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Some variations of the reduction of one-loop
Feynman tensor integrals

Jochem Fleischer
Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
E-mail: Fleischer@physik.uni-bielefeld.de

Tord Riemann∗
Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, 15738 Zeuthen, Germany
E-mail: Tord.Riemann@desy.de

We present a new algorithm for the reduction of one-loop tensor Feynman integrals with n ≤ 4
external legs to scalar Feynman integrals ID

n with n = 3,4 legs in D dimensions, where D = d+2l

with integer l ≥ 0 and generic dimension d = 4− 2ε , thus avoiding the appearance of inverse
Gram determinants ()4. As long as ()4 6= 0, the integrals ID

3,4 with D > d may be further expressed
by the usual dimensionally regularized scalar functions Id

2,3,4. The integrals ID
4 are known at

()4≡ 0, so that we may extend the numerics to small, non-vanishing ()4 by applying a dimensional
recurrence relation. A numerical example is worked out. Together with a recursive reduction of
6- and 5-point functions, derived earlier, the calculational scheme allows a stabilized reduction
of n-point functions with n ≤ 6 at arbitrary phase space points. The algorithm is worked out
explicitely for tensors of rank R≤ n.
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1. Introduction

The efficient and stable evaluation of tensor Feynman integrals,

Iµ1···µR
n = C(ε)

∫ ddk
iπd/2

∏
R
r=1 kµr

∏
n
j=1 cν j

j

, (1.1)

with denominators c j, having indices ν j and chords q j,

c j = (k−q j)
2−m2

j + iε, (1.2)

is an important ingredient of precision calculations for collider physics. The normalization C(ε)

plays a role for divergent integrals only and is conventional, C(ε)= (µ)2εΓ(1−2ε)/[Γ(1+ε)Γ2(1−
ε)]. Here, we use the generic dimension d = 4−2ε and µ = 1.

For n≤ 4, the problem was basically solved in the Seventies of the last century [1, 2] by tensor
reduction with an ansatz of linear equations in terms of scalar integrals, and their evaluation in
terms of logarithms and dilogarithms. For predictions of massive particle production at the LHC
or ILC, one needs multi-dimensional phase space integrals over typically hundreds to thousands
of Feynman diagrams with n ≤ 6 external legs and tensor ranks R ≤ n. Further, the so-called
ε-expansion is needed in higher-order calculations. Over the years, a variety of papers appeared,
and a comprehensive survey is well beyond the scope of this contribution. One of the approaches is
purely algebraic and rests on the representation of single tensor integrals by scalar integrals, where
the latter are defined in higher dimensions D = d +2l and may have also higher indices ν j +m [3],
e.g.:

Iµ
n =

∫ ddk
iπd/2 kµ

n

∏
r=1

c−1
r =−

n

∑
i=1

qµ

i Id+2
n,i , (1.3)

Iµ ν
n =

∫ ddk
iπd/2 kµ kν

n

∏
r=1

c−1
r =

n

∑
i, j=1

qµ

i qν
j ni j Id+4

n,i j −
1
2

gµν Id+2
n , (1.4)

Iµ ν λ
n =

∫ ddk
iπd/2 kµ kν kλ

n

∏
r=1

c−1
r =−

n

∑
i, j,k=1

qµ

i qν
j qλ

k ni jk Id+6
n,i jk +

1
2

n

∑
i=1

g[µνqλ ]
i Id+4

n,i , (1.5)

Iµ ν λ ρ
n =

∫ ddk
iπd/2 kµ kν kλ kρ

n

∏
r=1

c−1
r

=
n

∑
i, j,k,l=1

qµ

i qν
j qλ

k qρ

l ni jkl Id+8
n,i jkl−

1
2

n

∑
i, j=1

g[µνqλ
i qρ]

j ni jId+6
n,i j +

1
4

g[µνgλρ]Id+4
n . (1.6)

Tensors like g[µνqλ ]
i are completely symmetrized, and we define ni j = νi j = 1+δi j, ni jk = νi jνi jk, νi jk =

1+δik +δ jk etc., and:

ID,stu···
p, i j k··· =

∫ dDk
iπD/2

n

∏
r=1

1

c1+δri+δr j+δrk+···−δrs−δrt−δru−···
r

. (1.7)

The I{µ1,···},s
n−1,ab e.g. is obtained from I{µ1,···}

n by shrinking line s and raising the powers of inverse

propagators a,b (s 6= a,b); I{µ1,···},a
n,ab = I{µ1,···}

n,b .
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For one-loop tensor integrals, recurrence relations have been derived allowing to represent
the scalar tensor coefficients ID

n,{a} in terms of scalar integrals in generic dimension d and with
natural indices, usually ν j = 1 [4, 5]. In the present work we need the relation to reduce index j and
dimension D simultaneously and another relation to reduce dimension D only:

