Addendum to: Implications of the measurements of $\boldsymbol{B}_{\boldsymbol{s}}-\overline{\boldsymbol{B}_{\boldsymbol{s}}}$ mixing on SUSY models

P. Ko
School of Physics, KIAS, Seoul 130-722, Korea
Jae-hyeon Park
Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22603 Hamburg, Germany

Abstract

This is an addendum to the previous publication, P. Ko and J.-h. Park, Phys. Rev. D80, 035019 (2009). The semileptonic charge asymmetry in B_{s} decays is discussed in the context of general MSSM with gluino-mediated flavor and CP violation in light of the recent measurements at the Tevatron.

In this addendum to Ref. [1], we discuss the semileptonic charge asymmetry in the B_{s} decays in general SUSY models with gluino-mediated flavor and CP violation, in light of the recent measurements of like-sign dimuon charge asymmetry by $\mathrm{D} \emptyset$ Collaboration at the Tevatron. The model is described in Ref. [1], to which we refer for the details of the model and other phenomenological aspects related with $B_{s}-\overline{B_{s}}$ mixing, the branching ratio of and CP asymmetry in $B \rightarrow X_{s} \gamma, B_{d} \rightarrow \phi K_{S}$ and CP asymmetry in $B_{s} \rightarrow J / \psi \phi$.

One can define the semileptonic charge asymmetry in the decay of B_{q} mesons as

$$
\begin{equation*}
a_{\mathrm{sl}}^{q} \equiv \frac{\Gamma\left(\overline{B_{q}^{0}}(t) \rightarrow \mu^{+} X\right)-\Gamma\left(B_{q}^{0}(t) \rightarrow \mu^{-} X\right)}{\Gamma\left(\overline{B_{q}^{0}}(t) \rightarrow \mu^{+} X\right)+\Gamma\left(B_{q}^{0}(t) \rightarrow \mu^{-} X\right)}, \tag{1}
\end{equation*}
$$

for $q=d, s$. In terms of the matrix elements of the effective Hamiltonian describing the damped oscillation between B_{q}^{0} and $\overline{B_{q}^{0}}$, the asymmetry a_{sl}^{q} is given by

$$
\begin{equation*}
a_{\mathrm{sl}}^{q}=\operatorname{Im} \frac{\Gamma_{12}^{q}}{M_{12}^{q}}=\frac{\left|\Gamma_{12}^{q}\right|}{\left|M_{12}^{q}\right|} \sin \phi_{q}, \tag{2}
\end{equation*}
$$

where $\phi_{q} \equiv \arg \left(-M_{12}^{q} / \Gamma_{12}^{q}\right)$. That is, this is another observable measuring $C P$ violation in $B_{q}-\overline{B_{q}}$ mixing. We take the approximation, $\Gamma_{12}^{q}=\Gamma_{12}^{q, \mathrm{SM}}$, since the leading contribution comes from the absorptive part of the box diagrams for $B_{q}-\overline{B_{q}}$ mixing and there is no new common final state into which both B_{q} and $\overline{B_{q}}$ can decay in our scenario. The size of M_{12}^{q} is fixed by the ΔM_{q} data up to hadronic uncertainties. Then, a_{sl}^{q} can be regarded as a sine function of ϕ_{q}, multiplied by the factor $\left|\Gamma_{12}^{q}\right| /\left|M_{12}^{q}\right|$. This curve is traversed as one allows for arbitrary supersymmetric contributions to M_{12}^{q} obeying the ΔM_{q} constraint. Combining the SM predictions [2],

$$
\begin{align*}
\left|\Gamma_{12}^{s, \mathrm{SM}}\right| /\left|M_{12}^{s, \mathrm{SM}}\right| & =(49.7 \pm 9.4) \times 10^{-4} \\
\phi_{s}^{\mathrm{SM}} & =(4.2 \pm 1.4) \times 10^{-3} \tag{3}
\end{align*}
$$

one finds the vanishingly small asymmetry $a_{\mathrm{sl}}^{s, \mathrm{SM}} \sim 2 \times$ 10^{-5}.

Recently, the DØ collaboration reported a measurement of like-sign dimuon charge asymmetry [3]. They interpreted the result as coming from the mixing of neutral B mesons and have found an evidence for an anomaly
in the asymmetry,

$$
\begin{equation*}
A_{\mathrm{sl}}^{b} \equiv \frac{N_{b}^{++}-N_{b}^{--}}{N_{b}^{++}+N_{b}^{--}} \tag{4}
\end{equation*}
$$

where N_{b}^{++}and N_{b}^{--}are the number of events where decays of two b hadrons yield two positive and two negative muons, respectively. Their result shows a discrepancy of 3.2σ from the SM expectation. This asymmetry consists of a_{sl}^{d} coming from B_{d} decays as well as a_{sl}^{s} from B_{s}. One can extract the asymmetry relevant to the B_{s} meson using the measured value of a_{sl}^{d} and the result by $\mathrm{D} \emptyset$ is

$$
\begin{equation*}
a_{\mathrm{sl}}^{s}=-0.0146 \pm 0.0075 \tag{5}
\end{equation*}
$$

This is 1.9σ away from the SM prediction. We shall use this data in the following discussion.

