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In this contribution we discuss conceptual issues of current mass measurements performed at the Teva-
tron. In addition we propose an alternative method which is theoretically much cleaner and to a large
extend free from the problems encountered in current measurements. In detail we discuss the direct
determination of the top-quark’s running mass from the cross section measurements performed at the
Tevatron.

1 Introduction

The top-quark is the heaviest known elementary particle discovered so far. It plays a prominent role
in the physics program of the Tevatron accelerator at Fermilab and the Large Hadron Collider (LHC)
at CERN (for recent reviews see e.g.1,2). The interest in top-quark physics stems from the fact that
owing to its large mass the top quark is a sensitive probe of the mechanism of electroweak symmetry
breaking. This is also the reason why the top quark plays a special role in many extensions of the
Standard Model (SM) aiming to give an alternative description of the mass generation. From the Standard
Model viewpoint top-quark physics involves only the mass and the matrix elements of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix as free parameters in addition to the strong coupling constant which
we assume to be precisely measured by other means. Assuming that Vtb is close to one—which is
supported by indirect measurements based on the assumptionthat only three flavour families exist—
top-quark properties are thus precisely calculable in the SM provided the top-quark mass is known with
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good accuracy. We also note that the large top-quark decay width Γt ≈ 1.5GeV (a further consequence
of the large mass) effectively cuts off non-perturbative effects. As a consequence top-quark physics
provides an ideal laboratory for precise tests of the SM and its extension at the scale of electroweak
symmetry breaking. The top-quark mass—a very fundamental property of the top quark—is not only
important for top-quark physics. It enters as a very important parameter in electroweak fits constraining
the Standard Model, i.e. giving rise to indirect limits on the mass of the Higgs boson (see e.g.3).
Currently, a value ofmt = 173.1+1.3

−1.3GeV is quoted for the mass of the top-quark4 (For an updated

value presented during the Moriond EW session see5,6). This amounts to an experimental uncertainty
of less than 1%. Since the top-quark’s width is so large that the top quark typically decays before it
can hadronise7 the mass measurements proceed via kinematic reconstruction from the decay products
and comparison to Monte Carlo simulations. However the reconstruction of the four momentum of
the coloured top quark from its uncoloured decay products introduces an intrinsic uncertainty due to the
non-perturbative mechanism of hadronisation in which the coloured partons are transformed to colourless
hadrons. There is a further conceptual problem with the determination of the top-quark mass from the
kinematic reconstruction. Strictly speaking a higher-order theoretical prediction of the observable under
investigation is required to extract a parameter of a model in a meaningful way. Only beyond the Born
approximation the renormalisation scheme can be fixed. Thus, there is no immediate interpretation of the
quantity currently measured at the Tevatron in terms of a parameter of the SM Lagrangian in a specific
renormalization scheme. A more detailed discussion will begiven in section 3. In order to address this
issue, we have chosen the following approach. We start from the total cross section for hadronic top-
quark pair production, i.e. a quantity with well-defined renormalisation scheme dependence which is
known to sufficient accuracy in perturbative Quantum Chromodynamics (QCD). Its dependence on the
top-quark mass is commonly given in the on-shell scheme, although it is well-known that the concept of
the pole mass has an intrinsic theoretical limitation leading, for instance, to a poorly behaved perturbative
series. This typically implies a strong dependence of the extracted value for the top-quark mass on the
order of perturbation theory. Similar effects have been observed ine+e− annihilation8. So-called short
distance masses offer a solution to this problem. As we compute the total cross section as a function of
the top-quark mass in the modified minimal subtraction (MS) scheme9,10,11 we demonstrate stability
of the perturbative expansion and good properties of apparent convergence12. In particular, this allows
for the direct determination of the top-quark’s running mass from Tevatron measurements for the total
cross section13, which is of importance for global analyses of electroweak precision data. The direct
extraction of the running mass also provides an important cross check of the current measurements. The
outline of this contribution is as follows. In section 2 we briefly comment on the theoretical status of
the predictions for top-quark pair production. In section 3we discuss in some details conceptual issues
of current measurements and how they can be avoided measuring the top-quark mass in theMS scheme
often called the running mass for its dependence on the renormalisation scale. The application is shown
in section 4. A short summary is given in section 5.