()n ν j
(
j+ID

n
)
= −

(
j
0

)
5
ID−2
n +

n

∑
k=1

(
j
k

)
n

(
k−ID−2

n
)
, (1.8)

()n (D+1−
n

∑
i=1

νi)ID
n =

(
0
0

)
n
ID−2
n −

n

∑
k=1

(
0
k

)
n

(
k−ID−2

n
)
. (1.9)

These relations hold for arbitrary index sets {νi}. The integrals k−ID
n and j+ID

n are obtained from ID
n

by replacing νk→ (νk−1) and ν j→ (ν j +1), respectively. For the definitions of Gram determinant
()n and signed minors like

( j
k

)
n we refer to [6, 7, 8]. If the Gram determinant vanishes, ()n = 0,

relation (1.9) allows to express ID
n,{a} by simpler integrals, some of them with less external legs:

ID
n,{a}|()n=0 =

1(0
0

)
n

n

∑
k=1

(
0
k

)
n

(
k−ID

n,{a}

)
. (1.10)

All this works fine, but for tensors of rank R one gets an intermediate scalar basis with dimensions
up to D = d + 2R, and finally relations in generic dimension d with coefficients (1/()n)

R. If ()n

becomes small, and this happens during phase space integrations, numerical instabilities will appear.
From other approaches it is well-known that the appearance of powers of inverse Gram deter-

minants for 5-point functions may be avoided completely, and for 4-point functions one has to apply
special measures if needed.

In [7], we have demonstrated for pentagons up to R = 3 that a clever use of properties of signed
minors allows to cancel all the inverse Gram derminants ()5. In [9], we derived a recursive algorithm
for the representation of (n,R) tensors by (n,R−1) tensors and (n−1,R−1) tensors, although with
appearance of inverse Gram determinants ()n.

Here, we describe an algorithm which combines both approaches and allows an efficient
evaluation of the tensor integrals in terms of scalar functions; the latter may be evaluated by
packages like FF [10], LoopTools/FF[11, 10], QCDloop/FF [12, 10].

The algorithm has been worked out until (n,R) = (6,6) tensors, but it is evident how to go
beyond that.

2. A sample reduction free of 1/()5: the 5-point tensor Iµνλ

5

For details we have to refer to [8] and references therein. As an example, we consider a rank
R = 3 pentagon Iµνλ

5 . The rank R = 3 tensor was treated already in [7], but the calculational method
applied here may be more easily extended to higher ranks. We apply the recurrence derived in [13]:

Iµνλ

5 = Iµν

5 Qλ
0 −

5

∑
s=1

Iµν ,s
4 Qλ

s , (2.1)

where the auxiliary vectors contain inverse Gram determinants:

Qµ
s =

5

∑
i=1

qµ

i

(s
i

)
5

()5
, s = 0, . . . ,5. (2.2)

3
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The vector (R = 1) is free of the inverse Gram determinant ()5. Starting the general recursion [9], as
next the rank R = 2 tensor is expressed by scalar 4-point functions, free of inverse ()5:

Iµν

5 =
4

∑
i, j=1

qµ

i qν
j

1(0
0

)
5

5

∑
s=1

[(
0i
s j

)
5
Id+2,s
4 +

(
0s
0 j

)
5
Id+2,s
4,i

]
+gµν

[
−1

2
1(0
0

)
5

5

∑
s=1

(
s
0

)
5
Id+2,s
4

]
. (2.3)

After further involved manipulations, one may arrive at an expression where also Iµνλ

5 is expressed
by scalar 4-point functions with higher indices and in higher dimensions:

Iµνλ

5 =
4

∑
i, j,k=1

qµ

i qν
j qλ

k Ei jk +
4

∑
k=1

g[µνqλ ]
k E00k, (2.4)

Ei jk = − 1(0
0

)
5

5

∑
s=1

{[(
0 j
sk

)
5
Id+4,s
4,i +(i↔ j)

]
+

(
0s
0k

)
5
νi jI

d+4,s
4,i j

}
,

(2.5)

E00 j =
1(0
0

)
5

5

∑
s=1

[
1
2

(
0s
0 j

)
5
Id+2,s
4 − d−1

3

(
s
j

)
5
Id+4,s
4

]
. (2.6)

The presentation is evidently free of 1/()5, and it is more compact than that given in our earlier
paper [7].

