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Abstract

We perform an analytic continuation of the two-loop remainder function for the
six-point planar MHV amplitude in N = 4 SUSY, found by Goncharov, Spradlin,
Vergu and Volovich from the light-like Wilson loop representation. The remainder
function is continued into a physical region, where all but two energy invariants are
negative. It turns out to be pure imaginary in the multi-Regge kinematics, which
is in an agreement with the predictions based on the Steinmann relations for the
Regge poles and Mandelstam cut contributions. The leading term reproduces correctly
the expression calculated by one of the authors in the BFKL approach, while the
subleading term presents a result, that was not yet found with the use of the unitarity
techniques. This supports the applicability of the Wilson loop approach to the planar
MHV amplitudes in N = 4 SUSY.

1 Introduction

In recent years a significant progress was reached in revealing the structure of scat-
tering amplitudes in the supersymmetric theories. Parke and Taylor [1] first showed
that so-called maximally helicity violating (MHV) gluon scattering amplitudes at tree
level can be written in a very compact way. This suggests that quantum corrections
can be also included in a more efficient way than in the framework of the traditional
Feynman technique. A great effort in that direction led to formulation of ABDK [2]
and then BDS [3] ansatz for multi-loop planar MHV amplitudes in SYM N = 4. The
BDS formula was claimed to account for all loop corrections by exponentiation of the
one loop result. However it was shown by one of the authors with collaborators [4]
that the BDS ansatz for six-point amplitude at two loops is not compatible with Stein-
mann relations [5], claiming the absence of simultaneous singularities in the overlapping
channels.
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Drummond, Henn, Korchemsky and Sokatchev [6] analyzing the conformal proper-
ties of polygon Wilson loops showed that anomalous conformal Ward identities uniquely
fix the form of the all-loop 4- and 5-point amplitudes, so that any relative correction
to the BDS ansatz starting at six external points is necessarily a function of conformal
invariants (cross ratios of dual coordinates). The correction to the BDS formula was

called the remainder function R
(L)
n for an amplitude with L loops and n external legs,

and the first non-trivial remainder function is R
(2)
6 . The imaginary part of R

(2)
6 in the

leading logarithm approximation (LLA) of the BFKL approach [7] was calculated by
one of the authors with collaborators [8]. For general n the remainder function contains
contributions of Mandelstam cuts constructed from an arbitrary number of reggeized
gluons with the local Hamiltonian of an integrable Heisenberg spin chain [19].

It was suggested [9, 10, 11, 12, 13, 14] that R
(L)
n can be obtained from the expec-

tation value of the light-like two-loop hexagon Wilson loop in SYM N = 4. Del Duca,

Duhr and Smirnov [15, 16] expressed R
(2)
6 in terms of generalized polylogarithms, which

was greatly simplified by Goncharov, Spradlin, Vergu and Volovich (GSVV) [17], and
written in terms of Lik functions only with arguments depending on three cross ratios
u1, u2 and u3.

The objective of the present study is to compare analytically the remainder function

R
(2)
6 calculated from the expectation value of the light-like hexagon Wilson loop [17] and

its imaginary part found in the BFKL approach [8]. Numerically, an agreement between
the two approaches was demonstrated by Schabinger [18]. The leading correction

to R
(2)
6 coincides with the BFKL predictions and the next-to-leading term is pure

imaginary in an agreement with the expectations based on analytic properties of the
production amplitudes [23].

In the next section we present a result of the analytic continuation of the GSVV
formula into a region of multi-Regge kinematics, where all but two energy invariants
are negative. The rest of the paper is devoted to details of the analytic continuation
and to the analysis of the obtained result.

2 Analytic continuation of GSVV formula

The remainder function for six-point amplitude depends only of three cross ratios of
dual coordinates in accordance to ref. [6]. These cross ratios can be expressed through
the kinematic invariants shown in Fig. 1 as follows

u1 =
s s2

s012 s123
, u2 =

s1 t3
s012 t2

, u3 =
s3 t1
s123 t2

. (1)

The GSVV [17] formula for the remainder function reads

R(u1, u2, u3) =

3
∑

i=1

(

L4(x
+
i , x

−

i )−
1

2
Li4(1− 1/ui)

)

−1

8

(

3
∑

i=1

Li2(1− 1/ui)

)2

+
J4

24
+ χ

π2

12

(

J2 + ζ(2)
)