2 The total cross section for top-quark pair production

We start by recalling the relevant formulae for the total cross sectionσpp→tt̄X of top-quark hadro-
production within perturbative QCD,

σpp→tt̄X(S,mt
2) = ∑

i, j=q,q̄,g

S∫

4mt
2

ds Li j (s,S,µf
2) σ̂i j (s,mt

2,µf
2) , (1)
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whereS denotes the hadronic center-of-mass energy squared andmt the top-quark mass (taken to be
the pole mass here). The standard definition for the parton luminosity Li j convolutes the two parton
distributions (PDFs)Fi/p at the factorization scaleµf . Note that due to the additional factor 1/Sthe fluxes
at the Tevatron and the LHC can be directly compared. The partonic cross sectionŝσi j parameterize the
hard partonic scattering process after factorzation of initial state singularities. Factoring out a common
mass scale squared 1/mt

2 the remaining part of the cross section (often called scaling functions) depend
only on dimensionless ratios ofmt , µf and the partonic center-of-mass energy squareds.

The QCD radiative corrections for the total cross section inEq. 1 as an expansion in the strong
coupling constantαs are currently known completely at next-to-leading order (NLO)14,15,16,17 and, as
approximation, at next-to-next-to-leading order (NNLO)18,19. The latter result is based on the known
threshold corrections to the partonic cross sectionσ̂i j , i.e. the complete tower of Sudakov logarithms in

β =
√

1−4mt
2/s and the two-loop Coulomb corrections, i.e. powers 1/βk (see also20 for some recent

improvements). It also includes the complete dependence onµf and the renormalization scaleµr , both
being known from a renormalization group analysis. The presently available perturbative corrections
through NNLO lead to accurate predictions for the total hadronic cross section of top-quark pairs with
a small associated theoretical uncertainty12,18,19 (see also e.g.21 for related theory improvements
through threshold resummation). For further refinements studied recently we refer to20,22,23,24. We
stress that aiming for a precision of the theoretical predictions at the per cent level also electroweak
contributions need to be taken into account. At the LHC thesecorrection can amount up to 1–2%,
for details we refer to25,26,27. Very close to the threshold the attractive part of the QCD potential
may lead to remnants of a would be boundstate28,29. These corrections affect significantly differential
distributions in the threshold region. A prominent exampleis themtt-distribution, the invariant mass
distribution of the top-quark pair. Due to boundstate effects the differential cross section obtains also a
contribution from kinematic regions below the nominal production threshold. If one could resolve this
region experimentally it would provide a sensitive method to measure the top-quark mass similar to what
is proposed for a futuree+e− linear collider. The correction of the total cross section due to this effect is
of the order of 10 pb at the LHC. At the Tevatron where colour octet production dominates this effect is
less important.

3 The top-quark mass

We may start the discussion with a few general remarks. When talking about the mass of an elementary
particle one should always keep in mind what is actually meant by this parameter. This is in particu-
lar important for states which—due to confinement—do not appear as asymptotic states in the full field
theoretical description. Since no free quarks exist we haveto treat the quark mass similar to any other
parameter/coupling appearing in the underlying model. In principle there is no difference between the
treatment of the coupling constant of the strong interaction αs and the self coupling of the quarks denoted
by mt . Note that we restrict our selves to pure QCD and ignore the fact that the masses are generated by
the Higgs mechanism. To measure a parameter of the Lagrangian we have to compare the measurements
with the theoretical predictions depending on the unknown parameters of the theory. The theoretical
prediction should be as precise as possible so that a good agreement between data and theory can be
assumed provided the parameters are chosen (“fitted”) appropriate. In particular one should use at least
a next-to-leading order prediction. There is a second even more important argument why at least a next-
to-leading order prescription is required: In leading-order no precise definition of a parameter can be
given. The difference between different definitions implemented by a specific renormalisation schemes
is formally of higher order in perturbation theory and thus only shows up when we go beyond the Born
approximation. To illustrate the point let us come back to the quark mass. Two common schemes are
frequently used in perturbation theory. One is the on-shellor pole-mass scheme. The mass parameter
in the pole-mass scheme is defined as the location of the pole of the propagator. Since self-energy cor-



rections can shift the location the pole-mass definition hasto be enforced order by order in perturbation
theory through the renormalisation procedure. That is the renormalisation constants are fixed order by
order such that no shift in the renormalised pole mass occurs. Another scheme is the so-called modified
minimal subtraction scheme (MS). This scheme is defined by subtracting the ultraviolet singularities ap-
pearing in the unrenormalised theory order by order in a minimal way. That is just the divergence itself
(together with some irrelevant constants in case of the modified MS) is absorbed into the redefinition of
the bare quantities. Since different renormalisation schemes should be equivalent it must also be possible
to convert from one scheme to another. This is indeed the case. The relation between the pole massmt

and theMS massm(µr) reads for example:

mt = m(µr )

(

1+
αs(µr)

π
1. +

(

αs(µr)

π

)2

2. + . . .

