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Abstract

We study the potential to observe CP-violating effects in SUSY t̃1-cascade decay
chains at the LHC. Asymmetries composed by triple products of momenta of the
final state particles are sensitive to CP-violating effects. Due to large boosts that
dilute the asymmetries, these can be difficult to observe. If all particle masses in
a cascade decay are known, it may be possible to reconstruct all momenta in the
decay chains on an event-by-event basis even when we have missing momentum due
to a stable LSP. After the reconstruction, the non-diluted CP-violating signal can
be recovered and gets significantly enhanced so that an observation may become
feasible. A fully hadronic study has been completed to define the areas of the
mSUGRA parameter space that may yield a 3-σ observation with 500 fb−1 at the
LHC.
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1 Introduction

The Minimal Supersymmetric Standard Model (MSSM) is a particularly compelling ex-
tension of the Standard Model, that may soon be explored at the Large Hadron Collider
(LHC). It allows one to stabilize the hierarchy between the electroweak (EW) scale and
the Planck scale and to naturally explain electroweak symmetry breaking (EWSB) by a
radiative mechanism. The naturalness of the scale of electroweak symmetry breaking and
the Higgs mass places a rough upper bound on the superpartner masses of several TeV
and the fits to the electroweak precision data point to a rather light SUSY spectrum [1]. If
supersymmetry is discovered, many studies will be required to determine the exact details
of its realisation. One of the interesting issues in this context is CP violation. While the
observed amount of CP violation in the K and B sectors can be accommodated within
the SM, another piece of evidence, the baryon asymmetry of the universe, requires a new
source of CP violation [2–4].

The MSSM contains 105 free parameters [5] and a large number of these may have
non-zero CP-violating phases, see e.g. [6]. Many of the phases are unphysical in the sense
that they can be rotated away by a redefinition of the fields. The parameters normally
chosen to be complex and relevant to this study are the U(1) and SU(3) gaugino mass
parameters M1 and M3, the higgsino mass parameter µ and the trilinear couplings of the
third generation sfermions Af (f = b, t, τ). Hence we have,

M1 = |M1|eiφ1 , M3 = |M3|eiφ3 , µ = |µ|eiφµ , Af = |Af |eiφAf . (1)

The two complex parameters that enter the t̃ sector at tree level are At and µ and in
the χ̃0

i sector µ and φM1
. Certain combinations of the CP-violating phases of these pa-

rameters are constrained by the experimental upper bounds on various electric dipole
moments (EDMs), see e.g. [7]. Ignoring possible cancellations, the most severely con-
strained phase is that of µ which contributes to the EDMs at the one-loop level. In
general for O(100) GeV masses, |φµ| has to be very small and we therefore set φµ = 0
throughout our study. The phase of At has weaker constraints as it only contributes to
the EDMs at the two loop level [8–14]. Here we study the complete range of φAt in order
to see the general dependencies exhibited by our observables and the luminosity required
to observe this within the LHC environment. In principle, φM1

can also contribute to
our observables but in the mSUGRA scenarios discussed in this paper, the dependence is
weak due to the wino character of the χ̃0

2. We would like to stress that in the chosen sce-
nario experimental bounds from EDMs can be evaded by arranging cancellations between
various supersymmetric contributions for any value of At [7, 15–17].

In general CP phases alter the couplings and masses of SUSY particles, see [18] for
a recent review at the LHC. Therefore, in principle we could detect CP-violating effects
by studying mass spectra, cross sections or branching ratios [19, 20]. However, all of
these observables are CP-even and can be faked by a multitude of other parameters. In
addition, to make these measurements will require high precision and a good knowledge
of the SUSY breaking mechanism.

In order to make the unambiguous observation of a complex parameter, we need to
use CP-odd observables. Examples of CP-odd observables include rate asymmetries of
cross sections and branching ratios. Another possibility, however, are observables that
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are odd under T-transformations. Applying CPT-invariance, T-odd observables can be
transferred under certain conditions into CP-odd variables, see Sec. 2.2. These kinds of
observables can be defined using the triple product correlations of momenta that are based
on spin correlations of particles, see [21, 22] for a recent review. For the case of SUSY at
the LHC, we can do this using the final state particles of cascade decays.

The investigation of triple product correlations within SUSY at the LHC has been
looked at for various different processes. t̃ decays have been studied both in three-body
[23–25] and two-body cascade decays [17,26]. b̃ decays have also been looked at in similar
studies for two body cascade decays [27,28]. In [29] we looked at q̃g̃ production and decay
and studied how to cope with statistical limitations and dilution factors in searching for
CP-phases in SUSY at the LHC. For the present paper, we extend the ideas described
in detail in [29] of momentum reconstruction to t̃ production and two-body decays. We
further include hadronic, combinatorial and background effects to study whether CP-
violation will be observable in the t̃ sector at the LHC.

Specifically, we consider the LHC production process,

pp → t̃1t̃
∗
1. (2)

Our signal CP-odd observable is then generated in the following two body decays,

t̃1 → χ̃0
2t, χ̃0

2 → ℓ̃ℓN , ℓ̃ → χ̃0
1ℓF , t → b+W. (3)

where ℓN and ℓF denote the near and far leptons respectively.
The CP-odd observables are then built from triple products of final state or recon-

structable particles, e.g. ~pℓN · (~pt × ~pW ).
Triple products constructed in this way are not Lorentz invariant but instead depend

on the intrinsic boost of the produced particle in the laboratory frame. The observed
asymmetry is maximal when the decay is at rest in the laboratory frame and any boost
dilutes the observable. Consequently, we decide to use the idea of momentum recon-
struction to find the momentum of the invisible χ̃0

1. We are able to perform momentum
reconstruction for the decay chain shown in Eq. (3) as we have four on-shell mass condi-
tions which we can solve for the four unknowns of the χ̃0

1 momentum on event-by-event
basis. Once the χ̃0

1 momentum is known, we can find the rest frame of any particle involved
in the decay chain and thus measure the maximum CP asymmetry.

An important note to make is that the sign of the asymmetry generated by the triple
product flips if we consider the decay of the charge conjugate t̃∗1. Therefore, in addition
to measuring the triple product we must also determine the charge of the decaying t̃1.
Unfortunately we cannot use a leptonically decaying W in this study as we must fully
measure the t momentum to perform momentum reconstruction. Hence, we rely on the
opposite t̃1 decay to a single charged lepton final state to tag the charge of both produced
stops e.g. t̃∗1 → χ̃0

1t̄, t̄ → bℓ−νℓ. As an aside, charge identification of the process is also
required to rule out TN -odd observables that can in principle be generated by final state
interactions at the one-loop level [30], see Sec. 2.2 for more details. We compare the signal
process with the charge-conjugated decay and if a non-zero asymmetry is observed in the
combination, it must correspond to a violation of CP symmetry.
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We begin in Sec. 2 by describing the process and underlying structure to derive the
various triple products that can be formed. In Sec. 3 we move on to discuss the momen-
tum reconstruction method and its application to the process studied. Sec. 4 gives the
analytical results of the asymmetries at parton level. Hadron level results are described
in Sec. 5 where we also discuss the effects of standard model and SUSY backgrounds. We
also find that the method of momentum reconstruction significantly improves the signal
to background ratio.

