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I. INTRODUCTION 
  
 Free-electron lasers require an electron beam with high peak current and low transverse 
emittance. In order to meet these requirements several bunch compressors are usually planned 
in the beam line [1], [2]. 
 The nonlinearities of the radio frequency (RF) fields and of the bunch compressors (BC’s) 
can be corrected with a higher harmonic RF system [3]. An analytical solution for 
cancellation of RF and BC’s nonlinearities for a one stage bunch compressor system was 
presented in [3]. The second order treatment of multistage bunch compressor systems was 
done in [4], where the difficulty to extend the third-order analysis to multistage systems was 
pointed out as well. 
 In this paper we present, for the first time, an analytical solution for the nonlinearity 
correction up to the third order in a multistage bunch compression and acceleration system 
without collective effects for an arbitrary number of stages. A more general solution for a 
system with collective effects (space charge forces, wakefields, a coherent synchrotron 
radiation (CSR) within the chicane magnets) is found by an iterative tracking procedure based 
on this analytical result.  We apply the developed formalism to study the two stage bunch 
compression scheme at FLASH [1]. The analytical estimations of RF tolerances are given for 
two and three stage bunch compression as well.  
 
  

II. ANALYTICAL SOLUTION OF MULTISTAGE BUNCH COMPRESSION 
PROBLEM WITHOUT COLLECTIVE EFFECTS 

 
A. Problem formulation 

 
 Let us consider the transformation of the longitudinal phase space distribution in a 
multistage bunch compression and accelerating system shown in Fig.1.  The system has  
bunch compressors ( ,…, ) and  accelerating modules ( ,…, ). The first 
module consists of the fundamental harmonic module  and of the higher harmonic 
module   placed as shown in Fig. 1.  

N
1BC BCN N 1M MN

1,1M

1,M n

                                                 
* Corresponding author. Tel.:+49-040-8998-1802; fax: +49-040-8998-4305 
  E-Mail address: igor.zagorodnov@desy.de  



 The longitudinal coordinate after bunch compressor number i  is denoted as , the energy 
coordinate at this position is denoted as 

is

iδ . The reference particle is always in the origin of 
the coordinate system. The initial coordinates are denoted as ( , )s δ  and the reference particle 
has the initial energy 0

0E . In the following we neglect an uncorrelated energy spread and 
approximate the longitudinal phase space distribution by a third order polynomial 
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FIG. 1. The multistage bunch compression system with the high harmonic module at the first stage. 
 
 
The energy changes in accelerating modules ,   can be approximated as Mi 1,1M
  1,1 1,1 1,1( ) cos( )E s V ks ϕΔ = + , 1( ) cos( ( ) )i i i iE s V ks s ϕ−Δ = + 1i >, , 
where iϕ  is a phase,  is the on crest voltage and k  is a wave number.  iV
The energy change in the high harmonic module is given by 
  1, 1, 1,( ) cos( )n nE s V nks nϕΔ = + . 
The relative energy deviations in bunch compressors read 
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The transformation of the longitudinal coordinate in compressor  can be approximated by 
the expression 

BCi

  ( )2 3
1 56 56 56( ) ( ) ( ) ( ) ( )i i i i i i i is s s s r s t s u sδ δ δ−= − + + , 1,...,i N= , 

where we have used a simplified notation ( , ,  , see [3]) for 
the momentum compaction factors in compressor number i . 

( )
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i
ir R≡ ( )

56 566
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it T≡ ( )
56 5666

i
iu U≡

In order to simplify the notation in the equations below we introduce a new function 
( ) ( )i iZ s s s′≡ and the inverse bunch compression factors 

  , (0)i iZ s′≡ (0)i iZ s′ ′′≡ , .   (0)i iZ s′′ ′′′≡

Let us suggest that we know the desired energies 0{ }iE  and the desired compression factors 
0{ }iZ  in all bunch compressors. For the linear compression in the middle of the bunch we 

would like to have the first and the second derivatives of the global compression equal to 
zero: , . In general case they could take arbitrary values 0NZ ′ = 0NZ ′′ = 0

NZ ′  and 0
NZ ′′ .  

 In order to find  settings of RF parameters , 2N + 2 1,1V 1,1ϕ , , 1,nV 1,nϕ , { , }i iV ϕ , 
, of the accelerating modules we have to solve the non-linear system of 2,3,...,i = N 2 2N +  

equations 
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          (1) 0

0 0

(0) 0, 1,..., ,

(0) , 1,..., ,

(0) , (0) .

i

i i

N N N N

i N

s Z i N

s Z s Z

δ = =⎧
⎪ ′ = =⎨
⎪ ′′ ′ ′′′ ′′= =⎩

In the next section we describe the analytical solution of this system for arbitrary number of 
stages . Then in Section II.C the explicit forms of the solution for two and three stage 
bunch compression systems are given. 