3. The 4-point scalars and their Gram determinants

We have now to express efficiently the following scalar functions:

Id+2
4 , Id+4

4 , Id
4,i, I

d+2
4,i , Id+4

4,i , Id
4,i j, I

d+2
4,i j , I

d+4
4,i j , . . . (3.1)

We can again treat only an example. The recurrence relation (1.8) applies e.g. to the scalar function
Id+6
4,i jk, appearing as tensor coefficient in (1.6):

νi jνi jkId+6
4,i jk = −

(0
k

)
4

()4
νi jId+4

4,i j +
4

∑
t=1,t 6=i, j

(t
k

)
4

()4
νi jI

d+4,t
3,i j +

( i
k

)
4

()4
Id+4
4, j +

( j
k

)
4

()4
Id+4
4,i . (3.2)

Here, we see the appearance of the inverse sub-Gram determinant
(s

s

)
5 ≡ ()4. For every dimensional

shift, another inverse power of it will appear. In contrast to the case n= 5, this may not be completely
prevented, but the following strategy is quite useful: Restrict the appearance of ()4 to terms related
to Id+2l

4 , where they may be made implicit, and hold the scalar integrals I3, I2, I1 free of them.
A lengthy calculation yields:

νi jνi jkId+6
4,i jk = −

(0
i

)(0
0

) (0
j

)(0
0

) (0
k

)(0
0

)(d−1)d(d +1)Id+6
4 −

(0i
0 j

)(0
k

)
+
(0i

0k

)(0
j

)
+
(0 j

0k

)(0
i

)
(0

0

)2 (d−1)Id+4
4

+

(0
j

)(0
0

) (0
k

)(0
0

) (d−1)d(0
0

) 4

∑
t=1

(
0t
0i

)
Id+4,t
3 −

(0
k

)(0
0

) d−1(0
0

) 4

∑
t=1

(
0t
0 j

)
Id+4,t
3,i

+
4

∑
t=1

(0i
0k

)(0t
0 j

)
+
(0 j

0k

)(0t
0i

)
(0

0

)2 Id+2,t
3 +

1(0
0

) 4

∑
t=1,t 6=i, j

(
0t
0k

)
νi jI

d+4,t
3,i j . (3.3)
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This expression is free of inverse Gram determinants ()4. Although, by repeatedly applying (1.9),
the expression of Id+6

4 , Id+4
4 in terms of scalar integrals in generic dimension d will introduce

unavoidably such terms:

Id+2l
4 =

[(0
0

)
4

()4
Id+2(l−1)
4 −

4

∑
t=1

(t
0

)
4

()4
Id+2(l−1),t
3

]
1

d +2l−3
. (3.4)

The same recurrence relation allows to express these scalar functions Id+2l
4 in terms of simpler ones

at ()4 ≡ 0, if one writes the recurrence for Id+2(l+1)
4 ; see (1.10). One may, however, rewrite (1.9) at

arbitrary ()4:

ID
4 =

1(0
0

)
4

[
()4 (D−3)ID+2

4 +
4

∑
k=1

(
0
k

)
4
ID,k
3

]
, (3.5)

and apply that relation for small ()4. The ID+2
4 will be evaluated (approximately) at ()4 = 0. This

should give a better approximation than (1.10) for the higher-dimensional functions at small ()4,
and may be even further iterated.

In the next section, we will study a numerical example.

4. Numerical example: D111

In order to investigate the stability of the method near a typical kinematical point of vanishing
sub-Gram determinant, we consider an example given in [14], namely the tensor integrals related to
a certain box diagram, which in LoopTools [11, 15] notations is:

D0i(id,0,0,s3,s4,s12,s23,0,M2,0,0). (4.1)

The Gram determinant is:

()4 = ∆
(3) = Det(2KiK j) , (4.2)

where Ki are the internal momenta, expressible by the (incoming) external momenta pi: K1 =

p1,K2 = K1 + p2,K3 = K2 + p3,K4 = 0. Then, with p2
i = si,(pi + p j)

2 = si j, we get:

()4 =−2s12
[
s2

23 + s3s4− s23(s3 + s4− s12)
]
. (4.3)

This Gram determinant vanishes if:

s4→ scrit = s23
(s23− s3 + s12)

(s23− s3)
. (4.4)

For s23 = 2×104 GeV2, s3 = 1×104 GeV2, s12 =−4×104 GeV2, it is scrit =−6×104 GeV2, and
we look at the dependence of the tensor coefficients on

x =
s4

scrit
−1→ 0. (4.5)