2 Formalism

2.1 The process studied and the amplitude squared

At the LHC, the light stop (t̃1) particles can be produced via pair production,

pp → t̃1t̃
∗
1 (4)

In our study the CP-violating observables are produced in the following decay,

t̃1 → χ̃0
2 + t. (5)

We require the χ̃0
2 to decay via two, 2-body leptonic channels,

χ̃0
2 → ℓ̃±Rℓ

∓
N → χ̃0

1ℓ
∓
Nℓ

±
F , (6)

where N and F denote the near and far leptons respectively. In addition, we only consider
events where the t is fully reconstructable and hence decays hadronically,

t → Wb → quq̄db. (7)

Using the formalism of [31, 32], the squared amplitude |T |2 of the full process can be
factorised into the processes of production gg → t̃1t̃

∗
1 and the subsequent decays t̃1 → tχ̃0

2,
χ̃0
2 → ℓ̃ℓN , ℓ̃ → χ̃0

1ℓF and t → Wb. We apply the narrow-width approximation but include
the full spin correlations for production and decay of the intermediate particles, t̃1, χ̃

0
2, ℓ̃

and t. The use of the narrow-width approximation is appropriate since the widths of the
respective particles are much smaller than the masses in all cases. The squared amplitude
can then be expressed in the form,

|T |2 = 4|∆(t̃1)|2|∆(χ̃0
2)|2|∆(ℓ̃)|2|∆(t)|2P (t̃1t̃

∗
1)
{

P (χ̃0
2t)D(χ̃0

2)D(ℓ̃)D(t)

+

3
∑

a=1

Σa
P (χ̃

0
2)Σ

a
D(χ̃

0
2)D(ℓ̃)D(t) +

3
∑

b=1

Σb
P (t)Σ

b
D(t)D(χ̃0

2)D(ℓ̃)

+

3
∑

a,b=1

Σab
P (χ̃0

2t)Σ
a
D(χ̃

0
2)Σ

b
D(t)D(ℓ̃)

}

, (8)

where a, b = 1, 2, 3 refers to the polarisation states of the neutralino χ̃0
i and top quark t.

In addition,
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• ∆(t̃1), ∆(χ̃0
2), ∆(ℓ̃) and ∆(t) are the pseudo-propagators of the intermediate parti-

cles which lead to the factors Et̃1/mt̃1Γt̃1 , Eχ̃0
2
/mχ̃0

2
Γχ̃0

2
, Eℓ̃R

/mℓ̃R
Γℓ̃R

and Et/mtΓt in
the narrow-width approximation.

• P (t̃1t̃1), P (tχ̃0
2), D(χ̃0

2), D(ℓ̃) andD(t) (Appendix D) are the terms in the production
and decay that are independent of the spin of the decaying neutralino and top,
whereas,

• Σa
P (χ̃

0
i ), Σ

b
P (t), Σ

ab
P (χ̃0

2t) and Σa
D(χ̃

0
2), Σ

b
D(t) (Appendix D) are the spin-dependent

terms giving the correlations between production and decay of the χ̃0
2 and t. We

follow the formalism and conventions described in [32].

• It must be noted that the slepton ℓ̃ produces no spin correlation term in the ampli-
tude since it is a scalar.

Explicit expressions are given in Appendix D.

2.2 Structure of the T-odd asymmetry

As shown in the CPT-theorem [33,34], relativistic quantum field theories with usual spin-
statistics relations have to be invariant under a CPT-transformation. This invariance
guarantees that the masses and also the total widths of particles and antiparticles are the
same. Since a true T-transformation is anti-unitary, which exchanges the initial and the
final states, it is useful to study ’naive’ TN -transformations for collider-based experiments.
The definition of TN -transformations is to apply T-transformations to the initial and final
states but without interchanging them. The unitarity of the S–matrix leads in the absence
of re-scattering effects (i.e. in leading order in perturbation theory, no FSI, no width
effects) to a conservation of the scattering amplitude under a CPTN -transformation [30].

It is therefore useful to categorise CP–violating observables into TN–odd and TN–
even observables. CPTN invariance implies that a TN -odd observable is also CP-odd in
the absence of re-scattering effects. However, in case re-scattering effects contribute, i.e.
CPTN 6=CPT-invariance, a TN -odd signal may be caused by such re-scattering effects
and does not necessarily imply CP-violation.

For all our observables we require that we know the charge of the decaying t̃1 and can
therefore distinguish the particle and anti-particle. Hence we can combine the process
with the charge-conjugated decay to make an unambiguous observation of CP-violation
via TN -odd observables.

In general, it is therefore important to classify all terms of the corresponding amplitude
squared, eq.(8), with respect to their TN–odd or TN–even character. Only the products
that contain a TN -odd contribution will lead to CP-odd violating observables:

• The spin–independent terms introduced in the previous section, P (t̃1t̃1), P (tχ̃0
2),

D(χ̃0
2), D(ℓ̃), D(t) do not cause any TN -odd terms.

• The spin-dependent terms, Σa
P (χ̃

0
i ), Σ

b
P (t), Σ

ab
P (χ̃0

2t), Σ
a
D(χ̃

0
2), Σ

b
D(t), however, often

can be divided up into TN -even and TN -odd terms, depending on the processes
studied. In our case, a sequence of 2-body decays, however, we can only split
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Σab
P (χ̃0

2t) = Σab
P,even(χ̃

0
2t) + Σab

P,odd(χ̃
0
2t), all other spin-dependent terms only lead to

TN -even terms1.

• Therefore, the TN -odd term in the amplitude is,
∑3

a,b=1Σ
ab
P,odd(χ̃

0
2t)Σ

a
D(χ̃

0
2)Σ

b
D(t)D(ℓ̃).

When we contract the spin indices of the t and χ̃0
2 and evaluate the TN -odd contribu-

tion we find that the following covariant product appears in the amplitude,

Σab
P,odd(χ̃

0
2t)Σ

a
D(χ̃

0
2)Σ

b
D(t) ∼ iǫµνρσs

a,µ(χ̃0
2)p

ν
χ̃0
2
sb,ρ(t)pσt × (pℓNs

a)(p[b,W ]s
b), (9)

∼ iǫµνρσp
ν
χ̃0
2
pµℓNp

ρ
Wpσt , (10)

where Σab
P,odd, Σ

a
D(χ̃

0
2) and Σb

D(t) are given by Eq. (69), Eq. (73) and Eq. (75) respectively.
The above equation is multiplied by the imaginary part of the coupling, Eq. (71) that

contain terms from both the t̃, Eq. (39), and χ̃0, Eq. (50), mixing matrices. Hence, any
complex phases contained in those mixing matrices will yield CP-violating effects that
can be seen in an observable that exploits the covariant product. We can now expand
the Lorentz invariant covariant product in terms of the explicit energy and momentum
components,

ǫµνρσp
ν
χ̃0
2
pµℓNp

ρ
Wpσt = Eχ̃0

2

−→pℓN · (−→pW ×−→pt ) + EW
−→pt · (−→pχ̃0

2
×−→pℓN ) (11)

−EℓN
−→pW · (−→pt ×−→pχ̃0

2
)− Et

−→pχ̃0
2
· (−→pℓN ×−→pW ) .

The first term in Eq. (11) shows the CP sensitive triple product that can be measured
from final state momenta. However, this triple product is not Lorentz invariant and
consequently can vary in both magnitude and sign in different reference frames. If we are
in the rest frame of the χ̃0

2 though,

ǫµνρσp
µ

χ̃0
2

pνℓNp
ρ
Wpσt −→ mχ̃0

2

−→pℓN · (−→pW ×−→pt ) , (12)

the resulting asymmetry, Eq. (15), is uniquely defined since all other terms of the covariant
product vanish as ~pχ̃0

2
→ 0.

Hence we see that triple products of momenta, can be used as TN -odd observables.
In this paper we find that the triple products most useful to study are,

TℓN = ~pℓN · (~pW × ~pt) , (13)

Tℓℓ = ~pb · (~pℓ+ × ~pℓ−) . (14)

where ℓ+ and ℓ− are the two leptons produced in the χ̃0
2 cascade decay. For the triple

product, Eq. (14), the identification of near and far leptons is not required as is explained
at the end of this section.

The T-odd asymmetry is then defined as,

AT =
NT+ −NT−

NT+ +NT−

=

∫

sign{Tf}|T |2d lips
∫

|T |2d lips , (15)

1This is different if 3-body decays are studied, see [24]. In that case spin-dependent terms from both
the production Σab

P
(χ̃0

2
t) as well as from the 3-body decay Σa

D
(χ̃0

2
) lead to CP-odd contributions

7



where f = ℓN or ℓℓ, d lips denotes Lorentz invariant phase space and NT+ (NT−) are
the numbers of events for which T is positive (negative). The denominator in Eq. (15),
∫

|T |2d lips, is equal to the total cross section.
We then define,

AℓN = AT (TℓN ), Aℓℓ = AT (Tℓℓ), (16)

where AℓN is the asymmetry from the triple product TℓN and Aℓℓ is the asymmetry from
the triple product Tℓℓ.