N

 
B. Analytical solution of the multistage bunch compression problem 

  
 In order to simplify the form of the solution and to generalize it for arbitrary number of 
stages we split system (1) in two independent problems. 
 To simplify the notation let us introduce the new variables  
  1,

1, 1, 1,
ni

n n nX iY V e ϕ+ = , 1,1
1,1 1,1 1,1

iX iY V e ϕ+ = , ii
i i iX iY V e ϕ+ = , , 1i >

  ,  . ( )2 ,..., T
NX X=X ( )2 ,..., T

NY Y=Y
Then the first problem for   variables reads 2N +1

N
         (2) 

0
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i

i is
δα ∂

=
∂

, is an unknown vector which describes up to the third 

order the energy curve immediately after the high harmonic module. If we know the solution 
of system (2) then we can formulate the second problem for the RF parameters in module 

1M . The second problem for 4 variables reads 

  

1 1,1 1,1 1, 1,
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The last problem can be written as a linear system 

  .   (4) 
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If the initial values 0
0E , , , 0 (0)δ ′ 0 (0)δ ′′ 0 (0)δ ′′′  and the variables iα , , are known 

then the solution of  Eq. (4) reads 
1,2,3i =

  
2

3 1
1,1 2 2

( )
( 1)

F F knX
k n
+

=
−

, 
2

4 2
1,1 3 2

( )
( 1)

F F knY
k n
+

= −
−

 ,      (5) 

   
2

3 1
1, 2 2( 1)n

F F k
k n

+
= −X

−
, 

2
4 2

1, 3 2( 1)n
F F k
k n n

+
=Y

−
, 

 3



where 

  0 0
1 1 0F E E= − , 

1
0 0 0
1 1 0 1 (0), 2,3, 4

i

i i iF E E i
s
δα

−

− −
∂

= − = .  
∂

 The main difficulty which remains is to find the solution of non-linear system (2). In order 
to write explicitly the last two equations in system (2) we need to find the first three 
derivatives of functions  and ( )is s ( )i sδ . In the following we omit argument . In this 
simplified notation the first three derivatives at 

s
0s =  read 

  1 56i i is s r iδ−′ ′= − ′ ,  ( )21 56 562i i i i i is s r tδ δ−′′ ′′ ′′ ′= − − ,     (6) 

  ( )31 56 56 566 6i i i i i i i i is s r t uδ δ δ δ−′′′ ′′′ ′′′ ′ ′′ ′= − − − ,  1,...,i N= , 
  , , , 0 1s′ ≡ 0 0s′′ ≡ 0 0s′′′ ≡
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i
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δ
δ − − − − − −′′′ ′ ′′− − −′′′= , 2,...,i N= , 

  1 1δ α′ ≡ , 1 2δ α′′≡ , 1 3δ α′′′≡ . 
 Let us describe the solution of system (2) step by step. At the beginning, from the first  
equations, 

N
(0, ) 0iδ =X , we can easily find the components of vector : X

  0 0
1i i iX E E −= − , .        (7) 2,...,i = N

s α′From the next  equations, 1N + 0
1(0, , , )i iZ=X Y 1,...,i N, = , we find the components of 

vector  and the energy chirp Y 1 1α δ ′≡  before  : 1BC

  1

56

i i
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i

Z Z
r
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i
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−

′ ′−
= ,   .       (9) 2,...,i = N

From equation 0
1 2(0, , , , )N Ns α α′′ ′=X Y Z  we can find parameter 2α . This equation can be 

rewritten as a system of linear difference equations (see Eqs. (5), (6)) 
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where  
  i ix s′′≡ , 0

i iy E iδ ′′≡ ,  0 0
N Nx Z ′≡ , 

  56
0
i

i
i

ra
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= − , b t ( )2
562i i iδ ′= − 1,...,, i N= , 

  , , . i id kY= − 2 2
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It is easy to check that the solution of the problem (10) can be found as 

  1
2 0

1

y
E

α = , 
0

1
N N

N

Z xy
x
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where  Nx  and Nx  are solutions of the particular homogeneous and inhomogeneous problems 
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y y d x
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−
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= +⎧
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,
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0, 0.
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x x a y b
y y d x e
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−
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  1,...,i N= .    (12) 

The unknowns Nx  and Nx   can be found straightforwardly from the recurrence relations (12). 
 Finally, the last equation, 0(0, , , )N Ns′′′ ′′=X Y α Z , allows to find 3α . This equation can be 
rewritten in a system of linear difference equations like (10) with some of the coefficients 
being different: 
 i ix s′′′≡ , 0

i i iy E δ ′′′≡ ,  0 0
N Nx Z ′′≡  

 ( )3
56 566 6i i ib t u iδ δ δ′ ′′ ′= − − ,  3 3 2 2

1 13i i i i ie k Z Y k Z Z X− − 1 i−′= − .    
 Hence, we have found a unique solution of the original problem (1) for any number of 
stages . We will use this analytical solution in section IV to define a bunch compression 
working point for the FLASH facility [1]. 

N

 
C. Explicit form of the solution for two and three stage bunch compression systems 

 
 In this section we present the above derived analytical solution explicitly for two and three 
stage bunch compression schemes as used at DESY.  
 The Free Electron Laser in Hamburg (FLASH) [1] uses a two stage bunch compression 
scheme with a third harmonic module before bunch compressor . In order to find 6 RF 
settings (

1BC

1,1 1,1 1,3 1,3 2 2, , , , ,X Y X Y X Y ) we have to define and to solve system (1) for . To 
define 6 equations in system (1) we have to fix 12 independent parameters: 

2N =

 0
0 0 0 0, , ,E δ δ δ′ ′′ ′′′  -initial conditions (as obtained from the gun simulations); 

 - deflecting radii and nominal energies in the bunch compressors; 0 0
1 2 1 2, , ,r r E E

