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We study the potential to observe CP-violating effects in SUSY cascade decay chains at

the LHC. Asymmetries composed by triple products of momenta of the final state particles

are sensitive to CP-violating effects. Due to large boosts that dilute the asymmetries, these

can be difficult to observe. Extending the methods of momentum reconstruction we show

that the original size of these asymmetries may be measurable. A study is done at the

hadronic level with backgrounds to estimate the expected sensitivity at the LHC.

1 Introduction

The search for Supersymmetry (SUSY) is one of the main goals of present and future colliders
since it is one of the best motivated extensions of the Standard Model (SM). An important
feature of SUSY models is the possibility of incorporating new sources of CP violation that are
required to accommodate the baryon asymmetry of the universe. A careful analysis of how to
observe new CP-violating effects at the LHC will be required and in the following we discuss
an example in the Minimal Supersymmetric Standard Model.

CP-odd observables are the unambiguous way of discovering hints of complex parameters
in the underlying theory. One example of such observables are CP-sensitive asymmetries based
on the exploitation of triple product correlations of momenta and/or spins of three final state
particles with independent momentum, see also [1].

Here we examine the production of t̃1t̃
∗
1 at the LHC with the following decay chain, Fig. 2,

t̃1 → χ̃0
2t, χ̃0

2 → ℓ̃ℓN , ℓ̃ → χ̃0
1ℓF , t → bjj. (1)

In this process [2] the main source of CP-violation comes from the phase of the top trilinear
coupling At = |At|eiφAt . As an observable we choose the TN -odd triple product of momenta of
the final state particles,

T = ~pℓN · (~pW × ~pt) . (2)

Using this triple product one can construct a CP-odd asymmetry,

AT =
NT+

−NT
−

NT+
+NT

−

, (3)
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where NT+
(NT

−

) are the numbers of events for which T is positive (negative).

At the parton level, in the stop t̃1 rest frame, the asymmetry can be as large as 15%, cf.
Fig. 1(a). However, particles produced at the LHC get large, undetermined boosts that are a
consequence of the internal proton structure. Due to these boosts the asymmetry is strongly
diluted as can be seen by comparing Fig. 1(a) and Fig. 1(b). This makes the observation and
analysis of CP-violating effects very difficult at the LHC. For further discussion of these effects
and other studies of CP-violation in stop decays at the LHC see [3].

We show that a very useful tool in such an analysis is the reconstruction of momenta of
all the particles involved in the process, including those escaping detection (χ̃0

1). Using this
technique one can recover the large asymmetry present at the parton level by boosting back
into the rest frame of the stop. Furthermore, we can heavily suppress both standard model and
SUSY backgrounds using reconstruction. Therefore, we greatly increase the discovery potential
and here we present the first hadronic study of momentum reconstruction in relation to CP-
violation. The technique of momentum reconstruction for CP-violating observables was first
presented in [4].

2 CP-violation in the laboratory frame
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Figure 1: The asymmetry AT as a function of φAt
, Eq. (3). (a) in the rest frame of t̃1, (b) in

the laboratory frame at the LHC at 14TeV.

First we study the behaviour of the asymmetry after the inclusion of parton distribution
functions (PDFs). Our observable, Eq. (3), is significantly reduced due to boosts compared
with the asymmetry in the stop rest frame, where it is maximal, see Fig. 1(a). This is because a
boosted frame can make the momentum vector of the lepton appear to come from the opposite
side of the plane formed by W and t, hence changing the sign of the triple product, Eq. (2).
Inclusion of PDFs reduce the asymmetry by about factor of 4 in our case. The maximum
asymmetry is about |AT | ≃ 4.5% and if we use this asymmetry at the LHC it would be of
limited statistical significance.
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3 CP-violation with momentum reconstruction

In order to overcome the dilution factor due to PDFs, we investigate the possibility of re-
constructing the momenta of the invisible particles (χ̃0

1) in the process on an event by event
basis [4, 5]. We perform the reconstruction at the hadronic level to verify the viability of the
technique to the LHC.
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Figure 2: The process studied for momen-
tum reconstruction.

For the decay chain of interest we can recon-
struct the four unknown components of the χ̃0

1 mo-
mentum assuming me know the masses of the four
particles involved in the cascade decay. We write
down the four on-shell mass conditions,

mχ̃0
1

= (Pχ̃0
1
)2, (4)

mℓ̃ = (Pχ̃0
1
+ Pℓ+

F

)2, (5)

mχ̃0
2

= (Pχ̃0
1
+ Pℓ+

F

+ Pℓ+
N

)2, (6)

mt̃1 = (Pχ̃0
1
+ Pℓ+

F

+ Pℓ+
N

+ Pt)
2, (7)

and solve the system.
Once we have the χ̃0

1 momentum we can triv-
ially find the momentum of any other particle in
the cascade decay. We can therefore find the mo-
mentum of the t̃1 and boost all final state particles
into this frame to recover the full asymmetry.

There is a complication in finding the χ̃0
1 mo-

mentum because if we solve Eq. (4-7) we see that
we are left with a quadratic in (Pχ̃0

1
)2. Consequently, we will have two viable solutions for

the χ̃0
1 momentum but we cannot know which is correct. Since we do not have any additional

constraints to pick the correct solution, we calculate the t̃1 rest frame for both. However we
only count those events that give the same sign for the triple product, Eq. (2). This guarantees
that we take the correct sign for the triple product for the calculation of the asymmetry.

In addition, this method also significantly reduces the combinatorial background from wrong
lepton or jet identification and both standard model and SUSY backgrounds [2]. For example,
we need to correctly identify the near and far lepton in the cascade decay, Eq. 1, and our method
is to try to perform reconstruction with both lepton assignments. Firstly, only a small subset
of events with the wrong assignment will give real solutions for the χ̃0

1 momentum. Secondly, if
the wrong assignment does satisfy the kinematical conditions, we only accept events where the
sign of all triple products coincide. As one solution will have the true assignment we know the
sign of the triple product will be correct and thus we will kill the combinatorial background.

Parameter m0 m1/2 tanβ sign(µ) A0

Value 65 210 5 + 0

Table 1: mSUGRA benchmark scenario

To estimate the viability of this measurement at the LHC we study a mSUGRA scenario
(Tab.1) and produce fully hadronic events with a jet finder applied. We also apply realistic cuts
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for the LHC, implement experimental efficiencies (e.g. b-tagging). In addition, we require a
top within a mass window to be reconstructed and include the most important standard model
backgrounds. Within this scenario we find that the LHC should have sensitivity at 3-σ with
500 fb−1 for 0.5π < φAt

< 0.9π.
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Figure 3: Minimum luminosity required for 3σ-discovery of CP-violation in t̃1t̃1 production at
the LHC at 14 TeV. Purple (dark) area is ruled out by LEP direct detection and red (light)
area has no two body decay χ̃0

2 → ℓ̃±ℓ∓. (a) m0,m1/2 plane, (b) tanβ,A0 plane.

In Figs. 3(a,b) we see the effect of varying the mSUGRA parameters on the minimum
luminosity required for a 3-σ observation at the LHC, assuming that the parton level asymmetry,
|AT | = 15%. We see that as m1/2 is increased, Fig. 3(a), we require more luminosity due to an

increased t̃1 mass and hence smaller production cross section. An increase in both tanβ and
A0 also produce a similar increase in the luminosity required for discovery. An increase in tanβ
reduces the χ̃0

2 → ℓ̃±ℓ∓ branching ratio while an increase in A0 produces a smaller At that
consequently reduces our sensitivity to the phase.
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