This D \emptyset result has drawn interest in new physics explanations [4-8]. (For earlier works, see e.g. Refs. [911].) Some of the works consider extra contributions to Γ_{12}^{q} since the dimuon charge asymmetry depends on it as well as on $M_{12}^{q}[5,6]$. This approach also has a possibility of altering $\left|\Delta \Gamma_{s}\right|$ even though its current experimental value is in agreement with the SM one, $2\left|\Gamma_{12}^{s, \mathrm{SM}} \cos \phi_{s}^{\mathrm{SM}}\right|$ $[2,12,13]$. As we said, Γ_{12}^{q} is fixed in the present work and we are left only with the option of modifying M_{12}^{s}. Therefore, $\left|\Delta \Gamma_{s}\right|$ shall become smaller than its SM prediction as $\left|\phi_{s}\right|$ grows up to $\mathcal{O}(1)$.

We perform the numerical analysis in the same way as in the main article [1]. The crucial ingredient for evaluating a_{sl}^{s} is the range of ϕ_{s} to be used. Following the latest reports from $\mathrm{D} \emptyset[3]$ and CDF [14], there have been a couple of attempts to make a global fit of $B_{s}-\overline{B_{s}}$ mixing parameters including $\phi_{s}[4,6]$. However, the official combination is not available yet. Partly because of this reason and partly for the sake of coherent presentation, we keep using the range used in Refs. [1, 15],

$$
\begin{equation*}
\phi_{s} \in[-1.10,-0.36] \cup[-2.77,-2.07] \tag{6}
\end{equation*}
$$

As a matter of fact, this range is not very different from the 2σ interval found in Ref. [6]. As for $\Gamma_{12}^{s, \mathrm{SM}} / M_{12}^{s, \mathrm{SM}}$, we take its central value from Eqs. (3). Considering the error in this ratio could add 20% more of uncertainty to the thickness of the a_{sl}^{s} band in the following figures.

We show a_{sl}^{s} as a function of ϕ_{s} for $\tan \beta=3$ in Figs. 1. The four plots are for the $L L$, the $R R$, the $L L=R R$, and

FIG. 1. Plots of a_{sl}^{s} as a function of ϕ_{s} for the four different cases with $\tan \beta=3$. The hatched gray region leads to the lightest squark mass $<100 \mathrm{GeV}$. The hatched region is excluded by the $B \rightarrow X_{s} \gamma$ constraint. The light gray region (cyan online) is allowed by ΔM_{s}. The dark gray region (blue online) is allowed both by ΔM_{s} and ϕ_{s}. The black square is the SM point. The dashed and solid lines (both red online) mark the 1σ and 2σ ranges of a_{sl}^{s}, respectively.
the $L L=-R R$ cases, respectively. One can immediately notice the aforementioned sinusoidal dependence of a_{sl}^{s} on ϕ_{s}, coming from Eq. (2) and the ΔM_{s} constraint. This feature is not only true of all the cases shown here but also of any new physics model that does not affect Γ_{12}^{s}. The nonzero thickness of the band arises from the uncertainty in ΔM_{s}. The difference between a_{sl}^{s} and its central value is at least about 1.0σ. This discrepancy becomes worse but only slightly after ϕ_{s} is restricted inside its preferred ranges (colored in blue). If one incorporates the $B \rightarrow$ $X_{s} \gamma$ constraint, substantial part of the blue regions is excluded, in particular in the upper two cases with one insertion. Even then, however, the lowest possible value of $a_{\mathrm{sl}}^{s} \simeq-0.006$ within the blue region does not change. In the lower two cases with two insertions, $B \rightarrow X_{s} \gamma$ does not play an important role since the supersymmetric effect on $B_{s}-\overline{B_{s}}$ mixing is enhanced.

Plots for $\tan \beta=10$ are displayed in Figs. 2. The model-independent characteristics dictated by Eq. (2) remain exactly the same as in the previous set of figures. The only difference is the stronger $B \rightarrow X_{s} \gamma$ constraint due to higher $\tan \beta$. Here, it excludes more part of the blue regions. Again, this is particularly true of the upper two cases in which a_{sl}^{s} is restricted closer to its SM value. In Fig. 2(a), $\Delta M_{s}, \phi_{s}$, and $B \rightarrow X_{s} \gamma$, together allow a_{sl}^{s} to be as low as -0.003 . In Fig. 2(b), there is no solution satisfying all the three constraints. One could get $a_{\mathrm{sl}}^{s} \simeq-0.0006$ if ϕ_{s} were not limited. In the lower two cases, the lowest a_{sl}^{s}, compatible with ΔM_{s} and ϕ_{s}, is almost the same as in Figs. 1.