 1Z - compression factor in bunch compressor ; 1BC
 2 2 2, ,Z Z Z′ ′′ - parameters of the global compression after  . 2BC
The solution of system (1) for the two stage bunch compression system can be written 
explicitly: 

, 
0 0

1 1 2 2
2
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E EY
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α δ ′−
= , 1 2

2
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r

δ −′ = ,     (13)  0 0
2 2 1X E E= − , 1

1
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2

Z xy
x
′ −

= ,  ( )2562
2 1 2 562 20

2

2rx x y t
E

δ ′= − −  ,   

 , 2 2
2 1 2 2 1xy k Z X kY= − − 2

1 561 12x t α= − , 562
2 1 0

2

r
2x x y

E
= −  ,    2 2 1x1y kY= − , 561

1 0
1
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E

= − , 
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ŷ
E

α = , 2 2
1

2

ˆ
ˆ Z xy

x
′′ −

= ,  ( )3562
2 1 2 562 2 562 2 2

2

ˆ ˆ ˆ 6 6rx x y u t
E

δ δ δ′ ′ ′′= − − −  ,  
0

2 1 2 2
2 0

2

E y y
E

αδ +′′ = , 

 , 3 3 2
2 1 2 1 1 2 2 1

ˆ ˆ3y k Z Y k Z Z X kY x′= − − 3
1 561 1 561 1 2

ˆ 6 6x u tα α α= − − , 2
1 561 2 561 12Z r tα α′ = − − .  

The RF parameters 1,1 1,1 1,3 1,3, , ,X Y X Y  can be found through relations (5) with . 3n =
 The European X-ray Free Electron Laser (XFEL) will use a three stage bunch 
compression scheme with third harmonic module for the longitudinal phase space 
linearization. In this case we have to define 8 RF parameters 
( 1,1 1,1 1,3 1,3 2 2 3 3, , , , , , ,X Y X Y X Y X Y ). In order to define 8 equations in system (1) we have to fix 
15 independent parameters: 
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 0
0 0 0 0, , ,E δ δ δ′ ′′ ′′′  -initial conditions  (as obtained from the gun simulations); 

 - deflecting radii and nominal energies in the bunch compressors; 0 0 0
1 2 3 1 2 3, , , , ,r r r E E E

 1Z , 2Z  - compression factors after compressor  and after compressor ; 1BC 2BC
 3 3 3, ,Z Z Z′ ′′ - parameters of the global compression after compressor 3BC   . 
The solution for this configuration can be written explicitly: 

 0 0
3 3 2X E E= − ,  

0 0
2 2 3 3

3
2

E EY
kZ

δ δ′ ′−
= , 2

3
563

3Z Z
r

δ −′ = ,      (14) 

 1
2 0

1

y
E

α = , 3 3
1

3

Z xy
x
′ −

= , ( )2563
3 2 3 563 30

3

2rx x y t
E

δ ′= − −  ,  ,   2 2
3 2 2 3 3y y k Z X kY x= − − 2

 563
3 2 0

3

r
3x x y

E
= −  ,    3 2 3y y kY x= − 2 ,  

 1
3 0

1

ŷ
E

α = , 3 3
1

3

ˆ
ˆ Z xy

x
′′−

= , ( )3563
3 2 3 563 3 563 3 3

3

ˆ ˆ ˆ 6 6rx x y u t
E

δ δ δ′ ′ ′′= − − − , 

  
0

2 1 3 3
3 0

3

E y y
E

αδ +′′ = ,  , 3 3 2
3 2 2 3 2 2 3 3 2

ˆ ˆ ˆ3y y k Z Y k Z Z X kY x′= + − − ( )2
2 1 562 2 562 22Z Z r t′ δ δ′ ′′ ′= − −

,

. 

Other RF parameters can be found by the same relation as for two bunch compression system 
(see Eq. (13)). 
  

D. Analytical estimation of RF tolerances 
  
 The final bunch length and the peak current are sensitive to the energy chirp and thus to 
the precise values of the RF parameters. Let us calculate a change of the compression due to a 
change of the RF parameters.  
 To simplify the notation we define 

 0
1 0 1,1 1 3X E X X= + + , 1

1 1,1 1,33Y Y
k

Y ξ
= − + + ,      (15) 

where 1 0 (0)s Eξ = ∂  is an initial energy chirp. Additionally we introduce RF parameter  
vectors 
  ( , )T

i i iX Y≡v , , 0 0 0( , )T
i i iX Y≡v ( , )T

i i iX YΔ ≡ Δ Δv , 0
i i iX X X+ Δ 0

i i iY= + Δ, Y Y , =
where symbol “ 0 ” stays for the RF parameters as obtained in Section II.C from the analytical 
solution. 
 In order to obtain a stable bunch compression and to estimate the acceptable change in the 
RF parameters we require that the relative change of compression  at  is smaller 
than  

1
i iC Z −≡ 0s =

Θ

  
0

0

( ) ( )
( )

i j i j

i j

C C
C
−

≤ Θ
v v

v
. 

