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Abstract

Measurements of the cross sections for charged current deep inelastic scattering

in e+p collisions with a longitudinally polarised positron beam are presented.

The measurements are based on a data sample with an integrated luminosity of

132 pb−1 collected with the ZEUS detector at HERA at a centre-of-mass energy

of 318 GeV. The total cross section is presented at positive and negative values of

the longitudinal polarisation of the positron beams. The single-differential cross-

sections dσ/dQ2, dσ/dx and dσ/dy are presented for Q2 > 200GeV2. The re-

duced cross-section σ̃ is presented in the kinematic range 200 < Q2 < 60 000GeV2

and 0.006 < x < 0.562. The measurements agree well with the predictions of the

Standard Model. The results are used to determine a lower limit on the mass of

a hypothetical right-handed W boson.
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40 Department of Physics, Pennsylvania State University, University Park,

Pennsylvania 16802, USA F

41 Polytechnic University, Sagamihara, Japan J
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1 Introduction

Deep inelastic scattering (DIS) of leptons off nucleons has proved to be a key process in

the understanding of the structure of the proton and the Standard Model (SM). Neutral

current (NC) DIS is mediated by the exchange of photons and Z bosons and is sensitive

to all quark flavours. In contrast, at leading order, only down-type quarks and up-type

antiquarks contribute to e+p charged current (CC) DIS. Thus this process is a powerful

probe of flavour-specific parton distribution functions (PDFs). The SM predicts that the

cross section for charged current ep DIS depends linearly on the longitudinal polarisation

of the incoming lepton beam. The cross section becomes zero for right-handed (left-

handed) electron (positron) beams, due to the chiral nature of the weak interaction.

Using data taken at the HERA ep collider in the years 1994 – 2000 and 2004 – 2006, the H1

and ZEUS collaborations have reported measurements of the cross sections for CC DIS [1–

15]. These measurements extend the kinematic region covered by fixed-target proton-

structure measurements [16–19] to higher values of negative four-momentum-transfer

squared, Q2.

This paper presents measurements of the cross sections for e+p CC DIS with a longi-

tudinally polarised positron beam. The measured cross sections are compared with the

SM predictions and previous ZEUS measurements of e+p CC DIS with an unpolarised

positron beam [13]. Similar results in e−p CC DIS have been published by the ZEUS

Collaboration [15]. The total e+p cross section in bins of polarisation is fitted and extrap-

olated to find the cross section for a fully left-handed polarised positron beam. The upper

limit on this cross section is used to extract a lower limit on the mass of a hypothetical

W boson which couples to right-handed particles.

This analysis is based on a data set with a five-fold increase in integrated luminosity

compared to the previously published analysis of polarised e+p CC DIS [14] and twice the

integrated luminosity compared to the previously most precise published analysis of e+p

CC DIS (with unpolarised positrons) [13].

2 Kinematic variables and cross sections

Inclusive deep inelastic lepton-proton scattering can be described in terms of the kinematic

variables x, y and Q2. The variable Q2 is defined as Q2 = −q2 = −(k − k′)2 where k and

k′ are the four-momenta of the incoming and scattered lepton, respectively. Bjorken x is

defined as x = Q2/2P · q where P is the four-momentum of the incoming proton. The

variable y is defined as y = P ·q/P ·k. The variables x, y and Q2 are related by Q2 = sxy,

where s = 4EeEp is the square of the lepton-proton centre-of-mass energy (neglecting the
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masses of the incoming particles) and Ee and Ep are the energies of the incoming positron

and proton, respectively.

The electroweak Born-level cross section for the CC reaction, e+p → νeX , with a longi-

tudinally polarised positron beam can be expressed as [20]

d2σCC

dxdQ2
= (1 + Pe)

G2
F

4πx

(

M2
W

M2
W +Q2

)2[

Y+F
CC
2 (x,Q2)− Y−xF

CC
3 (x,Q2)− y2FCC

L (x,Q2)

]

,

where GF is the Fermi constant, MW is the mass of the W boson and Y± = 1± (1− y)2.

The longitudinal polarisation of the positron beam, Pe, is defined as

Pe =
NR −NL

NR +NL

,

where NR and NL are the numbers of right- and left-handed positrons in the beam.

The longitudinal structure function, FCC
L , is negligible except at values of y close to 1. At

leading order in QCD, the structure functions FCC
2 and xFCC

3 for e+p collisions may be

written in terms of sums and differences of quark and anti-quark PDFs as follows:

FCC
2 = x[d(x,Q2) + s(x,Q2) + ū(x,Q2) + c̄(x,Q2)],

xFCC
3 = x[d(x,Q2) + s(x,Q2)− ū(x,Q2)− c̄(x,Q2)],

where, for example, the PDF d(x,Q2) gives the number density of down quarks with

momentum-fraction x at a given Q2. Since the top-quark mass is large and the off-diagonal

elements of the CKM matrix are small [21], the contribution from third-generation quarks

may be ignored [22].

The reduced cross section, σ̃, is defined as

σ̃ =





G2
F

2πx

(

M2
W

M2
W +Q2

)2




−1

d2σCC

dx dQ2
.

At leading order in QCD, the unpolarised reduced cross section depends on the quark

momentum distributions as follows:

σ̃(e+p → νeX) = x
[

(ū+ c̄+ (1− y)2(d+ s)
]

.

3 Experimental apparatus

A detailed description of the ZEUS detector can be found elsewhere [23]. A brief outline

of the components most relevant for this analysis is given below.
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In the kinematic range of the analysis, charged particles were tracked in the central

tracking detector (CTD) [24], the microvertex detector (MVD) [25] and the straw tube

tracker (STT) [26]. The CTD and the MVD operated in a magnetic field of 1.43T provided

by a thin superconducting solenoid. The CTD consisted of 72 cylindrical drift chamber

layers, organised in nine superlayers covering the polar-angle1 region 15◦ < θ < 164◦. The

MVD silicon tracker consisted of a barrel (BMVD) and a forward (FMVD) section. The

BMVD provided polar-angle coverage for tracks with three measurements from 30◦ to

150◦. The FMVD extended the polar-angle coverage in the forward region down to 7◦.

The STT consisted of 48 sectors of two different sizes. Each sector contained 192 (small

sector) or 264 (large sector) straws of diameter 7.5 mm arranged into 3 layers. The sectors

were trapezoidal in shape and each subtended an azimuthal angle of 60◦; six sectors formed

a superlayer. A particle passing through the complete STT traversed 8 superlayers, which

were rotated around the beam direction at angles of 30◦ or 15◦ to each other. The STT

covered the polar-angle region 5◦ < θ < 23◦.

The high-resolution uranium–scintillator calorimeter (CAL) [27] consisted of three parts:

the forward (FCAL), the barrel (BCAL) and the rear (RCAL) calorimeter, covering 99.7%

of the solid angle around the nominal interaction point. Each part was subdivided trans-

versely into towers and longitudinally into one electromagnetic section (EMC) and either

one (in RCAL) or two (in BCAL and FCAL) hadronic sections (HAC). The smallest

subdivision of the calorimeter was called a cell. The CAL relative energy resolutions,

as measured under test-beam conditions, were σ(E)/E = 0.18/
√
E for positrons and

σ(E)/E = 0.35/
√
E for hadrons, with E in GeV. The timing resolution of the CAL was

better than 1 ns for energy deposits exceeding 4.5 GeV.

An iron structure that surrounded the CAL was instrumented as a backing calorimeter

(BAC) [28] to measure energy leakage from the CAL. Muon chambers in the forward [23],

barrel and rear regions [29] were used in this analysis to veto background events induced

by cosmic-ray or beam-halo muons.

The luminosity was measured using the Bethe-Heitler reaction ep → eγp with the lumi-

nosity detector which consisted of two independent systems, a photon calorimeter [30–32]

and a magnetic spectrometer [33].

The lepton beam in HERA became naturally transversely polarised through the Sokolov-

Ternov effect [34, 35]. The characteristic build-up time for the HERA accelerator was

approximately 40 minutes. Spin rotators on either side of the ZEUS detector changed

the transverse polarisation of the beam into longitudinal polarisation and back again.

1 The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the

proton beam direction, referred to as the “forward direction”, and the X axis pointing towards the

centre of HERA. The coordinate origin is at the nominal interaction point.
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The positron beam polarisation was measured using two independent polarimeters, the

transverse polarimeter (TPOL) [36] and the longitudinal polarimeter (LPOL) [37]. Both

devices exploited the spin-dependent cross section for Compton scattering of circularly

polarised photons off positrons to measure the beam polarisation. The luminosity and

polarisation measurements were made over time intervals that were much shorter than

the polarisation build-up time.

