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Abstract

We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models
of branes at singularities in type IIB string theory. We compute the corrections coming both from
wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory
running and in the UV from threshold corrections that cause it to run from the winding scale associated
to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond
to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not
renormalised there is a physical vertex correction in the 1PI action associated to light particle loops.
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1 Introduction

Loop corrections to effective actions play an important general role in physics. Supersymmetric theories
are celebrated for their special behaviour at loop level and for the protection of holomorphic properties
against renormalisation. Specifically, the superpotential does not get perturbatively renormalised and the
gauge kinetic function is perturbatively renormalised only at one-loop. The study of one-loop gauge cou-
plings and their threshold corrections has been carried out extensively in both field and string theory. In
this context there is an important distinction between the Wilsonian gauge kinetic function, renormalised
only at one-loop, and the physical coupling, which is corrected at all orders. The study of one-loop
Yukawa couplings in string theory has been less extensive, and the distinction between holomorphic and
physical couplings less clearly drawn. Here holomorphy properties have been taken to imply that Yukawa
couplings only receive one-loop corrections from wavefunction renormalisation.
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In this paper we study one-loop Yukawa couplings for supersymmetric models of branes at singularities
in type IIB string theory. These models are local in the sense that for much of the calculation the global
compact completion of the internal manifold does not play a role [1]. Previous studies of one-loop Yukawa
couplings in heterotic and type IIA settings have been performed in [2–5]. There are two important
motivations for this work. The first is that the one-loop behaviour of running couplings in local models
is especially interesting with respect to the volume of the full global manifold. For gauge threshold
corrections, studied in [6–8], gauge couplings run to a scale set by the global volume of the manifold,
the so called winding scale, rather than the local string scale. This has important consequences both
practically, as for the case of local GUT models it implies the string scale is an order of magnitude below
the GUT scale, and conceptually, in the sense of understanding the extent to which a local model can
be decoupled from the bulk. It is natural to investigate the same behaviour for Yukawa couplings, where
indeed we find precisely this property, with UV threshold corrections implying that the Yukawas are
renormalised up to the winding scale rather than the naive cutoff, the local string scale.

The second motivation arose during the calculation and involves the distinction between physical
and holomorphic couplings. In [9–11] it was argued that for supersymmetric field theories with massless
particles, in apparent contradiction to the non-renormalisation theorem, it is possible for superpotential
operators to receive finite loop corrections that are not associated to wavefunction renormalisation. In the
case of Yukawa couplings this corresponds to vertex renormalisation. The vertex correction is generated
in the IR by integrating over light loop momenta. While the Wilsonian superpotential - corresponding
to an action at a scale E with light modes yet to be integrated over - is not renormalised, the vertex
correction is a physical feature of the 1PI action. We find that local models of branes at singularities
(and we expect also more general intersecting brane constructions) fall within this class of theories. We
demonstrate explicit one-loop vertex renormalisation from the world-sheet perspective thereby giving, to
our knowledge, the first realisation of this effect in string theory.

The paper is structured as follows. In section 2 we review the basic CFT building blocks that are
needed for the computation. This section establishes notation and convention, as well as reviewing bosonic
and fermionic correlators on the torus and annulus. We also introduce the model that we study throughout
this paper: fractional D3 branes on the C3/Z4 orbifold. Section 3 contains the main calculation. We first
compute the one-loop Yukawas via a 3-point scattering amplitude computation. This demonstrates the
key renormalisation properties of the Yukawas but also contains some ambiguities regarding the off-shell
continuation. We subsequently resolve these by performing a 4-point calculation that reduces to the 3-
point amplitude in a certain limit. We describe the structure of the string diagram and how it generates
both wavefunction and vertex renormalisation. In section 4 we present a summary and discussion of our
results. The appendix contains a warm-up calculation of gauge threshold corrections as well as various
properties of ϑ-functions.

2 CFT Building Blocks

The computation of the amplitudes requires the evaluation of various CFT correlators between world-sheet
fields that are introduced through the vertex operators. In this section we collate the relevant correlators
and also other miscellaneous CFT results that are used. An incomplete list of useful references for
these CFT correlators are [4, 18–26]. All the amplitudes evaluated in this paper are cylinder (annulus)
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amplitudes and so all correlators are on this topology. We therefore begin with a brief description of this
geometry before describing the relevant correlators.

The cylinder has a single real modulus t and is paramterised by a complex coordinate z. The circles
at each end of the cylinder are positioned at Re (z) = 0, 12 and are parameterised by 0 ≤ Im z ≤ t

2 . The
long cylinder limit is given by t→ 0 and corresponds to the open string UV and the closed string IR. The
long strip limit is t → ∞ and gives the open string IR and closed string UV. There is a single conformal
Killing vector corresponding to translations parallel to the boundary.

The target space coordinates are the real worldsheet bosons xM (z, z̄) where M = 0, ..., 9. We further
decompose xM = {xµ, xm} with µ = 0, .., 3 denoting external directions and m = 4, .., 9 denoting internal
directions. It will also be useful to pair the directions into complex pairs and we define

Xi = x2i−2 + ix2i−1 , (1)

where i = 1, ..., 5. To save on clatter we usually drop the indices on the coordinates unless needed and
denote

X = x1 + ix2 . (2)

There are two basic boundary conditions that can be imposed at each end of the cylinder

Neumann: ∂nX(z, z̄) ≡
1

2
(∂ + ∂̄)X(z, z̄) = 0, (3)

Dirichlet: ∂tX(z, z̄) ≡
1

2
(∂ − ∂̄)X(z, z̄) = 0. (4)

We have also defined the normal and tangential derivatives. In principle we can consider different boundary
conditions at each end of the annulus but since we only study models involving D3 branes we restrict
either to NN or DD boundary conditions. Henceforth we denote the coordinate dependence X(z) without
implying holomorphic properties.

The cylinder can be obtained from the torus by quotienting under the identification z → 1− z̄, with
boundaries at z = 1− z̄. This is useful for relating bosonic (X(z, z̄)) correlators on the torus to those on
the cylinder. The method of images can then be used to obtain the cylinder correlators by starting with
torus correlators and adding an image field at 1 − z̄ for any field at z. The sign of the image correlator
is positive for Neumann boundary conditions and negative for Dirichlet boundary conditions. The torus
modular parameter τ is related to the cylinder modulus by τ = it

2 .

2.1 Vertex operators

The amplitudes are calculated by inserting the vertex operators of the appropriate pictures into the
partition function integral. In this section we briefly summarise the expressions for the vertex operators.
We also note that as we always calculate cylinder amplitudes, the ghost charge should be zero and the
sum of all the vertex operator ‘pictures’ should vanish.

The bosonic vertex operator for a four-dimensional scalar φ is given in the (−1) picture as

V−1
φ (z) = tae−φψieik·x (z) . (5)
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Here z denotes the point on the worldsheet at which the vertex operator is inserted (which we integrate
over). The scalar Chan-Paton wavefunction is denoted ta and the field φ is the ghost from bosonising the
(β, γ) CFT. The field ψi can be (locally) bosonised in terms of free fields Hi so that

ψi = eiHi(z) . (6)

Here i labels the complex direction. Note that this bosonisation is only valid locally as the ψi correlators
depend on the spin structure. However these amplitudes (which we give in section 2.3 below) are fixed
uniquely in terms of this local bosonisation. For economy of notation we typically suppress the CP index
and wavefunction so that for a four-dimensional scalar we have the (-1)-picture vertex operator

V−1
φ (z) = e−φψieik·x (z) . (7)

The four-dimensional gauge field vertex operator is given by

V−1
A (z) = Aae−φǫµψ

µeik·x (z) . (8)

Here again ψµ can be bosonised with H-charge of ±1 and ǫµ is the polarisation vector of the gauge boson
satisifying ǫ · k = 0.

The fermion vertex operator in the (−1
2 ) picture is given by

V
− 1

2

λ (z) = λae−
φ

2 S10e
ik·x (z) . (9)

Here S10 is the ten-dimensional spin field which can be locally bosonised to

S10 =
5
∏

i=1

eiq
iHi , (10)

where the H-charges qi are given by the spin ±1
2 of the complex direction components of the spinor.

To bring the amplitude into the appropriate zero ghost charge picture we can change pictures following
the prescription of [19] using

V i+1 (z) = lim
w→z

eφ(w,w̄)TF (w)V
i (z) , (11)

where we have the picture changing operator

TF (w) =
1

2

(

ψi∂X
i
(w) + ψi∂X

i (w)
)

. (12)

In practice the picture changing is evaluated using the operator product expansions (OPE)

eiaH(w)eibH(z) = (w − z)ab ei(a+b)H(z) + ... , (13)

eiaφ(w)eibφ(z) = (w − z)−ab ei(a+b)φ(z) + ... , (14)

∂X (w) eikX(z) = −
iα′

2
k+ (w − z)−1 eikX(z) + ∂X(z)eikX(z) + . . . , (15)

∂X (w) eikX(z) = −
iα′

2
k− (w − z)−1 eikX(z) + ∂X̄(z)eikX(z) + . . . , (16)
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where the ellipses denote less divergent terms. Terms of O(z−w)−1 are dropped in the picture-changing,
although there are contributing ‘derivative’ terms by combining an O(z − w)−1 term from the ∂XeikX

correlator with an O(z − w) term from a higher-order term in the eiaH(z)eibH(w) OPE. Recall that the
Hi are free fields and so only OPEs with the same direction are non-vanishing. We have also introduced
the notation of complex momenta k± = k1± ik2 for any complex direction (other than the first for which
k± = ±k1 + k2 to match the Minkowski signature), and defined

kX (z) ≡
1

2

(

k+ ·X (z) + k− ·X (z)
)

, (17)

so that in complex notation we can write

k · x (z) = kiX
i (z) . (18)

2.2 Bosonic Correlators

We first evaluate the bosonic correlators, namely those involving the worldsheet bosons X(z, z̄). Since the
bosons are free worldsheet fields, for a correlator to be non-vanishing it must involve the same complex
directions. Therefore such a correlator can be labeled by the associated direction: correlators involving
X1,2 are labeled external, while X3,4,5 are internal. However for computing Yukawa couplings we only
need evaluate external correlators with Neumann boundary conditions, although for completeness we also
give expressions for Dirichlet correlators.

2.2.1 Internal untwisted quantum correlators

The quantum bosonic correlator on the cylinder can be derived from that on the covering torus (denoted
by a subscript T ) which reads

〈X(z)X(w)〉T ,Qu = −α′ log |ϑ1(z − w)|2 +
2πα′

Im τ
(Im (z − w))2 . (19)

Here τ is the torus modular parameter. For comparison with expressions in [18] note that here X is a
complexified coordinate. As only correlators involving the same directions are non-vanishing

〈X(z)X(w)〉T ,Qu = 0 , (20)

as the two real directions give equal contributions of opposite sign. From (19) one can obtain correlators
on the cylinder (denoted by a subscript A) through use of the method of images.