Neglecting the second order terms the last inequality can be rewritten in the form 
 0( ) ( )

jj i j i jC CΔ ⋅∇ ≤ Θvv v v , 

where term  means the gradient of the compression in two dimensional 

space . Applying the Cauchy–Bunyakovsky inequality we obtain the admissible 
relative change in RF parameters  

( ,
j j j

T

i X i Y iC C C∇ = ∂ ∂v )
( , )i iX Y

( , )i iX Y
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0

0

j

j i

j j i

Z
V Z

Δ Θ
≤

∇v

v

v
, ( , )T

i i iX YΔ ≡ Δ Δv .       (16) 

Hence, in order to estimate the RF tolerances we need to estimate the partial derivatives 
relative to the RF parameters. Let us denote by a point over the symbol the partial derivative 
with respect to a RF parameter. Then the partial derivative of compression iZ  after stage i  
can be found by relations 
 1 56 562i i i i i i iZ Z r tδ δ δ− ′= − − ′  ,        
 2

1 1 1 1 1 1i i i i i i i i i i iE E kZ Y k X Z s kY Zδ δ− − − − − −′ ′= − − − , 
 1 1 1i i i i i i iE E X kYδ δ− − −= + − s

i

, 
 1 56i i is s r δ−= − . 
Let us at the beginning to consider the partial derivatives of the compression with respect to 
the RF parameters of the first acceleration section 1M . The partial derivatives with respect to 
RF parameters  of the compression immediately after compressor  are given by 1 1( , )X Y 1BC

 
1

561
1 1

1

2X
tZ
E

δ ′∂ = − ,  
1

561
1

1
Y

rZ k
E

∂ = , 1
1

561

1 Z
r

δ −′ =  ,       (17) 

The partial derivatives of the compression with respect to RF parameters  immediately 
after compressor  read 

1 1( , )X Y

2BC

 
1 1 1 12 1 562 2 562 2 22X X X XZ Z r tδ δ δ′ ′∂ = ∂ − ∂ − ∂ , 1 2

2
562

Z Z
r

δ −′ =  ,      (18) 

 
1

561
2 2 2

1

1X
rE kY
E

δ∂ = + , 
1 1

2 561
2 2 2 1 2

1
X X

rE k X Z kY
E

δ ′∂ = − ∂ 1Z , 

 
1 1 12 1 562 2Y Y YZ Z r δ ′∂ = ∂ − ∂ , 

1 12 2 2Y Y 1E k kY Zδ ′∂ = − − ∂ . 
Finally, the partial derivatives of the compression with respect to RF parameters  
immediately after compressor  can be found from relations 

1 1( , )X Y

3BC

 
1 1 1 13 2 563 3 563 3 32X X X XZ Z r tδ δ δ′ ′∂ = ∂ − ∂ − ∂ , 2 3

3
563

Z Z
r

δ −′ =

1 2X

 ,      (19) 

 
1 13 3 2 2 3X XE E kY sδ δ∂ = ∂ − ∂ , 

1 1

561
2 562

1
X X

rs r
E 2δ∂ = − − ∂ , 

 
1 1 1

2
3 3 2 2 3 2 2 3X X X 1 2XE E k X Z s kYδ δ′ ′∂ = ∂ − ∂ − ∂ Z , 

  
 

1 1 13 2 563 3Y Y YZ Z r δ ′∂ = ∂ − ∂ , 
1 1 13 3 2 2 3Y Y 2YE E kY Zδ δ′ ′∂ = ∂ − ∂ . 

It follows from Eq. (15) that the partial derivatives with respect to the RF parameters in 
modules 1,1M  and third harmonic module 1,3M  are given by relations 
 

1,1 1X i X iZ Z∂ = ∂
1,1 1Y i Y i, Z Z∂ = ∂ ,  

1,3 1X i X iZ Z∂ = ∂
1,3 1

3Y i Y i, Z Z= ∂ .    (20) ∂

The partial derivatives of the compression with respect to RF parameters  can be 
found as follows  

2 2( , )X Y

 
2

562
2 2

2

2X
tZ
E

δ ′∂ = − , 
2

562
2 1

2
Y

rZ Z k
E

∂ = ,       (21) 

 
2 2 2 23 2 563 3 563 3 32X X X XZ Z r tδ δ δ′ ′∂ = ∂ − ∂ − ∂ , 

2

562
3 3 3

2

1X
rE kY
E

δ∂ = + ,  
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2 2

2 562
3 3 3 2 3 2Z

2
X X

rE k X Z kY
E

δ ′∂ = − ∂
2 2 23 2 563 3Y Y YZ Z r, δ ′∂ = ∂ − ∂ 2, 

2 23 3 1 3Y YE kZ kY Zδ ′∂ = − − ∂ . 

The partial derivatives of the compression with respect to RF parameters  read 3 3( , )X Y

 
3 3 3

3

5632X
tZ
E

δ ′∂ = − , 
3

563
3 2

3
Y

rZ Z k
E

∂ = .       (22) 

In order to estimate the partial derivatives of the compression with respect to the voltages or 
the phases we use the relations 
 cos sin

j j jV i X i j Y i jZ Z Zϕ ϕ∂ = ∂ + ∂ , ( )sin cos
j j ji j X i j Y i jZ V Z Zϕ ϕ ϕ∂ = −∂ + ∂ . (23) 

Hence, we can write the following estimation of the lengths of the gradient vectors of the 
compression immediately after compressor  1BC

 
( )

1,1

22 2 2 2
561 561 1 2 1

1 561
1 1

4 19
k r t ZkZ r

E E k
δ ′+ −⎛∇ = ≈ + ⎜

⎝ ⎠
v

⎞
⎟  ,    (24) 

 
( )

1,3

22 2 2 2
561 561 1 2 1
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9 4 13k r t ZkZ r
E E k