As stated above, whilst the covariant product is Lorentz invariant, the triple products
are not. However, we can see that for the triple product in Eq.(13), the rest frame of the
χ̃0
2 and the t̃1 are equivalent since (pt̃ = pχ̃0

2
+ pt),

ǫµνρσp
µ

χ̃0
2

pνℓNp
ρ
Wpσt = ǫµνρσp

µ

t̃1
pνℓNp

ρ
Wpσt . (17)

For the triple product Tℓℓ, Eq. (14), the covariant product can be re-expressed in the
following form (exploiting momentum conservation, pχ̃0

2
= pℓ̃ + pℓN , pℓ̃ = pℓF + pχ̃0

1
,

pW = pt + pb),

ǫµνρσp
µ

χ̃0
2

pνℓNp
ρ
Wpσt = ǫµνρσ(pℓF + pχ̃0

1
)µpνℓNp

ρ
Wpσb . (18)

However we now see that we have effectively two covariant products, one which contains
the momentum of the χ̃0

1. In general, triple products containing the momentum of the
far lepton will be lower as the far lepton is not directly correlated with the spin of χ̃0

2.
Nevertheless, we can exploit and maximise the triple products originating from Eq. (17)
and Eq. (18), if we know the momentum of the unstable particles in the decay chain. This
can be provided by the momentum reconstruction procedure described in the following
section.

Changing the decaying t̃1 to a t̃∗1 or changing the charge of the near lepton ℓN reverses
the sign of the covariant product. Consequently we have to know the charge of both the
t̃1 and the ℓN otherwise any asymmetry will cancel. The charge of the t̃1 can be found
by demanding that the opposite cascade produces a single lepton and thus a tri-lepton
final state. We distinguish the near and far leptons using the momentum reconstruction
technique, Sec. 3. However if for some reason the leptons cannot be identified we can still
use the triple product Tℓℓ, Eq. (14). No lepton distinction is required as exchanging the
near and far leptons has an extra sign change that cancels the change produced by the
charge exchange.

3 Momentum reconstruction

3.1 Dilution effects

The triple product that is constructed from momenta in the laboratory frame suffers
from dilution factors (∼ 4) at the LHC. This is due to the lab frame being boosted with
respect to the rest frame of the χ̃0

2 or t̃1, see Eq. (17), for a more detailed discussion
see [24]. It results in a considerable reduction in the maximum asymmetry observable
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Figure 1: The asymmetry AT, Eq. (15), as a function of the stop momentum, |~pt̃|, in the
laboratory frame. The solid line is the asymmetry for the triple product TℓN , Eq. (13)
and the dotted line is for the triple product Tℓℓ, Eq. (14). The respective masses are given
in Tab. 2, Tab. 3 and Tab. 4.

when we introduce the PDFs which causes an undetermined boost to the system. Fig. 1
shows how the asymmetry is diluted in the laboratory frame when we produce the t̃1 with
varying initial momenta. If we were able to reconstruct the momentum of the t̃1, we could
perform a Lorentz transformation of all the momenta in the triple product into the t̃1 rest
frame and potentially recover the full asymmetry.

3.2 Reconstruction procedure

We are able to reconstruct the χ̃0
1 four momentum by reconstructing the following two

body decay chain in full,

t̃ → t + χ̃0
2 → t + ℓ̃± + ℓ∓N → t+ χ̃0

1 + ℓ∓N + ℓ±F . (19)

Assuming that all the masses in the decay chains are known, the kinematics can be
fully reconstructed using the set of invariant mass conditions,

m2
χ̃0
1
= (pχ̃0

1
)2, (20)

m2
ℓ̃±

= (pχ̃0
1
+ pℓ±F

)2, (21)

m2
χ̃0
2
= (pℓ̃± + pℓ∓N

)2 = (pχ̃0
1
+ pℓ±F

+ pℓ∓N
)2, (22)

m2
t̃1

= (pχ̃0
2
+ pt)

2 = (pχ̃0
1
+ pℓ±F

+ pℓ∓N
+ pt)

2, (23)

where p denote the four momenta of the respective particles.
We see that with the four equations we have enough information to solve the system

and find each component of the χ̃0
1 four momentum. A solution to the above set of

9



p

p
t̃1

t̃∗1
ℓ−

b

t
W+

χ̃0
2

qu

q̄d

ℓ+F

χ̃0
1

ℓ̃+R

ℓ−N

Figure 2: The process studied for momen-
tum reconstruction.

equations is presented in [35] and we outline the procedure here. We first expand the χ̃0
1

momentum in terms of the final state momentum of the ℓ∓F , ℓ
±
N and t,

−→p χ̃0
1
= a−→p ℓ±F

+ b−→p ℓ∓N
+ c−→p t . (24)

In order to derive a system of 3 linear equations for the unknowns a − c, we calculate
~pχ̃0

1
· ~pℓF , ~pχ̃0

1
· ~pℓN and ~pχ̃0

1
· ~pt. Inserting Eq. (24) and exploiting Eqs. (21-23) we form the

system of equations,

M





a
b
c



 =







1
2
(m2

χ̃0
1

−m2
ℓ̃
) + Eχ̃0

1
EℓF

1
2
(m2

ℓ̃
−m2

χ̃0
2

) + pℓF · pℓN + Eχ̃0
1
EℓN

1
2
(m2

χ̃0
2

+m2
t −m2

t̃1
) + pℓF · pt + pℓN · pt + Eχ̃0

1
Et






, (25)

where,

M =





−→p ℓF · −→p ℓF
−→p ℓF · −→p ℓN

−→p ℓF · −→p t−→p ℓN · −→p ℓF
−→p ℓN · −→p ℓN

−→p ℓN · −→p t−→p t · −→p ℓF
−→p t · −→p ℓN

−→p t · −→p t



 .

(26)

We invert the matrix M to find solutions for a, b and c in terms of constants and Eχ̃0
1
.

The on shell mass condition for the χ̃0
1, Eq. (20), can then be expressed as,

E2
χ̃0
1
= (a, b, c)M





a
b
c



+m2
χ̃0
1
. (27)

We solve the above quadratic, to find two solutions for Eχ̃0
1
. These solutions are then

substituted back into Eq. (24) to find all components of the t̃1 momentum on an event-
by-event basis.
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3.3 Challenges from multiple solutions

We encounter a complication in the reconstruction as Eq. (20) is quadratic in (pχ̃0
1
).

Consequently we have two solutions for (pχ̃0
1
) for each reconstructed event but we have

no extra information in the single decay chain to determine which solution is physically
correct. As we cannot distinguish which of these solutions corresponds to the physically
correct configuration, we need to analyse both. Therefore, we calculate the t̃1 momentum
for both configurations and boost all final state particles in the triple product into the
reconstructed t̃1 rest frame. If the sign of both triple products are the same then the
event is recorded but if the sign of the triple products are different, we discard the event
since we cannot know which of the reconstructed solutions is correct. The method has
the disadvantage that we lose events and therefore statistical significance. However, we
find that the asymmetry can actually rise (≈ 1.5%) as most of the events removed have
small triple products and events with a small triple product lead to smaller asymmetries.

When performing the momentum reconstruction at the LHC we have additional prob-
lems from multiple solutions that come from combinatorial effects in the event. Firstly, to
complete the reconstruction we need to correctly identify the near and far lepton in the
decay chain Eq. (19) if we wish to compute the triple product TℓN , Eq. (13) (although this
information is not required for the triple product Tℓℓ, Eq. (14)). We find that in ≈ 20%
of events the wrong assignment of near and far leptons satisfy the kinematic equations
Eq. (20)-(23) and produce two extra solutions for the momentum of the χ̃0

1 in addition to
the solutions found from the correct configuration. In addition, we always require a third
lepton in the event coming from the opposite decay chain to correctly identify the stop
charge. For example the lepton produced in the decay chain t̃∗1 → χ̃−b̄, χ̃− → ℓ− + X ,
where X are other neutral decay products . If this lepton is of the same flavour as those in
the triple product decay chain there is a small chance that it can also reconstruct the χ̃0

2.
All of these combinatorial issues are removed by again demanding that all calculated triple
products are of the same sign and discarding any events where opposite sign solutions
occur.