The measurements are based on data samples collected with the ZEUS detector in 2006

and 2007 when HERA collided protons of energy 920GeV with positrons of energy

27.5GeV, yielding collisions at a centre-of-mass energy of 318GeV. The integrated lu-

minosities of the data sample were 75.8 pb−1 and 56.0 pb−1 at mean luminosity-weighted

polarisations of +0.33 and −0.36, respectively. Runs with mean absolute polarisation less

than 15% were rejected so that the polarisation measurement was reliable with a well

understood systematic uncertainty. Figure 1 shows the luminosity collected as a function

of the longitudinal polarisation of the positron beam.

4 Monte Carlo simulation

Monte Carlo (MC) simulation was used to determine the efficiency for selecting events,

the accuracy of kinematic reconstruction, to estimate the background rate and to extract

cross sections for the full kinematic region from the data. A sufficient number of events

was generated to ensure that uncertainties from MC statistics were negligible. The MC

samples were normalised to the total integrated luminosity of the data.

Charged current DIS events, including electroweak radiative effects, were simulated us-

ing the Heracles 4.6.6 [38] program with the Djangoh 1.6 [39] interface to the MC

generators that provide the hadronisation. Initial-state radiation, vertex and propagator

corrections and two-boson exchange are included in Heracles. The parameters of the

SM were set to the PDG [21] values. The events were generated using the CTEQ5D [40]

PDFs. The colour-dipole model of Ariadne 4.12 [41] was used to simulate O(αS) plus

leading-logarithmic corrections to the result of the quark-parton model. Ariadne uses

the Lund string model of Jetset 7.4.1 [42] for the hadronisation. A set of NC DIS events

generated with Djangoh was used to estimate the NC contamination in the CC sam-

ple. Photoproduction background was estimated using events simulated with Herwig

5.9 [43]. Events simulated with Grape 1.1 [44] and Epvec 1.0 [45] were used to estimate

the background contribution from di-lepton and single-W production, respectively.

The ZEUS detector response was simulated using a program based on Geant 3.21 [46].

The generated events were passed through the detector simulation, subjected to the same

trigger requirements as the data and processed by the same reconstruction programs.
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5 Reconstruction of kinematic variables

The main experimental signature of CC DIS events at HERA is large missing transverse

momentum,
−→
P T,miss. Figure 2 shows such an event as observed using the ZEUS detector.

The struck quark gives rise to one or more jets of hadrons and the energetic final-state neu-

trino escapes detection, leaving a large imbalance in the transverse momentum observed

in the detector. The vector
−→
P T,miss is derived from the total visible hadronic momentum

vector,
−→
P T , by

−→
P T,miss = −−→

P T , where

−→
P T = (Px, Py) =

(

∑

i

Ei sin θi cosφi ,
∑

i

Ei sin θi sin φi

)

.

The sums run over all CAL energy deposits, Ei, and θi and φi are the polar and azimuthal

angles of the calorimeter deposit i as viewed from the interaction vertex [15]. The polar

angle of the hadronic system, γh, is defined as

cos γh =

(−→
P T

)2

− δ2

(−→
P T

)2

+ δ2
,

where δ =
∑

i

Ei(1 − cos θi) =
∑

i

(E − PZ)i. In the naive quark-parton model, γh is

the angle of the scattered quark. Finally, the total transverse energy, ET , is given by

ET =
∑

i

Ei sin θi.

The ratio of the parallel, VP , and antiparallel, VAP , components of the hadronic transverse

momentum can be used to distinguish CC DIS from photoproduction events. These

variables are defined as

VP =
∑

i

−→
P T,i · −→n for

−→
P T,i · −→n > 0,

VAP = −
∑

i

−→
P T,i · −→n for

−→
P T,i · −→n < 0,

where the sums are performed over all calorimeter deposits and −→n =
−→
P T/P T .

The kinematic variables were reconstructed using the Jacquet-Blondel method [47]: yJB =

δ/(2Ee), Q
2
JB = P 2

T,miss/(1− yJB), and xJB = Q2
JB/(syJB). The resolution in Q2 is ≈ 24%.

The resolution in x improves from ≈ 26% at x = 0.0078 to ≈ 9% at x = 0.65. The

resolution in y ranges from ≈ 15% at y = 0.05 to ≈ 8% at y = 0.83.
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6 Charged current event selection

Charged current DIS candidate events were selected by requiring a large PT,miss in the

event. Backgrounds to CC DIS arise from high-ET events in which the finite energy

resolution of the CAL or energy that escapes detection can lead to significant missing

transverse momentum. Non-ep events such as beam-gas interactions, beam-halo muons

or cosmic rays can also cause substantial imbalance in the measured transverse momentum

and constitute additional sources of background. The following criteria were imposed to

select CC DIS events and reject these backgrounds.

6.1 Trigger selection

Events were selected using the ZEUS three-level trigger system [23, 48, 49]. At the first

level, coarse calorimeter and tracking information was available. Events were selected

using criteria based on the energy, transverse energy and missing transverse momentum

measured in the calorimeter. Generally, events were triggered with low thresholds on

these quantities if a coincidence with CTD tracks from the event vertex occurred, while

higher thresholds were required for events with no CTD tracks.

At the second level, timing information from the calorimeter was used to reject events

inconsistent with the bunch-crossing time. In addition, the topology of the CAL energy

deposits was used to reject background events. In particular, a tighter cut was made

on missing transverse momentum, since the resolution in this variable was better at the

second than at the first level.

At the third level, full track reconstruction and vertex finding were performed and used

to reject candidate events with a vertex inconsistent with an ep interaction. Cuts were

applied to calorimeter quantities and reconstructed tracks to reduce beam-gas contami-

nation further.

6.2 Offline selection

For all events, the kinematic variables were recalculated using the Z-coordinate of the

event vertex (Zvtx) determined from charged-particle tracks. The requirements for event

selection are given below:

• kinematic cuts: events were required to satisfy Q2
JB > 200GeV2 and yJB < 0.9. These

requirements restricted the event sample to a region where the resolution of the kine-

matic quantities is good and the background is small;
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• missing transverse momentum: PT,miss > 12GeV was required and, in addition, the

missing transverse momentum excluding the calorimeter cells adjacent to the forward

beam hole, P ′
T,miss, was required to exceed 10GeV;

• primary interaction vertex: events were required to satisfy |Zvtx| < 30 cm. The

improved tracking information compared to the previous charged current analysis [15]

allowed the requirement of a reconstructed primary vertex in the full phase-space.

This requirement strongly suppressed non-ep backgrounds;

• rejection of photoproduction and di-leptons: for events with PT,miss < 20GeV, VAP/VP

< 0.25 was required; for all other events, VAP/VP < 0.35 was required. These require-

ments demanded an azimuthally collimated energy flow. In addition, for all events, the

azimuthal-angle difference, ∆φ, between the missing transverse momentum measured

by the tracks and that measured by the calorimeter was required to be less than 90◦

for all events;

• rejection of NC DIS: NC DIS events with a poorly measured scattered positron or

hadronic jet can have significant missing transverse momentum. Events with δ >

30GeV and an isolated electromagnetic cluster in the calorimeter [50,51] were rejected

as detailed in a previous publication [15];

• rejection of remaining non-ep background: interactions between the beams and resid-

ual gas in the beam pipe or upstream accelerator components can lead to events with

significant missing transverse momentum. However, for these interactions, the arrival

times of energy deposits in the calorimeter are inconsistent with the bunch-crossing

time and were used to reject such events. Events caused by interactions with the

residual gas are characterised by a large fraction of tracks not associated with the ep

interaction vertex; such events were rejected by applying a cut in two dimensions on

the number of vertex tracks, NVtxTrks, versus the total number of tracks, NTrks. This

cut was NVtxTrks > 0.125 · (NTrks− 20). Vertex tracks were required to originate in the

MVD or in the first superlayer of the CTD and to have a polar angle in the range of

15◦ < θ < 160◦. Requirements on energy fractions in the calorimeter cells plus muon-

finding algorithms based on tracking, calorimeter and muon chamber information were

used to reject events caused by cosmic rays or muons in the beam halo.

A total of 2327 data events satisfied all criteria in the positive-polarisation sample and 821

events in the negative-polarisation sample. The background contamination was estimated

to be typically less than 1.5%, but reached 8% in the lowest-Q2 bin and 21% in the

lowest-x bin of the negative-polarisation sample. Similarly, it was typically less than 1%

but reached almost 4% in the lowest-Q2 bin and 10% in the lowest-x bin of the positive-

polarisation sample. For the combined sample (positive and negative polarisations) the

estimated number of background events was 19, 11 and 6.6 for photoproduction, single-W
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production and di-lepton events, respectively. The di-lepton background was dominated

by µµ and ττ events. The contamination from NC events was estimated to be very small

(0.7 events for the combined sample). Non-ep backgrounds were negligible. Figure 3

compares the distributions of data events entering the final CC sample with the MC

expectation for the sum of the CC signal and ep background events. The MC simulations

give a reasonable description of the data.