δ ′+ −⎛ ⎞∇ = ≈ + ⎜ ⎟
⎝ ⎠

v , 

where we have used relation [5]. The lengths of the gradient vectors of the 
compression immediately after compressor  are given by relations 

56 561.5it ≈ − ir

2BC
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9
r r

2Z k A
E E
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2
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2 1 562
2 2

4
9

Z k r t Z ZkZ Z r
E E k

δ ′+ −⎛ ⎞∇ = ≈ + ⎜ ⎟
⎝ ⎠

v , 

If we neglect the non-linear compression terms and use Eqs. (7)-(9) then we can write the 
simple estimations   

 ( ) [ ]
1,1

2
21 562 2 561 2 2 2 2 2

2 561 562 2 1 12
1 2 1

E r E r ZkZ r r k E E Z
E E Z

+
∇ ≈ + −v ,   (26) 

 ( ) [ ]
1,3

2
21 562 2 561 2 2 2 2 2

2 561 562 2 1 12
1 2 1

9
E r E r ZkZ r r k E E Z

E E Z
+

∇ ≈ + −v .     (27) 

Finally, the lengths of the gradient vectors of the compression immediately after 
compressor  can be written as (we neglect again non-linear compression terms 3BC { }56it ) 

 
1,1

2 2
3 3 3

1 2 3 1 2

k
1,3

2 2
3 3 3

1 2 3 1 2

9kZ A B
E E E Z Z

∇ ≈ +v ,  Z A B
E E E Z Z

∇ ≈ +v ,  (28) 

 3 561 2 3 2 3 562 1 3 3 563 1 2 1A r E E Z Z r E E Z r E E Z= + + , 

 ( ) ( )2 2
3 561 2 1 3 562 3 2 563 1 563 3 2 2 561 2 1 562B k r X Z E r Z E r Z r X Z E r Z E r⎡ ⎤≈ + +⎣ ⎦+ . 

 
2

2 2
562 563 3 2 2

3 1 3 3
2 3 563 562 1

r r E E ZZ k Z kY kX
E E r r Z

⎛ ⎞ ⎛ ⎞
∇ ≈ + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
v ,   
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( )

3

2 22 2 2 2
2 563 563 3 563 3

3 2
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4
1 9

Z k r t r
Z k Z

E E
δ δ′+

2Z k
′⎛ ⎞

∇ = ≈ + ⎜ ⎟
⎝ ⎠

v . 

Without additional calculations it is easy to write the partial derivatives with respect to the 
initial parameters: initial energy 0

0E and initial chirp 1ξ . From Eq. (15) we obtain 
 

1 1

1
i Y iZ k Zξ

−∂ = − ∂ 0 10
i X iE

, Z Z= ∂ . ∂

 Finally, let us consider a question about the best compression scenario from the point of 
view of the best possible tolerance in the booster 1,1M . We consider the two stage bunch 
compression scheme and use the equation (26) to find the best value of 1Z  for the fixed value 
of 2Z . From the condition 

  
1,1 2

1

0Z
Z
∂

∇ =
∂ v  

it is easy to find out that the optimal value of the compression in the first bunch compression 
reads 

  562 1 561 2 2
1

561 562 2 1( )
r E r E ZZ

kr r E E
− −

=
−

.        (29)

     
 

III. MULTISTAGE BUNCH COMPRESSION WITH COLLECTIVE EFFECTS 
 

A. Collective effects and tracking codes. 
 
 The analytical solution introduced before neglects the collective effects in the main beam 
line. In order to take them into account we do tracking simulations taking into account the 
collective effects through analytical estimations (space charge forces, wakefields), or through 
direct numerical solution with tracking codes. 
  To take into account coherent synchrotron radiation (CSR) in bunch compressors we use 
code CSRtrack [6]. This code tracks particle ensembles through beam lines with arbitrary 
geometry. It offers different algorithms for the field calculation: from the fast “projected” 1-D 
method [7] to the most rigorous one, the three-dimensional integration over 3D Gaussian sub-
bunch distributions [8]. 
 For high peak currents the compression is affected by wakefields from the vacuum 
chamber and by space charge forces. The free space longitudinal space charge impedance and 
the corresponding wake function for bunch with Gaussian transverse profile are given by [9] 

 
2 20

2
( ) 1 e (0, )

22
Zd Z i

d z c
αω ω α

πγ
⎡ ⎤= Γ⎢ ⎥⎣ ⎦

, 
c
ωσα
γ
⊥= , (0, )

t

x

e dt
t

α
∞ −

Γ = ∫ .  

  

2( )
0 4

2
( )( ) ( )( ) ( )

( ) 2 28

s sZ cd w s ss s e Erfc
d z s

ξ ξξ πθ ξ
ξπσ⊥

⎡ ⎤⎡ ⎤⎢ ⎥= − ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

, ( ) ss γ , ξ
σ⊥

=

where σ⊥  is the transverse RMS size of the beam, ( )sθ  is the Heaviside step function, 0Z is 
the free space impedance,  is the vacuum light velocity. c
 Let us consider the bunch accelerated from energy 0γ  to the energy 1γ  along distance . 
Then we use an adiabatic approximation which takes into account the slow change of the 
RMS size of the bunch during the acceleration: 

L
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2( ) 2

0
2

0 0

( , , ) e (0, ( ) )( )
4 ( )

L L z
bdZ r Z zZ dz i dz

dz c z

αω γ ω αω
π γ

Γ
= =∫ ∫ ,    (30) 