Further combinatorial issues occur with the reconstructed top in the event. Firstly a
second b is always present in the opposite decay chain and this can occasionally combine
with a reconstructed W to give a fake t. The opposite decay chain also can contain
extra quarks that can produce more reconstructed t’s. Finally, the parton shower can
sometimes radiate hard gluons that are also seen as extra jets and further complicate
the combinatorial problem. Whenever extra t quarks are found that satisfy the event
kinematics we perform the same procedure as for combinatorial leptons. Triple products
are calculated for all reconstructed rest frames and only events, that yield the same sign
for all the reconstructed triple products, are recorded.

3.4 Mass measurements

As mentioned above, we assume that the masses of all the SUSY particles in the decay
chain will be known. However, for the majority of our equations in Eq. (25), we actually
require the difference between various m2’s in the decay chains and not the absolute mass.
At the LHC, the most established way of measuring the SUSY spectrum is via mass end-
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Parameter m0 m1/2 tanβ sign(µ) A0

Value 65 210 5 + 0

Table 1: mSUGRA benchmark scenario (masses in GeV).

points ( [36] and references therein) and this method will measure these mass differences
with high accuracy O( 1%).

The on-shell mass condition for the χ̃0
1 requires the absolute mass scale and this should

be measured at the LHC to a precision of better than 10% [36] for low mass scenarios
similar to the phenomenology presented in this paper. As an extra check on the numer-
ical stability of the reconstruction procedure, up to 20 GeV absolute mass errors were
tested on the absolute mass scale of the decay chain as a conservative estimate. This had
a negligible effect on the reconstruction efficiency and the CP-asymmetry and is there-
fore not considered to be a problem. In addition new methods have been proposed for
measuring the sparticle masses from the kinematic invariants directly [35, 37–41]. These
methods also use the mass invariants on an event-by-event basis but use this information
to reconstruct the masses of the particles in the decay chain. Therefore, these methods
are directly measuring the inputs we require for Eq. (20) and Eq. (25). We then use the
output from these methods to reconstruct the χ̃0

1 on an event-by-event basis. Reviews of
all the major mass reconstruction methods proposed for the LHC are given in [42, 43].

4 Parton level results

In this section we analyse numerically the CP-asymmetry at the parton level, with the
inclusion of parton distribution functions, whilst in Sec. 5 we complete a hadronic level
study to estimate the realistic environment and the discovery potential at the LHC. In
particular, we focus on a specific mSUGRA parameter point, Tab. 1, at the parton level
before discussing more general low mass mSUGRA scenarios for our hadronic study.

4.1 Chosen scenario: spectrum and decay modes

We choose for this study the mSUGRA scenario shown in Tab. 1 with an added CP-phase
to the trilinear coupling φAt . The spectrum at the electroweak scale have been derived
using the RGE code SPheno 2.2.3 [44] and the masses of the gauginos and scalars are
shown in Tab. 2, Tab. 3 and Tab. 4 respectively. Using the low energy soft SUSY breaking
parameters and the phase of the trilinear coupling φAt, we calculate the masses and mixing
of the t̃i’s, see Appendix A for details.

For the presented analysis to work, we require the SUSY spectrum to have the following
mass hierarchy,

mt̃1 +mt > mχ̃0
2
> mℓ̃±R

> mχ̃0
1
, (28)

to allow for full momentum reconstruction. This hierarchy is often a feature in the
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Particle mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

mχ̃±
1

mχ̃±
2

mg̃

Mass(GeV) 77.7 142.4 305.1 330.3 140.7 329.9 514.116

Table 2: Masses (in GeV) of the gauginos calculated by SPheno 2.2.3 [44].

Particle mt̃1 mt̃2 mb̃1
mb̃2

mq̃dL mq̃dR mq̃uL mq̃uR

Mass(GeV) 345.7 497.8 443.4 466.0 484.7 465.2 478.7 464.9

Table 3: Masses (in GeV) of the SUSY squarks calculated by SPheno 2.2.3 [44] except
for t̃i that were calculated at tree level with phase φAt = |4

5
π|.

Particle mℓ̃L
mℓ̃R

mτ̃2 mτ̃1

Mass(GeV) 163.4 110.8 164.9 108.0

Table 4: Masses (in GeV) of the SUSY sleptons calculated by SPheno 2.2.3 [44].

mSUGRA parameter space. In addition we concentrate on light mass scenarios as the
study is statistically limited and consequently we require a large production cross section.

The feasibility of the study at the LHC depends heavily on the integrated luminosity.
For this reason we look closely at the predicted cross section of the asymmetry decay
chain,

σ = σ(pp → t̃1t̃
∗
1)×BR(t̃1 → tχ̃0

2)×BR(χ̃0
2 → ℓ̃±ℓ∓)×BR(ℓ̃± → χ̃0

1ℓ
±)×BR(t → quq̄db),

(29)

and the relevant values for our scenario are shown in Tab. 5. In our study we also need
to identify the charge of the t̃1 in the opposite decay chain and this is possible when the
decay products contain a single lepton (any number of jets are allowed). We see that
the dominant production of single leptons from t̃1 decays are via the channel t̃1 → χ̃+

1 b.
However, as only the right sleptons and the bino-like χ̃0

1 are lighter than the wino-like
χ̃+
1 , the decay of the χ̃+

1 is via mixing terms or Yukawa couplings and hence the decay
BR(χ̃+

1 → τ̃+1 ντ ) dominates, Tab. 5. For this reason we find that our study is far more
promising if τ identification is possible and we compare results where τ identification has
and has not been used later in the next section, Sec. 5.

4.2 CP asymmetry at the parton level

We start by discussing the dependence of φAt on the parton level asymmetry, Eq. (15),
for both the triple products TℓN and Tℓℓ, Eqs. (13), (14). In order to see the maximum
dependence upon φAt we reconstruct the t̃1 at rest and calculate the triple product in this
frame. It should be noted that the asymmetry is obviously a CP-odd quantity, Fig. 3.
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Parameter Value

BR(t̃1 → χ̃0
1t) 34.6

BR(t̃1 → χ̃0
2t) 7.5

BR(t̃1 → χ̃+
1 b) 50.1

BR(t̃1 → χ̃+
2 b) 7.8

BR(χ̃0
2 → µ̃+

Rµ
−/ẽ+Re

−) 11.6

BR(χ̃+
1 → τ̃+1 ντ ) 95.1

σ(pp → t̃1t̃
∗
1) [pb] 3.44

Table 5: Nominal values of the branching ratios (in %) for various decays calculated in
Herwig++ [45, 46] with phase φAt = |4

5
π|. In the last row, cross sections for stop pair

production at the LHC with
√
s = 14 TeV at leading order (LO) from Herwig++.

We see from Fig. 3(a) that the largest asymmetry occurs for the triple product TℓN ,
which attains |AℓN |max ≈ 15% when φAt ≈ 0.8π. For the triple product Tℓℓ, the asymmetry
is smaller, |Aℓℓ|max ≈ 6.5%, because the ‘true’ CP triple product correlation is only
partially measured, see Sec. 2.2.

If we now include the dominant production process at the LHC (gg → t̃1t̃1) and
relevant parton distribution functions (MRST 2004LO [47]), we see that the asymmetries
are significantly diluted, Fig. 3(b). The asymmetry for the triple product TℓN , drops from
|AℓN |max ≈ 15% to |AℓN |max ≈ 4.5% and the reduction is due to the boosted frame of
the produced t̃1 as discussed in Sec. 2.2. For the triple product Tℓℓ, the reduction in the
asymmetry is far less, from |Aℓℓ|max ≈ 6.5% to |Aℓℓ|max ≈ 3.8%. This is because the triple
product, relies on the ℓF being correlated with the ℓ̃ by the intrinsic boost of the χ̃0

2, ℓ̃
system which already has a boost, even when the t̃1 is at rest. As the t̃1 becomes boosted,
the boost of the χ̃0

2, ℓ̃ system becomes proportionally less so, as the momentum of the
t̃1 is distributed throughout the decay chain. The difference in the dilution of the two
asymmetries with t̃ momentum can be seen in Fig. 1.