〈X(z)X(w)〉A =
1

2

[

〈X(z)X(w)〉T ± 〈X(1− z̄)X(w)〉T ± 〈X(z)X(1− w̄)〉T + 〈X(1 − z̄)X(1− w̄)〉T
]

,

(21)
where the plus sign applies for Neumann boundary conditions and the minus sign applies for Dirichlet
boundary conditions. We can write the Neumann and Dirichlet correlator explicitly as

〈X(z)X(w)〉NA,Qu = −α′
(

log |ϑ1(z − w)|2 + log |ϑ1(z + w)|2
)

+
8πα′

t
(Im (z − w))2 , (22)

〈X(z)X(w)〉DA,Qu = −α′
(

log |ϑ1(z − w)|2 − log |ϑ1(z + w)|2
)

. (23)
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Here we have used the relation τ = it
2 for the modular parameters of the cylinder and the covering torus.

The Dirichlet correlator has no zero mode since the string center of mass is fixed, whereas for Neumann
boundary conditions the string can take any position.

Vertex operator computations with the bosonic fields can involve not only the bare fields but also their
derivatives. For Neumann boundary conditions the vertex operators involve tangential derivatives ∂tX
whereas for Dirichlet boundary conditions vertex operators involve normal derivatives ∂nX. The relevant
correlators are

〈∂tX(z)∂tX(w)〉NA,Qu = −
α′

2
(∂z∂w log ϑ1(z − w) + c.c.) +

4πα′

t
, (24)

〈∂nX(z)∂nX(w)〉DA,Qu = −
α′

2
(∂z∂w log ϑ1(z − w) + c.c.) . (25)

2.2.2 Momentum exponential correlators and pole structures

We also encounter correlators involving exponentials eikX . These are most easily calculated using real
coordinates xM and momenta kM . The relevant correlator

〈
∏

i

eiki·x(z,z̄)〉 , (26)

is evaluated by contracting the scalars using the real forms1 of the cylinder correlators (22) and (23). In
general this is given by

∏

i<j

e−ki·kjG(zi−zj), (27)

where G(zi − zj) is the bosonic correlator. However for much of our calculation we only require the
Neumann correlator in the limit zi → zj , when we can drop the zero mode piece of (22). This is given by

〈
∏

i

eiki·x(zi,z̄i)〉NA =
∏

i<j

∣

∣

∣

∣

ϑ1 (zij)

ϑ′1(0)

∣

∣

∣

∣

α′kikj

. (28)

We may also write (28) in complex co-ordinates and momenta as

〈
∏

i

eikiX(zj)〉NA =
∏

i<j

∣

∣

∣

∣

ϑ1 (zij)

ϑ′1(0)

∣

∣

∣

∣

α′

2 (k
+

i k
−

j +k−i k
+

j )
. (29)

where we recall that the complex notation kiX (z) is defined in (17).

Another correlator that we require is

〈∂X(w)
∏

i

eikiX(zj)〉NA = −iα′
∏

i<j

k+j
ϑ′1 (w − zj)

ϑ1 (w − zj)

∣

∣

∣

∣

ϑ1 (zij)

ϑ′1(0)

∣

∣

∣

∣

α′

2 (k
+

i k
−

j +k−i k
+

j )
, (30)

1These are simply related to the complex versions by a factor of 1

2
.
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which can be deduced by acting on (28) with a derivative.

At this point we discuss a principle which greatly simplifies our calculations. The important point is
that to probe non-derivative terms in the action we do not need to know the full amplitude but rather only
the zero momentum limit ki → 0. Given this it seems naively that bosonic correlators such as (30) vanish.
However it is also possible to generate a pole in the amplitude which when combined with the correlator
(28) can generate inverse powers of momenta that cancel against the positive momentum powers leaving
a result that is non-vanishing in the zero momentum limit. To see this consider the amplitude factor

A ⊃ lim
k1·k2→0

[

(k1 · k2)

∫

dz1

∣

∣

∣

∣

ϑ1 (z1 − z2)

ϑ′1 (0)

∣

∣

∣

∣

k1·k2 ( ϑ′ (0)

ϑ1 (z1 − z2)

)

]

=
(k1 · k2)

(k1 · k2)
= 1 , (31)

where we have used
ϑ1 (z)

ϑ′1 (0)
= z +O

(

z3
)

. (32)

The pole at z1 = z2 has cancelled the vanishing momentum prefactor. In practice this means that
evaluating certain amplitudes can simply amount to analysing their pole structure.

2.3 Fermionic and Ghost Correlators

The amplitudes also involve correlators of spin fields, which after bosonisation as in (10) correspond to
correlators of H fields. This includes the case of the ψ correlators which are spin fields with ±1 H charge.
The correlators depend on the spin structure, denoted by indices (αβ) = {(00) , (10) , (01) , (11)}, and
read

〈
∏

i

eiaiH(zi)〉 = Kαβ





∏

i<j

(

ϑ1 (zij)

ϑ′1 (0)

)aiaj



ϑαβ

(

∑

i

aizi + θI

)

, (33)

where θI is the orbifold twist in torus I. The constants Kαβ are determined for each amplitude by the
factorisation limit. This amounts to taking the limit zi → zj for all i, j so that the amplitude factorises to
the field theory amplitude times the string partition function. The spin structure is then matched to that
of the partition function. Note that using (13) we deduce that only correlators where the total H-charge
is zero are non-vanishing. This is known as H-charge conservation. These correlators were derived by
Atick and Sen by considering their OPEs with the stress tensor, giving a set of differential equations that
can be solved to obtain the correlator. The details can be found in [4, 20,21].

The ghost correlators can be found by the same method [20, 21]. The resulting correlators are very
similar to the fermionic correlators except with signs and powers reversed,

〈
∏

i

eiaiφ(zi)〉 = Kαβ





∏

i<j

(

ϑ1 (zij)

ϑ′1 (0)

)−aiaj



ϑ−1
αβ

(

−
∑

i

aizi

)

. (34)

Again, the factors Kαβ are determined by factorisation onto the partition function limit.
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2.4 Partition functions

In the 2, 3, 4 spin structures - those involving ϑ00, ϑ01, and ϑ10 - the partition functions for the non-compact
dimensions are given as follows

Bosonic :
1

η4(it)

1

(4π2α′t)2
,

Fermionic :

(

ϑν(0)

η(it)

)2

,

bc ghosts :η2(it),

βγ ghosts :
η(it)

ϑν(0)
,

Total :
ϑν(0)

η3(it)

1

(4π2α′t)2
. (35)

For the 1 spin structure, which involves ϑ11, the above expressions must be changed, and they become

Bosonic :
1

η4(it)

1

(4π2α′t)2
,

Fermionic :

(

η4(it)

)2

,

bc ghosts :η2(it),

βγ ghosts :
1

η2(it)
,

Total :
1

(4π2α′t)2
. (36)

which assumes that the zero modes in the fermionic sector are saturated. If this is not the case that the
partition function vanishes due to integrating over the fermionic zero modes. Note that we require no
additional insertions for the βγ ghosts; their zero modes must be explicitly excluded. In practice however
the effect of the fermionic and ghost partition functions are already incorporated into the correlators (33)
and (34).

The partition function for one compact torus I with twist θI 6= 0 is2

ZI = (−2 sin πθI)
ϑν(θI)

ϑ1(θI)
(37)

while for an untwisted torus of area T2 and complex structure U = U1 + iU2 it is

ZI = Z(t)×

{

ϑν(0)
η3(it/2)

ν = 2, 3, 4

1 ν = 1
(38)

2For the partition function derivation see [6,7] for example
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Figure 1: The Z4 quiver. Each node i has ni fractional branes on it, giving a U(n0)×U(n1)×U(n2)×U(n3)
gauge group. Each arrow corresponds to bifundamental chiral matter.

where

Z(t) ≡
∞
∑

n,m=−∞

exp[−t
πT2
α′U2

|n+ Um|2]. (39)

This assumes that both ends of the string are attached to the same brane stack, hence there is a zero
mode as t → ∞. If one end is on a stack displaced from the first by a (complex) displacement z, then

we should modify |n+Um|2 → |n+Um+ z
2π

√

U2

T2
|2 and there is no such zero mode. In the following we

shall define Z(t) to be equal to 1 when there is no N = 2 sector in the amplitude.

2.5 The Model

The model we use to compute the Yukawa couplings is a Z4 toroidal orbifold with fractional D3 branes on
the fixed point singularities. For our purposes the local model is sufficient and we could equally well work
in a non-compact setting C

3/Z4. The particular compact completion will not affect our general results.
For a concrete global realisation which also cancels N = 2 tadpoles we refer to [6]. For simplicity we do
not introduce orientifolds, which means that a global N = 4 tadpole remains uncancelled. However as the
N = 4 sector does not contribute to running couplings our calculations are not sensitive to this tadpole.
Therefore, although strictly the model is incomplete, it is sufficient for our purposes.

We begin by describing the local properties of the model near a C3/Z4 singularity. This model has been
previously studied in [6] and orientifolded versions of it have been analysed in [7]. The advantages of this
model are that despite being very simple it still has chiral matter with running gauge couplings. Locally
the orbifold is C3/Z4, with the orbifold action Θ given by Θ : (z1, z2, z3) → (e2πi/4z1, e

2πi/4z2, e
−2πi/2z3).

The orbifold twist vector is then 1
4 (a1, a2, a3) =

1
4(1, 1,−2). The non-Abelian part of the gauge group is

SU(n0)× SU(n1)× SU(n2)× SU(n3) and the spectrum is

3
∑

i=0

3
∑

r=1

(ni, n̄i+ar) , (40)
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where (ni, n̄i+ar) denotes matter in the bifundemantal representation of SU (ni)×SU (ni+ar). The quiver
diagram for the model is shown in figure 1. The superpotential is given by

W =

3
∑

i=0

3
∑

r,s,t=1

ǫrstTr
(

Φri,i+arΦ
s
i+ar ,i+ar+asΦ

t
i+ar+as,i

)

, (41)

where we define
Φri,i+ar = (ni, n̄i+ar) . (42)

The indices r, s, t denote the plane that the bosonic field corresponds to (in terms of vertex operators
this is equivalent to the plane in which the boson has non-zero H charge). Local tadpole cancellation
(equivalently cancellation of non-abelian anomalies) requires

n0 = n2 , n1 = n3 , (43)

and after imposing these the β functions for the local gauge groups are given by

βn0
= βn2

= −βn1
= −βn3

=
1

16π2
(2n1 − 2n0) . (44)

The Chan-Paton realisation of the orbifold twist is given for N = 1 and N = 2 sectors by

ΘN=1 = diag (1n0
, in1

,−1n2
,−in3

) . (45)

ΘN=2 = diag (1n0
,−1n1

, 1n2
,−1n3

) , (46)

where 1ni
corresponds to the unit ni×ni matrix. The embedding of the CP factors λninj

of the gauginos
and Φrs into the full CP matrix of the singularity are given by

G1,2 = diag (λn0n0
, λn1n1

, λn2n2
, λn3n3

) ,

Φ1,2 =









0 λn0n1
0 0

0 0 λn1n2
0

0 0 0 λn2n3

λn3n0
0 0 0









,

Φ3 =









0 0 λn0n2
0

0 0 0 λn1n3

λn2n0
0 0 0

0 λn3n1
0 0









. (47)

Note that the matrices satisfy the following

ΦiΘ = ΘΦie2πiθ
i

. (48)

3 Yukawa threshold corrections

In this section we address the main topic of the paper, the calculation of one-loop Yukawa couplings.
The approach we take is to calculate one-loop (annulus) string scattering amplitudes which probe the

11



Yukawa interaction in the theory. From the form of the amplitude we can deduce the resulting terms in
the effective theory.