, (2)
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where

x±i = uix
±, x± =

u1 + u2 + u3 − 1±
√
∆

2u1u2u3
, (3)

and ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3.
The function L4(x

+, x−) is defined by

L4(x
+, x−) =

3
∑

m=0

(−1)m

(2m)!!
log(x+x−)m(ℓ4−m(x+) + ℓ4−m(x−)) +

1

8!!
log(x+x−)4, (4)

together with

ℓn(x) =
1

2
(Lin(x)− (−1)nLin(1/x)) , (5)

as well as the quantities

J =
3
∑

i=1

(ℓ1(x
+
i )− ℓ1(x

−

i )), (6)

and

χ =

{

−2 ∆ > 0 and u1 + u2 + u3 > 1,

+1 otherwise.
(7)

The remainder function R(u1, u2, u3) was found in the region where all cross ratios
ui are positive. The multi-Regge kinematics (MRK) is defined by

s≫ s012, s123 ≫ s1, s2, s3 ≫ t1, t2, t3 (8)

for the kinematic invariants depicted in Fig. 1. For the cross ratios of Eq. 1 the multi
Regge kinematics implies (cf. [8])

1− u1 → +0, u2 → +0, u3 → +0,
u2

1− u1
≃ O(1),

u3
1− u1

≃ O(1). (9)

In this kinematics the remainder function R(u1, u2, u3) vanishes until u1 has a phase.
It was argued in ref. [4] that in some physical channels for the planar six-point scat-
tering amplitudes the variable u1 can develop a phase of φ = ±2π. This phase results
into a non-vanishing pure imaginary contribution to R(u1, u2, u3) in the multi-Regge
kinematics. The non-vanishing term of the remainder function for u1 = e−i2π|u1| orig-
inates from the Mandelstam cuts [20], which are not captured by the BDS formula.
This contribution was found [8] in the leading logarithmic approximation (LLA), which
keeps only the terms leading in the logarithm of energy

√
s2.

In the present study we perform the analytic continuation of Eq. 2 into a region
with u1 = e−i2π|u1| and then extract both, the leading and next-to-leading (NLO)
terms in the multi-Regge kinematics of Eq. 9. The result of this analytic continuation
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is rather compact and reads

R(|u1|e−i2π, |z|2(1− u1), |1− z|2(1− u1)) ≃
iπ

2
ln(1− u1) ln |z|2 ln |1− z|2

+
iπ

2
ln
(

|z|2|1− z|2
)

(ln z ln(1− z) + ln z∗ ln(1− z∗)− 2ζ2)

+
iπ

2
ln

|1− z|2
|z|2 (Li2(z) + Li2(z

∗)− Li2(1− z)− Li2(1− z∗))

+i2π (Li3(z) + Li3(z
∗) + Li3(1− z) + Li3(1− z∗)− 2ζ3) . (10)

In Eq. 10 we introduced complex variables

z =

√

u2
1− u1

eiφ2 , 1− z =

√

u3
1− u1

e−iφ3 (11)

to remove some square roots in the arguments of the polylogarithms (see Eq. 3). The
parametrization of Eq. 11 is compatible with the constraints of the multi-Regge kine-
matics as discussed in the following sections.

The term on the RHS of the first line of Eq. 10 coincides with the LLA term found
by one of the authors with collaborators [8, 23] using the BFKL approach. Other terms
in Eq. 10, that are not accompanied by ln(1 − u1), are subleading in the logarithm of
energy

√
s2 and were not yet calculated in the BFKL formalism. The complex variable

z does not depend on energy, and is a function of transverse momenta only as follows
from Eq. 11, Eq. 16 and Eq. 17. R(|u1|e−i2π, |z|2(1 − u1), |1 − z|2(1 − u1)) is pure
imaginary, in full agreement with analyticity predictions [23]. It is also invariant under
transformations z ↔ 1 − z, which correspond to u2 ↔ u3 invariance, related to the
target-projectile symmetry. Eq. 10 vanishes for z → 1 or z → 0, when the momentum
of one of the produced particles ki in Fig. 1 goes to zero, in an accordance to the
expectation that in the collinear limit the six-point amplitude is reduced to the five-
point amplitude which does not contain Mandelstam cuts.

This way we find an agreement between the Wilson loop result and the BFKL
approach, at least at the level of the leading logarithm approximation. The expression
in Eq. 10 is the main result of the present study. Some details and discussions of the
analytic continuation are presented in the following sections.

3 BFKL approach and BDS amplitudes

In this section we briefly outline the result of ref. [8], where the BDS violating piece
was found analytically in LLA.