5 Hadron level results

In order to estimate the potential for observing CP-violating effects in t̃1 decays at the
LHC more realistically, we perform the analysis at the hadronic level. We use the
Herwig++ [45, 46] event generator to calculate all the matrix elements in the process,
the initial hard interaction, the subsequent SUSY particle decays, the parton shower and
the hadronisation. An important feature of Herwig++ is that it calculates the spin cor-
relations in the SUSY cascade decay and allows the input of complex mixing matrices.
Consequently, the triple product CP-asymmetry can be automatically calculated within
Herwig++.
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Figure 3: (a) The asymmetry AT, Eq. (15), in the rest frame of t̃1 as a function of φAt .
(b) The asymmetry AT, Eq. (15), in the laboratory frame as a function of φAt at the LHC
at 14TeV. The solid line is the asymmetry for the triple product TℓN , Eq. (13) and the
dotted line is for the triple product Tℓℓ, Eq. (14).

5.1 Cuts used and signal identification

The hadronic analysis of the produced events has been performed within the program
Rivet [48, 49]. We used the anti-kt [50, 51] jet algorithm with R=0.5 and applied the
following acceptance cuts,

• pTℓi > 10GeV,

• pTji > 20GeV,

• invariant mass of opposite sign same flavour (OSSF) leptons: Mℓ+ℓ− > 10GeV,

• |ηℓi| < 2.5,

• |ηji| < 3.5,

• lepton jet isolation, ∆ R = 0.5,

• b-tag efficiency = 60% [52],

• hadronic τ -tag efficiency (whenever used) = 40% [52].

To identify the events we demand three charged leptons in the final state, so that we
can correctly identify the charge of each t̃1 produced in the event, Sec. 2.2. In addition,
we demand that a pair of these leptons are OSSF as is the case for light leptons from χ̃0

2

decay. Whenever a t̃1 decays in our scenarios a b is produced and therefore we require
at least one b-tag in the final state (in principle we could require 2 b-tags including the
opposite decay chain but we loose 40% of events due to b-tagging efficiency). On top of
the b we require at least 2 more jets to be found in the final state so the full reconstruction
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of the t is possible. As all of our triple products and momentum reconstruction need a t
we require at least one hadronic t to be reconstructed. For this procedure, we first demand
that 2 jets (not b’s) reconstruct a W± (70GeV < Mjj < 90GeV). We then impose that a
reconstructed W± and one b jet reconstruct a t (150GeV < MW±b < 190GeV).

Once these cuts have been passed we then perform the kinematical reconstruction
shown in Sec. 3 with any t’s and OSSF leptons found in the final state. If the particles
satisfy the kinematic constraints Eq. (20)-(23), we will have at least two different solutions
on event-by-event basis for the momentum of the χ̃0

1. For each solution, the relevant rest
frame triple product is calculated and only if all the signs of the triple products agree the
event is accepted.

5.2 Standard model background

The following standard model backgrounds were produced with Herwig++: tt, Drell-
Yan gauge boson production (Z, γ, W ), W+jet, Z+jet, WW , WZ, ZZ, Wγ, WZ. In
addition, we generate ttℓ+ℓ− events with MadGraph [53] and then use Herwig++ to perform
the parton shower and hadronisation. We find that the only background to pass the
event selection is ttℓ+ℓ− with the very low rate of 0.03 events/fb−1 after kinematical
reconstruction. This corresponds to only ≈ 1% of the signal process for our particular
scenario.

Although the above result is encouraging, it must be stated that our analysis contains
no jets mis-identified as leptons. As the standard model processes produced by Herwig++

only contain a maximum of two hard leptons in the initial process, the lack of a trilepton
signal is not surprising. However, we do not expect major problems from standard model
backgrounds if we limit the study to leptons from the first and second generation. tt can
be expected to provide the largest background when both W± decay leptonically and an
extra lepton is produced from a b or a mis-identified jet. Even when this occurs though,
we still require an additional two hard jets in the event that have to combine with a
b to form a t. Moreover, the final state then has to fulfil the reconstructed particular
kinematics of our signal and finally all the calculated triple products have to agree.

To improve the statistical significance of our analysis, we also investigated the possi-
bility of using τ -tagging in the opposite decay chain to that of our signal. In this analysis,
we now change the original trilepton signal to a first or second lepton OSSF and addi-
tional hadronic τ . The mis-identification of a jet for a τ is much higher than for the other
leptons and the standard model backgrounds may now become an issue [52]. However,
this analysis is currently postponed to future studies.

5.3 Stop Production

We begin by studying t̃1t̃
∗
1 production along with the following decay chain,

t̃1 → χ̃0
2t → χ̃0

1e
+e−jjb, (30)

t̃∗1 → χ̃0
1t → χ̃0

1µ
−ν̄µb. (31)

to test the momentum reconstruction procedure. The above decay chain is the cleanest
signal process from a combinatorial point of view. We find a reconstruction efficiency
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Figure 4: (a) The asymmetry AℓN , Eq. (15), for the decay chain shown in Eq. (30)-
(31) as a function of φAt at the hadronic level after momentum reconstruction has been
performed. (b) The branching ratios: t̃1 → χ̃+

1 b (black solid), t̃1 → χ̃+
2 b (red dotted),

t̃1 → χ̃0
1t (purple slashed), t̃1 → χ̃0

2t (blue slash-dot).

of ≈ 5% for this particular topology after cuts and the requirement for same sign triple
products. The decay chain Eq. (31) has a single lepton in the final state allowing us to
tag the charge of both the t̃1 and t̃∗1 in the process.

For the CP-asymmetry, we now concentrate purely on the triple product TℓN , Eq. (13)
calculated in the reconstructed rest frame of the t̃1, as this is the observable with high
significance at the LHC. Fig. 4(a) shows that there is virtually no dilution when we move
to the hadronic level and the asymmetry stays at |AℓN |max ≈ 15%. In fact, the hadronic
level reconstruction does induce a degree of dilution, ≈ 1.5% but this is cancelled by our
procedure of removing opposite sign triple products which enhances the asymmetry by a
similar amount, Sec. 3.3.

In order to estimate whether it is possible to observe a CP-asymmetry in t̃1 decays
at the LHC we need to calculate the statistical significance of any result. We assume
that NT+ (NT−), the numbers of events where T is positive (negative) as in Eq. (15), are
binomially distributed, giving the following statistical error [54],

∆(AT )
stat = 2

√

ǫ(1− ǫ)/N , (32)

where ǫ = NT+/(NT+ + NT−) =
1
2
(1 + AT ), and N = NT+ + NT− is the total number of

events. Eq.(32) can be rearranged to give the required number of events for a desired
significance.

The total cross section used to calculate the statistical significance of any result in
this paper has been calculated using Herwig++ at the leading order (LO) for consistency.
However, next-to-leading order production cross sections are available and have been
calculated using Prospino [55–57], cf. Tab. 6. We see that in general the cross sections
at NLO are higher than those at LO suggesting that the effective luminosity at the
LHC will be more optimistic than those shown in the following results. In addition, the
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t̃1t̃
∗
1 g̃, q̃

Herwig++ LO (pb−1) 3.44 75.8

Prospino LO (pb−1) 3.34+1.15
−0.8 76.7+24.8

−17.3

Prospino NLO (pb−1) 5.04+1.19
−0.92 99.5+7.7

−9.6

Table 6: Cross section at the LHC with
√
s = 14 TeV production channel t̃1t̃

∗
1 and coloured

SUSY production for both leading order (LO) and next-to-leading order (NLO). All cross
sections were calculated using Herwig++ [45,46] or Prospino [55–57]. The errors indicated
next to the Prospino cross sections relate to varying the factorisation and renormalisation
scales from 0.5mt̃1 → 2mt̃1 .

factorisation and renormalisation scale uncertainties are shown that indicates an estimate
of the underlying theoretical uncertainty.

Due to the phase dependence of both the t̃1 branching ratios, see Fig. 4(b), and
production cross section, the statistical significance for different values of φAt cannot be
trivially extrapolated. The total number of events observed will be an interplay between
the branching ratios and the production cross section. However, in the case of branching
ratios, each of the decays, t̃1 → χ̃+

1 b, t̃1 → χ̃+
2 b and t̃1 → χ̃0

1t has a different reconstruction
efficiency and asymmetry dilution that needs to be calculated. For example, we see from
Fig. 4(b) that the branching ratio for the decay t̃1 → χ̃+

2 b increases noticeably as we vary
φAt from φAt = 0 to φAt = |π| due to this decay becoming kinematically more favourable.
The χ̃+

2 has a large number of final states with no lepton however, so consequently the
number of signal events decreases. Also, the χ̃+

2 decays generally contain extra jets that
make the reconstruction of the event more difficult and thus reduce the efficiency of this
channel.