 ( )( )
( )

zz
c z
ωσα
γ
⊥= , ( )

( )
nz

z
ε β

σ
γ⊥ = , 1 0

0( )z z
L

γ γγ γ −
= + , 

where β  is the averaged optical beta function along distance , L nε  is the normalized 
transverse emittance.  
 Along with the above analytical estimations we use an alternative approach based on the 
straightforward tracking with code ASTRA [10]. This program tracks particles through user 
defined external fields taking into account the space charge field of the particle cloud. 
 The both codes, CSRtrack and ASTRA, do tracking in free space neglecting the impact of 
the vacuum chamber on the self fields. We use coupling impedances (or wake functions) to 
take into account interactions of the bunch with the boundary. The wakefield code ECHO [11] 
was used to estimate the wake functions of different beam line elements.  
 The FLASH facility contains 56 TESLA accelerating cavities. Their wake function is 
given by [12] 
      12 24( ) 10 ( )43 sw s s eθ −=  .        (31) 
The wake function of the harmonic module with 4 cavities reads [13]   

      12
0.83

34.5 0.036 ( )cos(5830 )( ) 10 ( ) 318 0.9
195

s ssw s s e
s s

δθ −⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
= +

+
.    (32) 

where the last term with the Dirac delta function describes the reduction of the pipe radius 
from 39 mm to 20 mm at the position of the third harmonic module. 
    

B. An iterative tracking procedure with collective effects 
 
 The analytical solution for RF parameters given in Section II will not produce the required 
compression in reality. The strong self fields can severely deteriorate the properties of the 
compressed bunch. In order to take the collective effects into account we have to carry out the 
tracking simulations. For the adjustment of the RF parameters we use an iterative procedure, 
which starts from the values of the RF parameters obtained through the analytical solution 
introduced in Section II.  
 The problem without self fields can be written in operator form 
  ,          (33) 0( ) =A x f0

where non-linear operator  is defined in Section II.A and the right-hand side  and the 
unknown vector of the RF parameters  are given by relations 

0(.)A 0f
x

  , 0 0 0 0 0 0
0 1 2 1 2 2 2( , , , , , )TE E Z Z Z Z′ ′′=f 1,1 1,1 1,3 1,3 2 2( , , , , , )TX Y X Y X Y=x . 

Section II.B describes the inversion of this operator for a given vector of the macroparameters 
. We write the solution of the problem formally in the operator form  0f

  ,          (34) 1
0 0 ( )−=x A f

where  is the inverse operator. 1
0
−A

 The general problem with self fields included reads 
  ,          (35) 0( ) =xA x f
where non-linear operator  is realized by a tracking procedure (see Section IV) for the 
given RF parameters vector . Let us note that the tracking operator depends on this vector. 

( )⋅xA
x
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 We would like to use the analytical solution as a “preconditioner” at each iteration. Our 
experience shows that such approach results in fast convergence (~ 5 iterations). In order to 
derive the iteration scheme let us rewrite Eq. (35) in an equivalent form  
  . ( )1

0 0 0( ) ( )−= + − xx A A x f A x
From the last equation the iterative scheme 
  , n , ,   (36) ( )1

0 0 1 0 1( ) ( )n n
−

− −= + − xx A A x f A x 0> 1
0 0 ( )−=x A f

1)n−

1n−

)n

n

can be suggested. It can be rewritten in a more convenient form, where one iteration includes 
the following steps: 
  -  doing of the numerical tracking,  1 (n− = xf A x
  -  calculation of the residual in the macroscopic parameters, 1 0n−Δ = −f f f

 , ,  - doing the analytical correction of the RF parameters.  1 1n n n− −= + Δg g f (1
0n
−=x A g

The iterative scheme is robust and converges fast to the solution. We apply this iterative 
algorithm in the next section in order to find the working point for two stage bunch 
compressor system in FLASH. 
 
 
IV. MODELLING OF TWO STAGE BUNCH COMPRESSION IN FLASH FACILITY 
 
 The Free-Electron Laser FLASH at DESY is the first user facility for VUV and soft X-ray 
laser like radiation using the SASE scheme. Since summer 2005, it provides coherent 
femtosecond light pulses to user experiments with impressive brilliance [1, 14]. It includes 
two bunch compressors, a C-chicane and an S-chicane. These two chicanes have to compress 
the electron bunches to achieve the peak current of 2500 A.  After the recent upgrade in 2010 
the third harmonic module was installed and the linearized bunch compression is now 
possible. In the following we describe a way to define a working point in the current technical 
constrains for a special case of bunch with charge of 1 nC. The results from tracking 
simulations will be presented as well. 
 

A. Definition of the working point 
 
 Before to look for the RF parameters settings we have to define 12 macroparameters (see 
Section II.C). These parameters define operator  and vector  in Eq. (33), which is an 
operator form of system (1). 

0A 0f

 The initial conditions  are obtained from numerical simulations of 
the gun with code ASTRA [3]. The code is used to model the self-consistent beam dynamics 
for the bunch with charge of 1 nC. The initial energy from the gun 

0 ' '' '''
0 0 0 0, (0), (0), (0)E δ δ δ

0
0E  is about 5 MeV. The 

current profile and the longitudinal phase space after the RF gun, before the booster 1,1M , are 
shown in Fig.2. 
 The initial peak current after the gun is about 52 A. Hence, in order to reach the peak 
current of 2.5 kA we need the total compression given by 
  .         (37) 1

2 2 48C Z −≡ =
After the recent upgrade the FLASH facility has the following technical constrains on the 
achieved voltages: 
  ,  ,  1,1 150 MVV ≤ 1,3 26 MVV ≤ 2 350 MVV ≤ . 
The deflecting radii in the bunch compressors have to fulfill the restrictions 
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   11.4 1.93
m
r

≤ ≤ , 25.3 16.8
m
r

≤ ≤  .  

