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We discuss the large-x behaviour of the splitting functions Pqg and Pgq and of flavour-singlet coefficient func-
tions, such as the gluon contributions C2,g and CL,g to the structure functions F2,L, in massless perturbative QCD.
These quantities are suppressed by one or two powers of (1−x) with respect to the (1−x)−1 terms which are the
subject of the well-known threshold exponentiation. We show that the double-logarithmic contributions to Pqg,
Pgq and CL at order α

4
s can be predicted from known third-order results and present, as a first step towards a

full all-order generalization, the leading-logarithmic large-x behaviour of Pqg, Pgq and C2,g at all orders in αs.

1. Introduction

Inclusive deep-inelastic lepton-nucleon scatter-
ing (DIS) via the exchange of a colour-neutral
(gauge) boson, for the basic kinematics see Fig. 1,
is a benchmark process of perturbative QCD.
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Lowest order : x = ξ

Figure 1. The kinematics and perturbative QCD
factorization of photon-exchange DIS.

Disregarding contributions suppressed by powers
of 1/Q2, the structure functions in electromag-
netic DIS are given by

x−1F n
a (x,Q2) =

[
Ca,i(αs(Q

2))⊗f n
i (Q2)

]
(x) (1)

in terms of the coefficient functions Ca,i, a = 2, L,
i = q, g, and the nucleon parton distributions f n

i .
Here ⊗ denotes the standard Mellin convolution,
and the summation over i is understood. With-
out loss of information, we identify the renormal-
ization and factorization scale with the physical
scale Q2 in Eq. (1) and throughout this article.
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The scale dependence of the parton densities is

dfi(ξ, µ
2)

d lnQ2
=
[
Pik(αs(Q

2))⊗ fk(Q
2)
]
(ξ) . (2)

The coefficient functions in Eq. (1) and the split-
ting functions Pik can be expanded in powers of
the strong coupling constant as ≡ αs/(4π),

Ca,i(x, αs) =
∑

l=0 a l+la
s

c
(l)
a,i(x) , (3)

Pik(x, αs) =
∑

l=0 a l+1
s

P
(l)
ik (x) (4)

with la = 0 for F2 (and the Higgs-exchange struc-
ture function Fφ discussed below), and la = 1 for
the longitudinal structure function FL. In this
notation, the NnLO approximation includes the
contributions with l ≤ n in both Eqs. (3) and (4).

The above (spin-averaged) splitting functions
are presently known to n = 2 [1,2], i.e., the next-
to-next-to-leading order (NNLO ≡ N2LO). The
coefficient functions for the most important struc-
ture functions (including F3 for charge-averaged
W -exchange) have also been fully computed to
order α3

s [3,4,5], while the less important charge-
asymmetry W -cases are available only through
a couple of low-integer Mellin-N moments [6,7].
The frontier in the present massless case are now
the α4

s corrections, for which first results have
been obtained at the lowest value of N [8,9]. See
Ref. [10] for the status of the third-order compu-
tation of the heavy-quark contributions to DIS.
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2. The general large-x behaviour

We are interested in the leading contributions,
in terms of powers in (1−x), to Eqs. (3) and (4).
The form of the diagonal splitting functions is
stable under higher-order corrections in the MS
scheme, viz [11]

P
(l)
ii = A

(l)
i (1−x)−1

+ +B
(l)
i δ(1−x) + . . . . (5)

The off-diagonal quantities, however, receive a
double-logarithmic higher-order enhancement,

P
(l)
i6=j =

∑2l
a=0 A

(l)
ij,a ln

2l−a(1−x) + . . . , (6)

where A
(l)
ij,a ∝ (CA−CF )

l−a for a < l for (at least)
l ≤ 2 [2], i.e., all double logarithms vanish for
CF = CA, which is part of the colour-factor choice
leading to an N =1 supersymmetric theory.