7 Cross-section determination

The measured cross section in a particular kinematic bin, for example in dσ/dQ2, was

determined from

dσBorn

dQ2
=

Ndata −Nbg

NMC

· dσ
SM
Born

dQ2
,

where Ndata is the number of data events, Nbg is the number of background events esti-

mated from the MC simulation andNMC is the number of signal MC events. The Standard

Model prediction,
dσSM

Born

dQ2 , is evaluated in the on-shell scheme using the PDG values for the

electroweak parameters and the same PDF set (CTEQ5D) [40] used to generate the MC

data. A similar procedure was used for dσ/dx, dσ/dy and the reduced cross section.

Consequently, the acceptance, as well as the bin-centring and radiative corrections were

all taken from the MC simulation. The equation above includes the extrapolation of the

single-differential cross-sections dσ/dQ2 and dσ/dx to the full y range.

8 Systematic uncertainties

Different systematic uncertainties in the measured cross sections were determined using

one of two methods [52]. The first set of systematic uncertainties relies on MC simulations

and was calculated by changing relevant parameters of the analysis by their estimated

errors and repeating the extraction of the cross sections. The difference between the

nominal cross section and that obtained from the modified analysis gave an estimate of

the systematic uncertainty in each bin. The second method of calculating systematic

uncertainties exploited the similarity between NC and CC hadronic final states. The

following systematics were determined using the first method:

• calorimeter energy scale: the relative uncertainty of the hadronic energy scale was 2%.

The variation of the energy scale for each of the calorimeters simultaneously up or

down by this amount gave the systematic uncertainty on the total measured energy in
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the calorimeter. The resulting uncertainties in the measured cross sections were ≈ 1%

for the total cross sections and for the single-differential cross sections were typically

within ±3%, but increased to ±(25− 33)% in the highest-Q2 and highest-x bins. The

uncertainties reached 35% in the highest-Q2 and highest-x reduced cross-section bin;

• efficiency of the FLT tracking: the charged current MC was corrected for observed

differences in the CTD tracking efficiency between data and MC at the first-level

trigger [52]. The correction was derived from independent samples of NC data and

NC MC events with the scattered electron removed in order to simulate CC events

(pseudo-CC). The mean correction was ≈ 3.5% for the positive-polarisation sample

and ≈ 5% for the negative-polarisation sample. The uncertainty on this correction was

50% of its value. The resulting uncertainties on the total cross sections were less than

1.5% and for the single-differential and reduced cross sections were typically 1 − 2%

and were always less than 4%;

• background subtraction: the uncertainty in the small contribution from photoproduc-

tion was estimated. The VAP/VP distribution was plotted for data and MC events

with all selection cuts applied except for the cut on VAP/VP . A χ2 fit of the MC to the

data distribution was performed, varying the normalisation of the photoproduction

MC until it produced the best description of the data. The fit resulted in a normalisa-

tion factor of 0.880+0.090
−0.085. The nominal photoproduction sample was therefore scaled

by a factor of 0.970 and by a factor of 0.795, resulting in very small modifications of

less than 0.2% to the cross sections.

In the second method, a set of NC DIS data events with the scattered positron removed

(pseudo-CC data) was reweighted to the Q2 and x of the CC DIS MC. In order to estimate

the bias introduced into the measurements from an imperfect description of the data by

the MC simulation, the efficiencies for each of the selection criteria were measured using

the hadronic final state in NC DIS data and compared to those obtained with the CC

MC. The differences in the efficiencies between the two samples were taken as estimates

of the systematic uncertainties which were typically within ±3%.

The individual uncertainties were added in quadrature separately for the positive and

negative deviations from the nominal cross section values to obtain the total systematic

uncertainty.

The uncertainties on the electroweak corrections to CC DIS are less than 0.5% [53]. No

uncertainty was included in the measured cross sections from this source.

The relative uncertainty in the measured polarisation was 3.6% using the LPOL and

4.2% using the TPOL. The choice of polarimeter measurement was made on a run-by-run

basis depending on which was active the longer, in order to maximise the luminosity.

For the final selection, the TPOL was used for 64% (24%) of the negative (positive)

9



polarisation run period. The combined, luminosity-weighted systematic uncertainty on

the polarisation measurement was 4.0% (3.7%) for negative (positive) polarisation. The

uncertainty of 2.6% on the measured total luminosity was not included in the differential

cross-section figures or the tables.

9 Results

The total cross section, corrected to the Born level in the electroweak interaction, for e+p

CC DIS in the kinematic region Q2 > 200GeV2 was measured to be

σCC(Pe = −0.36) = 22.9± 0.82(stat.)± 0.60(lumi.)± 0.40(syst.) pb,

σCC(Pe = +0.33) = 48.0± 1.01(stat.)± 1.25(lumi.)± 0.77(syst.) pb.

The total cross section is shown as a function of the longitudinal polarisation of the lepton

beam in Fig. 4, including previous ZEUS measurements from both e−p and e+p data [12,

13, 15] and previous H1 measurements from e+p data [8]. The H1 measurements were

scaled to the kinematic region of this analysis. The uncertainty in the measured luminosity

is included in the systematic uncertainty in Fig. 4. The data are compared to the SM

predictions evaluated at next-to-leading order in QCD [54] using the HERAPDF1.0 [55],

ZEUS-JETS [56], CTEQ6.6 [57] and MSTW2008 [58] PDFs, which describe the data well.

The single-differential cross-sections dσ/dQ2, dσ/dx and dσ/dy for CC DIS are shown in

Figs. 5, 6 and 7 for Q2 > 200GeV2 and given in Tables 1, 2 and 3, respectively. The

cross sections are well described by the SM evaluated using the HERAPDF1.0, ZEUS-

JETS, CTEQ6.6 and MSTW2008 PDFs. The precision of the data is comparable to the

uncertainties in the SM predictions; therefore these data have the potential to constrain

the PDFs further.

The reduced cross-section σ̃ was measured in the kinematic range 200 < Q2 < 60 000GeV2

and 0.006 < x < 0.562 and is shown as a function of x at fixed values of Q2 in Figs. 8 and 9

and given in Tables 4, 5 and 6. The data points are shown separately for positive and

negative polarisation in Fig. 8 and are shown for the entire data set in Fig. 9, corrected

to Pe = 0 using the SM prediction from Hector using CTEQ5D PDFs. The predictions

of the SM evaluated using the HERAPDF1.0, ZEUS-JETS, CTEQ6.6 and MSTW2008

PDFs give a good description of the data. The contributions from the PDF combinations

(d+ s) and (ū+ c̄), obtained in the MS scheme from the HERAPDF1.0 PDFs, are shown

separately.

The SM W boson couples only to left-handed fermions and right-handed anti-fermions.

Therefore, the angular distribution of the scattered quark in e+q̄ CC DIS will be flat in
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the positron-quark centre-of-mass scattering angle, θ∗, while it will exhibit a (1+ cos θ∗)2

distribution in e+q scattering. Since (1− y)2 ∝ (1 + cos θ∗)2, the helicity structure of CC

interactions can be illustrated by plotting the reduced cross section versus (1−y)2 in bins

of x, see Section 2. The measurement is shown in Fig. 10 and is well described by the SM.

At leading order in QCD, the intercept of the prediction gives the (ū + c̄) contribution,

while the slope gives the (d+ s) contribution.

The CC e+p DIS cross section becomes zero for fully left-handed positron beams, thus a

non-zero cross section at Pe = −1 might point to the existence of a right-handed W boson,

WR, and right-handed neutrinos, νR [59,60]. The program Hector was used to calculate

the cross section for right-handed CC interactions in e+p DIS as a function of the mass of

the WR, MWR
. It was assumed that the coupling strength and propagator dependence on

the mass of the boson are the same as in SM CC interactions. The outgoing right-handed

neutrinos were assumed to be light. A linear function was fit to the total cross section

in 8 bins of polarisation, including the previous ZEUS measurement of unpolarised e+p

CC DIS, and extrapolated to Pe = −1. The fit and extrapolation to Pe = −1 is shown in

Fig. 11. The cross sections measured in each bin are given in Table 7. The upper limit

on the cross section was converted to a lower limit on MWR
:

σCC(Pe = −1) < 2.9 pb at 95% CL,

MWR
> 198 GeV at 95% CL.