We begin with a discussion regarding general properties of the amplitudes and effective theory. Fol-
lowing this, in section 3.2 we calculate the 3-point amplitude that directly probes the Yukawa couplings
at one-loop. The required physics is recovered from this calculation but there is an ambiguity regarding
the on-shell limit. To resolve this ambiguity and check our results we perform a 4-point calculation in
section 3.3 which reduces to the 3-point result in a particular limit.

3.1 General structure

There are two ways of computing the one-loop Yukawa coupling, via either a 3-point or a 4-point ampli-
tude. The Yukawa coupling does not involve derivatives and so we are only interested in terms independent
of momentum. The 3-point computation of 〈ψψφ〉 in principle should be performed at vanishing momen-

tum. However in practice there are terms of the form
ki·kj
ki·kj

where numerator and denominator vanish

on-shell. For this reason it is necessary to compute with off-shell momenta and proceed on-shell only at
the end of the computation. This involves a need to resolve ambiguities associated with different ways to
take the off-shell limit.

This ambiguity can be entirely resolved by going to a 4-fermion amplitude, and evaluating this in the
limit where two of the fermion vertex operators approach each other. This factorises the diagram onto
a 3-point diagram with an off-shell scalar propagator. The interaction of this with the two remaining
fermions allows the extraction of the Yukawa coupling. The 4-point amplitude can be computed with
finite momenta and all particles on-shell, and so does not involve any subtle questions of how to continue
momenta off-shell. In practice both methods give the same structures, although the 4-point computation
is more rigorous as it is a purely on-shell computation.

There are two basic set of contributions to the Yukawa couplings, labelled A and B (or C and D)
in figure 2. The first (type A) comes from a loop-corrected propagator attached to a tree-level Yukawa
vertex, as illustrated by the field theory diagram. In the context of a supersymmetric field theory this
term is easily understood as coming from the one-loop correction to the Kähler potential. Terms of
type A receive contributions both from the infrared and the ultraviolet, associated to the running of the
kinetic term, and are logarithmically enhanced. We find that the appropriate running scale is given by
ln(M2

W /µ
2). Here µ is the infrared cutoff - the energy scale of the process - whilst MW is the winding

scale of the compactification, given byMW =MSR whereMS is the string scale and R is the bulk radius.
The infrared corresponds to standard field theory running with a cutoff at the probe energy scale. In
the ultraviolet the presence of the winding scale corresponds to stringy threshold effects. As for similar
behaviour in gauge thresholds this is associated to a locally uncancelled tadpole in the closed string sector.

The term B is more subtle: from a field theory perspective, this corresponds to a pure vertex cor-
rection. Naively such a term should be absent, as it appears to correspond to a renormalisation of the
superpotential. However the non-renormalisation theorems apply only to the Wilsonian superpotential,
for which massless modes are still to be integrated over. In fact we find term B is present. It arises in
the infrared limit and should be understood as a renormalisation of the 1PI vertex - the UV limit of the
loop integral (t ∼ 0) gives no contribution. For the 3-point function in the on-shell limit ki · kj → 0,

12



3-pt

4-pt

Figure 2: The diagrams that enter the Yukawa coupling renormalisation for both 3 and 4-pt diagrams and
their field theory limits. Diagram A occurs in the limit that two of the vertex operators approach each
other. This diagram then factorises onto a wavefunction renormalisation diagram. Diagram B gives a limit
where all vertex operators are well separated. In the field theory this corresponds to a vertex correction
to the Yukawa couplings. Diagrams C and D describe the same processes for the 4-point function. In
this case we always bring two of the fermionic vertex operators together in order to factorise onto the
scalar propagator. Again there are two types of correction to the Yukawa, one coming from wavefunction
renormalisation and one coming from a vertex correction.
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this term is generated in the strict t → ∞ limit. For the 4-point function with the scalar off-shell by an
amount p2 = s, the correction is generated at t & 1/s. This term has an infrared Sudakov divergence for
t ≫ 1/s, which as for general vertex corrections should be regulated by including an additional diagram
with unobservable soft real emission. The vertex correction therefore appears from integrating over loop
momenta at similar or smaller scales to the physics of the scattering process. This identifies this cor-
rection as a genuinely infrared effect associated to the 1PI action, and for the case of massless particles
gives a finite one-loop correction to the zero-momentum Yukawa couplings. As this term comes from
integrating over light modes, it cannot be included in the Wilsonian superpotential defined at an energy
scale E (which is not renormalised). However it does renormalise the ‘1PI superpotential’ determining
the physical couplings.

As an infrared effect, this should be present and calculable already in field theory. This effect is indeed
not unknown in the field theory literature [9–11], although it does not appear to have wide circulation.
For example, the massless Wess-Zumino model has a 2-loop renormalisation of the φ3 vertex [10]. The
effect arises through the presence of a term

∫

d4x d4θ
1

�
D2g(Φ) + c.c , (49)

where g(Φ) is a holomorphic function of the chiral superfield Φ. Replacing
∫

d4θ by
∫

d2θD̄2 and using
D̄2D2Φ = �Φ, this gives an effective contribution

∫

d4x d2θ g(Φ) , (50)

acting as an effective superpotential operator. Such effects are important for all processes involving
massless particles and in general for off-shell processes with energy scale E and particle masses m when
E2/m2 ≫ 1.

This effect is actually generic, and generated at one loop for any supersymmetric gauge theory with
N = 1 supersymmetry and no supersymmetric masses, i.e. for any theory described by the superpotential

W = λijkφ
iφjφk . (51)

Then there is a term generated in the 1PI action given by [11]

Γ ⊃i

∫ 3
∏

i=1

d4ki
(2π)4

δ(
∑

i

ki)

∫

d2θ
∑

s

g2a[T
d
i (a)T e

j (a)]λdekφ
i(−k1)φ

j(−k2)φ
k(−k3)

×

∫ ∞

0
dt

∫ 1

0
dx1

∫ x2

0
dx1 k

2
3 exp[−t(2k1 · k2x1x2 + k21x1(1− x1) + k22x2(1− x2))] . (52)

In the zero-momentum limit, taking pi · pj = −1
2u

2 + 3
2δiju

2, u → 0 this gives a finite Yukawa renor-
malisation

Γ ⊃i

∫

d2θN
∑

a

g2a[T
d
i (a)T e

j (a)]λdekφ
iφjφk , (53)
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where (in terms of Polygamma functions ψ′(z) ≡ d2

dz2
log Γ(z))

N =−

∫ 1

0
dx

log[x(1− x)]

1− x(1− x)

=
1

18

[

ψ′(1/6) + ψ′(1/3) − ψ′(2/3) − ψ′(5/6)

]

≈2.344 . (54)

Consider the model with quiver diagram 1 and the Yukawa coupling between fields (n0, n̄1, 0, 0),(0, n1 , n̄2, 0),
(n̄0, 0, n2, 0). This then obtains a correction, for all ni > 1, of

δλijk =
N

2
(g20 + g21 + g22)λijk

=
3N

2ImS
λijk. (55)

We now compute the Yukawas, first the 3-point and then the 4-point amplitude.

3.2 3-point amplitude

We start by recalling the structure of Yukawa couplings at tree level. CFT computations of tree-level
Yukawa couplings have been carried out for example in [12–17]. We consider the C3/Z4 orbifold and look at
a Yukawa coupling associated to a triangle in the quiver of figure 1 (for example (n0, n̄1)(n1, n̄2)(n2, n̄0)).
Taking the first two fields to be fermions and the final field to be bosonic, the ‘canonical’ vertex operators
are

Va
− 1

2

(u1, k1, z1) = tae−φ/2S±(z1)e
ik1·X(z1)eiq1·H(z1), (56)

Vb
− 1

2

(u2, k2, z2) = tbe−φ/2S∓(z2)e
ik2·X(z2)eiq2·H(z2), (57)

Vc−1(u3, k3, z3) = tce−φeik3·X(z3)eiq3·H(z3). (58)

The bosonised internal H-charges are q1 = (12 ,−
1
2 ,−

1
2) , q2 = (−1

2 ,
1
2 ,−

1
2) , q3 = (0, 0, 1) , and the overall

H-charge structure of each operator is

Va
− 1

2

∼ |+ + > ⊗| + −− >

Va
− 1

2

∼ | − − > ⊗| − +− >

Vc−1 ∼ | 0 0 > ⊗| 0 0 (++) > , (59)

where we have split the external and internal H-charges. We label the external spinors e±
i
2
(H1+H2) as

S+ and S− appropriately; the above choice of H-charges have sufficient generality to construct the full
Lorentz-covariant amplitude. The canonical vertex operators are appropriate for evaluating disk Yukawa
couplings (ghost charge −2). For the annulus we need to picture change two operators to give vanishing
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total ghost charge. It is convenient to do this for one fermion and one boson, which we take to be Vb
− 1

2

and Vc−1. The picture changed operators are given by

Vb1
2

(w) = lim
z→w

T (z)Vb
− 1

2

(w) = lim
z→w

eφ∂Xµψµ(z)V
b
− 1

2

(w), (60)

Vc0(w) = lim
z→w

T (z)Vc−1(w) = lim
z→w

eφ∂Xµψµ(z)V
c
−1(w). (61)

Divergent terms of order O(z −w)−1 are dropped.3 The relevant annulus amplitude is

A =

∫

dt

t

∫

dz1dz2dz3A(z1, z2, z3) (62)

=

∫

dt

t

∫

dz1dz2dz3

〈

V a
−1/2 (u1, k1, z1)V

b
1

2

(u2, k2, z2)V
c
0 (ϕ, k3, z3)

〉

.

There are potentially three non-vanishing contributions to this amplitude. The first contribution (denoted
A1) comes from picture changing in the internal directions, and the latter two (A2 and A3) from picture
changing in the external non-compact directions. Let us start by addressing the case of A1.