The leading large-x parts of ‘diagonal’ coeffi-
cient functions, e.g., C2,q and Cφ,g, are given by

c
(l)
diag =

2l−1∑

a=0

D
(l)
i,a

[
ln2l−1−a(1−x)

1−x

]−1

+

+ . . . . (7)

These terms are resummed by the soft-gluon ex-
ponentiation [12]. For DIS structure functions
(and some other semi-leptonic processes) this re-
summation is known at the next-to-next-to-next-
to-leading logarithmic accuracy, i.e., the highest
six logs are completely known to all orders [13].

No resummation has been derived so far for the
off-diagonal (flavour-singlet) coefficient functions
such as C2,g and Cφ,q which are of the form

c
(l)
off−d =

∑2l−1
a=0 O

(l)
i,a ln2l−1−a(1−x) + . . . . (8)

The coefficient functions for FL are suppressed by
one power in (1−x) with respect to those of F2,

c
(l)
L,i =

2l∑

a=0

L
(l)
L,i(1−x)

δig ln2l−a(1−x) + . . . , (9)

recall our notation with lL = 1 in Eq. (3). The
double-log contributions to CL,q (and the CF = 0
part of CL,g) have been resummed in Ref. [14],
i.e., the respective highest three logarithms (a =
0, 1 and 2 in Eq. (9)) are known to all orders.

Our aim is to derive corresponding predictions
for all quantities in Eqs. (6), (8) and (9). The
present contribution is a brief status report of this
programme, which has not been finished so far.

3. Physical evolution kernel for (F2, Fφ)

The results of Ref. [14] and their extension to
the non-leading corrections for C2,q and other
quantities at all orders in (1−x) [15], see Ref. [16]
for a brief summary, have been obtained by study-
ing the non-singlet physical evolution kernels for
the respective observables. It is thus natural to
study also flavour-singlet physical kernels.

The most natural complement to the standard

quantity F2 with c
(0)
2,i = δiq δ(1−x) is a structure

function for a probe which directly interacts only
with gluons, such as a scalar φ with a φGµνGµν

coupling to the gluon field [17]. In the Standard
Model this interaction is realized for the Higgs bo-
son in the limit of a heavy top-quark [18,19]. The
coefficient functions Cφ,i have been determined
recently in Refs. [20] and [21] to the second and
third order in αs, respectively.

We thus consider the 2-vector singlet structure
function and 2×2 coefficient-function matrix

F =
(
F2

Fφ

)
, C =

( C2,q C2,g

Cφ,q Cφ,g

)
. (10)

With P denoting the matrix of the splitting func-
tions (7) and (8), the evolution kernel for F reads

dF

d lnQ2
=

dC

d lnQ2
f + CPf

=
(
β(as)

dC

das
C −1 + CPC −1

)
F (11)

= KF with K =
(
K22 K2φ

Kφ2 Kφφ

)
.

β(as) = −β0a
2
s
+ . . . with β0 = 11CA/3−2nf/3 is

the standard beta function of QCD. All products
of x-dependent quantities have to be read as con-
volutions (or products of their Mellin transforms).

After expanding in αs, the first term in the sec-
ond line of Eq. (11) receives double-logarithmic
contributions from the non-singlet and singlet co-
efficient functions (7) and (8). The second term,
absent in the non-singlet cases of Refs. [14,15],
includes also the double-log terms of Eq. (6).

The crucial observation, proven by available
three-loop calculations to order α4

s for the non-
singlet parts (thanks to Eq. (5)) and to order α3

s
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for the singlet contribution, is that the physical
kernel K is only single-log enhanced [21], i.e.,

K
(l)
ab =

l∑

η=0

A
(l)
ab,η(1−x)

−δab lnl−η(1−x)+ . . . (12)

where the expansion coefficients K
(l)
ab are defined

as in Eq. (4) for the splitting functions above.