The limit on MWR
set in this analysis is complementary to the limits obtained from direct

searches [21, 61–64]. In the direct searches, the W boson is time-like, whereas the limit

from this analysis is for a space-like W .

10 Summary

The cross sections for charged current deep inelastic scattering in e+p collisions with

longitudinally polarised positron beams have been measured. The measurements are

based on a data sample with an integrated luminosity of 132 pb−1 collected with the

ZEUS detector at HERA at a centre-of-mass energy of 318GeV. The total cross section

is given for positive and negative values of the longitudinal polarisation of the positron

beam. In addition, the single-differential cross-sections dσ/dQ2, dσ/dx and dσ/dy for

Q2 > 200GeV2 are measured. The reduced cross section is presented in the kinematic

range 200 < Q2 < 60 000GeV2 and 0.006 < x < 0.562. The measured cross sections are

well described by the predictions of the Standard Model. Finally, a lower limit on the

mass of a hypothetical right-handed W boson is extracted from the upper limit of the

cross section at Pe = −1. The limit obtained is MWR
> 198 GeV at 95% CL.
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T. Sjöstrand and M. Bengtsson, Comp. Phys. Comm. 43, 367 (1987);
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Q2 range (GeV2) Q2 (GeV2) dσ/dQ2 (pb/GeV2)

Pe = +0.33 Pe = −0.36

200− 400 280 (4.21+0.27
−0.25

+0.17
−0.18) · 10−2 (2.25+0.23

−0.21
+0.09
−0.10) · 10−2

400− 711 530 (3.19+0.16
−0.15

+0.10
−0.10) · 10−2 (1.25+0.12

−0.11
+0.04
−0.04) · 10−2

711− 1265 950 (1.69+0.08
−0.08

+0.03
−0.04) · 10−2 (8.45+0.70

−0.65
+0.17
−0.21) · 10−3

1265− 2249 1700 (8.87+0.43
−0.41

+0.11
−0.14) · 10−3 (4.18+0.36

−0.33
+0.07
−0.06) · 10−3

2249− 4000 3000 (3.91+0.21
−0.20

+0.10
−0.10) · 10−3 (1.97+0.18

−0.17
+0.06
−0.06) · 10−3

4000− 7113 5300 (1.30+0.09
−0.09

+0.07
−0.07) · 10−3 (6.81+0.82

−0.73
+0.39
−0.38) · 10−4

7113− 12469 9500 (2.67+0.31
−0.28

+0.30
−0.24) · 10−4 (9.66+2.40

−1.96
+1.10
−0.84) · 10−5

12469− 22494 17000 (3.17+0.79
−0.64

+0.61
−0.50) · 10−5 (1.80+0.77

−0.56
+0.34
−0.28) · 10−5

22494− 60000 30000 (1.46+1.42
−0.79

+0.48
−0.40) · 10−6 (1.33+1.76

−0.86
+0.44
−0.37) · 10−6

x range x dσ/dx (pb)

Pe = +0.33 Pe = −0.36

0.006− 0.010 0.0078 (6.39+1.07
−0.93

+0.42
−0.70) · 102 (3.64+0.98

−0.79
+0.25
−0.36) · 102

0.010− 0.021 0.015 (6.81+0.43
−0.40

+0.26
−0.32) · 102 (3.32+0.36

−0.33
+0.14
−0.15) · 102

0.021− 0.046 0.032 (4.62+0.19
−0.19

+0.09
−0.09) · 102 (1.98+0.15

−0.14
+0.04
−0.04) · 102

0.046− 0.100 0.068 (2.19+0.09
−0.08

+0.03
−0.03) · 102 (1.07+0.07

−0.07
+0.01
−0.02) · 102

0.100− 0.178 0.130 (8.86+0.47
−0.45

+0.20
−0.19) · 101 (4.87+0.42

−0.39
+0.12
−0.11) · 101

0.178− 0.316 0.240 (3.30+0.23
−0.22

+0.14
−0.14) · 101 (1.49+0.19

−0.17
+0.07
−0.07) · 101

0.316− 0.562 0.420 (7.75+1.03
−0.92

+0.70
−0.66) · 100 (2.83+0.81

−0.64
+0.27
−0.23) · 100

0.562− 1.000 0.650 (1.71+3.94
−1.42

+0.58
−0.36) · 10−1 (2.35+5.41

−1.95
+0.58
−0.51) · 10−1

y range y dσ/dy (pb)

Pe = +0.33 Pe = −0.36

0.00− 0.10 0.05 103.9+5.4
−5.1

+1.5
−1.9 56.2+4.7

−4.4
+1.0
−1.1

0.10− 0.20 0.15 87.0+3.9
−3.7

+0.9
−1.1 39.6+3.1

−2.9
+0.6
−0.6

0.20− 0.34 0.27 66.5+2.9
−2.8

+0.9
−1.0 31.9+2.4

−2.3
+0.5
−0.5

0.34− 0.48 0.41 49.3+2.7
−2.6

+0.9
−0.9 20.5+2.1

−1.9
+0.5
−0.4

0.48− 0.62 0.55 35.6+2.5
−2.3

+0.9
−1.1 18.5+2.2

−1.9
+0.5
−0.6

0.62− 0.76 0.69 25.9+2.4
−2.2

+1.1
−1.1 11.1+1.9

−1.7
+0.5
−0.5

0.76− 0.90 0.83 19.5+2.6
−2.3

+1.5
−1.5 10.5+2.4

−2.0
+0.9
−0.9

Table 1: Values of the differential cross-sections dσ/dQ2, dσ/dx and dσ/dy for
Pe = +0.33± 0.01 and Pe = −0.36± 0.01. The following quantities are given: the
range of the measurement; the value at which the cross section is quoted and the
measured cross section, with statistical and systematic uncertainties.
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dσ/dQ2 (Pe = +0.33± 0.01)

Q2 (GeV2) dσ/dQ2 (pb/GeV2) δstat (%) δsyst (%) δunc (%) δtrk (%) δes(%)

280 4.21 · 10−2 +6.4
−6.0

+4.0
−4.4

+0.5
−2.0

+1.4
−1.4

+3.7
−3.6

530 3.19 · 10−2 +5.1
−4.8

+3.1
−3.0

+0.6
−1.2

+1.3
−1.3

+2.7
−2.4

950 1.69 · 10−2 +4.9
−4.7

+1.9
−2.4

+0.6
−1.6

+1.2
−1.1

+1.3
−1.3

1700 8.87 · 10−3 +4.9
−4.7

+1.3
−1.6

+0.6
−1.2

+1.1
−1.1

+0.3
−0.0

3000 3.91 · 10−3 +5.5
−5.2

+2.5
−2.7

+0.6
−1.0

+1.0
−1.0

−2.2
+2.3

5300 1.30 · 10−3 +7.1
−6.7

+5.6
−5.2

+0.8
−0.6

+1.0
−0.9

−5.1
+5.5

9500 2.67 · 10−4 +11.7
−10.5

+11.3
−8.8

+0.9
−1.9

+0.9
−0.9

−8.5
+11.2

17000 3.17 · 10−5 +24.9
−20.3

+19.3
−15.9

+0.0
−4.7

+0.9
−0.9

−15.1
+19.3

30000 1.46 · 10−6 +97.3
−54.4

+32.6
−27.4

+0.0
−5.6

+1.0
−1.0

−26.8
+32.6

dσ/dx (Pe = +0.33± 0.01)

x dσ/dx (pb) δstat (%) δsyst (%) δunc (%) δtrk (%) δes (%)

0.0078 6.39 · 102 +16.8
−14.5

+6.5
−10.9

+0.7
−9.2

+2.4
−2.3

+5.9
−5.4

0.015 6.81 · 102 +6.3
−5.9

+3.8
−4.7

+0.6
−3.4

+2.0
−1.9

+3.2
−2.7

0.032 4.62 · 102 +4.2
−4.0

+1.9
−2.0

+0.6
−0.8

+1.4
−1.4

+1.0
−1.2

0.068 2.19 · 102 +3.9
−3.8

+1.2
−1.2

+0.5
−0.6

+1.0
−1.0

−0.3
+0.4

0.130 8.86 · 101 +5.3
−5.1

+2.2
−2.1

+0.6
−0.9

+0.7
−0.7

−1.8
+2.0

0.240 3.30 · 101 +7.1
−6.7

+4.2
−4.3

+0.4
−1.3

+0.5
−0.5

−4.1
+4.1

0.420 7.75 · 100 +13.3
−11.8

+9.1
−8.5

+0.7
−2.7

+0.4
−0.4

−8.1
+9.0

0.650 1.71 · 10−1 +229.9
−82.7

+33.9
−20.8

+23.3
−3.2

+0.3
−0.3

−20.5
+24.6

dσ/dy (Pe = +0.33± 0.01)

y dσ/dy (pb) δstat (%) δsyst (%) δunc (%) δtrk (%) δes (%)