In order to correct the nonlinearity induced by the fundamental harmonic module 1,1M  before 
compressor 1BC  we need to use a deceleration in the third harmonic module 1,3M . And for 
the voltages in module 1M  the relation 1,3 1,1 / 9V V≈  approximately holds [3].  Hence, the 
nominal energies in  and  are fixed with safety margin of  as follow 1BC 2BC 5%

 0 0
1 0 1,1

80.95 max 130MeV
9

E E e V⎡ ⎤= + ≈⎢ ⎥⎣ ⎦
, . (38) 0 0

2 1 20.95 ( max ) 450 MeVE E e V= ⋅ + ≈
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FIG 2. The initial particle distribution after the gun. The left plot shows the current profile. The right 

plot presents the longitudinal phase space. 
 
Now we are going to choose the deflecting radius  in compressor 1r 1BC . In order to reduce 
the space charge forces between the bunch compressors we aim to use only a weak 
compression in 1BC . Hence the deflecting radius of the first bunch compressor is fixed at the 
maximum 
  m.          (39) 1 1.93r =
This solution has two additional benefits: small CSR fields in compressor  itself and a 
possibility of a larger energy chirp after it. The last feature reduces the voltage requirement on 
RF module 

1BC

2M . 

 Let us now choose the compression factor ( ) 10
1 1C Z

−
≡  in the first bunch compressors. We 

would like to take it as small as possible.  For the time being we will fix the free parameters of 
the global compression at zero: 0

2 0Z ′ = , 0
2 0Z ′′ = . From the analytical solution of Section II.C we 

build the plot shown in Fig. 3. It has three areas. In region I we need a very high voltage for the third 
harmonic module:  MV. In region II we need a very high voltage for the second accelerating 

module:  MV. Hence our solution has to belong to region III.  It can be seen from Fig. 3 
that, due to the restriction on voltage , the compression in the first BC can not be less than 

2.  In order to have a reserve in  for adjustment of global compression parameter 

1,3 26V >

2 360V >

1,3V

13V 0
2Z ′′  and 

for the self-fields effects compensation we choose  
  .          (40) 1 2.84C =

 12



Now we are going to choose the deflecting radius  in S-chicane . At the first step we 
will fix temporarily the phase 

2r 2BC

2ϕ  between the bunch compressors near to the maximum 

  
0 0

-1 2 1
2

2
0.9cos 22

max( )
oE E

V
ϕ

⎛ ⎞−
= ≈⎜ ⎟⎜ ⎟

⎝ ⎠
. 

It means that we aim to produce the largest possible chirp with the RF system ( )2 2,V ϕ . It 
means that for the fixed compression factor  the energy chirp at entrance of  will be as 
large as only possible.  Such solution uses a larger deflecting radius  and it results in 
weaker CSR fields in the last chicane.  

1C 2BC

2r
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FIG 3. Choosing of compression in BC1. The plot shows the level lines for voltages for global 
compression terms . The circle presents the working point. 0 0

2 20, 0Z Z′ ′′= =
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FIG 4. The left plot shows impact of global compression term 0

2Z ′′  on the compression curve along the 

bunch. For a very strong compression in the head of the bunch can be seen. The right plot 

shows the required voltages in module 

0
2 0Z ′′ =

1M  vs. parameter 0
2Z ′′ . 
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Fig. 5.  Impact of 0

2Z ′  parameter on the bunch shape (left plot). Longitudinal phase space after the 
second bunch compressor (right plot). 

 
In order to find the deflecting radius  we have to solve the system 2r

   
1 2' '

561 1 562 2 1
0 0

' '2 1 1
2 10 0 0

1 2 2 2

1 1, ,
1 (0) 1 (0)

(0) (0), ,

C C
r r

Y E Zk C
C E E Z

δ δ

δ δ

⎧ = =⎪ − −⎪
⎨
⎪ = − + ≡⎪⎩

2

C

)

 

for . Here term '
562 1( , (0)r δ 2C  is the compression in compressor  alone. The solution of 

this system reads 
2BC

  
( ) ( )

1
' 2
1 10 0

561 1 2 562

(1 )(0)
1

g C

r g E E r
δ

−

−
+ −

=
+ +

, 
( )

2 561
562 10 0

2 1 1 2

( 1)

(( 1) )

C rr
C C E E g

−
−

=
− −

, 2
5620

2

Yg k r
E

= . 

Bunch compressor  is of S-type and the deflecting radius is given by [5] 2BC

  2
562

6m
sin /(3 4 )

B

B D

Lr
r L L

≈
− +

= ,       (41) 

where  is the magnet length and 0.5BL = 0.5DL =  is the drift length between the magnets. 
 Equations (37)-(41) give 6 macroparameters from eight required to define system (1). We 
need now to choose values of  0

2Z ′  and 0
2Z ′′ . It follows from the definition of function ( )Z s  

that in order to have a local maximum of the compression at 0s =  we need , .  