From the H-charges it is easy to see that internal picture changing can occur only on the third torus,
where the (-)(-)(++) structure becomes (-)(+)(0) after picture changing. Due to the absence of internal
momenta, there are also no derivative terms (i.e. terms where the derivative part of the PCO is contracted
with the exponential). Writing q

′

2 = (−1
2 ,

1
2 ,

1
2), the resulting amplitude has the structure

A1(zi) =
1

4
u1u2ϕTr[CP ]

〈

e−
1

2
φ(z1)e

1

2
φ(z2)

〉〈

e±i
1

2
(H1+H2)(z1)e∓i

1

2
(H1+H2)(z2)

〉

〈

eiq1·H(z1)e
iq

′

2·H(z2)
〉〈

eik1·X(z1)eik2·X(z2)eik3·X(z3)
〉

〈

∂X̄3(z2)∂X
3(z3)

〉

. (63)

Here u1 and u2 denote the fermions and ϕ the boson, and Tr[CP ] denotes a trace over the CP factors.
As the bosonic correlators are independent of spin structure the only spin structure dependence comes
from the ghost and fermion correlators. These are all of the form

〈

e−
1

2
φ(z1)e

1

2
φ(z2)

〉

,
〈

e±
1

2
Hi(z1)e

∓ 1

2
Hi(z2)

〉

,

where i runs over both internal and external coordinates, and are easy to evaluate using the results of
section 2.3. The combined result for fermion plus ghost correlators in the αβ spin structure is

A1,αβ = ηαβ

(

ϑ1(z1 − z2)

ϑ′(0)

)−1

ϑαβ

(

z1 − z2
2

) 3
∏

i=1

ϑαβ(q
i
1z + q′i2w + θi) . (64)

The sum over spin structures is simplified by the Riemann identity
∑

αβ

ηαβϑαβ(x)ϑαβ(y)ϑαβ(u)ϑαβ(v) = 2ϑ1(x
′)ϑ1(y

′)ϑ1(u
′)ϑ1(v

′) ,

where x′ =
1

2
(x+ y + u+ v) , y′ =

1

2
(x− y + u− v) ,

u′ =
1

2
(x+ y − u− v) , v′ =

1

2
(x− y − u+ v) . (65)

3This comes from the origin of the picture changing in a contour integral,
∫

dz

z−w
T (z)V(w), for which only the pole term

can contribute.
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This gives
A1 ∼ ϑ1(θ1 + θ2 + θ3)ϑ1(θ2)ϑ(z1 − z2 + θ1)ϑ1(θ3) , (66)

which vanishes as θ1+θ2+θ3 = 0 for supersymmetric orbifolds. As this term potentially gets contributions
from all values of the annular modular parameter t we associate it with renormalisation of the Wilsonian
superpotential which, as expected, vanishes in a supersymmetric theory.

We next consider contributions to the amplitude that come from picture changing operators act-
ing on the external coordinates. In the external directions the canonical operators have H-charges
(+,+)(−,−)(0, 0). Up to overall flips in the H-charges and the choice of direction on which to act, there
are essentially two distinct ways of picture changing these operators: first to (+,+)(−,− − −), (0,++)
and secondly to (+,+)(−,+)(0,−−). There are also the analogous picture changing choices for the first
complex extremal direction which serve to complete the momentum structure into a Lorentz covariant
one. We denote the first amplitude by A2 and the second amplitude by A3.

The A2 amplitude has the following structure

A3 =
1

4
u1u2k

2+
2 k2−3 ϕTr[CP ]

〈

e−
1

2
φ(z1)e

1

2
φ(z2)

〉〈

ei
H1
2

(z1)e−i
3H1
2

(z2)eiH1(z3)
〉

〈

ei
H2
2

(z2)e−i
H2
2

(z2)
〉〈

eiq1·H(z1)eiq2·H(z2)eiq3·H(z3)
〉〈

eik1·X(z1)eik2·X(z2)eik3·X(z3)
〉

. (67)

The factors of k2+2 and k2−3 arise from the picture changing contraction with eik·X . From picture changing
applied in the first complex plane there is also a similar term k1+2 k1−3 , but note that even with this
contribution the A2 amplitude by itself cannot form a Lorentz covariant quantity. As the amplitude has
an overall momentum prefactor of k2+2 k2−3 , it naively appears to vanish at zero momentum. However,
this prefactor turns out to be cancelled by an integral over the vertex operator insertions, which give a
momentum pole that cancels this. Using (33) we get

〈

ei
H
2
(z1)e−i

3H1
2

(z2)eiH1(z3)
〉

=

(

ϑ1(z1 − z2)

ϑ
′

1(0)

)−3/4(ϑ1(z1 − z3)

ϑ
′

1(0)

)
1

2
(

ϑ1(z2 − z3)

ϑ
′

1(0)

)−3/2

ϑαβ

(

z1 − 3z2
2

+ z3

)

.

Combining this with the other correlators we obtain for the combined fermion and ghost correlator

A2 ∼
∑

αβ

δαβ η
3

(

ϑ1(z1 − z2)

ϑ
′

1(0)

)−1(ϑ1(z2 − z3)

ϑ
′

1(0)

)−2

× (68)

ϑαβ

(

z1 − 3z2
2

+ z3

)

ϑαβ

(

z1 − z2
2

+ θ1

)

ϑαβ

(

−z1 + z2
2

+ θ2

)

ϑαβ

(

−z1 − z2
2

+ z3 + θ3

)

.

Summing over spin structures using the Riemann identity gives

A3 ∼ η3
(

ϑ1(z1 − z2)

ϑ
′

1(0)

)−1(ϑ1(z2 − z3)

ϑ
′

1(0)

)−2

ϑ1 (−z2 + z3)ϑ1 (z1 − z2 + θ1)ϑ1 (θ2)ϑ1 (z2 − z2 + θ3) .

(69)
Note that eq. (69) incorporates the fermionic and ghost partition functions (as it factorises correctly as
z1 → z2 → z3) but does not include the bosonic partition functions. The spare η3 comes from the ghost
correlator and will cancel a similar term from the bosonic partition function.
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The bosonic correlator gives
〈eik1·X(z1)eik2·X(z2)eik3·X(z3)〉 =

∏

i (−2 sinπθi) exp [−k1 · k2G(z1 − z2)− k1 · k3G(z1 − z3)− k2 · k3G(z2 − z3)]

ϑ1(θ1)× ϑ1(θ2)× ϑ1(θ3)
Z(t) (70)

The denonimator comes from the bosonic partition function, ensuring that the amplitude behaves correctly
in the z1 → z2 → z3 limit. Note that as all momenta are aligned along spacetime directions the Xi

are purely in the external directions: in the internal directions we obtain simply the bosonic partition
functions.

We temporarily replace the full correlator G(zi− zj) by its ϑ1 part (we will justify this retrospectively
later) to get for the combined - fermion, ghost and boson - correlator

A2(zi) =
∏

i

(−2 sinπθi) (71)

× (k2+2 k2−3 )

(

ϑ1(z1 − z2)

ϑ
′

1(0)

)−1+k1·k2 (ϑ1(z1 − z3)

ϑ
′

1(0)

)k1·k3 (ϑ1(z2 − z3)

ϑ
′

1(0)

)−2+k2·k3

×

(

ϑ1(−z2 + z3)

ϑ
′

1(0)

)(

ϑ1(z1 − z2 + θ1)

ϑ1(θ1)

)(

ϑ1(θ2)

ϑ1(θ2)

)(

ϑ1(z3 − z2 + θ3)

ϑ1(θ3)

)

Z(t).

Note this has a pole as z1 → z2 and integrating over vertex operator loci will give a pole in k1 · k2 as
discussed in section 2.2.2 above. We also note that if θi = 0 (as occurs in N = 2 or N = 4 sectors)
then the ϑ1(θ) terms in the denominator (not numerator) should be replaced by η3. To obtain the full
amplitude, we need to integrate (71) over the annular modular parameter and the vertex operator loci
and include the Chan-Paton factors:

A2 =

∫

dt

t(8π2α′t)2

∫

dz1dz2dz3A2(z1, z2, z3)TrL(t
1t2t3θK)TrR(θ

K). (72)

(We include the factor of t−2 coming from integration over the non-compact momenta).

We now study the form of eq (71) for different sectors. For N = 4 sectors eq. (71) vanishes trivially
as there is a ϑ1(θ2) in the numerator which vanishes for θ2 = 0. For N = 1 there are two poles at z2 = z3
and also at z1 = z2. So when integrating over the vertex operator coordinates we will pick up a double
pole overall, and the amplitude will look like

∫

dt

t2
Z(t)TrL(t

1t2t3θK)TrR(θ
K)

k2+2 · k2−3
(k1 · k2)(k2 · k3)

.

This diverges in the on-shell limit k → 0 and it is not clear how to interpret this. Fortunately it is not
necessary to do so as the Chan-Paton traces vanish for the N = 1 sector when we trace over the right
hand side of the string. This is similar to the N = 1 sector for gauge threshold corrections where a
divergent term is cancelled by a vanishing Chan-Paton trace.

Now consider the N = 2 sector for which θ3 is an integer. In this case ϑ1(z2− z2+ θ3) → 0 as z3 → z2
as an integer shift does not affect the zeros of ϑ1. So we now have two positive powers of (z2 − z3) as
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z2 → z3, thereby cancelling the pole in (z2 − z3). We can then write the amplitude as

A2 =

∫

dt

t3
Z(t)

∫

dz1dz2dz3TrL(t
1t2t3θK)TrR(θ

K)
∏

i

(−2 sinπθi) (73)

(k2+2 · k2−3 )

(

ϑ1(z1 − z2)

ϑ
′

1(0)

)−1+k1·k2 (ϑ1(z1 − z3)

ϑ
′

1(0)

)k1·k3 (ϑ1(z2 − z3)

ϑ
′

1(0)

)k2·k3

×

(

ϑ1(z1 − z2 + θ1)

ϑ1(θ1)

)(

ϑ1(θ2)

ϑ1(θ2)

)

(

ϑ
′

1(0)

η3

)

.

where we have used the fact that we are in an N = 2 sector and so θ3 ∈ Z. Before we evaluate this let us
consider the A3 amplitude.

The A3 amplitude involves the picture changing of a fermionic field from −1/2 to +1/2 H-charge.
This means we need to study the derivative terms and in particular evaluate the amplitude before taking
the picture-changing limit. The H-charges in this limit are

ψ
−1/2
1 (z1) =

1

2
(+,+,+,−,−) ,

ψ
−1/2
2 (z2) =

1

2
(−,−,−,+,−) ,

PCO+1(w) = (++, 0, 0, 0, 0) ,

φ0(u) = (−−, 0, 0, 0,++) . (74)

Here ψ denote the fermions located at z1 and z2, φ the boson located at u and PCO+1(w) is the location
of the picture changing field, and we are interested in the limit w → z2. Using (33) we can evaluate the
spin and ghost correlators. For spin structure dependent terms we get

ϑαβ
(

z1−z2
2 + w − u

)

ϑαβ
(

z1−z2
2

)

ϑαβ
(

z1−z2
2 + θ1

)

ϑαβ
(

−z1+z2
2 + θ2

)

ϑαβ
(

−z1−z2
2 + u+ θ3

)

ϑαβ(
z1+z2

2 − w)
(75)

=
ϑαβ

(

−z1+z2
2 −w + u

)

ϑαβ
(

z1−z2
2

)

ϑαβ
(

−z1+z2
2 − θ1

)

ϑαβ
(

z1−z2
2 − θ2

)

ϑαβ
(

z1+z2
2 − u− θ3

)

ϑαβ(
−z1−z2

2 + w)
. (76)

We can now use the 5-theta identity (131) to simplify this to

ϑ1 (−w + u+ θ3)ϑ1 (z2 − w + θ2)ϑ1 (z1 − w + θ1)ϑ1 (z2 − w)ϑ1 (z1 − u)

ϑ1(z1 + z2 − 2w)
. (77)

The spin-structure independent part is

ϑ1(z1 − z2)
−1ϑ1(z1 − w)ϑ1(z1 − u)−1ϑ1(w − u)−1. (78)

Combining (77) and (78) we have a zero as w → z2, and so to cancel this we need to take the pole from

∂X1−(w)eik2·X(z2) →
ik1−2

(z2 − w)
eik2·X(z2).
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We then obtain overall in the limit that (w − z2) → 0

k1−2 k1+3
2ϑ1(u− z2 + θ3)ϑ1(θ2)ϑ1(z1 − z2 + θ1)ϑ1(z1 − u)

ϑ1(z1 − z2)ϑ1(z1 − u)ϑ1(z2 − u)
. (79)

The amplitudes vanishes for both N = 4 and N = 1 sectors. In the N = 2 case, we can take θ3 = 0,
obtaining

∫

dt

t3

∫

dz1dz2dz3k
1−
2 k1+3 TrL(t

1t2t3θK)TrR(θ
K)
∏

i

(−2 sinπθi)
ϑ1(z1 − z2 + θ1)η

3

ϑ1(z1 − z2)ϑ1(θ1)
Z(t). (80)

We can combine with the A2 case of (73) including the equal contributions from both the complex external
directions to give

∫

dt

t3

∫

dz1dz2dz3 (k2 · k3) TrL(t
1t2t3θK)TrR(θ

K)
∏

i

(−2 sinπθi)
ϑ1(z1 − z2 + θ1)η

3

ϑ1(z1 − z2)ϑ1(θ1)
〈
∏

eik·X〉. (81)

This now gives a Lorentz-covariant structure.