A simple ansatz for gluon production amplitudes with the maximal helicity viola-
tion in a planar limit for SYM N = 4 was suggested by Bern, Dixon and Smirnov [3].
But it was shown in ref. [4], that for the 6-point case this ansatz is in a disagree-
ment with the Steinmann relations [5] which are equivalent to the statement, that
the production amplitude in the physical regions should not have simultaneous singu-
larities in overlapping channels. The analogous conclusion about the violation of the
BDS ansatz was reached in the numerical studies of the six-point amplitude at two
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loops [21]. The reason for the disagreement is related to the fact, that the BDS am-
plitude for the transition 2 → 4 in the multi-Regge kinematics does not contain in the
j2-plane of the t2 channel the Mandelstam cut contribution appearing in the physical
kinematical regions, where the invariants in the direct channels have the following signs
s, s2 > 0; s1, s3 < 0 or s, s2 < 0; s1, s3 > 0. In LLA this contribution for the 6-point
amplitude was calculated with the use of the BFKL equation [8]. The corresponding
amplitude in the region s, s2 > 0; s1, s3 < 0 can be written in the factorized form

M2→4 =MBDS
2→4 (1 + i∆2→4), (12)

where ABDS is the BDS amplitude [3] and the correction ∆2→4 was calculated in all
orders with a logarithmic accuracy

i∆2→4 =
a

2

∞
∑

n=−∞

(−1)n
∫

∞

−∞

dν

ν2 + n2

4

(

q∗3k
∗
1

k∗2q
∗
1

)iν−n

2

(

q3k1
k2q1

)iν+n

2
(

s
ω(ν,n)
2 − 1

)

. (13)

Here k1, k2 are transverse components of produced gluon momenta, q1, q2, q3 are the
momenta of reggeons in the corresponding crossing channels and

ω(ν, n) = 4aℜ
(

2ψ(1) − ψ(1 + iν +
n

2
)− ψ(1 + iν − n

2
)
)

. (14)

The LLA correction to the BDS formula in Eq. 13 is valid at any number of loops and,
for example, is calculated explicitly at three loops in ref. [24].

BFKL s
2

s
1

s
3

s

p
A

p
A’

p
B p

B’

s
012

s
123

k
1

k
2

Disc
s

2

M
2−>4

q
1

q
2

q
3

(a) u1 = ei0|u1| (s, s2, s1, s3 > 0)

s
012

s
123

Disc
s

2

 M
2−>4

s
BFKL

s
2

s
1

s
3

p
A

p
A’

p
B p

B’

k
1

k
2

(b) u1 = e−i2π |u1| (s, s2 > 0; s1, s3 < 0)

Figure 1: The BDS violating part appears in the region s, s2 > 0; s1, s3 < 0.

The correction ∆2→4 is Möbius invariant in the transverse momentum space and can
be written in terms of the four-dimensional anharmonic ratios [8] in an accordance to
the results of refs. [10, 22]. The corresponding 4-dimensional cross ratios are expressed
through the energy invariants (see Eq. 1) shown in Fig. 1. From Eq. 1 we can calculate
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the phases of the cross ratios in the indirect channel depicted in Fig. 1b with respect
to the cross ratios of the direct channel Fig. 1a. When we flip the momenta of the
produced particles k1 and k2, all, but s and s2, energy invariants si change the sign
(or multiplied by eiπ). The relative phases cancel in u2 and u3, but add up to e−i2π in
the cross ratio u1. So that according to Fig. 1

u1b = e−i2πu1a. (15)

For the purpose of the present discussion it is useful to introduce reduced cross
ratios

ũ2 =
u2

1− u1
, ũ3 =

u3
1− u1

. (16)

Using the onshellness of the particles with momenta k1 and k2 one can show that
the reduced 4-dimensional cross ratios ũ2 and ũ3 do not include s or s2 and depend
only on the transverse 2-dimensional momenta in the multi-Regge kinematics

ũ2 =
|k2|2|q1|2

|k2 + k1|2|q2|2
, ũ3 =

|k1|2|q3|2
|k2 + k1|2|q2|2

. (17)

Thus any function of ũ2 and ũ3 only in the remainder function is subleading in the
leading logarithm of the energy and corresponds to the NLO contributions.

The BDS violating piece in two loops found in ref. [8] can be written in terms of
the reduced cross ratios as

i∆2→4 = −i2πa
2

4
ln s2 ln

( |k2 + k1|2|q2|2
|k2|2|q1|2

)

ln

( |k2 + k1|2|q2|2
|k1|2|q3|2

)

(18)

≃ a2
iπ

2
ln(1− u1) ln ũ2 ln ũ3

using 1 − u1 ≃ (k1 + k2)
2/s2. Eq. 18 follows also from general arguments related to

the analyticity and factorization of the production amplitudes [19, 23]. With the help
of Eq. 12 this recasts in a form of the two-loop correction to the BDS formula

