. Nakar and T. Piran, “Natural explanation for the anomalous positron to electron

ratio with supernova remnants as the sole cosmic ray source,” Phys. Rev. Lett. 103, 111302

(2009) [arXiv:0902.0376 [astro-ph.HE]].

[25] P. Blasi, “The origin of the positron excess in cosmic rays,” Phys. Rev. Lett. 103, 051104 (2009)

[arXiv:0903.2794 [astro-ph.HE]].

[26] L. Bergstrom, T. Bringmann, M. Eriksson and M. Gustafsson, “Gamma rays from Kaluza-Klein

dark matter,” Phys. Rev. Lett. 94 (2005) 131301 [arXiv:astro-ph/0410359].

[27] F. W. B. Atwood [LAT Collaboration], “The Large Area Telescope on the Fermi Gamma-ray Space

Telescope Mission,” Astrophys. J. 697, 1071 (2009) [arXiv:0902.1089 [astro-ph.IM]].

[28] J. Chiang, & R. Mukherjee, “The Luminosity Function of the EGRET Gamma-Ray Blazars,”

Astrophys. J. 496 (1998) 752

[29] F. W. Stecker, & M. H. Salamon, “The Gamma-Ray Background from Blazars: A New Look,”

Astrophys. J. 464 (1996) 600

[30] F. Miniati, “Intergalactic shock acceleration and the cosmic gamma-ray background,” Mon. Not.

Roy. Astron. Soc. 337 (2002) 199

[31] E. A. Baltz et al., “Pre-launch estimates for GLAST sensitivity to Dark Matter annihilation

signals,” JCAP 0807, 013 (2008) [arXiv:0806.2911 [astro-ph]].

[32] M. Cirelli and P. Panci, “Inverse Compton constraints on the Dark Matter e+e- excesses,” Nucl.

Phys. B 821, 399 (2009) [arXiv:0904.3830 [astro-ph.CO]].

[33] E. A. Baltz and L. Wai, “Diffuse inverse Compton and synchrotron emission from dark matter

annihilations in galactic satellites,” Phys. Rev. D 70, 023512 (2004) [arXiv:astro-ph/0403528].



22

[34] Q. Yuan, P. F. Yin, X. J. Bi, X. M. Zhang and S. H. Zhu, “Gamma rays and neutrinos from

dark matter annihilation in galaxy clusters,” Phys. Rev. D 82, 023506 (2010) [arXiv:1002.0197

[astro-ph.HE]].

[35] C. Boehm, T. Delahaye and J. Silk, “Can the morphology of gamma-ray emission distinguish

annihilating from decaying dark matter?,” arXiv:1003.1225 [astro-ph.GA].

[36] G. Hutsi, A. Hektor and M. Raidal, “Implications of the Fermi-LAT diffuse gamma-

ray measurements on annihilating or decaying Dark Matter,” JCAP 1007, 008 (2010)

[arXiv:1004.2036 [astro-ph.HE]].

[37] T. Lin, D. P. Finkbeiner and G. Dobler, “The Electron Injection Spectrum Determined by

Anomalous Cosmic Ray, Gamma Ray, and Microwave Signals,” arXiv:1004.0989 [astro-ph.CO].

[38] L. Zhang, G. Sigl and J. Redondo, “Galactic Signatures of Decaying Dark Matter,” JCAP 0909,

012 (2009) [arXiv:0905.4952 [astro-ph.GA]].

[39] L. Zhang, C. Weniger, L. Maccione, J. Redondo and G. Sigl, “Constraining Decaying Dark Matter

with Fermi LAT Gamma-rays,” JCAP 1006, 027 (2010) [arXiv:0912.4504 [astro-ph.HE]].

[40] A. M. Green, S. Hofmann and D. J. Schwarz, “The first WIMPy halos,” JCAP 0508, 003 (2005)

[arXiv:astro-ph/0503387].

[41] A. Loeb and M. Zaldarriaga, “The small-scale power spectrum of cold dark matter,” Phys. Rev.

D 71, 103520 (2005) [arXiv:astro-ph/0504112].

[42] E. Bertschinger, “The effects of cold dark matter decoupling and pair annihilation on cosmological

perturbations,” Phys. Rev. D 74, 063509 (2006) [arXiv:astro-ph/0607319].

[43] S. Profumo, K. Sigurdson and M. Kamionkowski, “What mass are the smallest protohalos?,” Phys.

Rev. Lett. 97, 031301 (2006) [arXiv:astro-ph/0603373].

[44] J. Diemand, B. Moore and J. Stadel, “Earth-mass dark-matter haloes as the first structures in the

early universe,” Nature 433, 389 (2005) [arXiv:astro-ph/0501589].