There are two interesting limits in this amplitude. Overall we want a contribution that is independent
of momentum and so it is necessary to cancel the k2 · k3 prefactor in the amplitude, which we can do in
two ways. First, we can take z1 → z2, where there is a pole in (z1 − z2) that is regulated by the bosonic
correlator, giving a pole in k1 · k2. Secondly, we can consider the limit where t ≫ 1, |zi − zj | ≫ 1, for
which the integrand becomes a constant. The integral then looks like ∼ k2 · k3

∫

dt
t3
dz1dz2dz3〈e

ik·X〉. This
is regulated by the bosonic correlators in the limit that t ∼ 1

ki·kj
.

We first consider the case of z1 → z2, when the amplitude looks like

∫

d(z1 − z2)

(

ϑ1(z1 − z2)

ϑ
′

1(0)

)−1+k1·k2

∼

∫

d(z1 − z2)(z1 − z2)
−1+k1·k2 →k1·k2→0

1

k1 · k2
. (82)

We perform this integral, pick up the pole and put z1 = z2 in the rest of the amplitude, leaving

A2 =

∫

dt

t3

∫

dz2dz3TrL(t
1t2t3θK)TrR(θ

K)
∏

i

(−2 sinπθi)

(k2 · k3)

(k1 · k2)

(

ϑ1(z2 − z3)

ϑ
′

1(0)

)(k1+k2)·k3 (ϑ1(θ1)

ϑ1(θ1)

)(

ϑ1(θ2)

ϑ1(θ2)

)(

η3

η3

)

Z(t),

where we have used ϑ
′

1(0) = η3. For the limit z1 → z2 the effective restriction of the integral to z1 = z2 in
order to pick up the pole allows the use of the ϑ1 approximation to G(zij) - we only need care about the
behaviour of G(zij) in the vicinity of z1 = z2, which is captured by the ϑ1 approximation. In the on-shell
limit of ki → 0,

∑

ki = 0, k2i = 0 the remaining ϑ functions and momentum factors all either drop out or
cancel, giving

∫

dt

t3

∫

dz2dz3
k2 · k3
k1 · k2

TrL(t
1t2t3θK)TrR(θ

K)
∏

i

(−2 sinπθi)Z(t).

20



The z integrals are now trivial and give a factor of t2, giving overall

A ∼

∫

dt

t

k2 · k3
k1 · k2

TrL(t
1t2t3θK)TrR(θ

K)
∏

i

(−2 sinπθi)Z(t), (83)

which is very similar to the structure that emerged from the study of gauge threshold corrections presented
in the appendix. However one slightly troubling aspect of this expression is that numerical evaluation of
it depends on the off-shell prescription: it is clear k2·k3

k1·k2
should cancel, but the precise numerical coefficient

is not unambiguously determined. This ambiguity can be removed by performing a 4-point computation.

Nonetheless, the essence of this expression is that it is simply proportional to the propagator for the
Φ3 boson, and yields the threshold correction to the Kähler potential in the N = 2 sector (which is
identical in form to the gauge threshold correction). Note that there is no contribution to the one-loop
Kähler potential in the N = 2 sector for the Φ1,Φ2 fields.

This is the same structure that was found for the study of gauge threshold corrections [6]. The
Yukawa couplings run not from the string scale, but instead from the winding scale: the amplitude (83)
diverges logarithmically until winding states are included in the partition function, which only happens for
small values of t ∼ (RMs)

−2. More specifically, tapdole cancellation requires that near t = 0, Z(t) → 0

with Z(t) ∼ e−
1

R2t . However in the large t regime Z(t) ∼ 1 + O(e−R
2t). The key cross-over point is

t ∼ 1/R2,which regulates field theory running at a scale E ∼MW .

This can be associated to a coupling of the Yukawa to the N=2 twisted sector field that can propagate
away from the singularity. As with the threshold corrections, finiteness does not occur until this tadpole
is cancelled.4 Finally note that in this case the running was pure N = 2 and this is because in the absence
of orientifolds the N = 1 running is proportional to the N = 1 tadpoles (or non-Abelian anomalies) which
are cancelled locally. If orientifolds were present there would also be N = 1 contributions to the running
which would terminate at the string scale rather than the winding scale due to their local nature.

The other interesting limit of the amplitude is the case where t → ∞ and |zi − zj | remain large.
Writing z1 − z2 = ixt/2 we have, for x between 0 and 1/2,

f(x, θ1) =
ϑ′1(0)ϑ1(xit/2 + θ1)

ϑ1(xit/2)ϑ1(θ1)

=− iπ coth πxt/2 + π cot πθ1 + 4π

∞
∑

m,n=1

e−πmnt sin(πmxit+ 2πnθ1)

→− iπ + π cot πθ . (84)

There is no dependence on the vertex operator locations and the non-trivial parts of the integral are

k2 · k3

∫

dt

t3
Z(t)

∫

dz1dz2dz3TrL(t
1t2t3θK)TrR(θ

K)e−k1·k2G(z12)−k1·k3G(z13)−k2·k3G(z23) . (85)

The crucial physics is contained in this integral. Let us first discuss the overall understanding of the
physics before proceeding to the more detailed aspects. Since the correlators G go like the distance

4Note that in F-theory set-ups of [8, 27] hypercharge flux is typically used for doublet-triplet splitting and so restricts
non-trivially to the Higgs matter curves. Since the hypercharge flux is globally trivial it is associated to an N = 2 sector and
so the Higgs fields couple to N = 2 sectors and therefore the winding scale running should be present for such models.
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between the zi and these are taken of the order of t the integral takes the schematic form

k2
∫ ∞

0
dt e−tk

2

. (86)

This integral evaluates to a finite constant values which is the finite vertex renormalisation we have been
discussing. To see this consider the different ranges of the values of t. For t ≪ 1

k2 we have that the
exponential is essentially 1 and therefore the contribution to the integral goes like k2t which is very small.
Near the range t ∼ 1

k2
the intergal gets an order 1 contribution. In the limit t≫ 1

k2
the integrand vanishes

due to the exponential factor and so again there is no substantial contribution to the integral. Therefore
we see that the renormalisation effect comes from modes around t ∼ 1

k2
. Since in the on-shell limit k2 → 0

this is a strict IR effect. This is a sign that this term, while real, should be associated with the 1PI action:
it requires the existence of massless particles and comes from the k → 0 limit of the loop integral.

This is exactly what we expect from the field theory. To extract the field theory limit of the amplitude,
we use that as t→ ∞

G(zji) → −4πα′(zj − zi)

(

1−
2Im(zj − zi)

t

)

+ ... , (87)

for Im(zj − zi) lying between 0 and t/2. The ellipses deonte terms that do not depend on the zi. Since
z1 > z2 > z3 we use the conformal Killing vector on the torus to set z3 = 0, then write z1 = (it/2)x1, z2 =
(it/2)x2, t = T/2πα′. We obtain

(k2·k3)TrL(t
1t2t3θK)TrR(θ

K)

∫

dT

2πα′

∫ 1

0
dx2

∫ 1

x2

dx1 exp[−T (2k1·k2(1−x1)x2+k
2
1x1(1−x1)+k

2
2x2(1−x2))].

(88)
A change of variable x1 → 1 − x1 then almost exactly reproduces the expression (52), up to a slightly
different momentum prefactor. To evaluate (88) as an on-shell amplitude, we should impose an infrared
energy cutoff on the T integral of 1/k2 · k3, and then take the limit where k2 · k3 → 0.

There are a number of subtleties here. The first concerns the fact that the Chan-Paton trace is
modified as vertex operators are passed through it (Tr(t1θKt2t3) 6= Tr(t1t2t3θK)). It is simplest to deal
with this by putting the orbifold twist operator at 0. In this case the additional phase introduced by
the Chan-Paton trace is cancelled by the phase in (84), which also varies by e2πiθ as the coordinate x is
brought around the annulus.

The second concerns terms in (87) that are independent of z. For on-shell amplitudes, these do not
affect the exponential correlators 〈

∏

i e
ik·X〉 as their contribution to the exponent automatically vanishes

as (
∑

ki)
2 = 0. For closed string off-shell amplitudes, it is argued in [28] (see p56 journal numbering)

that modular invariance of the amplitude still requires
∑

i,j ki · kj = 0. While modular invariance is not
a defining feature of open string amplitudes, we assume that such terms likewise do not contribute in the
open string exponentials.

The third subtlety is concerned with the deep IR limit t ≫ 1
k2
. Although in our schematic argument

above we claimed that in this limit the bosonic correlators exponential vanishes this is not strictly the case.
The reason is that in for example (88) we can take t ≫ 1

k2
but also say x1 → 0 such that the exponent

remains finite. This corresponds to bringing the vertices closer together although they are still seperated
by scales of order 1

k2 which is large. The problem is that this limit is not really appropriate within the
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Figure 3: The tree-level process which we want to compute the loop corrected amplitude for.

3-point computation because we are probing scales that are only meaningful in an off-shell calculation.
The schematic discussion above still holds becasue these are not the scales which are contributing to the
constant term in the 1PI action. This can be seen intuitively by noting that it is not possible to have
such contributions in the strict k2 → 0 limit as there is no region t > 1/k2. Indeed in the next section we
will be able to probe this contribution by calculating a 4-point amplitude and show that these modes are
giving rise to Sudakov logarithms that are associated to scattering amplitudes.