M
(2)
2→4 =M

(2)BDS
2→4

(

1 + a2
iπ

2
ln(1− u1) ln ũ2 ln ũ3

)

. (19)

In the complex variables of Eq. 11 it reads

M
(2)
2→4 =M

(2)BDS
2→4

(

1 + a2
iπ

2
ln(1− u1) ln |z|2 ln |1− z|2

)

. (20)

The BDS violating LLA term found in the BFKL approach and given by Eq. 20
is reproduced by the Wilson loop result in Eq. 2 after its analytic continuation as one
can see from Eq. 10.
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4 Analytic continuation -discussions

In this section we perform an analytic continuation of the GSVV formula in Eq. 2 for
the remainder function and then extract the leading and subleading terms in the multi-
Regge kinematics (see Eq. 10). In terms of the cross ratios this kinematics corresponds
to the limit Eq. 9 as can be seen from the energy dependence of the cross ratios in Eq. 1.
Eq. 9 describes both the direct (see Fig. 1a) and the indirect (see Fig. 1b) channels.
The GSVV formula is valid in the region, where all cross ratios are positive ui > 0.
It is real valued and vanishes in the direct channel in the limit Eq. 9. However, in
the course of the analytic continuation the function R(u1, u2, u3) in Eq. 2 may develop
an imaginary part, which does not vanish in the multi-Regge kinematics. This non-
vanishing contribution is related to the presence of the Mandelstam cut, which is not
captured by the BDS ansatz. In the BFKL approach this cut is described by the
propagation of a color octet object built of two reggeized gluons and referred to as the
composite color BFKL state. According to Eq. 15, the analytic continuation from the
direct channel to the indirect channel is performed continuing the remainder function
along the circle

u1 = eiφ|u1| (21)

from φ = 0 to φ = −i2π. Other two cross ratios u2 and u3 remain untouched, because
they are the same both in the direct and the indirect channels. A certain care should
be taken when continuing Eq. 2 because of the definition of the function χ in Eq. 7 as a
step function that can potentially cause problems on the boundary of u1 +u2+u3 > 1
and ∆ > 0. To avoid this difficulty we pick up a region where u1 + u2 + u3 < 1 for
φ = 0,−iπ,−i2π in Eq. 21 and thus χ does not change its value χ = 1 during the
analytic continuation at these points. It is worth emphasizing that the function ∆
does change its sign for φ = −iπ, but this does not affect the value of χ since the
condition u1 + u2 + u3 > 1 in Eq. 7 is not fulfilled.

A few words to be said about the constraints on the anharmonic ratios ui set by
the multi-Regge kinematics in the physical region. It is convenient to pass to the
dual coordinates (see Fig. 2) of the transverse momenta for the reduced cross ratios in
Eq. 17.

X
0’

X
A

X
0

X
B

k
1 k

2

q
3q

1

Figure 2: The dual coordinates of the transverse momenta.
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In terms of the dual coordinates the reduced cross ratios in Eq. 17 read

ũ2 =
|x0B |2|x0′A|2
|xAB |2|x00′ |2

, ũ3 =
|x0A|2|x0′B |2
|xAB |2|x00′ |2

. (22)

Let us find restrictions on the cross ratios imposed by the multi-Regge kinematics. Due
to the Möbius invariance we can put

xA = 1, xB = 0, x0′ = ∞, x0 = z, (23)

then
ũ2 = |z|2, ũ3 = |1− z|2. (24)

So that the reduced crossed ratios are related to the ”unitarity” triangle as depicted
in Fig. 3. Note, that the notation of the ”unitarity” triangle is introduced in the
theory of the Weak Interactions in accordance to the fact that the Cabibbo-Kobayashi-
Maskawa (CKM) matrix is an unitarity matrix (see e.g. [25]). In our case the variables
in Eq. 22 appear through the solution of the BFKL equation obtained with the use of
the unitarity constraints [8].

u
3

1
2u

2

1
2

2 3

z

| z | = |1−z |=

(0,0) (1,0)

Figure 3: The ”unitarity” triangle.