0.05 103.9 +5.2
−4.9

+1.5
−1.8

+0.6
−1.0

+0.7
−0.6

+1.2
−1.4

0.15 87.0 +4.5
−4.3

+1.1
−1.2

+0.5
−0.8

+0.8
−0.8

+0.4
−0.4

0.27 66.5 +4.4
−4.2

+1.3
−1.5

+0.7
−1.0

+1.1
−1.1

−0.0
+0.1

0.41 49.3 +5.5
−5.2

+1.8
−1.8

+0.3
−0.8

+1.4
−1.4

−0.9
+1.1

0.55 35.6 +7.0
−6.5

+2.5
−3.1

+0.5
−2.0

+1.6
−1.5

−1.8
+1.8

0.69 25.9 +9.2
−8.5

+4.1
−4.4

+0.8
−2.8

+1.8
−1.8

−2.9
+3.6

0.83 19.5 +13.3
−11.8

+7.7
−7.8

+0.3
−3.3

+1.9
−1.8

−6.8
+7.4

Table 2: Values of the differential cross-sections dσ/dQ2, dσ/dx and dσ/dy for
Pe = +0.33 ± 0.01. The following quantities are given: the value at which the
cross section is quoted; the measured cross section; the statistical uncertainty; the
total systematic uncertainty (δsyst); the uncorrelated systematic uncertainty (δunc);
the uncertainty on FLT tracking efficiency (δtrk) and the calorimeter energy-scale
uncertainty (δes). Both δtrk and δes have significant correlations between cross-
section bins.
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dσ/dQ2 (Pe = −0.36± 0.01)

Q2 (GeV2) dσ/dQ2 (pb/GeV2) δstat (%) δsyst (%) δunc (%) δtrk (%) δes(%)

280 2.25 · 10−2 +10.3
−9.4

+4.1
−4.5

+0.6
−2.0

+1.7
−1.7

+3.7
−3.7

530 1.25 · 10−2 +9.8
−9.0

+3.2
−3.0

+0.7
−0.8

+1.6
−1.5

+2.7
−2.5

950 8.45 · 10−3 +8.3
−7.7

+2.0
−2.4

+0.4
−1.5

+1.4
−1.4

+1.3
−1.3

1700 4.18 · 10−3 +8.6
−7.9

+1.6
−1.5

+0.8
−0.8

+1.3
−1.3

+0.3
−0.0

3000 1.97 · 10−3 +9.3
−8.5

+2.8
−2.8

+1.1
−1.3

+1.2
−1.2

−2.2
+2.3

5300 6.81 · 10−4 +12.0
−10.8

+5.7
−5.6

+0.7
−2.1

+1.1
−1.1

−5.1
+5.5

9500 9.66 · 10−5 +24.9
−20.2

+11.4
−8.7

+1.8
−0.9

+1.1
−1.1

−8.6
+11.2

17000 1.80 · 10−5 +42.7
−31.0

+19.2
−15.8

+0.0
−4.7

+1.1
−1.1

−15.1
+19.2

30000 1.33 · 10−6 +131.9
−64.6

+32.8
−27.4

+0.0
−5.5

+1.2
−1.2

−26.8
+32.8

dσ/dx (Pe = −0.36± 0.01)

x dσ/dx (pb) δstat (%) δsyst (%) δunc (%) δtrk (%) δes (%)

0.0078 3.64 · 102 +26.9
−21.6

+6.9
−10.0

+0.7
−7.9

+3.1
−3.0

+5.9
−5.4

0.015 3.32 · 102 +10.8
−9.8

+4.1
−4.5

+1.1
−2.8

+2.4
−2.3

+3.2
−2.7

0.032 1.98 · 102 +7.7
−7.2

+2.1
−2.2

+0.5
−0.8

+1.7
−1.7

+1.1
−1.2

0.068 1.07 · 102 +6.7
−6.3

+1.4
−1.5

+0.5
−0.8

+1.2
−1.2

−0.3
+0.4

0.130 4.87 · 101 +8.6
−8.0

+2.4
−2.3

+0.8
−1.2

+0.9
−0.9

−1.8
+2.0

0.240 1.49 · 101 +12.9
−11.5

+4.8
−4.4

+2.2
−1.6

+0.7
−0.7

−4.1
+4.1

0.420 2.83 · 100 +28.6
−22.7

+9.7
−8.3

+3.6
−1.7

+0.5
−0.5

−8.1
+9.0

0.650 2.35 · 10−1 +229.9
−82.7

+24.5
−21.8

+0.0
−7.6

+0.4
−0.4

−20.4
+24.5

dσ/dy (Pe = −0.36± 0.01)

y dσ/dy (pb) δstat (%) δsyst (%) δunc (%) δtrk (%) δes (%)

0.05 56.2 +8.4
−7.8

+1.7
−2.0

+0.9
−1.2

+0.9
−0.9

+1.2
−1.4

0.15 39.6 +7.9
−7.4

+1.5
−1.4

+0.9
−0.8

+1.1
−1.1

+0.4
−0.5

0.27 31.9 +7.6
−7.1

+1.5
−1.6

+0.7
−0.8

+1.4
−1.3

−0.0
+0.1

0.41 20.5 +10.3
−9.4

+2.3
−2.1

+1.3
−1.0

+1.6
−1.6

−0.9
+1.1

0.55 18.5 +11.7
−10.5

+2.6
−3.0

+0.3
−1.7

+1.8
−1.8

−1.8
+1.9

0.69 11.1 +17.5
−15.0

+4.3
−4.9

+0.9
−3.4

+2.2
−2.1

−2.9
+3.6

0.83 10.5 +22.7
−18.8

+8.2
−8.3

+1.9
−3.9

+2.5
−2.4

−6.9
+7.6

Table 3: Values of the differential cross-sections dσ/dQ2, dσ/dx and dσ/dy for
Pe = −0.36 ± 0.01. The following quantities are given: the value at which the
cross section is quoted; the measured cross section; the statistical uncertainty; the
total systematic uncertainty (δsyst); the uncorrelated systematic uncertainty (δunc);
the uncertainty on FLT tracking efficiency (δtrk) and the calorimeter energy-scale
uncertainty (δes). Both δtrk and δes have significant correlations between cross-
section bins.
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Q2 ( GeV2) x σ̃