Even taking into account these subtleties there is still an off-shell ambiguity in this regularisation,
which presents itself in the difference of the momentum prefactor; performing the calculation with the
PCOs acting on different operators will yield the same amplitude but with a different prefactor. It is simply
related to the ambiguity of the off-shell extension for exactly three-point amplitudes (it is unambiguous
for two, and for four or more we may go on shell). This and the other ambiguities can all be resolved
using a 4-point function, to which we now turn.

3.3 4-point amplitude

To resolve the off-shell ambiguities encountered in the 3-point function we now compute the on-shell
4-point function of two chiral matter fermions and their partners in an N = 2 sector, taking the shifts to
be (θ,−θ, 0). This diagram has unambiguous momentum prefactors and so we can use it to confirm the
results of the 3-point calculation while resolving the off-shell ambiguities. We are interested in the loop
level computation of the process whose tree-level structure is given by figure 3. The Chan-Paton factors
are

tψ1
=









0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0









, tψ2
=









0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0









, tψ∗

2
=









0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0









, tψ∗

1
=









0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0









.

(89)
This requires the vertex operators to be ordered as ψ1(z1)ψ2(z2)ψ

∗
2(z3)ψ

∗
1(z4). As we wish to factorise

the 4-point diagram onto a 3-point Yukawa interactions we will be interested in the limit that z1 → z2
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(there is another limit z3 → z4 which, for the spin structure taken below, factorises the diagram onto the
exchange of a gauge boson). We also require a single trace amplitude with all vertex operators on the
same end of the cylinder.

As the 4-point amplitude is evaluated at finite momentum and with all particles on-shell we can without
loss of generality require that ψ1 has momentum (k,−k, 0, 0), implying that k1+1 = k2+1 = k2−1 = 0.
The Dirac equation Γ · k|ψ〉 = 0 then fixes the H-charges of the −1/2-picture vertex operator to be
(+,+,+,−,−). The H-charges of the operators are given by

ψ1 : (+,+,+,−,−),

ψ2 : α2(−,−,−,+,−) + β2(+,+,−,+,−),

ψ∗
2 : α3(+,−,+,−,+) + β3(−,+,+,−,+),

ψ∗
1 : α4(−,+,−,+,+) + β4(+,−,−,+,+). (90)

The coefficients αi, βi are determined by the momenta k2, k3 and k4.. However in the limit we are
interested in (k1 · k2 ≪ 1), then α2 = 1 + O(k1 · k2) and (α3, β3) · (α4, β4) = 1 + O(k1 · k2). This limit
corresponds to both the (ψ1, ψ2) and (ψ3, ψ4) pairs having momenta that are essentially back to back.
In this case it is straightforward to evaluate the amplitude, choosing to picture change the two chiral
fermions ψ1 and ψ2.

We first consider the case of picture changing the internal direction, e.g.

ψ1(z1)
ψ2(z2)
ψ∗
2(z3)
ψ∗
1(z4)









+ + + − −
− − − + −
+ − + − +
− + − + +









−→









+ + − − −
− − + + −
+ − + − +
− + − + +









(91)

It is straightforward to show that all these type of contributions vanish after Riemann summation and so
we should only consider external picture changing.

The external picture changing also turns out to be straightforward. In fact there are only two non-
trivial cases, coming from

ψ1(z1)
ψ2(z2)
ψ∗
2(z3)
ψ∗
1(z4)









+ + + − −
− − − + −
+ − + − +
− + − + +









−→









+++ + + − −
−−− − − + −

+ − + − +
− + − + +









(92)

and
ψ1(z1)
ψ2(z2)
ψ∗
2(z3)
ψ∗
1(z4)









+ + + − −
− − − + −
− + + − +
+ − − + +









−→









+++ + + − −
−−− − − + −

− + + − +
+ − − + +









(93)

There is no analogous combination with the PCOs acting on the second external direction because k2±1 = 0.
All other possibilities end up vanishing. Typically, without the inclusion of derivative terms the terms
vanish due to the Riemann summation with a double zero. In principle derivative terms can then lead to
a non-zero answer. However, the fact that there is a double zero implies that we need derivative terms
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for both ψ1(z1) and ψ2(z2). However derivative terms for ψ1(z1) always involve a contraction of (say)
∂X1+(z1)e

ik1·X(z1), which brings down a factor of k1+1 and therefore vanishes by the equations of motion.

For (92) the fermionic spin sums end up giving

4k1 · k2
ϑ1(z1 − z2 + z3 − z4 + θ)ϑ1(−θ)ϑ1(z1 − z3)ϑ1(z2 − z4)η

6

ϑ1(z1 − z2)ϑ1(z1 − z4)ϑ1(z2 − z3)ϑ1(z3 − z4)ϑ1(θ)ϑ1(−θ)
, (94)

and for (93) the fermionic spin sums give

4k1 · k2
ϑ1(z1 − z2 + θ)ϑ1(−z3 + z4 − θ)η6

ϑ1(z1 − z2)ϑ1(z3 − z4)ϑ1(θ)ϑ1(−θ)
. (95)

We have used the fact that k1−1 is the only non-vanishing part of k1 to write k1−1 k1+2 as 2k1 ·k2
5. (94) and

(95) have the same structure as z1 → z2 or z3 → z4, which are the two limits which factorise the diagram
onto 3-point Yukawa interactions. This reflects the fact that the Yukawa involves the exchange of a spin-0
scalar boson which carries no helicity structure. However (94) also has poles as z1 → z4 and z2 → z3,
which are absent in (95). These poles correspond to the exchange of a spin-1 gauge boson exchange. This
is helicity-forbidden from appearing in (95).

In any case, when we take z1 → z2 to factorise onto a Yukawa diagram, we obtain the expression

∫

dt

t3
Z(t)

∫

dz1dz3dz4
k1 · k2
k1 · k2

ϑ1(z3 − z4 + θ)ϑ
′

1(0)

ϑ1(z3 − z4)ϑ1(θ)
〈
∏

i

eik·X〉. (96)

There are two interesting limits of this expression. The first is to take z3 → z4 (this is limit C of figure
2). This generates a pole 1/k3 · k4 and gives an amplitude of the form

1

k1 · k2

∫

dt

t3
Z(t)

∫

dz1dz3〈
∏

i

eiki·X〉 →
1

k1 · k2

∫ t∼1/k1·k2

t=1/m2
W

dt

t
. (97)

This gives the logarithmic correction to the scalar propagator, with the ultraviolet cut off at the winding
scale from the partition function, and the infrared regulated by 〈eik·X〉 at an energy scale 1/t ∼ k1 · k2.
This matches the running we found in section 3.2 for the 3-point amplitude which we refer to for further
discussion regarding this physics. The pole in (k1 ·k2) is associated to the scalar propagator in the 4-point
diagram, and so should be abstracted before evaluating the Yukawa coupling.

The other interesting limit is to take t → ∞, |zi − zj | ∼ O(t). In this limit we have,

∫

dt

t3

∫

dz1dz3dz4Tr(t
1t2t3t4θK)(−iπ+π cot πθ) exp [−sG(z34)− t(G(z13) +G(z24))− u(G(z14) +G(z23))] .

(98)
where s = k1 · k2, t = k1 · k3, u = k1 · k4, zij = zi − zj and

G(zji) = −4πIm(zj − zi)

(

1−
2Im(zj − zi)

t

)

+ ... , (99)

5Actually there is an additional Lorentz structure present that we are neglecting here for clarity, since it cannot contribute
a correction to a Yukawa vertex. We discuss the complete structure in appendix C.
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for Im(zj − zi) lying between 0 and t/2. The ellipses in (99) denote terms that do not depend on the zi.
When inserted in (98), with the z12 correlator included, such terms drop out due to the (s + t + u) = 0
factor multiplying them. As z1 ≃ z2 up to very small corrections, we can use s + t + u = 0 to simplify
(98) to

∫

dt

t3

∫

dz1dz3dz4Tr(t
1t2t3t4θK)(−iπ + π cot πθ) exp [−sG(z34) + s(G(z13) +G(z14))] . (100)

We can further simplify this in two ways. First, we do a coordinate redefinition z → 2z
it so that the z

coordinates now run from 0 to 1 rather than 0 to it/2. Secondly, we can use (99) to simplify the exponent
of (100). Doing so we find that we can write

(−iπ + π cot πθ)

8i

∫

dt

∫ 1

0
dz1dz3dz4 Tr(t

1t2t3t4θK) exp [−4sπtz31(1− z41)] . (101)

Written in this form z31 and z41 must take values between 0 and 1.

The integral (101) contains all the relevant physics. Let us begin by noting how this recreates the
physics found in the 3-point calculation of section 3.2 and how it resolves any amiguities associated to
going off-shell. First, as discussed above, there is an extra pole in s coming from the scalar propagator in
the scattering which should be extracted before comparing with the 3-point Yukawa coupling calculation.
This effectively means that we should multiplty (101) by s and compare it to (85). We see that they take
the same schematic form. However now the momentum factor in the exponential s and the prefactor, also
s, match and cancel exactly solving the momentum factors mismatch of the 3-point calculation. For scales
t . 1

s all the physics is the same and we find again the finite renormalisation of the 1PI superpotential.
This serves as a non-trivial check of our calculations and physics understanding.

However in a scattering amplitude the loop integral also involves the deep IR region t ≫ 1
s . Such

contributions are a necessary component of vertex renormalisation, as the physical amplitude requires a
sum over virtual and real components. Viewed as part of a 4-point scattering amplitude, (101) is (as one
would expect) infrared divergent with Sudakov logarithms.

We now see this explicitly by evaluating (101). In principle the vertex operators in (101) can take
any ordering, but the Chan-Paton traces enforce an ordering (z1, z3, z4) and cyclic permutations of this.
To evaluate (101) we then take the three orderings, 0 < z1 < z3 < z4 < 1, 0 < z4 < z1 < z3 < 1 and
0 < z3 < z4 < z1 < 1, and evaluate each in turn, focusing on the behaviour for large values of t.

The first case 0 < z1 < z3 < z4 < 1 gives

∫

dt

∫ 1

0
dz4

∫ z4

0
dz1

∫ z4

z1

dz3 exp [−4sπt(z3 − z1)(1− (z4 − z1))]

=

∫

dt

∫ 1

0
dz4

∫ z4

0
dz1

1− exp [−4πst(z4 − z1)(1− (z4 − z1))]

4πst(1− (z4 − z1))

≃

∫

dt

∫ 1

0
dz4

1

4πst
[ln(1 + z1 − z4)]

z4−O(1/st)
0 . (102)

The modified upper limit is due to the effective cutoff that occurs for z1 = z4 − O(1/st), as (1 −
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exp [−4πst(z4 − z1)(1 − z4 + z1)]) → 0.

∫

dt

∫ 1

0
dz4

1

4πst
[ln(1 + z1 − z4)]

z4−O(1/st)
0 =

∫

dt

∫ 1

0
dz4

− ln(1− z4)

4πst

=

∫

dt

4πst
→

1

4πs
ln

(

s

µ2

)

, (103)

for µ2 < s acting as an infrared energy cutoff.