Fig. 5(a) shows the asymmetry when all t̃1 decay channels are considered and an esti-
mate of the amount of luminosity required for a 3σ-observation of a non-zero asymmetry
for pure t̃1t̃

∗
1 production at the LHC. We can see that the asymmetry is slightly diluted

when all t̃1 decay modes are included from |AℓN |max ≈ 15% to |AℓN |max ≈ 12.5%. The
dilution is due to reconstructed events that are not originating from the signal process,
Eq. (19). These events have no overall asymmetry and therefore simply dilute the signal.
The horizontal lines show the estimate of the required luminosity required to see a certain
asymmetry; an asymmetry can be seen at the 3σ level where the asymmetry curve in
Fig. 5(a) lies outside the luminosity band. The luminosity bands are not flat because as
discussed before, both the branching ratios and production cross section of the t̃1 vary
with the phase φAt . We can see that in our scenario for pure t̃1t̃

∗
1 production, we expect

a sensitivity for |0.5π| < φAt < |0.9π| with 500 fb−1.
We can see the effect of varying the mSUGRA parameters tanβ and A0 in Fig. 5(b).

It is shown that as the value of either tanβ or A0 is increased, we require more luminosity
to see a statistically significant observation even with maximum asymmetry. An increase
in tanβ decreases the sensitivity because the branching ratio χ̃0

2 → ℓ̃±ℓ∓ is reduced. The
reduction is due to τ̃ ’s becoming more mixed which increases the left handed component
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Figure 5: Pure t̃1t̃
∗
1 production, all decay channels included, see Tab. 5 for branching

ratios for the specific parameter point and Fig. 4 for how these alter with φAt . τ tagging
is included in both plots. (a) Asymmetry, AℓN , at reference point with 3σ-luminosity
lines shown. (b) Minimum luminosity required for 3σ-discovery in tanβ,A0 plane when
asymmetry, AℓN , is maximal.
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Figure 6: Minimum luminosity required for 3σ-discovery in m0, m1/2 plane when asym-
metry, AℓN , is maximal. Pure t̃1t̃

∗
1 production, all decay channels included, see Tab. 5 for

branching ratios for the specific parameter point and Fig. 4 for how these alter with φAt .
Purple area is ruled out by LEP direct detection [58] and red area has no two body decay
χ̃0
2 → ℓ̃±ℓ∓. (a) With τ tagging. (b) Without τ tagging.

in the lighter τ̃ . Therefore, the τ̃1 couples more strongly to the predominantly wino χ̃0
2

and begins to dominate this decay channel at the expense of the signal process. A rise in
A0 decreases sensitivity mainly because the CP-asymmetry is reduced. The reason is that
after RGE running, an increase in A0 reduces the magnitude of the trilinear coupling At

that contains the phase, φAt that we are interested in. Hence the CP effects are reduced.
Similarly, Fig. 6(a) shows the effect of varying the mSUGRA parameters m0 and m1/2

on the minimum luminosity required for an observation of CP effects. We note as general
trend that as m1/2 is increasing, we need more luminosity to observe the CP-violating
triple products. This is due to the increase in t̃1 mass which reduces the production cross
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t̃1t̃
∗
1 SUSY t̃1t̃

∗
1 Signal / SUSY Background

Cross Section (pb−1) 3.44 80.1

Events with 500 fb−1 1.7×106 4×107

Events with 500 fb−1 32389 410735 0.079

Initial selection

Events with 500 fb−1 7117 64729 0.11

Top Reconstruction

Events with 500 fb−1 1213 3759 0.32

Kinematic Reconstruction

Events with 500 fb−1 901 967 0.93

Extra SUSY cuts

Table 7: Cross section, number of events and signal to background ratio at the LHC with√
s = 14 TeV at LO for both the production channel t̃1t̃

∗
1 and inclusive SUSY production.

All cross sections were calculated using Herwig++ [45, 46].

section for t̃1t̃
∗
1. If we increase m0 we see that a large area of the parameter space has no

two body decay χ̃0
2 → ℓ̃±ℓ∓ as ℓ̃± > χ̃0

2.
Fig. 6(b) indicates the effect of having no hadronic τ -tagging for the decay χ̃+

1 → τ̃+1 ντ .
The τ final state dominates the χ̃+

1 decay which in turn is the dominant product of the t̃1
in low mass mSUGRA scenarios, Tab. 5. As stated in the beginning of Sec. 5 we assume a
40% τ -tagging efficiency and without this we lose approximately a factor of 2 in effective
luminosity for our signal process.

5.4 Impact of momentum reconstruction on SUSY background

separation

All of the previous sections results have assumed that the t̃1t̃
∗
1 process can be isolated

effectively. However, in the mSUGRA scenarios investigated many other SUSY particles
will be produced. Tab. 7 shows that the total production cross section for SUSY is ≈ 25
times greater than for t̃1t̃

∗
1 production and we can therefore expect sizable backgrounds.

We can also expect that the vast majority of the SUSY background processes will have
no other spin correlated CP-sensitive triple product with the same final state and will
therefore just act as a dilution to the CP-asymmetry by contributing to the denominator
of Eq. (15).

Tab. 7 shows that after the initial event selection and top reconstruction, the SUSY
background is still ≈ 10 times larger than the signal process. Note that if we apply
the kinematical reconstruction to these events we see that we substantially reduce the
background to be only ≈ 3 times larger!

In order to observe CP-violating effects in t̃1t̃
∗
1 production at the LHC, however, the
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signal to background ratio may still be too high and consequently we need further cuts to
isolate the signal process. We notice that in mSUGRA scenarios, the largest background
comes from g̃ production followed by the dominant decay to either sbottom, g̃ → b̃ib with
a branching ratio of ≈ 30%. The b̃i decays dominantly to χ̃0

2b or χ̃+
1 t which leads to a

very similar final state as the signal process when combined with the opposite decay chain
. The difference between the SUSY background and the t̃1’s is that the g̃ and first and
second generation q̃ have a higher mass. In addition, a gluino has in general one more
decay vertex in the cascade decay producing another hard jet. These two factors mean
that the average pT of the particles produced in the event will be higher and the number
of jets will be greater, thus we can use these characteristics to discriminate the signal
from the background. Hence we cut on the number of jets reconstructed in an event,

Number of jets < 6. (33)

For the pT cuts, we have,

pT (Hardest Jet) < 200 GeV, (34)

pT (2nd Jet) < 130 GeV, (35)

pT (3rd Jet) < 80 GeV (if applicable), (36)

pT (Any b Jet) < 150 GeV, (37)

pT (Any Lepton) < 100 GeV. (38)

Tab. 7 shows that after all these cuts are performed the signal to background ratio
improves significantly and we now have roughly the same number of signal and background
events in the sample.

If we now re-evaluate the luminosity plots with the SUSY background included,
Fig. 7,8, we see that more luminosity is now required to observe a statistically significant
effect. Due to the background dilution of the asymmetry, we now have |AℓN |max ≈ 6.5%
for our scenario Fig. 7. Consequently we are now only sensitive to phases between
|0.6π| < φAt < |0.85π| with 1 ab−1 of data. If we look at the tanβ, A0 contour plot
we see that sensitivity at the LHC for 1 ab−1 is only possible for small values of tanβ.

However, we would like to emphasise that it may be possible to substantially im-
prove the statistical significance of an asymmetry measurement and return to close to the
significance achieved when looking at a purely t̃1t̃

∗
1 process, even with the same SUSY

background. Namely, via measuring the SUSY spectra (in particular the g̃ and b̃) a good
estimate of the background should be possible. The background events can then be sub-
tracted from the denominator of the asymmetry, Eq. (15), to give the true value of the
asymmetry. Thus, the statistical significance should be much improved.

We would also like to remind the reader that this subtraction only becomes reliable
if the signal to background ratio is good enough otherwise the signal is swamped by
statistical fluctuations. Thus the momentum reconstruction procedure is vital since it
significantly reduces the backgrounds that are present.