Pe = −0.36 Pe = +0.33 Pe = 0

280 0.0078 (8.23 +2.84
−2.18

+0.59
−0.76) · 10−1 (1.44 +0.31

−0.26
+0.10
−0.12) · 100 (1.14 +0.20

−0.17
+0.08
−0.10) · 100

280 0.015 (9.07 +1.72
−1.47

+0.49
−0.51) · 10−1 (1.85 +0.20

−0.18
+0.10
−0.11) · 100 (1.40 +0.13

−0.12
+0.07
−0.08) · 100

280 0.032 (6.39 +1.27
−1.08

+0.19
−0.22) · 10−1 (1.12 +0.14

−0.12
+0.03
−0.04) · 100 (8.84 +0.89

−0.81
+0.26
−0.30) · 10−1

280 0.068 (3.91 +1.08
−0.87

+0.11
−0.14) · 10−1 (7.03 +1.17

−1.01
+0.20
−0.26) · 10−1 (5.52 +0.75

−0.67
+0.16
−0.20) · 10−1

280 0.130 (3.27 +2.58
−1.56

+0.12
−0.12) · 10−1 (7.88 +2.85

−2.16
+0.26
−0.28) · 10−1 (5.74 +1.76

−1.38
+0.19
−0.21) · 10−1

530 0.0078 (4.86 +2.90
−1.93

+0.38
−0.56) · 10−1 (9.61 +3.18

−2.45
+0.62
−1.35) · 10−1 (7.37 +1.98

−1.59
+0.50
−0.95) · 10−1

530 0.015 (6.19 +1.25
−1.06

+0.24
−0.22) · 10−1 (1.32 +0.15

−0.13
+0.05
−0.05) · 100 (9.90 +0.93

−0.86
+0.37
−0.35) · 10−1

530 0.032 (4.63 +0.89
−0.76

+0.12
−0.12) · 10−1 (1.55 +0.13

−0.12
+0.04
−0.04) · 100 (1.05 +0.08

−0.07
+0.03
−0.02) · 100

530 0.068 (4.61 +0.86
−0.74

+0.14
−0.11) · 10−1 (9.04 +0.98

−0.89
+0.27
−0.21) · 10−1 (6.93 +0.63

−0.58
+0.21
−0.16) · 10−1

530 0.130 (1.64 +0.81
−0.57

+0.04
−0.04) · 10−1 (5.52 +1.08

−0.92
+0.14
−0.12) · 10−1 (3.75 +0.65

−0.56
+0.10
−0.08) · 10−1

950 0.015 (3.98 +0.99
−0.81

+0.15
−0.24) · 10−1 (9.15 +1.18

−1.05
+0.26
−0.50) · 10−1 (6.73 +0.75

−0.68
+0.20
−0.37) · 10−1

950 0.032 (4.30 +0.69
−0.60

+0.10
−0.12) · 10−1 (1.04 +0.09

−0.08
+0.02
−0.03) · 100 (7.57 +0.55

−0.51
+0.17
−0.20) · 10−1

950 0.068 (4.37 +0.66
−0.58

+0.07
−0.08) · 10−1 (6.75 +0.67

−0.62
+0.10
−0.10) · 10−1 (5.55 +0.45

−0.42
+0.09
−0.08) · 10−1

950 0.130 (3.04 +0.69
−0.57

+0.05
−0.06) · 10−1 (5.98 +0.77

−0.69
+0.10
−0.11) · 10−1 (4.58 +0.50

−0.45
+0.07
−0.08) · 10−1

950 0.240 (1.12 +0.67
−0.44

+0.01
−0.01) · 10−1 (2.31 +0.71

−0.56
+0.01
−0.02) · 10−1 (1.75 +0.45

−0.36
+0.01
−0.01) · 10−1

1700 0.032 (3.12 +0.52
−0.45

+0.09
−0.07) · 10−1 (7.20 +0.64

−0.59
+0.13
−0.18) · 10−1 (5.29 +0.41

−0.38
+0.10
−0.11) · 10−1

1700 0.068 (2.48 +0.42
−0.36

+0.03
−0.04) · 10−1 (7.10 +0.57

−0.53
+0.09
−0.10) · 10−1 (4.98 +0.35

−0.33
+0.06
−0.06) · 10−1

1700 0.130 (2.68 +0.52
−0.44

+0.03
−0.04) · 10−1 (3.66 +0.50

−0.45
+0.04
−0.03) · 10−1 (3.14 +0.34

−0.31
+0.03
−0.03) · 10−1

1700 0.240 (1.65 +0.46
−0.37

+0.05
−0.03) · 10−1 (2.66 +0.46

−0.40
+0.02
−0.04) · 10−1 (2.16 +0.30

−0.27
+0.03
−0.03) · 10−1

1700 0.420 (1.80 +4.14
−1.49

+0.08
−0.08) · 10−2 (9.47 +5.10

−3.49
+0.32
−0.44) · 10−2 (6.03 +2.97

−2.09
+0.22
−0.27) · 10−2

3000 0.032 (3.10 +0.79
−0.64

+0.14
−0.19) · 10−1 (4.73 +0.79

−0.68
+0.23
−0.17) · 10−1 (3.91 +0.52

−0.46
+0.18
−0.15) · 10−1

3000 0.068 (2.47 +0.38
−0.33

+0.06
−0.08) · 10−1 (5.24 +0.44

−0.41
+0.12
−0.15) · 10−1 (3.93 +0.28

−0.27
+0.09
−0.12) · 10−1

3000 0.130 (2.08 +0.39
−0.34

+0.05
−0.03) · 10−1 (3.41 +0.41

−0.37
+0.07
−0.05) · 10−1 (2.75 +0.27

−0.25
+0.06
−0.04) · 10−1

3000 0.240 (9.08 +2.87
−2.25

+0.51
−0.31) · 10−2 (2.63 +0.37

−0.33
+0.07
−0.07) · 10−1 (1.84 +0.23

−0.21
+0.06
−0.05) · 10−1

3000 0.420 (2.95 +2.33
−1.41

+0.12
−0.20) · 10−2 (6.47 +2.46

−1.84
+0.26
−0.39) · 10−2 (4.82 +1.53

−1.19
+0.18
−0.30) · 10−2

5300 0.068 (1.68 +0.37
−0.31

+0.10
−0.10) · 10−1 (3.05 +0.40

−0.35
+0.19
−0.16) · 10−1 (2.39 +0.26

−0.23
+0.15
−0.13) · 10−1

5300 0.130 (1.55 +0.33
−0.27

+0.08
−0.08) · 10−1 (2.45 +0.33

−0.29
+0.12
−0.12) · 10−1 (2.00 +0.22

−0.20
+0.10
−0.10) · 10−1

5300 0.240 (9.97 +2.76
−2.21

+0.53
−0.57) · 10−2 (1.83 +0.30

−0.26
+0.10
−0.10) · 10−1 (1.43 +0.19

−0.17
+0.07
−0.08) · 10−1

5300 0.420 (2.12 +1.67
−1.01

+0.22
−0.13) · 10−2 (1.17 +0.25

−0.21
+0.11
−0.08) · 10−1 (7.39 +1.50

−1.26
+0.68
−0.48) · 10−2

9500 0.130 (4.54 +2.07
−1.48

+0.56
−0.45) · 10−2 (1.42 +0.27

−0.23
+0.18
−0.14) · 10−1 (9.79 +1.64

−1.42
+1.21
−0.97) · 10−2

9500 0.240 (3.50 +1.89
−1.29

+0.39
−0.26) · 10−2 (1.33 +0.26

−0.22
+0.13
−0.10) · 10−1 (8.84 +1.56

−1.34
+0.84
−0.65) · 10−2

9500 0.420 (3.66 +1.97
−1.35

+0.59
−0.37) · 10−2 (4.20 +1.69

−1.25
+0.48
−0.43) · 10−2 (3.84 +1.14

−0.90
+0.43
−0.38) · 10−2

17000 0.240 (3.02 +1.80
−1.20

+0.57
−0.46) · 10−2 (3.69 +1.58

−1.14
+0.70
−0.57) · 10−2 (3.29 +1.04

−0.82
+0.63
−0.51) · 10−2

17000 0.420 (1.10 +1.45
−0.71

+0.19
−0.14) · 10−2 (3.21 +1.58

−1.11
+0.57
−0.42) · 10−2 (2.24 +0.96

−0.70
+0.43
−0.29) · 10−2

30000 0.420 (5.32 +12.24
−4.41

+1.85
−1.47) · 10−3 (1.17 +1.14

−0.64
+0.41
−0.32) · 10−2 (8.71 +6.89

−4.17
+3.03
−2.40) · 10−3

Table 4: Values of the reduced cross section. The following quantities are given:
the values of Q2 and x at which the cross section is quoted and the measured cross
section, with statistical and systematic uncertainties.
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Q2 ( GeV2) x σ̃ δstat (%) δsyst (%) δunc (%) δtrk (%) δes (%)