The second case 0 < z4 < z1 < z3 < 1 gives

∫

dt

∫ 1

0
dz3

∫ z3

0
dz1

∫ z1

0
dz4 exp [−4πst(z3 − z1)(z1 − z4)]

=

∫

dt

∫ 1

0
dz3

∫ z3

0
dz1

1− exp [−4πst(z3 − z1)z1]

4πst(z3 − z1)
. (104)

The exponential term is only relevant for z1 . 1/st and z3 − z1 . 1/st, where it causes the integrand to
vanish. So in effect we can write

∫

dt

∫ 1

0
dz3

∫ z3

0
dz1

1− exp [−4πst(z3 − z1)z1]

4πst(z3 − z1)
≃

∫

dt

∫ 1

1/st
dz3

∫ z3−1/st

1/st
dz1

1

4πst(z3 − z1)

=

∫

dt

∫ 1

1/st
dz3

1

4πst
[ln(st) + ln z3] (105)

=

∫

dt
ln(st)− 1

4πst
→

1

4πs

(

1

2
ln2
(

s

µ2

)

− ln

(

s

µ2

))

,

with an infrared cutoff of µ2. This has the characteristic form of a Sudakov double logarithim.

The final case gives

AC =

∫

dt

∫ 1

0
dz1

∫ z1

0
dz3

∫ z1

z3

dz4 exp [−4πst(1 + (z3 − z1))(z1 − z4)]

=

∫

dt

∫ 1

0
dz1

∫ z1

0
dz3

1− exp [−4πst(1 + z3 − z1)(z1 − z3)]

4πst(1 + z3 − z1)

≃

∫

dt

∫ 1

0
dz1

− ln(1− z1)

4πst

=

∫

dt
1

4πst
→

1

4πs
ln

(

s

µ2

)

. (106)

We should now sum all three terms with each having the same sign. As in the 3-point amplitude and
the discussion below eq. (88), there is a phase factor from the Chan-Paton trace that is cancelled by a

phase from the term ϑ1(z3−z4+θ)
ϑ1(z3−z4)ϑ1(θ)

in (96).

We see that the dominant contribution comes from the second case, and has the structure of a Sudakov
double logarithim. This is a (field theory) infrared divergence which is a necessary part of a vertex
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renormalisation in a scattering amplitude. The divergence is physical, and can be regulated by including
diagrams involving a tree-level vertex but with additional soft real emission below the scale of the infrared
cutoff. The sum of the virtual and real soft contributions then cancels the infrared divergence, leaving a
finite result for the probability of scattering without extra particle emission. Note that this expression is
not identical to (52), as there is not a single effective Feynman vertex that can be inserted into a scattering
diagram - consistency instead requires the presence of the above infrared divergence in the vertex that
has to be regulated by the inclusion of unobservable real emission below a given resolution scale.

In summary then, the 4-point amplitude confirms and extends the physics of the 3-point amplitude,
while removing the off-shell ambiguities. With on-shell momenta the 3-point amplitude can only have
trivial kinematics, and thus can give purely a correction to the ‘1PI superpotential’. In the 4-point
amplitude, we can place all particles on-shell while keeping a finite momentum transfer. In this case
we obtain vertex renormalisation with non-trivial kinematics (as the momenta entering the vertex are
off-shell). As necessary for a consistent field theory interpretation, this vertex renormalisation is infrared
divergent, with the divergence being regulated by the inclusion of unobservable soft real emission.

4 Summary and discussion

In this paper we studied the behaviour of one-loop Yukawa couplings in a local type IIB model by
calcluating both 3-point and 4-point amplitudes on the annulus. Both amplitudes recreated the same
physics. In particular, we showed that the Yukawas are renormalised by both wavefunction renormalisation
and vertex renormalisation.

Wavefunction renormalisation can be incorporated into the Wilsonian action as running of the kinetic
terms. Threshold corrections for the kinetic terms were shown to give Yukawa running up to the winding
scale rather than the local string scale. This is the same as occurred for gauge coupling running and the
underlying reasons are the same: the Yukawas couple to a closed string N = 2 mode that locally sources
a tadpole but which must be cancelled for the runnning to stop. This can only happen once the closed
string mode reaches the bulk radius: alternatively, that winding modes are incorporated into the open
string computation. This effect is important both conceptually, as for a truly non-compact local model
the Yukawas would recieve infinite threshold corrections, and phenomenologically. For example it shows
that in local GUT models bottom-tau mass unification occurs at the same (winding) scale as that at
which gauge unification occurs (even though this scale is parametrically above the string scale).

We also showed that vertex renormalisation occurs at one-loop. This is an infrared - but physical -
field theory effect, and is absent from previous studies of one-loop Yukawas in string theory.6 It arises
in the infrared limit of the annulus from loops containing light degrees of freedom. It matches work
done for supersymmetric field theories which argued that such an effect can be present in theories with
massless particles [9–11]. The field theory interpretation of this effect is as an

∫

D2

�
g(Φ) operator. The

renormalisation does not affect the Wilsonian superpotential as it is associated to a loop integral over
light modes but can be understood as a 1PI ‘effective superpotential’.

It would be interesting to exploit this effect for phenomenological purposes. One natural potential
application of this is to supersymmetric models of radiative flavour generation. Models of Yukawa cou-

6We expect that it should be present also within IIA and Heterotic setting.

28



plings in string theory often suffer from a rank-one problem, with corrections to this structure being
only non-perturbatively small. For the models studied here, there is a correction to pre-existing Yukawa
couplings. However it would be very interesting to determine whether or not new Yukawa couplings
could be generated in this way at one-loop. If this was the case then an immediate application would
be to study flavour physics with radiative Yukawa generation in the supersymmetric phase. Even if the
renormalisation is purely that of existing Yukawa couplings it should still be important to take it into
account.
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A Gauge Threshold Corrections

We here describe the computation of gauge threshold corrections for vector bosons, previously carried out
in the background field formalism [6, 7]. We redo this using vertex operators and compute the one-loop
‘scattering’ of two gauge bosons, from which we can extract the propagator. This is as in e.g. [30–33].
Other studies of gauge threshold corrections for IIA/IIB brane models in string theory include [34–39].
As string theory is an on-shell theory this formally vanishes due to kinematic prefactors (k2 = 0) but the
threshold corrections can be extracted by removing this kinematic term.

The computation is carried out on the annulus and requires the insertion of two gauge boson vertex
operators. These are given in the (-1) and 0-pictures by

V−1 = taψµeik·X (107)

V0 = ta
(

i
dXµ

dτ
+ 2α′ (k · ψ)ψµ

)

eik·X (108)

Here ta is the Chan-Paton factor. The annulus requires an overall ghost charge of zero and so we need both
vertex operators in the 0 picture. We furthermore need to sum over all possible annular spin structures.
The amplitude we want is

Avv = g2s

∫ ∞

0

dt

(8π2α′t)2t

∫

dz1dz2
∑

α

cα〈V0(z1; k1, a1)V0(z2; k2, a2)〉. (109)

We have included the factors (8π2α′t)−2 coming from the partition function over the external momen-
tum modes. Here α represents the spin structure, zi the insertion point, ki the momentum and ai the
polarisation. The amplitude is understood as being evaluated in the orbifold and so there is also a trace
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over Chan-Paton factors. We take the generators to be non-Abelian and so the structure of a θk orbifold
sector is

Ak
vv = TrL(t

atbθk)TrR(θ
k)A (110)

where TrL,R denotes a trace over the left and right-handed ends of the string. The basic CFT correlator
required is

∑

α

〈
(

∂Xµ − 2iα′(k1 · ψ)ψ
µ
)

eik1·X
(

∂Xν − 2iα′(k2 ·X)ψν
)

eik2·X〉

Cross-contractions will vanish as 〈: (k · ψ)ψν :〉 = 0 due to normal ordering, and so we are left with two
basic correlators to evaluate

〈∂Xµeik1·X(z1)∂Xνeik2·X(z2)〉 (111)

and
〈(k1 · ψ)ψ

µeik1·X(z1)(k2 · ψ)ψ
νeik2·X(z2) (112)

We can evaluate these by contracting terms using either the bosonic or fermionic Green’s functions until
we have simply the identity operator. The expectation value of the identity operator gives the partition
function, which depends both on the spin structure of the annulus and also on the modular parameter.

The first case of eq. (111) involves only bosonic correlators. Bosonic fields are insensitive to the spin
structure, and so when contracting all the bosons we will be left with an expression of the form

B(z, w)
∑

α

〈1〉α.

This is a sum over the partition functions for each spin structure, and therefore vanishes in a supersym-
metric background.

To obtain a non-vanishing amplitude we instead consider the case (112) which involves contractions
of the fermionic fields. We can contract fermions using eq. (33), which gives for the even spin structures
in the external directions

Sα(z − w) =
ϑα(z − w)ϑ

′

1(0)

ϑ1(z − w)ϑα(0)
.

Note the extra factor of ϑα(0) in the deonominator compared to (33): the reason is that here we have
not yet taken into account the fermionic partition function (which gives an extra factor of ϑα(0) in the
numerator) wherea in (33) this term is already included.

The odd spin structure (P,P) is not relevant for this amplitude as we can never saturate the fermionic
zero modes. We can now evaluate the amplitude (112). We can (effectively) split (112) up into bosonic
and fermionic correlators,

〈eik·X(z1)eik·X(z2)〉〈(k · ψ)ψµ(z1)(k · ψ)ψ(z2)〉α. (113)

The bosonic correlator gives

〈eik1·X(z1)eik2·X(z2)〉 = exp [−k1 · k2G(z1 − z2)] .

Let us define fµν1 = kµ1 a
ν
1 − kν1a

µ
1 and similarly for f2. The fermionic correlator then gives

〈(k · ψ)ψµ(z1)(k · ψ)ψ(z2)〉α = (f1f2)S
2
α(z1 − z2)〈1〉α (114)
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Note that for an on-shell gauge boson k1 ·k2 = 0. However this is really a kinematic prefactor associated to
the presence of an FµνF

µν term, and so we can formally extract it and obtaing the threshold corrections
from the remainder of the amplitude.

The fermionic terms need to be summed over spin structures. We can simplify the amplitude using
the following results (see e.g. [24]).

S2
α(z −w) = P (z − w)− eα−1, (115)

where

P (z) = −∂2z lnϑ1(z)−
1

3

ϑ
′′′

1 (0)

ϑ
′

1(0)
, eα−1 = −4πi∂τ ln

(

ϑα(0, τ)

η(τ)

)

. (116)

As P (z) is independent of α, it follows that after summing over spin structures the only non-zero term
comes from eα−1, and specifically from the ∂τ lnϑα(0, τ) part of eα−1 (as all other terms give a pure sum
over partition functions, which vanishes). So the only relevant part of S2

α(z − w) is

eα−1 = −4πi

(

∂τϑα(0, τ)

ϑα(0, τ)

)

+ (terms independent of α).

Note that this is also independent of (z − w), and so the amplitude summed over spin structures is
independent of the insertion points. This is fortunate as it dramatically simplifies the integrals.