[45] L. Gao et al., “The redshift dependence of the structure of massive LCDM halos,” arXiv:0711.0746

[astro-ph].

[46] L. Gao, S. D. M. White, A. Jenkins, F. Stoehr and V. Springel, “The subhalo populations of

LCDM dark haloes,” Mon. Not. Roy. Astron. Soc. 355, 819 (2004) [arXiv:astro-ph/0404589].

[47] J. Diemand, M. Kuhlen and P. Madau, “Dark matter substructure and gamma-ray annihilation

in the Milky Way halo,” Astrophys. J. 657, 262 (2007) [arXiv:astro-ph/0611370].

[48] J. M. Cline, A. C. Vincent and W. Xue, “Leptons from Dark Matter Annihilation in Milky Way

Subhalos,” Phys. Rev. D 81, 083512 (2010) [arXiv:1001.5399 [astro-ph.CO]].

[49] L. Pieri, G. Bertone and E. Branchini, “Dark Matter Annihilation in Substructures Revised,” Mon.

Not. Roy. Astron. Soc. 384, 1627 (2008) [arXiv:0706.2101 [astro-ph]].

[50] M. Kamionkowski, S. M. Koushiappas and M. Kuhlen, “Galactic Substructure and Dark Matter

Annihilation in the Milky Way Halo,” Phys. Rev. D 81, 043532 (2010) [arXiv:1001.3144 [astro-

ph.GA]].

[51] S. Ando and E. Komatsu, “Anisotropy of the cosmic gamma-ray background from dark matter

annihilation,” Phys. Rev. D 73 (2006) 023521 [arXiv:astro-ph/0512217].

[52] S. Ando, E. Komatsu, T. Narumoto and T. Totani, “Dark matter annihilation or unresolved

astrophysical sources? Anisotropy probe of the origin of cosmic gamma-ray background,” Phys.

Rev. D 75, 063519 (2007) [arXiv:astro-ph/0612467].

[53] S. Ando, “Gamma-ray background anisotropy from galactic dark matter substructure,”

arXiv:0903.4685 [astro-ph.CO].

[54] L. Zhang and G. Sigl, “Dark Matter Signatures in the Anisotropic Radio Sky,” JCAP 0809, 027

(2008) [arXiv:0807.3429 [astro-ph]].

[55] J. M. Siegal-Gaskins, “Revealing dark matter substructure with anisotropies in the diffuse gamma-

ray background,” JCAP 0810, 040 (2008) [arXiv:0807.1328 [astro-ph]].

[56] M. Fornasa, L. Pieri, G. Bertone and E. Branchini, “Anisotropy probe of galactic and extra-galactic

Dark Matter annihilations,” arXiv:0901.2921 [astro-ph].

[57] A. Cuoco, J. Brandbyge, S. Hannestad, T. Haugboelle and G. Miele, “Angular Signatures of



23

Annihilating Dark Matter in the Cosmic Gamma-Ray Background,” Phys. Rev. D 77 (2008)

123518 [arXiv:0710.4136 [astro-ph]].

[58] J. M. Siegal-Gaskins and V. Pavlidou, “Robust identification of isotropic diffuse gamma rays from

Galactic dark matter,” arXiv:0901.3776 [astro-ph.HE].

[59] B. S. Hensley, J. M. Siegal-Gaskins and V. Pavlidou, “The detectability of dark matter

annihilation with Fermi using the anisotropy energy spectrum of the gamma-ray background,”

arXiv:0912.1854 [astro-ph.CO].

[60] J. Zavala, V. Springel and M. Boylan-Kolchin, “Extragalactic gamma-ray background radiation

from dark matter annihilation,” Mon. Not. Roy. Astron. Soc. 405, 593 (2010) [arXiv:0908.2428

[astro-ph.CO]].

[61] F. Miniati, “Numerical modelling of gamma radiation from galaxy clusters,” Mon. Not. Roy.

Astron. Soc. 342, 1009 (2003)

[62] F. Miniati, S. M. Koushiappas and T. Di Matteo, “Angular Anisotropies in the Cosmic Gamma-ray

Background as a Probe of its Origin,” Astrophys. J. 667 (2007) L1 [arXiv:astro-ph/0702083].

[63] V. Pavlidou and B. D. Brian, “The Guaranteed Gamma-Ray Background,” Astrophys. J. 575

(2002) L5

[64] S. Ando and V. Pavlidou, “Imprint of galaxy clustering in the cosmic gamma-ray background,”

Mon. Not. Roy. Astron. Soc. 400 (2009) 2122 [arXiv:0908.3890 [astro-ph.HE]].