280 0.0078 1.44 · 100 +21.4
−17.9

+7.0
−8.3

+0.5
−7.0

+2.3
−2.2

+6.5
−3.9

280 0.015 1.85 · 100 +10.9
−9.9

+5.1
−5.7

+0.6
−3.2

+1.9
−1.9

+4.7
−4.4

280 0.032 1.12 · 100 +12.2
−11.0

+2.9
−3.3

+0.6
−0.4

+1.1
−1.1

+2.6
−3.1

280 0.068 7.03 · 10−1 +16.6
−14.4

+2.8
−3.6

+0.5
−1.0

+0.8
−0.8

+2.7
−3.4

280 0.130 7.88 · 10−1 +36.2
−27.4

+3.3
−3.6

+0.5
−2.2

+0.5
−0.5

+3.2
−2.8

530 0.0078 9.61 · 10−1 +33.1
−25.5

+6.4
−14.1

+0.9
−11.9

+2.6
−2.4

+5.7
−7.1

530 0.015 1.32 · 100 +11.1
−10.0

+3.7
−3.7

+0.5
−1.7

+2.0
−1.9

+3.0
−2.7

530 0.032 1.55 · 100 +8.3
−7.7

+2.5
−2.3

+0.6
−0.4

+1.2
−1.2

+2.0
−1.9

530 0.068 9.04 · 10−1 +10.8
−9.9

+3.0
−2.3

+0.7
−0.4

+0.8
−0.8

+2.8
−2.1

530 0.130 5.52 · 10−1 +19.6
−16.6

+2.6
−2.2

+0.8
−1.1

+0.6
−0.6

+2.4
−1.8

950 0.015 9.15 · 10−1 +12.9
−11.5

+2.9
−5.5

+0.7
−4.9

+2.0
−1.9

+1.9
−1.3

950 0.032 1.04 · 100 +8.3
−7.7

+2.3
−2.6

+0.6
−1.3

+1.4
−1.4

+1.6
−1.8

950 0.068 6.75 · 10−1 +10.0
−9.1

+1.5
−1.4

+0.6
−0.9

+0.9
−0.8

+1.1
−0.7

950 0.130 5.98 · 10−1 +12.9
−11.5

+1.7
−1.8

+1.3
−1.1

+0.5
−0.5

+0.9
−1.3

950 0.240 2.31 · 10−1 +30.6
−24.1

+0.4
−0.7

+0.0
−0.0

+0.4
−0.4

−0.0
−0.6

1700 0.032 7.20 · 10−1 +8.9
−8.2

+1.8
−2.4

+0.5
−1.7

+1.7
−1.6

+0.2
−0.5

1700 0.068 7.10 · 10−1 +8.0
−7.4

+1.2
−1.5

+0.7
−1.1

+0.9
−0.9

+0.3
+0.2

1700 0.130 3.66 · 10−1 +13.8
−12.2

+1.1
−0.9

+0.6
−0.7

+0.6
−0.6

+0.6
+0.2

1700 0.240 2.66 · 10−1 +17.5
−15.0

+0.8
−1.6

+0.4
−1.4

+0.5
−0.5

−0.7
+0.5

1700 0.420 9.47 · 10−2 +53.9
−36.8

+3.4
−4.7

+2.0
−4.5

+0.2
−0.2

−1.2
+2.7

3000 0.032 4.73 · 10−1 +16.6
−14.4

+4.8
−3.6

+1.8
−1.6

+1.8
−1.8

−2.8
+4.1

3000 0.068 5.24 · 10−1 +8.5
−7.9

+2.2
−2.9

+0.4
−0.8

+1.2
−1.2

−2.6
+1.8

3000 0.130 3.41 · 10−1 +12.1
−10.8

+2.0
−1.5

+1.0
−0.9

+0.7
−0.7

−1.0
+1.6

3000 0.240 2.63 · 10−1 +14.3
−12.6

+2.6
−2.8

+0.4
−1.7

+0.4
−0.4

−2.2
+2.5

3000 0.420 6.47 · 10−2 +38.0
−28.4

+4.0
−6.0

+1.7
−2.3

+0.3
−0.3

−5.5
+3.6

5300 0.068 3.05 · 10−1 +13.0
−11.6

+6.2
−5.3

+1.0
−1.1

+1.6
−1.5

−4.9
+6.0

5300 0.130 2.45 · 10−1 +13.6
−12.0

+5.0
−4.9

+0.8
−0.8

+0.8
−0.8

−4.8
+4.9

5300 0.240 1.83 · 10−1 +16.2
−14.1

+5.2
−5.5

+2.0
−1.0

+0.6
−0.6

−5.4
+4.8

5300 0.420 1.17 · 10−1 +21.8
−18.2

+9.2
−7.0

+2.3
−3.9

+0.4
−0.4

−5.8
+8.9

9500 0.130 1.42 · 10−1 +19.0
−16.2

+12.6
−10.0

+2.5
−3.4

+1.3
−1.3

−9.3
+12.3

9500 0.240 1.33 · 10−1 +19.6
−16.6

+9.5
−7.5

+0.6
−2.1

+0.7
−0.7

−7.2
+9.5

9500 0.420 4.20 · 10−2 +40.1
−29.7

+11.3
−10.2

+3.2
−2.5

+0.4
−0.4

−9.8
+10.9

17000 0.240 3.69 · 10−2 +42.7
−31.0

+19.0
−15.4

+0.0
−4.8

+1.0
−1.0

−14.6
+18.9

17000 0.420 3.21 · 10−2 +49.3
−34.6

+17.7
−12.9

+0.0
−3.5

+0.6
−0.5

−12.4
+17.7

30000 0.420 1.17 · 10−2 +97.3
−54.4

+34.8
−27.5

+0.0
−4.8

+0.9
−0.9

−27.1
+34.8

Table 5: Values of the reduced cross section for Pe = +0.33±0.01. The following
quantities are given: the values of Q2 and x at which the cross section is quoted;
the measured cross section; the statistical uncertainty; the total systematic uncer-
tainty (δsyst); the uncorrelated systematic uncertainty (δunc); the uncertainty on
FLT tracking efficiency (δtrk) and the calorimeter energy-scale uncertainty (δes).
Both δtrk and δes have significant correlations between cross-section bins.
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Q2 ( GeV2) x σ̃ δstat (%) δsyst (%) δunc (%) δtrk (%) δes (%)