Similarly, a more constrained area of observability is seen in the m0, m1/2 plane,
Fig. 8(a). With 1 ab−1 of data, our study suggests that only if m1/2 < 220 GeV will it
be possible to observe a CP-phase in the stop sector. Again, we see the importance of
τ -tagging to our study from the difference between Fig. 8(a) and Fig. 8(b). If τ -tagging
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Figure 7: General SUSY production for the asymmetry AℓN . τ tagging is included in
both plots. (a) Asymmetry, AℓN , at reference point with 3σ-luminosity lines shown. (b)
Minimum luminosity required for 3σ-discovery in tanβ,A0 plane when asymmetry, AℓN ,
is maximal.
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Figure 8: General SUSY production for the asymmetry AℓN . Minimum luminosity re-
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is ruled out by LEP direct detection [58] and red area has no two body decay χ̃0
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(a) With τ tagging. (b) Without τ tagging.

is not used in the study, no CP-violation in the t̃1 sector can be observed with 1 ab−1 of
data.

5.5 Open experimental issues

Although the presented study was completed at the hadronic level, a full detector simu-
lation should be completed to confirm the conclusions of this paper. The most obvious
experimental issue that could affect our results is the finite momentum resolution of the
detector for both jets and leptons when performing momentum reconstruction. How-
ever, the resolution was tested with regards to momentum reconstruction in [29] with a
significantly more complicated final state and it was found to have only a small effect.

22



In terms of background suppression the mis-tagging of various objects could increase
both the standard model and SUSY background. For the standard model background,
the most obvious example is the tt process generating a trilepton signal [52]. The process
requires a jet to be mistagged as a lepton, which is not investigated in this study. The
suitability of hadronic τ -tagging in the study also needs to be investigated thoroughly
as these are expected to have significant mis-identification rates [52]. However, this is
beyond the scope of this theoretical study.

6 Conclusions

In this paper we have investigated the problem of discovering CP-violating effects at the
Large Hadron Collider. We studied t̃1t̃

∗
1 production and subsequent two body decays.

Triple product correlations can be formed from the final state particles that are sensitive
to the presence of complex phases in the model. Since triple products depend crucially
on spin correlations and are therefore sensitive to CP-odd observables, they have been
included both in the analytical calculation and the event generation, that has been per-
formed using Herwig++ 2.3.2. The process of special interest in our case was the t̃1 decay
into t and χ̃0

2 followed by two, 2-body leptonic decays. For this decay in our mSUGRA
scenario one can expect an asymmetry in the triple product distribution of up to 15%
when calculated in the rest frame of the decaying neutralino. The source of the CP viola-
tion in our case was the phase of the trilinear coupling At that attains a value of φAt ∼ 0.8
when the asymmetry is maximum in our scenario.

Due to the hadronic experimental environment of the LHC, precise measurements will
be a challenge both from experimental and theoretical point of view. The rest frame
CP-odd asymmetry is diluted by the high boosts of the produced particles and this makes
an observation difficult. We studied the impact of momentum reconstruction of invisible
LSPs to get access to the rest frame of the t̃1. Using a set of invariant kinematic conditions
we showed that it is possible to fully reconstruct the production and decay process on an
event-by-event basis. The reconstruction was performed on events including the parton
shower and hadronisation. Having fully reconstructed events we are able to boost particle
momenta back to the rest frame of the t̃1 and the maximum asymmetry is recovered
to 15%. In addition, momentum reconstruction leads to a significant increase in the
signal background ratio and thus is very important in attempting to isolate the process
of interest.

If we consider exclusive t̃1 production and all possible t̃1 decay chains the maximum
asymmetry is diluted slightly to ∼ 12.5%. In the mSUGRA scenario considered in this
paper one should expect to see a 3σ effect at L = 500 fb−1 for phases in the range
|0.5 π| . φAt . |0.9 π|. If general SUSY production is considered, significant backgrounds
to our signal process are present and extra kinematical cuts are required to remove this
background. Even after these cuts some SUSY background remains and our maximum
asymmetry is reduced to ∼ 6.5%. To see a 3σ effect at the LHC would require L = 1 ab−1

of data for sensitivity to phases in the range |0.6 π| . φAt . |0.85 π|.
We emphasise that the asymmetry after momentum reconstruction is a much cleaner

observable from a theoretical point of view, thanks to a well defined final state. Therefore,
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using the above technique provides prospects for the observation of CP-violating effects for
a range of the phase φAt after a few years of LHC running at the high luminosity. The full
assessment of LHC’s ability to resolve CP violation in the MSSM, however, will definitely
require a detailed simulation of detector effects, SM and SUSY backgrounds which is
beyond the scope of the present phenomenological analysis. The promising results of this
study may encourage such further simulations.
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Appendices

A Mixing in the stop sector

In the Minimal Supersymmetric Standard Model the stop sector is defined by the mass
matrix Mt̃ in the basis of gauge eigenstates (t̃L, t̃R). The 2× 2 mass matrix depends on
the soft scalar masses MQ̃ and MŨ , the supersymmetric higgsino mass parameter µ, and
the soft SUSY-breaking trilinear coupling At. It is given as

M2
t̃ =

(

m2
t +m2

LL m∗
LR mt

mLR mt m2
t +m2

RR

)

, (39)

where

m2
LL = M2

Q̃
+m2

Z cos 2β (
1

2
− 2

3
sin2 θW ) , (40)

m2
RR = M2

Ũ
+

2

3
m2

Z cos 2β sin2 θW , (41)

mLR = At − µ∗ cotβ , (42)

and tanβ = v2/v1 is the ratio of the vacuum expectation values of the two neutral Higgs
fields which break the electroweak symmetry. From the above parameters only µ and At

can take complex values

At = |At| eiφt, µ = |µ| eiφµ, (0 ≤ φt, φµ < 2π) , (43)

thus yielding CP violation in the stop sector.
The hermitian matrix M2

t̃
is diagonalized by a unitary matrix Rt̃,

Rt̃ M2
t̃ R

†

t̃
=

(

m2
t̃1

0

0 m2
t̃2

)

, (44)
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where we choose the convention m2
t̃1

< m2
t̃2

for the masses of t̃1 and t̃2. The matrix Rt̃

rotates the gauge eigenstates, t̃L and t̃R, into the mass eigenstates t̃1 and t̃2 as follows
(

t̃1
t̃2

)

= Rt̃

(

t̃L
t̃R

)

=

(

cos θt̃ sin θt̃ e
−iφt̃

− sin θt̃ e
iφt̃ cos θt̃

)(

t̃L
t̃R

)

, (45)

where θt̃ and φt̃ are the mixing angle and the CP-violating phase of the stop sector,
respectively. The masses are given by

mt̃1,2 =
1

2

(

2m2
t +m2

LL +m2
RR ∓

√

(m2
LL −m2

RR)
2 + 4|mLR|2m2

t

)

, (46)

whereas for the mixing angle and the CP phase we have

cos θt̃ =
−mt|mLR|

√

m2
t |mLR|2 + (m2

t̃1
−m2

LL)
2
, (47)

sin θt̃ =
m2

LL −m2
t̃1

√

m2
t |mLR|2 + (m2

t̃1
−m2

LL)
2
, (48)

φt̃ = arg(At − µ∗ cot β) . (49)

By convention we take 0 ≤ θt̃ < π and 0 ≤ φt̃ < 2π. It must be noted that φt̃ is an
‘effective’ phase and does not directly correspond to the phase of any MSSM parameter.
Instead, the phase will have contributions from both φAt and φµ. However, in this study
we set φµ = 0 due to the EDM constraints.

If mLL < mRR then cos2 θt̃ >
1
2
and t̃1 has a predominantly left gauge character. On

the other hand, if mLL > mRR then cos2 θt̃ <
1
2
and t̃1 has a predominantly right gauge

character.

