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Abstract

The problem of errors, arising due to finite BPM resolution, in the difference
orbit parameters, which are found as a least squares fit to the BPM data, is one
of the standard and important problems of accelerator physics. Even so for the
case of transversely uncoupled motion the covariance matrix of reconstruction
errors can be calculated “by hand”, the direct usage of obtained solution, as
a tool for designing of a “good measurement system”, does not look to be
fairly straightforward. It seems that a better understanding of the nature of
the problem is still desirable. We make a step in this direction introducing
dynamic into this problem, which at the first glance seems to be static. We
consider a virtual beam consisting of virtual particles obtained as a result
of application of reconstruction procedure to “all possible values” of BPM
reading errors. This beam propagates along the beam line according to the
same rules as any real beam and has all beam dynamical characteristics, such
as emittances, energy spread, dispersions, betatron functions and etc. All
these values become the properties of the BPM measurement system. One can
compare two BPM systems comparing their error emittances and rms error
energy spreads, or, for a given measurement system, one can achieve needed
balance between coordinate and momentum reconstruction errors by matching
the error betatron functions in the point of interest to the desired values.
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1 Introduction

The determination of variations in the transverse beam position and in the beam
energy using readings of beam position monitors (BPMs) is one of the standard
and important problems of accelerator physics. If the optical model of the beam
line and BPM resolutions are known, the typical choice is to let jitter parameters
be a solution of the weighted linear least squares problem. Even so for the case of
transversely uncoupled motion this least squares problem can be solved “by hand”,
the direct usage of obtained analytical solution as a tool for designing of a “good
measurement system” does not look to be fairly straightforward. It seems that a
better understanding of the nature of the problem is still desirable.

A step in this direction was made in the paper [1], where dynamic was introduced
into this problem which in the beginning seemed to be static. When one changes the
position of the reconstruction point, the estimate of the jitter parameters propagates
along the beam line exactly as a particle trajectory and it becomes possible (for
every fixed jitter values) to consider a virtual beam consisting from virtual particles
obtained as a result of application of least squares reconstruction procedure to “all
possible values” of BPM reading errors. The dynamics of the centroid of this beam
coincides with the dynamics of the true difference orbit and the covariance matrix
of the jitter reconstruction errors can be treated as the matrix of the second central
moments of this virtual beam distribution.

In accelerator physics a beam is characterized by its emittances, energy spread,
dispersions, betatron functions and etc. All these values immediately become the
properties of our BPM measurement system. From now one can compare two BPM
systems comparing their error emittances and error energy spreads, or, for a given
measurement system, one can achieve needed balance between coordinate and mo-
mentum reconstruction errors by matching the error betatron functions in the point
of interest to the desired values.

This dynamical point of view on the BPM measurement system was explored
in [1] in application to the case of transversely uncoupled nondispersive beam mo-
tion and in this paper we continue this study adding energy degree of freedom.1

The paper by itself is organized as follows. In section 2 we introduce all needed
notations, formulate the problem and give its standard least squares solution. As
a new element, we formulate the necessary and sufficient conditions for the BPM
system to be able to distinguish between transverse and energy jitters in terms of
its three BPM subsystems. In section 3 (the core section of this paper) we make
parametrization of the covariance matrix of the jitter reconstruction errors using the
usual accelerator physics concepts of emittance, energy spread, dispersion and be-

1It is clear, that such considerations, if needed, can also be done for the case of the fully coupled
six dimensional motion. It is also clear that in similar fashion one can approach some other problems
connected with the error propagation. It should not be necessary the BPM reading errors, it could
be, for example, errors in the kick angles produced by the orbit feedback system.
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tatron functions. We also show that the error dispersion is not simply one of the
many dispersions which could propagate through our beam line. It, in analogy with
the error betatron functions [1], is by itself solution of some minimization problem
and is uniquely determined by transport matrices between BPM locations and by
BPM resolutions. In section 4 we consider the measurement system which utilizes
three beam position monitors (the minimum number of BPMs needed) and analyze
in details effect of symmetries of the optics between BPM locations. In section 5 we
continue the investigation of periodic measurement systems started in [1]. This time
with the main accent on achievable energy resolution. And, finally, in section 6 we
discuss application of the Courant-Snyder quadratic form as error estimator, even so
in the case when energy degree of freedom is taken into account this quadratic form
is not bound to be an invariant.

2 Problem and Its Least Squares Solution

Let us consider a magnetostatic beam line which is built from optical elements
which are symmetric about the horizontal midplane y = 0. In such magnetic system
the transverse particle motion is uncoupled in linear approximation, the vertical
oscillations are dispersion free and errors in reconstruction of their parameters were
already studied in [1], and in this paper we will examine together x-plane and energy
degrees of freedom because they are connected through (linear) dispersion.

We will use the variables ~z = (x, p, ε)⊤ for the description of the horizontal
dispersive beam motion. Here, as usual, x is the horizontal particle coordinate,
p is the horizontal canonical momentum scaled with the kinetic momentum of the
reference particle and the variable ε stays for the relative energy (or momentum)
deviation.2 As orbit parameters we will understand values of x, p and ε given
in some predefined point in the beam line (reconstruction point with longitudinal
position s = r ) and as transverse and energy jitter in this point we will mean the
difference

δ~z(r) = ( δx(r), δp(r), δε(r) )⊤ = ( x(r) − x̄(r), p(r) − p̄(r), ε − ε̄ )⊤ (1)

between parameters of the instantaneous orbit and parameters of some predeter-
mined reference (golden) trajectory (x̄, p̄, ε̄)⊤.