We see from Fig. 3 that the reduced cross ratios should obey the triangle inequalities
√

ũ2 +
√

ũ3 ≥ 1, 1 +
√

ũ2 ≥
√

ũ3, 1 +
√

ũ3 ≥
√

ũ2 (25)

or in terms of u2 and u3
√
u2 +

√
u3 ≥

√
1− u1,

√
u3 −

√
u2 ≤

√
1− u1,

√
u2 −

√
u3 ≤

√
1− u1 (26)

Note, that the parameter ∆ appearing in Eq. 2 is proportional to the area of the
”unitarity” triangle expressed by the Heron formula in terms of its sides. As we have
already mentioned we perform the analytic continuation in u1 with an additional con-
dition of the cross ratios u1 + u2 + u3 < 1. This condition is needed solely for avoiding
possible difficulties in the continuation of the function χ in Eq. 7, and can be written
as

ũ2 + ũ3 < 1 (27)

The regions limited by the constraints Eq. 25 and Eq. 27 are illustrated in Fig. 4. The
region A is limited by Eq. 25 and corresponds to multi-Regge kinematics, while its
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subregion B is the region where the condition u1+u2+u2 < 1 is valid. The remainder
function after the analytic continuation in the region B does not have any singularities
on the boundary of Eq. 27 and thus it is valid in the whole region A, including its
boundaries.

u
2

1
2

u
3

1
2

1

1

A

B

Figure 4: The region of the reduced cross ratios where the analytic continuation is performed.

Based on Eq. 24 we introduce complex variables

z =
√

ũ2e
iφ2 , 1− z =

√

ũ3e
−iφ3 . (28)

as illustrated in Fig. 3. The parametrization of Eq. 28 for an arbitrary complex z is
compatible with the constraints of the multi-Regge kinematics given by Eq. 25 and
allows to eliminate the square roots

√
∆ in the arguments. In particular, using the

complex variables of Eq. 28 we can show explicitly that a potentially dangerous line
∆ = 0 ( see Eq. 3 for the definition of ∆) that could lead to singularities of the
remainder function, causes no problems since all x±i are replaced by (1− z)/z and its
complex conjugate. It is worth emphasizing that we perform the analytic continuation
of Eq. 2 in variables ui and only then pass to the parametrization of Eq. 28. This
allows to avoid unnecessary difficulties related to the dependence of the variable z on
the cross ratio u1. The result of the analytic continuation is simplified leaving only
leading and the constant term in the logarithm of energy ln(1 − u1) ≃ − ln s2. The
terms that are suppressed by the power of s2 are omitted in our calculations. At the
intermediate steps of the analytic continuation there appeared contributions of the
order of ln2(1 − u1) and ln3(1 − u1), these terms are incompatible with the unitarity
approach and fortunately all cancel in the final expression. Some terms also develop a
real part proportional to (−i2π)2 during the analytic continuation, but they all cancel
out as well. The final result of the analytic continuation of Eq. 2 in the multi-Regge
kinematics is presented in Eq. 10.

We have calculated the remainder function R(|u1|e−i2π, |z|2(1−u1), |1−z|2(1−u1))
in Eq. 10 under condition u1 + u2 + u3 < 1 (in the region B of Fig. 4), but the
resulting expression does not have singularities on the boundary, so it is valid also for
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u1 + u2 + u3 ≥ 1 (in the whole region A of Fig. 4). Same is true also for condition
∆ < 0 used for the analytic continuation; the resulting expression is valid for any value
of ∆.

The function of Eq. 10 has the ũ2 ↔ ũ3 (z ↔ 1− z) symmetry, which corresponds
to the target-projectile symmetry (see Fig. 1). Eq. 10 vanishes if either z → 1 or z → 0,
which is the case when the momentum of one of the produced particles ki in Fig. 1 goes
to zero. The expression of Eq. 10 explicitly demonstrates that the remainder function
is pure imaginary in the multi-Regge kinematics, which means that non-analytic terms√
∆ canceled out. The first term on the RHS of Eq. 10 reproduces the LLA prediction

of the BFKL approach found by one of the authors with collaborators [8] and given
by Eq. 20, while the rest of the RHS in Eq. 10 present the NLO contribution not
yet calculated using BFKL formalism. This way we find an agreement between the
BFKL approach to the Mandelstam cut contributions and the calculations exploited
the Wilson Loop/Scattering Amplitude duality, at least at the level of the leading
logarithm of the energy.

5 Conclusion

In this paper we performed an analytic continuation of the GSVV [17] formula for
the remainder function of two-loop six-point MHV amplitude in SYM N = 4 to the
region, where all but two energy invariants are negative. The result is then simplified in
the multi-Regge kinematics and is shown to agree with the calculations in the BFKL
approach [8]. In particular we reproduce the leading logarithmic term and find the
cancellation of the real part of the remainder function in this limit in an agreement with
predictions based on the analyticity and factorization [23]. We also extract subleading
terms, which were not yet calculated in the BFKL formalism. These terms are pure
imaginary and have correct analytic properties. This supports the validity of the
relation between the light-like Wilson loops and the planar MHV scattering amplitudes
in N = 4 SUSY for a weak coupling constant. The details of our calculations will be
presented in the next paper [24].
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