We summarize. We have examined how a_{sl}^{s} is influenced by the $L L$ and/or $R R$ mass insertions. For $\tan \beta=3$, one can reduce the discrepancy between a_{sl}^{s} and its SM expectation from 1.9σ down to 1.0σ in each

FIG. 2. Plots with $\tan \beta=10$. The meaning of each region is the same as in Figs. 1.
of the $L L, R R, L L=R R$, and $L L=-R R$ cases, obeying the $\Delta M_{s}, B \rightarrow X_{s} \gamma$, and ϕ_{s} constraints. This amounts to reduction of the A_{sl}^{b} tension from 3.2σ down to 2.2σ if one assumes no new physics in the $b \rightarrow d$ transition. For $\tan \beta=10$, it becomes difficult for the $L L$ and $R R$ cases whereas the $L L=R R$ and $L L=-R R$ cases are less limited by $B \rightarrow X_{s} \gamma$.

ACKNOWLEDGMENTS

We thank Ahmed Ali, Alexander Lenz, and Satoshi Mishima for useful comments.

NOTE ADDED

While we were waiting for the approval for submission, a paper by J. K. Parry appeared on the e-print archive that employs a related model [8]. However, the flavor structure of the squark mass matrix therein is different from any of those here. As far as squarks are concerned, he considers only one case where $\left(\delta_{23}^{d}\right)_{R R}$ is a variable parameter and $\left(\delta_{23}^{d}\right)_{L L}$ is fixed to a value that comes from renormalization group running. This way of parameter scan is not covered in this work. He does not display the $B \rightarrow X_{s} \gamma$ constraint on his plots, but it may not be very restrictive in his case depending on μ and $\tan \beta$. (See e.g. Fig. 4 in Ref. [16].)
[1] P. Ko and J.-h. Park, Phys. Rev. D 80, 035019 (2009) [arXiv:0809.0705 [hep-ph]].
[2] A. Lenz and U. Nierste, JHEP 0706, 072 (2007) [arXiv:hep-ph/0612167].
[3] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. D 82, 032001 (2010) [arXiv:1005.2757 [hep-ex]].
[4] Z. Ligeti, M. Papucci, G. Perez and J. Zupan, Phys. Rev. Lett. 105, 131601 (2010) [arXiv:1006.0432 [hep-ph]].
[5] A. Dighe, A. Kundu and S. Nandi, Phys. Rev. D 82, 031502 (2010) [arXiv:1005.4051 [hep-ph]].
[6] C. W. Bauer and N. D. Dunn, arXiv:1006.1629 [hep-ph].
[7] B. A. Dobrescu, P. J. Fox and A. Martin, Phys. Rev. Lett. 105, 041801 (2010) [arXiv:1005.4238 [hep-ph]]; A. J. Buras, M. V. Carlucci, S. Gori and G. Isidori, JHEP 1010, 009 (2010) [arXiv:1005.5310 [hep-ph]]; C. H. Chen and G. Faisel, arXiv:1005.4582 [hep-ph]; D. Choudhury and D. K. Ghosh, arXiv:1006.2171 [hep-ph]; N. G. Deshpande, X. G. He and G. Valencia, Phys. Rev. D 82, 056013 (2010) [arXiv:1006.1682 [hep-ph]]; C. H. Chen, C. Q. Geng and W. Wang, JHEP 1011, 089 (2010) [arXiv:1006.5216 [hep-ph]].
[8] J. K. Parry, arXiv:1006.5331 [hep-ph].
[9] G. L. Kane, P. Ko, H. b. Wang, C. Kolda, J.-h. Park and L. T. Wang, Phys. Rev. Lett. 90, 141803 (2003)
[arXiv:hep-ph/0304239]; Phys. Rev. D 70, 035015 (2004) [arXiv:hep-ph/0212092].
[10] A. Lenz, Phys. Rev. D 76, 065006 (2007) [arXiv:0707.1535 [hep-ph]].
[11] L. Randall and S. f. Su, Nucl. Phys. B 540, 37 (1999) [arXiv:hep-ph/9807377]; K. Kawashima, J. Kubo and A. Lenz, Phys. Lett. B 681, 60 (2009) [arXiv:0907.2302 [hep-ph]].
[12] E. Barberio et al. [Heavy Flavor Averaging Group], arXiv:0808.1297 [hep-ex].
[13] S. Esen et al., Phys. Rev. Lett. 105, 201802 (2010) [arXiv:1005.5177 [hep-ex]].
[14] L. Oakes (CDF Collaboration), talk at FPCP 2010, May 25-29, Torino, Italy, http://agenda.infn.it/getFile. py/access?contribId=12\&resId=0\&materialId= slides\&confId=2635
[15] M. Bona et al. [UTfit Collaboration], PMC Phys. A 3, 6 (2009) [arXiv:0803.0659 [hep-ph]].
[16] P. Ko, J.-h. Park and M. Yamaguchi, JHEP 0811, 051 (2008) [arXiv:0809.2784 [hep-ph]].