B Mixing in the neutralino sector

In the MSSM, the four neutralinos χ̃0
i (i = 1, 2, 3, 4) are mixtures of the neutral U(1) and

SU(2) gauginos, B̃ and W̃ 3, and the higgsinos, H̃0
1 and H̃0

2 . The neutralino mass matrix
in the (B̃, W̃ 3, H̃0

1 , H̃
0
2) basis,

MN =











M1 0 −mZcβsW mZsβsW

0 M2 mZcβcW −mZsβcW

−mZcβsW mZcβcW 0 −µ

mZsβsW −mZsβcW −µ 0











(50)

is built up by the fundamental SUSY parameters: the U(1) and SU(2) gaugino masses
M1 and M2, the higgsino mass parameter µ, and tanβ = v2/v1 (cβ = cos β, sW = sin θW
etc.). In addition to the µ parameter, a non-trivial CP phase can also be attributed to
the M1 parameter:

M1 = |M1| eiφ1, (0 ≤ φ1 < 2π) . (51)
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Since the complex matrix MN is symmetric, one unitary matrix N is sufficient to rotate
the gauge eigenstate basis (B̃, W̃ 3, H̃0

1 , H̃
0
2 ) to the mass eigenstate basis of the Majorana

fields χ̃0
i

diag(mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
) = N∗MNN

† , (mχ̃0
1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
) . (52)

The massesmχ̃0
i
(i = 1, 2, 3, 4) can be chosen to be real and positive by a suitable definition

of the unitary matrix N .

C Interaction Lagrangian and couplings

The interaction Lagrangian for the stop decay (t̃i → χ̃0
j t) is,

Ltt̃χ̃0 = χ̃0
j (aijPL + bijPR) t t̃

∗
i + h.c. , (53)

where PL,R = 1
2
(1∓ γ5). The couplings are given by,

aij = − e√
2 sW cW

Rt̃
i1

(

1

3
sWN∗

j1 + cWN∗
j2

)

− Yt Rt̃
i2N

∗
j4 , (54)

bij =
2
√
2 e

3cW
Rt̃

i2Nj1 − Yt Rt̃
i1Nj4 , (55)

where Rt̃
ij are the entries of stop mixing matrix, Eq. (45), and Nij are the entries of the

neutralino mixing matrix, Eq. (52). The top Yukawa coupling is given by,

Yt =
e mt√

2mWsW sin β
. (56)

The interaction Lagrangian for the neutralino decay (χ̃0
j → ℓ̃ℓ) is,

Lℓℓ̃χ̃0
j
= gf ℓ

Lj ℓ̄ PR χ̃0
j ℓ̃L + gf ℓ

Rj ℓ̄ PL χ̃0
j ℓ̃R + h.c. (57)

where g = e/ sin θW . The couplings are given by,

f ℓ
Lj =

1√
2
(tan θWNj1 +Nj2) , (58)

f ℓ
Rj = −

√
2 tan θWN∗

j1 , (59)

(60)

D Amplitude squared including full spin correlations

D.1 Neutralino production t̃1 → χ̃0
jt

Here we give the analytic expression for the neutralino production density matrix:

|M(t̃1 → χ̃0
j t)|2 = P (χ̃0

jt) + Σa
P (χ̃

0
j) + Σb

P (t) + Σab
P (χ̃0

jt) , (61)
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whose spin-independent contribution reads

P (χ̃0
jt) = (|a1j|2 + |b1j |2)(ptpχ̃0

j
)− 2mtmχ̃0

j
Re(a1jb

∗
1j) , (62)

where pt and pχ̃0
k
denote the four-momenta of the t-quark and the neutralino χ̃0

k. The
coupling constants aij and bij are shown in Eq. (54,55) and by substituting the explicit
matrix elements of Eq. (45) we can show the specific parameter dependence [59],

|a1j |2 + |b1j |2 =

= cos2 θt̃

(

e2

2s2W c2W

∣

∣

∣

1

3
sWNj1 + cWNj2

∣

∣

∣

2

+ Y 2
t |Nj4|2

)

+ sin2 θt̃

(

8e2

9c2W
|Nj1|2 + Y 2

t |Nj4|2
)

+ 2 sin θt̃ cos θt̃ Yt

(

e√
2 sW cW

Re

[

eiφt̃

(

1

3
sWN∗

j1 + cWN∗
j2

)

Nj4

]

−2
√
2 e

3cW
Re

[

e−iφt̃Nj1N
∗
j4

]

)

.

(63)

Re
[

a1jb
∗
1j

]

= cos2 θt̃
e√

2 sW cW
Yt Re

[(

1

3
sWN∗

j1 + cWN∗
j2

)

N∗
j4

]

+ sin2 θt̃
2
√
2 e

3cW
Yt Re[N

∗
j4N

∗
j1]

+ sin θt̃ cos θt̃

(

Y 2
t Re

[

e−iφt̃N∗2
j4

]

− 2

3

e2

sW c2W
Re

[

eiφt̃

(

1

3
sWN∗

j1 + cWN∗
j2

)

N∗
j1

])

.

(64)

The spin-dependent terms that depend on individual spin contributions are T-even
and are given by,

Σa
P (χ̃

0
j ) = (|bij |2 − |aij|2)mχ̃0

j
(pts

a(χ̃0
j )) , (65)

Σb
P (t) = (|bij |2 − |aij|2)mt(pχ̃0

j
sb(t)) , (66)

where sa(χ̃0
j ) (s

b(t)) denote the spin-basis vectors of the neutralino χ̃0
j (t-quark). Again

the coupling constants can be expanded as,

|b1j |2 − |a1j|2 =

= cos2 θt̃

(

Y 2
t |Nj4|2 −

e2

2s2W c2W

∣

∣

∣

1

3
sWNj1 + cWNj2

∣

∣

∣

2
)

+ sin2 θt̃

(

8e2

9c2W
|Nj1|2 − Y 2

t |Nj4|2
)

− 2 sin θt̃ cos θt̃ Yt

(

e√
2 sW cW

Re

[

eiφt̃

(

1

3
sWN∗

j1 + cWN∗
j2

)

Nj4

]

+
2
√
2 e

3cW
Re

[

e−iφt̃Nj1N
∗
j4

]

)

.

(67)

The terms that depend simultaneously on the spin of the top quark and of the neutralino
can be split into T-even, Σab

P,even(χ̃
0
jt), and T-odd, Σab

P,odd(χ̃
0
j t). The T-even contributions

are as follows,

Σab
P,even(χ̃

0
j t) = 2Re(aijb

∗
ij)[(s

a(χ̃0
j)pt)(s

b(t)pχ̃0
j
)− (ptpχ̃0

j
)(sa(χ̃0

j)s
b(t))]

+ mtmχ̃0
j
(sa(χ̃0

j)s
b(t))(|aij |2 + |bij |2) . (68)
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The T-odd contributions that generate the triple product correlations that we are inter-
ested in are,

Σab
P,odd(χ̃

0
jt) = −g2Im(aijb

∗
ij)f

ab
4 , (69)

where the T-odd kinematical factor is given by,

fab
4 = ǫµνρσs

a,µ(χ̃0
j)p

ν
χ̃0
j
sb,ρ(t)pσt . (70)

Sec.2.2 explains how this epsilon product generates the triple product observable. We
again expand the coupling constant to see the functional dependence,

Im
[

a1jb
∗
1j

]

= cos2 θt̃
e√

2 sW cW
Yt Im

[(

1

3
sWN∗

j1 + cWN∗
j2

)

N∗
j4

]

+ sin2 θt̃
2
√
2 e

3cW
Yt Im[N∗

j4N
∗
j1]

+ sin θt̃ cos θt̃

(

Y 2
t Im

[

e−iφt̃N∗2
j4

]

− 2

3

e2

sW c2W
Im

[

eiφt̃

(

1

3
sWN∗

j1 + cWN∗
j2

)

N∗
j1

])

.

(71)

D.2 Neutralino decay χ̃0
2 → ℓ̃+Rℓ

−

We provide analytical expressions for the 2-body decay of the χ̃0
2 into a ℓ̃+R and the final-

state ℓ−:

D(χ̃0
2) =

g2

4
|f l

L2|2{m2
χ̃0
2
−m2

ℓ̃R
}. (72)

The spin-dependent contribution is T-even and reads:

Σa
D(χ̃

0
2) =

g2

2
|f l

L2|2mχ̃0
2
{(sa(χ̃0

2)pℓ−}. (73)

D.3 Top decay t → W+b

We provide analytical expressions for the 2-body decay of the top quark into a W -boson
and the final-state bottom quark:

D(t) =
g2

4
{m2

t − 2m2
W +

m4
t

m2
W

}. (74)

The spin-dependent contribution is T-even and reads:

Σb
D(t) = −g2

2
mt{(sb(t)pb) +

m2
t −m2

W

m2
W

(sb(t)pW )}. (75)
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