We conjecture that also the flavour singlet part
remains single-log enhanced at the fourth order.
This implies a cancellation between the double-
logarithmic contributions to the, so far unknown,
off-diagonal l = 3 splitting functions (6) and the
known [4,21] coefficient functions to order α3

s from
which the former can be deduced. The results are

P (3)
qg /nf = ln6(1−x) · 0

+ ln5(1−x)
[ 22
27

C 3
AF −

14

27
C 2
AFCF +

4

27
C 2
AFnf

]

+ ln4(1−x)
[ (293

27
−

80

9
ζ2

)
C 3
AF −

116

81
C 2
AFnf

+
(4477

16
− 8ζ2

)
C 2
AFCF −

13

81
CAFC

2
F

+
17

81
CAFCFnf −

4

81
CAFn

2
f

]

+O
(
ln3(1−x)

)
, (13)

P (3)
gq /CF = ln6(1−x) · 0

+ ln5(1−x)
[ 70
27

C 3
AF −

14

27
C 2
AFCF −

4

27
C 2
AFnf

]

+ ln4(1−x)
[ (3280

81
+

16

9
ζ2

)
C 3
AF −

256

27
C 2
AFnf

+
(637
18

− 8ζ2

)
C 2
AFCF −

49

81
CAFC

2
F

+
17

81
CAFCFnf +

32

81
CAFn

2
f

]

+O
(
ln3(1−x)

)
(14)

with CAF ≡ CA − CF . The vanishing of the lead-
ing ln6 (1−x) contributions is due to a cancella-
tion of contributions. Below we will address the
question whether this cancellation is accidental
or a structural feature. Eqs. (13) and (14) show
the colour-factor pattern already noted for l ≤ 2
below Eq. (6). The feature is not an obvious con-
sequence of our derivation and can thus be viewed
as a non-trivial check of the above conjecture.

The extension of the above results to all powers
of (1−x) can be found in Ref. [21].

4. Physical evolution kernel for (F2, FL)

The system of standard DIS structure functions

F =
( F2

F̂L

)
, F̂L = FL/

(
as c

(0)
L,q

)
, (15)

studied before in Refs. [22,23], can be analyzed
in complete analogy to the previous section. Our
normalization of F̂L (of course Eq. (15) involves
a simple division only in Mellin-N space) leads to

C =

(
δ(1−x) 0

δ(1−x) ĉ
(0)
L,g

)
+
∑

l=1

al
s

(
c
(l)
2,q c

(l)
2,g

ĉ
(l)
L,q ĉ

(l)
L,g

)
.(16)

The resulting elements of the physical kernel

K =

(
K22 K2L

KL2 KLL

)
(17)

are again single-log enhanced at large x and read

K
(l)
ab =

l∑

η=0

Â
(l)
ab,η(1−x)−1 lnl−η(1−x) + . . . (18)

at, at least, l ≤ 3 for the upper row of Eq. (17),

with Â
(l)
2L,0 = 0, and at l ≤ 2 for the lower row.

Conjecturing that this behaviour holds at l = 3
also for KL2 and KLL, the three-loop results of
Refs. [1,2,3,4] together with Eq. (13) yield

c
(3)
L,q /CF = ln6(1−x)

16

3
C3
F

+ ln5(1−x)
[
(72− 64 ζ2)C

3
F +

80

9
C2
F nf

−
( 728

9
− 32 ζ2

)
C2
FCA

]

+ ln4(1−x) ·
[
known coefficients

]

+O
(
ln3(1−x)

)
, (19)

c
(3)
L,g /nf = (1−x) ln6(1−x)

32

3
C 3
A

+ (1−x) ln5(1−x)
[
−

2080

9
C 3
A +

64

9
C 2
A nf

+
104

3
C 2
ACF +

40

3
C3
F

]