Let us first to consider meaning of the parameter 

0
2 0Z ′ = 0

2 0Z ′′ >
0

2Z ′′ . The left plot in Fig. 4 compares two 

compression curves for different values of this parameter. We see that for a very strong 

compression in the head of the bunch exists. We can avoid it by choosing . 

0
2 0Z ′′ =

0
2 0Z ′′ >

  
Table I. The RF parameters in the working point 

 1,1V , 
MV 

1,1ϕ , 
degree 

1,3V , 
MV 

1,3ϕ , 
degree 

2V , 
MV 

2ϕ , 
degree 

Without self 
fields 148.49 10.52 21.02 180.77 345 21.95 

With self 
fields 144.07 -4.66 22.58 144.70 350.32 23.38 
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Fig. 6. The RF tolerances in accelerating module 1M  vs.  global compression parameter 0

2Z ′′ . 
 

Table II. RF tolerances in the working point. 

 1,1M  1,3M  2M  

ϕΔ  0.00111 0.0022 0.0026 

/V VΔ  0.00096 0.0075 0.0042 
0/v vΔ Δ  0.00072 0.0021 0.0022 

 
 
 In order to fix the positive value of the parameter 0

2Z ′′  we consider the right plot shown in 

Fig. 4. It presents the required voltages in module 1M  vs. parameter 0
2Z ′′ . In order to 

minimize the requirement on the voltage in this module we choose  
  .         (42) 0

2 2000 mZ ′′ = -2

Finally, we would like to fix the last parameter 0
2Z ′ . With the help of this parameter we can 

shift the maximum of the compression to the right or to the left as shown in Fig. 5. We use 
             (43) 0

2 1 mZ ′ = -1

to symmetrize the current. 
 Equations (37)-(43) completely define system (1) and from the analytical solution of 
Section II.C we can find the RF parameters given in Table I (the first row).  
 Let us estimate tolerances for relative change of compression 2 2/ 0C CΘ = Δ = .1. We use 
the analytical estimations of Section II.D.  The left plot in Fig. 6 presents the estimation of the 
relative voltage and phase deviations admissible in module 1,1M  

 
1,1

0
1,1 2

1,1 1,1 2V

V Z
V V Z

Δ
= Θ

∂
,  

1,1

0
2

1,1
2

Z
Zϕ

ϕΔ ≤ Θ
∂

. 

These tolerances are obtained from equations (17)-(23). By the solid line we show the 
strongest tolerance in two dimensional space ( )1,1 1,1,X Y . It is given through the gradient as  
follows (see Eq.(16)) 

 
1,1

0
1,1 2

0
1,1 1,1 2

Z
V Z

Δ Θ
=

∇v

v

v
.  
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The same tolerances are shown for the third harmonic module at the right plot in Fig. 6. Table 
II presents all RF tolerances for the working point defined in this section. 
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Fig. 7. The RF tolerance in accelerating module 1,1M  vs. compression in the first BC. 

 
 Finally, we show in Fig. 7 the dependence of the strongest tolerance in the booster 1,1M  on 
the choice of the compression factor  for the fixed factor 1C 2 48C = , and other parameters 
chosen as described above. It is easy to see that the chosen value 1 2.84C =  (see Eq.(40)) is 
near to the optimum. Let us note that the approximate solution given by Eq.(29) results in the 
value  1 2.67.C =
 

B. Tracking simulations with collective effects. 
 
 In this section we present results for simulations with all collective effects included. We 
have implemented two different tracking procedures. The first procedure uses the analytical 
model of accelerating modules and tracks the transverse phase space by linear optics 
transform matrices. The longitudinal space charge forces are taken into account analytically as 
described in section III.A, Eq. (30). The second procedure uses code ASTRA to track the 
particles through the accelerating sections of the beam line. The bunch compressors in both 
procedures are tracked with the help of code CSRtrack. The first procedure is fast. It takes 
only about 10-20 minutes on one processor. The second procedure is very time consuming 
and takes hours of heavy parallelized calculations. We use the first model to implement the 
iterative procedure described in section III.B, Eq. (36). It takes about 5-10 iterations to solve 
the problem. After it we check the results with the full three dimensional calculations 
implemented in the second procedure.  
 Fig. 8 presents the properties of the bunch after the second bunch compressor as obtained 
with full 3D modeling. The left plot shows current profile , horizontal slice emittance ( )I s

( )x sε , vertical  slice emittance ( )y sε ,  and RMS slice energy spread ( )E sσ  . The right plot 
presents the longitudinal phase space. It can be seen that the iterative procedure described in 
section III.B, Eq. (36), indeed has found the solution for the RF parameters which produces 
the desired longitudinal bunch compression. The found RF parameters are listed in the second 
row of Table I. 
 We have checked with the tracking that the tolerances are left approximately the same as 
described in Table II for the situation without self fields. 
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Fig. 8.  The properties of the bunch after the second bunch compressor as obtained by 3D self 

consistent simulations. 
 
 

V. SUMMARY 
 
 In this paper we have derived an analytical solution for multistage bunch compressor 
system with high harmonic module at the first stage. On the basis of this analytical solution 
we have proposed an iterative procedure to find the working point from tracking simulations 
with collective effects included. The introduced formalism was applied to study the bunch 
compression in FLASH facility. The derivation of the analytical solution is quite general and 
can be generalized to more complicated configurations.   
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