)

. (3)

Treating(nf −1) flavours massless and expressing the QCD coupling constant in thenf -flavour theory
through the coupling constant in the(nf −1)-flavour theory—that is using a scheme in which the running
of the coupling constant is solely determined by the massless quarks—the constants 1. ,2. read:
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4
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with ℓ = ln
(

µr
m(µr)

)

. As mentioned before we observe in Eq. 3 that the difference between the pole

mass and the running mass is formally proportional toαs. We note that likeαs the MS mass depends
on the renormalisation scale. Since the top-quark mass is essentially measured at the Tevatron from a
kinematical fit the renormalisation scheme is not unambiguously fixed. It is believed that the measured
value should be interpreted as pole mass. However one shouldkeep in mind that the reconstruction
of the top-quark momenta from the observed hadron momenta introduces a further uncertainty due to
colour reconnection which is expected to be of the order ofΛQCD. This is supported by a recent study
by Skands and Wicke where the influence of different models for non-perturbative physics has been
investigated30. There is a further reason why the use of the pole mass should be avoided when we are
aiming for high accuracy. Qualitatively it is clear that thefull S -matrix cannot have a pole at the location
of the quark mass since this would mean that the quark appearsas asymptotic state which is not the case
due to confinement. A more formal approach relates this uncertainty to a certain class of higher order
corrections spoiling the convergence of the perturbative series31,32. Technically the problem becomes
manifest when one uses a Borel summation of the perturbativeseries. The back transformation of the
Borel transform is ill-defined due to the existence of a pole on the real axis. Taking the residue of the
pole as an estimate of the theoretical uncertainty it is found that an ambiguity of the order ofΛQCD is

introduced. That is, the pole mass scheme has an intrinsic uncertainty of the order ofΛQCD
32: It is thus

conceptually impossible to measure the pole mass with an accuracy better thanΛQCD.

Taken the last statements into account, a theoretical cleanapproach to measure the top-quark mass
is to choose a specific observable, calculate the higher order corrections choosing a well defined renor-
malisation scheme like for example the running mass and thento compare with the measurements. This
idea has been pursued in12. As observable the inclusive cross section has been used. Inthe next section
we will comment on the details of this approach.



3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

1

Tevatron

MSTW 2008 NNLO

m = 173 GeV

µr/µf

σ 
[p

b]

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

1

Tevatron

MSTW 2008 NNLO

m(m) = 163 GeV

µr/µf

σ 
[p

b]

Figure 1: Cross section predictions using the pole mass (left) and theMS mass right as function of the renormalisation scale
for three different factorisations scalesµf = 0.5m,m,2m.

4 The cross section using the MS mass

As outlined in the previous section the main idea to circumvent the aforementioned problems of the
current experimental determination of the top quark mass isto choose a sensitive observable translated
to theMS scheme as far as the mass parameter is concerned. The mass value is than obtained from a
direct comparison with experimental data. In12 the results for the total cross section18 were translated
to theMS scheme using Eq. 3 and Eq. 4. The translation is first done ata fixed renormalisation scale
for three different factorisation scales. The full renormalisation scale dependence is recovered from a
renormalisation group analysis. In Fig. 1 the cross sectionis shown for three different choices of the
factorisation scalesµf = 0.5m,m,2m as function of the renormalisation scaleµr . The left plot shows the
cross section using a pole mass of 173 GeV. The right plot employs the running mass definition with a
mass valuem(m)= 163 GeV. The bands at the left side of the two plots show an estimate of what one may
call a theoretical uncertainty. They are obtained by varying the relative scalesµr/m andµf /m between
0.5 and 2. We note that there is typically a crossing of the different curves for a given order. In particular
the central scale is not necessarily between the two extremescales. This behaviour appears when the
central scale corresponds to a plateau. If one studies the uncertainty bands two important features can be
observed. Compared to the pole mass scheme the cross sectionprediction using theMS mass is much
more stable. The NLO band overlaps with the NNLO band, in factthe NNLO band is fully included in
the NLO band. Furthermore the size of the bands is reduced compared to the predictions using the pole
mass. The perturbative prediction becomes thus much more stable with respect to radiative corrections.
Using the cross section to determine the mass parameter thisleads to a much more stable determination
in the running mass scheme compared to a determination in thepole mass scheme. In Fig. 2 the cross
section is shown as a function of theMS mass evaluated atµr = m. The wide band is the NLO prediction
while the narrow band is an approximation to the full NNLO result. The uncertainty bands are again due
to a variation of the scales. The data point shown to the left is the recent Tevatron measurement13 for
the cross section:

σ = 8.18+0.98
−0.87 pb. (6)

We note that this measurement effectively depends on an assumed top-quark mass since detector efficien-
cies and other systematics are estimated from Monte Carlo simulations using a specific mass. In principle
this dependence is known and can be taken into account. The dependence is however rather mild and thus
does not give a significant shift in the cross section. In the current analysis it is not taken into account.
The extraction of the top-quark mass in theMS mass is now straightforward. Projecting the measured
value on the curves we can immediately read off the corresponding mass value. An illustration of this
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Figure 2: Cross section predictions using theMS mass as function of the top quark mass.

procedure is visualized in Fig. 2. The outcome of this procedure is presented in Tab. 1. For comparison
we also show the results for the case that the pole mass is used. We observe that the extraction in the
MS scheme leads—as anticipated already—to very stable results with respect to different orders of the
perturbative prediction. The determination using the polemass scheme however shows large differences
when going from LO to NLO and finally to NNLO. As final result thevalue corresponding to the NNLO

Table 1: The LO, NLO and approximate NNLO results for the top-quark mass in theMS scheme (m(m)) and the pole mass
scheme (mt ) for the cross section measured at Tevatron.

m(m) [GeV/c2] mt [GeV/c2]

LO 159.2+3.5
−3.4 159.2+3.5

−3.4

NLO 159.8+3.3
−3.3 165.8+3.5

−3.5

NNLO 160.0+3.3
−3.2 168.2+3.6

−3.5

approximation is quoted:
m(m) = 160+3.3

−3.2 GeV/c2. (7)

Converting the running mass to the on-shell mass yields a result which is consistent with the direct
measurements at Tevatron. Due to the weak sensitivity of thecross section with respect to the mass the
method is not competitive with the direct measurements as far as the uncertainty is concerned, however
the method provides an independent cross check and is theoretically rather clean.

5 Summary

The current top-quark mass measurements at the Tevatron claiming an accuracy at the per cent level
suffer from various uncertainties (for a similar discussion see also33):

1. The renormalisation scheme is not uniquely defined since the measurement is based on a kinematic



reconstruction without relying on higher-order predictions required to define unambiguously a
specific renormalisation scheme.

2. The kinematic reconstruction of the top-quark momentum from the momenta of the decay products
introduces an additional uncertainty due to the non-perturbative aspects of colour reconnection.
The naive estimate that the uncertainty is of the order ofΛQCD is supported by phenomenological

studies30 where the uncertainty was estimated to be of the order of 500 MeV.

3. The pole mass itself has an intrinsic uncertainty of the order ofΛQCD which is usually attributed
to IR renormalons.

One should note that each of the problems itself is hard to improve if not impossible. The intrinsic un-
certainty of the pole mass for example cannot be improved. Asa consequence we advocate an alternative
method to determine the top-quark mass which is to a large extend free from the aforementined problems.
The basic idea is to extract the mass—as it is done in general for any parameter in a theoretical model—
from a detailed comparison of the value of an experimentallymeasured observable with the theoretical
predictions therefore. This leads to a clean definition of the renormalisation scheme adopted for the mass
parameter. Using in addition a short distance mass like theMS mass the intrinsic uncertainties of the pole
mass are circumvented. Along these lines we have used the total cross section written in terms of theMS
mass to extract the top-quark mass from the cross section measurements at Tevatron. Our final result for
the top-quark massm(m) in theMS scheme derived from the cross section measurements at theTevatron
is presented Eq. 7. We find a remarkable stability with respect to the perturbative order of the theoretical
predictions. Converted to the pole mass scheme the value is consistent with direct measurements. How-
ever we stress that despite the large uncertainty due the poor sensitivity of the total cross section with
respect to the mass the result is theoretically rather cleanand in particular free of uncertainties which are
not quantified in the direct measurements.
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