280 0.0078 8.23 · 10−1 +34.5
−26.4

+7.2
−9.2

+0.9
−7.8

+2.9
−2.7

+6.2
−4.0

280 0.015 9.07 · 10−1 +19.0
−16.2

+5.3
−5.7

+0.5
−2.7

+2.3
−2.2

+4.7
−4.4

280 0.032 6.39 · 10−1 +19.9
−16.8

+3.0
−3.5

+0.6
−0.6

+1.4
−1.4

+2.6
−3.1

280 0.068 3.91 · 10−1 +27.7
−22.1

+2.9
−3.7

+0.7
−0.9

+1.1
−1.0

+2.6
−3.4

280 0.130 3.27 · 10−1 +79.1
−47.9

+3.7
−3.7

+1.5
−2.4

+0.7
−0.7

+3.2
−2.7

530 0.0078 4.86 · 10−1 +59.7
−39.6

+7.7
−11.5

+2.4
−8.2

+3.7
−3.4

+6.1
−7.3

530 0.015 6.19 · 10−1 +20.3
−17.1

+3.8
−3.5

+0.6
−0.5

+2.2
−2.1

+3.0
−2.7

530 0.032 4.63 · 10−1 +19.3
−16.4

+2.7
−2.5

+0.9
−0.6

+1.5
−1.4

+2.0
−2.0

530 0.068 4.61 · 10−1 +18.7
−15.9

+3.1
−2.5

+0.5
−0.7

+1.0
−1.0

+2.8
−2.1

530 0.130 1.64 · 10−1 +49.3
−34.6

+2.7
−2.4

+0.9
−1.3

+0.8
−0.8

+2.4
−1.8

950 0.015 3.98 · 10−1 +24.9
−20.3

+3.9
−6.0

+2.3
−5.4

+2.5
−2.4

+1.8
−1.3

950 0.032 4.30 · 10−1 +16.1
−14.0

+2.3
−2.7

+0.2
−1.3

+1.7
−1.6

+1.6
−1.8

950 0.068 4.37 · 10−1 +15.1
−13.2

+1.6
−1.7

+0.4
−1.2

+1.1
−1.1

+1.2
−0.7

950 0.130 3.04 · 10−1 +22.7
−18.8

+1.6
−2.0

+1.1
−1.4

+0.7
−0.7

+0.9
−1.3

950 0.240 1.12 · 10−1 +59.7
−39.6

+0.6
−0.9

+0.0
−0.0

+0.6
−0.6

−0.0
−0.7

1700 0.032 3.12 · 10−1 +16.8
−14.5

+2.9
−2.2

+2.1
−1.1

+2.0
−1.9

+0.3
−0.5

1700 0.068 2.48 · 10−1 +16.8
−14.5

+1.3
−1.4

+0.5
−0.9

+1.1
−1.1

+0.3
+0.2

1700 0.130 2.68 · 10−1 +19.6
−16.6

+1.3
−1.6

+0.8
−1.4

+0.8
−0.8

+0.6
+0.2

1700 0.240 1.65 · 10−1 +27.7
−22.1

+3.0
−1.8

+2.9
−1.6

+0.6
−0.6

−0.7
+0.5

1700 0.420 1.80 · 10−2 +229.9
−82.7

+4.5
−4.2

+3.4
−4.0

+0.3
−0.3

−1.1
+2.9

3000 0.032 3.10 · 10−1 +25.5
−20.7

+4.6
−6.0

+0.3
−4.9

+2.2
−2.1

−2.7
+4.1

3000 0.068 2.47 · 10−1 +15.2
−13.3

+2.5
−3.1

+1.1
−1.1

+1.4
−1.4

−2.5
+1.8

3000 0.130 2.08 · 10−1 +19.0
−16.2

+2.6
−1.6

+1.9
−0.9

+0.9
−0.9

−1.0
+1.6

3000 0.240 9.08 · 10−2 +31.6
−24.7

+5.6
−3.4

+5.0
−2.5

+0.6
−0.6

−2.2
+2.5

3000 0.420 2.95 · 10−2 +79.1
−47.8

+3.9
−6.8

+1.7
−3.7

+0.5
−0.5

−5.6
+3.5

5300 0.068 1.68 · 10−1 +21.8
−18.2

+6.2
−6.1

+0.5
−3.2

+1.7
−1.6

−4.9
+6.0

5300 0.130 1.55 · 10−1 +21.0
−17.6

+5.1
−5.3

+0.8
−2.1

+1.0
−1.0

−4.8
+4.9

5300 0.240 9.97 · 10−2 +27.7
−22.2

+5.3
−5.7

+2.2
−1.6

+0.7
−0.7

−5.4
+4.8

5300 0.420 2.12 · 10−2 +79.1
−47.9

+10.5
−6.3

+5.6
−2.6

+0.5
−0.5

−5.7
+8.9

9500 0.130 4.54 · 10−2 +45.7
−32.7

+12.3
−10.0

+0.0
−3.0

+1.5
−1.5

−9.4
+12.3

9500 0.240 3.50 · 10−2 +53.9
−36.8

+11.1
−7.6

+5.6
−2.2

+0.8
−0.8

−7.2
+9.5

9500 0.420 3.66 · 10−2 +53.9
−36.8

+16.1
−10.1

+11.9
−2.4

+0.5
−0.5

−9.8
+10.8

17000 0.240 3.02 · 10−2 +59.7
−39.6

+19.0
−15.3

+0.0
−4.7

+1.2
−1.1

−14.5
+19.0

17000 0.420 1.10 · 10−2 +131.8
−64.6

+17.6
−12.9

+0.0
−3.5

+0.7
−0.7

−12.4
+17.6

30000 0.420 5.32 · 10−3 +229.9
−82.7

+34.7
−27.6

+0.0
−4.7

+1.2
−1.1

−27.2
+34.7

Table 6: Values of the reduced cross section for Pe = −0.36±0.01. The following
quantities are given: the values of Q2 and x at which the cross section is quoted;
the measured cross section; the statistical uncertainty; the total systematic uncer-
tainty (δsyst); the uncorrelated systematic uncertainty (δunc); the uncertainty on
FLT tracking efficiency (δtrk) and the calorimeter energy-scale uncertainty (δes).
Both δtrk and δes have significant correlations between cross-section bins.

21



Polarisation σCC (pb)

−0.413± 0.016 20.7 +1.4
−1.3 (stat.) ±0.5 (lumi.) +0.3

−0.4 (syst.)

−0.366± 0.015 22.5 +1.5
−1.4 (stat.) ±0.6 (lumi.) +0.4

−0.4 (syst.)

−0.306± 0.012 25.1 +1.5
−1.5 (stat.) ±0.7 (lumi.) +0.4

−0.4 (syst.)

0.259± 0.010 46.4 +2.0
−1.9 (stat.) ±1.2 (lumi.) +0.6

−0.7 (syst.)

0.303± 0.011 46.7 +2.0
−2.0 (stat.) ±1.2 (lumi.) +0.6

−0.8 (syst.)

0.339± 0.013 48.4 +2.1
−2.0 (stat.) ±1.3 (lumi.) +0.6

−0.8 (syst.)

0.416± 0.015 51.4 +2.1
−2.1 (stat.) ±1.3 (lumi.) +0.7

−0.8 (syst.)

Table 7: Values of the total cross section, σCC, measured at different values of
polarisation of the positron beam. The following quantities are given: the polarisa-
tion value at which the cross section is quoted and the measured cross section, with
statistical, luminosity and systematic uncertainties.
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Figure 1: The integrated luminosity collected as a function of the longitudinal
polarisation of the positron beam. Events from runs with mean absolute polarisation
less than 15% were rejected.
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Figure 2: A charged current event with Q2 = 53 060 GeV 2 and x = 0.59
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Figure 3: Comparison of the total e+p CC data sample with the expectations of
the Monte Carlo simulation described in the text. The distributions of (a) PT,miss,
(b) Q2

JB, (c) xJB, (d) yJB, (e) VAP/VP and (f) Zvtx, are shown. The points represent
data. The open (filled) histograms represent the signal (background) MC.
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and MSTW2008 PDFs. The shaded band shows the total uncertainty from the
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Figure 5: (a) The e+p CC DIS cross-section dσ/dQ2 for data and the Stan-
dard Model expectation evaluated using the HERAPDF1.0 PDFs. The positive
(negative) polarisation data are shown as the filled (open) points, the statistical
uncertainties are indicated by the inner error bars (delimited by horizontal lines)
and the full error bars show the total uncertainty obtained by adding the statistical
and systematic contributions in quadrature. (b) The ratio of the measured cross-
section, dσ/dQ2, to the Standard Model expectation evaluated using the HERA-
PDF1.0 PDFs. The shaded band shows the total uncertainty from the HERA-
PDF1.0 PDFs. The curves show the ratio of the predictions of the SM evaluated
using the ZEUS-JETS, CTEQ6.6 and MSTW2008 PDFs to the prediction from the
HERAPDF1.0 PDFs.
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Figure 6: (a) The e+p CC DIS cross-section dσ/dx for data and the Standard
Model expectation evaluated using the HERAPDF1.0 PDFs. The positive (negative)
polarisation data are shown as the filled (open) points, the statistical uncertainties
are indicated by the inner error bars (delimited by horizontal lines) and the full
error bars show the total uncertainty obtained by adding the statistical and sys-
tematic contributions in quadrature. (b) The ratio of the measured cross-section,
dσ/dx, to the Standard Model expectation evaluated using the HERAPDF1.0 PDFs.
The shaded band shows the total uncertainty from the HERAPDF1.0 PDFs. The
curves show the ratio of the predictions of the SM evaluated using the ZEUS-JETS,
CTEQ6.6 and MSTW2008 PDFs to the prediction from the HERAPDF1.0 PDFs.

28



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140 = +0.33)
e

, P-1p (76 pb+ZEUS CC e
= -0.36)

e
, P-1p (56 pb+ZEUS CC e

SM (HERAPDF1.0)

2 > 200 GeV2Q

= +0.33
e

p P+e
= -0.36

e
p P+e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SM (HERAPDF1.0)
SM (ZEUS-JETS)
SM (CTEQ6.6)
SM (MSTW2008)

ZEUS
(a)

(b)

y

y

/d
y 

(p
b)

σd
D

A
T

A
/ S

M
(H

E
R

A
P

D
F

1.
0)

Figure 7: (a) The e+p CC DIS cross-section dσ/dy for data and the Standard
Model expectation evaluated using the HERAPDF1.0 PDFs. The positive (negative)
polarisation data are shown as the filled (open) points, the statistical uncertainties
are indicated by the inner error bars (delimited by horizontal lines) and the full
error bars show the total uncertainty obtained by adding the statistical and sys-
tematic contributions in quadrature. (b) The ratio of the measured cross-section,
dσ/dy, to the Standard Model expectation evaluated using the HERAPDF1.0 PDFs.
The shaded band shows the total uncertainty from the HERAPDF1.0 PDFs. The
curves show the ratio of the predictions of the SM evaluated using the ZEUS-JETS,
CTEQ6.6 and MSTW2008 PDFs to the prediction from the HERAPDF1.0 PDFs.

29



0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

-210 -110
0

0.1

0.2

-210 -110
0

0.1

0.2

-210 -110

0

0.1

0.2 p+ZEUS CC e

= +0.33e, P-176 pb
= - 0.36e, P-156 pb

-210 -110
0

0.1

0.2 SM (HERAPDF1.0)
= +0.33eP
= -0.36eP

2 = 280 GeV2Q 2 = 530 GeV2Q 2 = 950 GeV2Q

2 = 1700 GeV2Q 2 = 3000 GeV2Q 2 = 5300 GeV2Q

2 = 9500 GeV2Q 2 = 17000 GeV2Q 2 = 30000 GeV2Q

x

σ~

ZEUS

Figure 8: The e+p CC DIS reduced cross section plotted as a function of x for fixed
Q2. The positive (negative) polarisation data are shown as the filled (open) points.
The curves show the predictions of the SM evaluated using the HERAPDF1.0 PDFs.
The shaded bands show the total uncertainty from the HERAPDF1.0 PDFs.
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Figure 9: The e+p CC DIS reduced cross section plotted as a function of x for fixed
Q2. The circles represent the data points and the curves show the predictions of the
SM evaluated using the HERAPDF1.0, ZEUS-JETS, CTEQ6.6 and MSTW2008
PDFs. The dashed and dotted lines show the contributions of the PDF combinations
(1− y)2x(d + s) and x(ū+ c̄), respectively.
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and the shaded band shows the uncertainty of the fit.
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