[65] A. Cuoco, A. Sellerholm, J. Conrad and S. Hannestad, “Anisotropies in the Diffuse Gamma-Ray

Background from Dark Matter with Fermi LAT: a closer look,” arXiv:1005.0843 [astro-ph.HE].

[66] R. Schlickeiser, Cosmic Ray Astrophysics (2002) (Berlin: Springer)

[67] T. Delahaye, F. Donato, N. Fornengo, J. Lavalle, R. Lineros, P. Salati and R. Taillet, “Galactic

secondary positron flux at the Earth,” Astron. Astrophys. 501, 821 (2009) [arXiv:0809.5268

[astro-ph]].

[68] F. Donato, D. Maurin, P. Salati, A. Barrau, G. Boudoul and R. Taillet, “Antiprotons from

spallation of cosmic rays on interstellar matter,” Astrophys. J. 563, 172 (2001) [arXiv:astro-

ph/0103150].

[69] T. Delahaye, J. Lavalle, R. Lineros, F. Donato and N. Fornengo, “Galactic electrons and positrons

at the Earth:new estimate of the primary and secondary fluxes,” arXiv:1002.1910 [astro-ph.HE].

[70] Strong A.W. andMoskalenko I.W., “Propagation of cosmic-ray nucleons in the Galaxy,” Astrophys.

J. 509 (1998) 212 [astro-ph/9807150].

[71] T. A. Porter, I. V. Moskalenko and A. W. Strong, “Inverse Compton emission from galactic

supernova remnants: Effect of the interstellar radiation field,” Astrophys. J. 648, L29 (2006)

[arXiv:astro-ph/0607344].

[72] T. Delahaye, R. Lineros, F. Donato, N. Fornengo and P. Salati, “Positrons from dark matter

annihilation in the galactic halo: theoretical uncertainties,” Phys. Rev. D 77, 063527 (2008)

[arXiv:0712.2312 [astro-ph]].

[73] D. Maurin, F. Donato, R. Taillet and P. Salati, “Cosmic Rays below Z=30 in a diffusion

model: new constraints on propagation parameters,” Astrophys. J. 555, 585 (2001) [arXiv:astro-

ph/0101231].

[74] Rybicki G.B., Lightman A.P., Radiative Processes in Astrophysics, 1979, John Wiley & Sons.

[75] O. Petruk, “Approximation for radiation power of electrons due to inverse-Compton process in the

black-body photon field,” arXiv:0807.1969 [astro-ph].

[76] J. F. Navarro, C. S. Frenk and S. D. M. White, “The Structure of Cold Dark Matter Halos,”

Astrophys. J. 462, 563 (1996) [arXiv:astro-ph/9508025].

[77] N. Fornengo, L. Pieri and S. Scopel, “Neutralino annihilation into gamma-rays in the Milky Way

and in external galaxies,” Phys. Rev. D 70, 103529 (2004) [arXiv:hep-ph/0407342].

[78] J. Diemand, M. Kuhlen and P. Madau, “Formation and evolution of galaxy dark matter halos and

their substructure,” Astrophys. J. 667, 859 (2007) [arXiv:astro-ph/0703337].

[79] J. S. Bullock et al., “Profiles of dark haloes: evolution, scatter, and environment,” Mon. Not. Roy.

Astron. Soc. 321, 559 (2001) [arXiv:astro-ph/9908159].



24

[80] K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke and

M. Bartelman, “HEALPix – a Framework for High Resolution Discretization, and Fast Analysis

of Data Distributed on the Sphere,” Astrophys. J. 622, 759 (2005) [arXiv:astro-ph/0409513].

[81] M. Perelstein and B. Shakya, “Comment on Calculation of Positron Flux from Galactic Dark

Matter,” arXiv:1002.4588 [astro-ph.HE].

[82] J. M. Siegal-Gaskins, R. Reesman, V. Pavlidou, S. Profumo and T. P. Walker, “Anisotropy

Constraints on Millisecond Pulsars in the Diffuse Gamma Ray Background,” arXiv:1011.5501

[astro-ph.HE].

[83] G. Dobler, D. P. Finkbeiner, I. Cholis, T. R. Slatyer and N. Weiner, “The Fermi Haze: A Gamma-

Ray Counterpart to the Microwave Haze,” Astrophys. J. 717, 825 (2010) [arXiv:0910.4583 [astro-

ph.HE]].

[84] Heiles, Carl, “The Local Direction and Curvature of the Galactic Magnetic Field Derived from

Starlight Polarization,” Astrophys. J. 462, 316 (1996).

[85] X. L. Chen, “Angular power spectrum of the galactic synchrotron radiation,” arXiv:astro-

ph/0409733.