+ (1−x) ln4(1−x)
[( 70760

27
− 352 ζ2

)
C 3
A

−
(25306

27
−

320

3
ζ2

)
C 2
ACF −

4192

27
C 2
A nf
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+
(1600

27
+ 32 ζ2

)
CAC

2
F +

556

27
CACFnf

+
32

27
CAn

2
f +

(
38−

320

3
ζ2

)
C3
F +

308

27
C2
F nf

]

+O
(
(1−x) ln3(1−x)

)
, (20)

where the coefficient of ln4(1−x) in Eq. (19) has
been suppressed for brevity. The complete form
of this equation has been given in Ref. [14], where
it was derived in another manner which did not
involve the off-diagonal splitting functions. Con-
sequently the consistency of the two derivations
provides another confirmation of the correctness

of the above result for P
(3)
qg . The non-CF parts of

Eq. (20) – here, as App. C of Ref. [21], given for
W -exchange, i.e., without the fl g11 contribution
for the photon case [4] – have also been derived,
but not explicitly written down, in Ref. [14].

5. Unfactorized off-diagonal amplitudes

The single-log enhancement of the above phys-
ical kernels suggests an iterative structure of the
unfactorized structure functions (forward ampli-
tudes), from which the splitting and coefficient
functions are obtained in Mellin-N space via the
mass-factorization relations

Ta,j = C̃a,i Z ij , −γ ≡ P =
dZ

d lnQ 2
Z−1 . (21)

The D-dimensional coefficient functions C̃a in-
clude terms with εk, k ≥ 0 in dimensional regular-
ization with D = 4−2ε. The transition functions
Z collect all terms which are singular for ε → 0.
Inverting the second relation in Eq. (21) yields

Z
∣∣
an
s

=
1

εn
γ n
0

n!
+ . . . (22)

+
1

ε2

(
γ0γn−2

n(n− 1)
+

γn−2γ0

n
+ . . .

)
+

1

ε

γn−1

n
.

At order αn
s , the ε−n . . . ε−2 contribution to Ta

are given in terms of lower-order terms. The ε−n

and ε0 coefficients include the n-loop splitting
functions and (four-dimensional) coefficient func-
tions Ca, respectively. Terms with εk, 0 < k < l
are required for the factorization at order n+l.

We now focus on the leading-logarithmic (LL)
contributions to the off-diagonal quantities Tφ,q

and T2,g and summarize the results of Ref. [24].

With L ≡ lnN these terms are of the form

T
(n)
φ,q /CF

LL
= T

(n)
2,g /nf

LL
=

Ln−1

Nεn

∞∑

k=0

(εL)kLn,k ·

·
(
C n−1
F + C n−2

F CA + . . .+ C n−1
A

)
, (23)

i.e., the coefficients Ln,k are the same for both
amplitudes and all combinations of CF and CA.
Consequently an all-order relation for one colour
structure of either amplitude is sufficient. The
calculations of Ref. [2,21] imply such a relation,

Tφ,q

∣∣
CF only

LL
= T

(1)
φ,q

exp(asT
(1)
2,q )− 1

T
(1)
2,q

, (24)

in terms of the first-order expressions known to
all powers of ε,

T
(1)
φ,q

LL
= −

2CF

N

1

ε
exp(ε lnN) , (25)

T
(1)
2,q

LL
= 4CF

1

ε2
(exp(ε lnN)− 1) . (26)

After carrying out the mass factorization to
a very high order in αs (using Form [25]), the
all-order analytic expressions for the leading-
logarithmic contributions to the splitting func-
tions and coefficient functions have been derived.
The former quantities are given by

P LL
qg (N,αs) =

nf
N

αs

2π
B0(ãs) (27)

with

B0(x) =

∞∑

n=0

Bn

(n!)2
xn

= 1 −
x

2
−

∞∑

n=1

(−1)n

(2n)!2
|B2n|x

2n , (28)

ãs = αs/π (CA−CF ) ln
2N . (29)

The coefficients Bn in Eq. (28) are the Bernoulli
numbers in the standard normalization of Ref.
[26]. The corresponding result for Pgq is obtained
by replacing nf by CF in Eq. (27), and exchanging
CA and CF in Eq. (29).