5
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x Re DHD
111 Im DHD

111 Re DLT
111 Im DLT

111
0.0 [0] –3.15407250453 E-10 –3.31837792633 E-10 – –
10−15 [0] –3.15407250450 E-10 –3.31837792634 E-10 – –
10−10 [0] –3.15407189016 E-10 –3.31837792176 E-10 – –
10−8 [lin] –3.15407250056 E-10 –3.31837790700 E-10 – –
10−7 [lin] –3.15407246361 E-10 –3.31837773302 E-10 – –
10−6 [lin] –3.15407198445 E-10 –3.31837599320 E-10 – –
10−5 [lin] –3.15405621398 E-10 –3.31835860039 E-10 – –
5×10−5 [lin] –3.15374472234 E-10 –3.31828141644 E-10 – –
5×10−4 –3.15445603308 E-10 –3.31697733987 E-10 –3.15444393358 E-10 –3.31694238268 E-10
7×10−4 –3.15403131303 E-10 –3.31683867119 E-10 –3.15408833562 E-10 –3.31674350685 E-10
10−3 –3.15374819252 E-10 –3.31641477212 E-10 –3.15374217567 E-10 –3.31639655233 E-10
10−2 –3.15008000183 E-10 –3.29915920672 E-10 –3.15007998895 E-10 –3.29915924109 E-10
10−1 –3.11226750695 E-10 –3.13582331976 E-10 –3.11226750694 E-10 –3.13582331977 E-10

Table 1: D111 calculated with the algebraic approach in comparison with LoopTools numerics. Both
calculations agree in digits shown in boldface. Numbers labeled with [0] rely on (1.10) with ()4 = 0, those
with [lin] rely on (3.5), the others on (3.4).
.

In these variables:

()4 =−2 x s23s12(s23− s3 + s12). (4.6)

In LoopTools conventions, the tensor coefficients Di jl are defined as follows:

Dµνλ =
3

∑
i, j,l=1

KiµK jνKlλ Di jl +
3

∑
i=1

(gµνKiλ +gνλ Kiµ +gλ µKiν)D00i, (4.7)

and for our conventions, see (1.5). The inverse propagators are c j = [(k−q j)
2−m2

j ] = [(k+K j−1)
2−

m2
j ]. Because we assume in our formulae q4 = 0, and in LoopTools it is K1 = 0, one has to care

about specific correspondences; it is e.g.:

D111 = n222 Id+6
4,222, (4.8)

with n222 = ν22ν222 = 6, and νi jνi jkId+6
4,i jk given in (3.3). In the example, the tensor coefficients are

finite. For tensors with non-vanishing 1/εn terms, there may arise modifications due to different
normalizations.

We present in table 1 and figure 1 the sample numerics for D111, for M = 91.1876. Our numbers
for Id+6

4,222 are evaluated with a Mathematica notebook and for comparison we also used LoopTools
v.2.4, both approaches in normal double precision.

When x < 10−3, the table shows that both the numbers from LoopTools and from a combined
use of (3.3) and (3.4) (in figure: red line) loose precision significantly. With (3.3) and (1.10) we
may determine the exact value of D111 at x = 0, and then interpolate to rising x (red broken line).
The broken blue line uses (3.3) and (3.5), and it extends the region of validity of the broken red line
considerably, although one does not reach the main region, where the red line is numerically safe.
A simple numerical interpolation would close the gap quite satisfactory because D111 is a smooth
function of its arguments near x = 0. With much more effort, namely going further with additional
iterations a la (3.5), one may reach the same. But, one should have in mind the scales involved, and
if an accuracy of, e.g., three or four digits is sufficient, simple interpolation schemes will suffice.
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-14 -12 -10 -8 -6 -4 -2 0
-3.155 ´ 10-10

-3.1545 ´ 10-10

-3.154 ´ 10-10

-3.1535 ´ 10-10

-3.153 ´ 10-10

lnHxL

D
11

1

Figure 1: The tensor coefficient D111, defined in (4.7), evaluated with (4.8), as a function of x, defined in
(4.5). Red line: evaluation of D111 with (3.3), using reductions (3.4); red broken line: use of (1.10); blue
broken line: use of (3.5).

5. Summary

We gave an introduction to our purely algebraic approach to tensor reduction of one-loop
Feynman integrals. The treatment of inverse sub-Gram determinants has been refined, and a case
study for vanishing ()4 has been presented. For not too small Gram determinants ()4, the algorithm
has been realized in the Fortran package OLOTIC [16], which follows the recursive approach [13]
for tensor integrals n ≤ 6,R ≤ n. The OLOTIC is being made an open source package. A C++
package is under development [17] and will evaluate the tensor integrals according to the scheme
described here.
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