We now evaluate (114). The partition function in an N = 1 twisted sector is

〈1〉N=1 =
ϑα(0)

η3

∏

i

ϑα(uI)

ϑ1(uI)
(117)

So combining the fermionic propagator and the partition function we have

∑

α

ηα
∂τϑα(0, τ)

ϑα(0, τ)

ϑα(0, τ)

η3

∏

i

ϑα(ui)

ϑ1(ui)

where ηα is the spin structure phase factor. Now as ∂τϑα = ∂2zϑα, for N = 1 and N = 2 sectors this
simplifies to

N = 1 :
∑

α

ϑ
′′

α(0)

η3

∏

i

ϑα(ui)

ϑ1(ui)
, (118)

N = 2 :
∑

α

ϑ
′′

α(0)

η3
ϑα(0)

η3
ϑα(ui)

ϑ1(ui)

ϑα(−ui)

ϑ1(−ui)
. (119)

This is now precisely the same expressions that occurred when we were studying the threshold corrections
via the backgound field method.

The Chan-Paton factors are straightforward to evaluate. In each sector, we obtain a factor of
TrL(T

aT bθK)TrR(θ
K). In the θ and θ3 sectors the traces vanish once anomaly cancellation is imposed,

whereas the θ2 sector gives the form of the beta functions.

TrL(T
aT bθ)TrR(θ) ∼ (n0 − n2), (120)

TrL(T
aT bθ2)TrR(θ

2) ∼ (n0 − n1). (121)
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The amplitude
∑

θK

∫

dt

t3

∫

dz1dz2 exp [−k1 · k2G(z1 − z2)] (f1f2)S
2
α(z1 − z2)〈1〉α (122)

can then be restricted to the N = 2 sector. Furthermore, in the limit k2 → 0 we neglect the term
exp [−k1 · k2G(z1 − z2)] and extract the kinematic prefactor f1f2 → FµνF

µν . The overall amplitude is
then

A = (f1f2)

∫ ∞

0

dt

t3

∫

dz1dz2(n0 − n2)
∑

α

ϑ
′′

α(0)

η3
ϑα(ui)

ϑ1(ui)

ϑα(−ui)

ϑ1(−ui)
Z(t). (123)

Here Z(t) is the partition function for winding strings charged under the gauge group. As there is now no
z dependence in the integral, the integration over the zi coordinates simply gives two powers of t, giving
an amplitude

AK = (f1f2)

∫ ∞

0

dt

t

(

TrL

(

T aT bθK
)

TrR(θ
K)
∑

α

ϑ
′′

α(0)

η3

∏

i

ϑα(uI)

ϑ1(uI)

)

Z(t). (124)

Up to the formally vanishing prefactor f1f2, this is precisely the expression for threshold corrections
previously obtained using the background field formalism [6].

B Theta Identities

The standard notation for the Jacobi Theta functions is:

ϑ

[

a
b

]

(z; τ) =
∞
∑

n=−∞

exp

[

πi(n + a)2τ + 2πi(n + a)(z + b)

]

(125)

A common definition is ϑαβ ≡ ϑ

[

α/2
β/2

]

, and

ϑ1 ≡ ϑ11 ϑ2 ≡ ϑ10

ϑ3 ≡ ϑ00 ϑ4 ≡ ϑ01. (126)

Expansions of the functions for q = eπiτ are

ϑ00(z, τ) = ϑ3 = 1 + 2

∞
∑

n=1

qn
2

cos 2πnz

ϑ01(z, τ) = ϑ4 = 1 + 2

∞
∑

n=1

(−1)nqn
2

cos 2πnz

ϑ10(z, τ) = ϑ2 = 2q1/4
∞
∑

n=0

qn(n+1) cos π(2n + 1)z

ϑ11(z, τ) = ±ϑ1 = 2q1/4
∞
∑

n=0

(−1)nqn(n+1) sinπ(2n+ 1)z

(127)
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The Dedekind η function is defined as

η(τ) = q1/12
∞
∏

m=1

(1− q2m) (128)

=

[

ϑ′1(0, τ)

−2π

]1/3

. (129)

The generalised Riemann summation formula is

∑

α,β

(−1)α+β+αβ
4
∏

i=1

ϑ

[

α/2 + ci
β/2 + di

]

(zi, τ) = 2ϑ

[

1/2
1/2

]

(
∑

i

zi/2, τ)ϑ

[

1/2 + c2
1/2 + d2

]

(
z1 + z2 − z3 − z4

2
, τ)

× ϑ

[

1/2 + c3
1/2 + d3

]

(
z1 − z2 + z3 − z4

2
, τ)ϑ

[

1/2 + c4
1/2 + d4

]

(
z1 − z2 − z3 + z4

2
, τ). (130)

We also have the five-theta identity [20]:

∑

ν

δνϑν(z1)ϑν(z2)ϑν(z3)ϑν(z4)ϑν(z5)ϑ
−1
ν (z1 + z2 + z3 + z4 + z5)

= −2ϑ1(z1 + z2 + z3 + z4)ϑ1(z2 + z3 + z4 + z5)ϑ1(z1 + z3 + z4 + z5)

× ϑ1(z1 + z2 + z4 + z5)ϑ1(z1 + z2 + z3 + z5)ϑ
−1
1 (2[z1 + z2 + z3 + z4 + z5]). (131)

Another identity useful for threshold corrections is

∑

α

ϑ
′′

α(0)

η3

∏

i

ϑα(uI)

ϑ1(uI)
= −2π

3
∑

i=1

ϑ′
[

1/2
1/2

]

(ϑi, it)

ϑ

[

1/2
1/2

]

(ϑi, it)

. (132)

C Determination of Amplitude via Lorentz Structure

We are seeking to compute the four-fermion amplitude

∫ ∞

0

dt

(4π2α′t)2
2

it

(
∫ it/2

0

4
∏

i=1

dzi

)

A4 ≡ (133)

∫ ∞

0

dt

(4π2α′t)2
2

it

(
∫ it/2

0

4
∏

i=1

dzi

)

Nuα1u
β
2v

γ̇
3v

δ̇
4 lim
u→z1

lim
v→z2

〈Ẋµ(u)Ẋν(v)
4
∏

i=1

eiki·X(zi)〉

× (u− z1)
1/2(v − z2)

1/2〈Sα(z1)Sβ(z2)S̃γ̇(z3)S̃δ̇(z4)ψ
µ(v)ψν(u)〉

where we are picture-changing the two chiral operators; the uiα, v
i
γ̇ are the wavefunctions for the chiral and

anti-chiral fermions respectively. N is a normalisation factor absorbing the normalisation of the PCOs
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and vertex operators determined at tree level. In general it is necessary to also have amplitudes where
the PCOs act on the internal directions, but it can be easily shown that in this case all such amplitudes
vanish.

The fermionic portion of the amplitude must have the structure

〈Sα(z1)Sβ(z2)S̃γ̇(z3)S̃δ̇(z4)ψ
µ(v)ψν(u)〉 =AĈαβĈγ̇δ̇η

µν +B(ĈΓµΓν)βαĈγ̇δ̇

+ C(ĈΓνΓµ)δ̇γ̇Ĉαβ +D(ĈΓνΓρ)δ̇γ̇(ĈΓµΓρ)βα. (134)

This is the same as in [22], where a similar computation was performed in the context of the Het-
erotic string. We can determine A,B,C,D as functions of the vertex operator positions by comput-
ing a judicious choice of string amplitudes. For this, we work in a helicity basis, with {Γa+,Γb−} =
δab, {Γa+,Γb+} = {Γa−,Γb−} = 0, spinors |a − 1/2, b − 1/2〉 = (Γ2+)b(Γ1+)a| − −〉 corresponding to the
spin field ei(a−1/2)H1ei(b−1/2)H2 and have the charge conjugation matrix Ĉ where

Ĉ| − −〉 =|++〉

Ĉ|++〉 =− | − −〉

Ĉ|+−〉 =− | −+〉

Ĉ| −+〉 =|+−〉. (135)

Then calculating the amplitude A1 where α = |+ +〉, β = | − −〉, γ̇ = | + −〉, δ̇ = | −+〉, we have for
µ = 1+, ν = 1−

A1 ≡
1

2
A−B. (136)

If we then have µ = 1−, ν = 1+ we find

A2 ≡
1

2
A− C. (137)

Further choosing µ = 2+, ν = 2− gives

A3 ≡
1

2
A−B − C + 2D (138)

and µ = 2−, ν = 2+

A4 ≡
1

2
A. (139)

This allows easy determination of the coefficients:

A =2A4

B =A4 −A1

C =A4 −A2

D =
1

2
(A3 −A2 −A1 +A4). (140)

Computation of these four amplitudes then yields the whole result; any other choice of spinors or µ, ν
must be consistent with this. Once we compute these four amplitudes for an N = 2 sector of the theory,
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we find that once we take spin-structure summation and the equations of motion into account only two
are non-vanishing. This is because the enhanced symmetry of this sector causes there to be no bosonic
derivative terms contributing; all of the amplitudes are thus contracted with k1, k2 and we find terms B
and D vanish by the equations of motion. Thus we need only consider two amplitudes, A2 and A4.

To determine A2 we compute the fermionic correlator with charges

ψ
+1/2
1 (z1) =

1

2
(+ + +,+,+,−,−) ,

ψ
+1/2
2 (z2) =

1

2
(− −−,−,−,+,−) ,

ψ̃
−1/2
3 (z3) =

1

2
(+,−,−,+,+) ,

ψ̃
−1/2
4 (z4) =

1

2
(−,+,+,−,+) . (141)

Afer Riemann summation we obtain

X2 ≡ 2
ϑ1(z1 − z2 + θ)ϑ1(z3 − z4 − θ)(ϑ′1(0))

2

ϑ1(z1 − z2)ϑ1(z3 − z4)ϑ1(θ)ϑ1(−θ)
(142)

To determine A4 we compute the fermionic correlator with charges

ψ
+1/2
1 (z1) =

1

2
(+,+ ++,+,−,−) ,

ψ
+1/2
2 (z2) =

1

2
(−,− −−,−,+,−) ,

ψ̃
−1/2
3 (z3) =

1

2
(+,−,−,+,+) ,

ψ̃
−1/2
4 (z4) =

1

2
(−,+,+,−,+) . (143)

Afer Riemann summation we obtain

X4 ≡ 2
ϑ1(z1 − z2 − z3 + z4 + θ)ϑ1(z1 − z4)ϑ1(z2 − z3)(ϑ

′
1(0))

2

ϑ1(z1 − z2)ϑ1(z3 − z4)ϑ1(z1 − z3)ϑ1(z2 − z4)ϑ1(θ)
. (144)

So then the total result is

A4 =(2α′)2N

[

2X4k1 · k2(u1 · u2)(u3 · u4) + (X4 −X2)(ũ4C/k1/k2ũ3)(u1 · u2)

]

Z(t)

=(2α′)2N

[

(X2 +X4)k1 · k2(u1 · u2)(u3 · u4) + (X4 −X2)k1µk2ν(ũ4ĈΓ
µν ũ3)(u1 · u2)

]

Z(t). (145)

where u1 · u2 = uα1Cαβu
β
2 , Γ

µν ≡ 1
2 [Γ

µ,Γν ] and Z(t) is the bosonic classical partition function in the
untwisted torus (39).
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