Due to B2n+1 = 0 for n ≥ 1, the LL coefficients
vanish at all even orders in αs. Consequently the
first lines of Eqs. (13) and (14) (recall the power
counting (4)) are not at all accidental.
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The corresponding all-order result for the coef-
ficient function C2,g reads

C LL
2,g (N,αs) =

1

2N lnN

nf
CA − CF

· (30)

·
{
exp (2CFas ln

2N)B0(ãs)− exp (2CAas ln
2N)

}

C LL
φ,q can be obtained from this result by a simple

substitution of colour factors.

Inserting Eqs. (5) (only the lowest-order terms

with A
(0)
q = 4CF and A

(0)
g = 4CA contribute),

(27), (30), and the well-known relation [27]

C2,q
LL
= exp

(
2asCF ln2 N

)
(31)

and its analogue for Cφ,g into the physical kernel
K2φ in Eq. (11), one finds that the highest dou-
ble logarithm indeed vanishes at all orders in αs.
The same is found for Kφ2. Hence the amplitude-
based resummation verifies the conjecture made
below Eq. (12) for a 6= b, if presently only for the
leading double logarithm.

The function B0(x) in Eq. (28) appears to be
a new function. The relation between |B2n| in
the second line and the even values of Riemann’s
ζ-function [26] implies that this series converges
for all values of x. At positive x the even part of
B0 compensates the odd −x/2 contribution up to
an oscillation around zero, which persists, in an
increasingly irregular manner, at very large (and
possibly all) values of x [28].

B0(x)

x

-10

0

10

20

30

40

-40 -20 0 20 40 60 80 100

Figure 2. The function B0(x) in Eq. (28), evalu-
ated using its defining Taylor expansion.

6. Summary and Outlook

We have summarized the status of our large-x
predictions of higher-order off-diagonal splitting
functions and DIS coefficient functions. The co-
efficients of the highest three powers of ln (1−x)
have been derived for the four-loop contributions
to the splitting functions Pqg and Pgq from the
three-loop coefficient functions and the single-
logarithmic enhancement of the physical evolu-
tion kernel for the system (F2, Fφ) of flavour-
singlet structure functions at order α4

s [21]. In
the present contribution we have employed these
results to derive also the leading three large-x
logarithms for the fourth-order gluon coefficient
function CL,g for the longitudinal structure func-
tion from the analogous kernel for (F2, FL).

These results will become phenomenologically
relevant, via effective x-space parametrizations
analogous to, e.g., those of Ref. [29], once the
next major step towards a full fourth-order calcu-
lation of deep-inelastic scattering, the extension
of Ref. [30] to order α4

s , has been taken.

The determination of flavour-singlet quantities
from the physical kernels is neither rigorous, nor
– unlike in flavour non-singlet cases [14,15] – can
it be extended to all orders in αs. We have pre-
sented first all-order leading-logarithmic results
of a rigorous and more powerful approach, the
prediction of the coefficients of the highest dou-
ble logarithms from the D-dimensional structure
of the unfactorized structure functions together
with mass-factorization to all orders [24].

We expect that, similar to the non-singlet case,
the all-order resummation of double-logarithmic
large-x contributions to flavour-singlet quantities
can be extended beyond parton evolution and in-
clusive DIS. For example, the leading-logarithmic
results of Ref. [24] can be carried over directly to
semi-inclusive electron-positron annihilation and
Z- or Higgs-boson decay. On the other hand,
we do not foresee an extension of our results to
single-logarithmically enhanced large-x terms. It
will be interesting to see whether such an exten-
sion can be achieved in alternative approaches
such as the application of soft-collinear effective
theory to large-x DIS [31] or the recent path-
integral formulation of Ref. [32].
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