Let us assume that we have n BPMs in our beam line placed at positions
s1, . . . , sn and they deliver readings

~bc = ( bc1, . . . b
c
n )

⊤ (2)

2The exact form of the variable ε which we have in mind can be found in [2], but let us note
that for the present study the particular form of this variable is unimportant. Let us also note that
while in [1] the symbol ε was used for the BPM reading errors, in this paper we prefer to use it for
the relative energy deviation, and for the BPM reading errors we will introduce ς as new notation.
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for the current trajectory with previously recorded observations for the golden orbit
being

~bg = ( bg1, . . . b
g
n )

⊤
. (3)

Suppose that the difference between these readings can be represented in the form

δ~bς
def
= ~bc − ~bg =







x(s1)− x̄(s1)
...

x(sn)− x̄(sn)






+ ~ς , (4)

where the random vector ~ς = ( ς1, . . . , ςn )
⊤ has zero mean and positive definite

covariance matrix Vς , i.e. that

〈

~ς
〉

= ~0, V ( ~ς ) =
〈

~ς · ~ς⊤
〉

−
〈

~ς
〉

·
〈

~ς
〉⊤

= Vς > 0. (5)

The purpose of this paper is to study the influence of BPM reading errors ~ς on
precision of reconstruction of jitter parameters under assumption that optical model
of the beam line is known. The additional assumptions which we will make are: the
covariance matrix Vς stays constant and the BPM reading errors can be treated as
independent from one measurement to the other. So BPM errors that are correlated
from measurement to measurement (calibration and other systematic errors, drifting
BPM readings and etc.) and fluctuations in BPM resolutions will be not considered.
In practical applications these assumptions may or may not be realistic, but, first,
they make the underlying mathematics almost trivial3 and, second, their satisfaction
is, in some sense, one of the goals for the BPM and BPM electronics designers.

Let Am(r) be a transfer matrix from location of the reconstruction point to the
m-th BPM location

Am(r) =





am(r) cm(r) gm(r)
em(r) dm(r) fm(r)
0 0 1



 , am(r) dm(r)− cm(r) em(r) ≡ 1, (6)

and let us assume that the Cholesky factorization Vς = R⊤
ς Rς of the covariance

matrix Vς is known. As usual, we will find an estimate

δ~zς(r) = (δxς(r), δpς(r), δες(r))
⊤ (7)

for the difference orbit parameters (1) in the presence of BPM reading errors by
solving the following weighted linear least squares problem

3Under these assumptions errors in the reconstruction process can be modeled as a sequence
of independent identically distributed random variables (like in coin tossing) and therefore all
probabilistic characteristics can be obtained studying errors in reconstruction of the result of only
one measurement, but for all possible values of ~ς.
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min
δ~zς

∥

∥

∥
Mς · δ~zς − R−⊤

ς · δ~bς
∥

∥

∥

2

2
. (8)

Here ‖ · ‖2 denotes the Euclidean vector norm, Mς = R−⊤
ς M and

M =







a1(r) c1(r) g1(r)
...

...
...

an(r) cn(r) gn(r)






. (9)

The problem (8) always has at least one solution and, if we will assume that the
matrix Mς has full column rank (rank(Mς) = 3), then the solution of this problem
is unique and is given by the well known formula

δ~zς(r) =
(

M⊤
ς (r)Mς(r)

)−1
M⊤

ς (r)R
−⊤
ς · δ~bς , =

=
(

M⊤(r)V −1
ς M(r)

)−1
M⊤(r) V −1

ς · δ~bς . (10)

The calculation of the covariance matrix of the errors of this estimate (object of our
main interest) is also standard and gives the following result

Vz(r)
def
= V ( δ~zς(r) ) =

(

M⊤
ς (r)Mς(r)

)−1
=
(

M⊤(r) V −1
ς M(r)

)−1
. (11)

Let us discuss in more details the important condition for the matrix Mς to have
full column rank. This condition will allow us to separate betatron and dispersion
oscillations at the BPM locations and, therefore, will make our system applicable for
measuring transverse and energy jitter.

Because the matrix Rς is nondegenerated, the rank of the matrix Mς is always
equal to the rank of the matrix M , and the matrix M , in the next turn, will have full
column rank if and only if the Gram determinant Γ (~a, ~c, ~g) of its column vectors

~a = (a1, . . . , an)
⊤ , ~c = (c1, . . . , cn)

⊤ , ~g = (g1, . . . , gn)
⊤ (12)

is not equal to zero.
To find desired expression for the Gram determinant let us introduce Bmk -

transport matrix from the location of the BPM with index m to the location of the
BPM with index k

Bmk = Ak A
−1
m =





æmk
11 æmk

12 æmk
16

æmk
21 æmk

22 æmk
26

0 0 1



 . (13)

With these notations and using Binet-Cauchy formula one can obtain after some
straightforward manipulations
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Γ (~a, ~c, ~g) = det
(

M⊤M
)

=
∑

1≤i<j<k≤n

(

æij
52æ

jk
12 − æij

12 æ
jk
16

)2

=

=
1

6

n
∑

i, j, k=1

(

æij
52æ

jk
12 − æij

12 æ
jk
16

)2

=
1

6

n
∑

i, j, k=1

(

æij
12æ

ik
16 − æij

16æ
ik
12

)2
, (14)

where æij
52 (in the framework of the usual 6 by 6 matrix formalism for the linear

beam dynamics) is the coefficient that connects variation of the particle path length
with variation of the particle transverse momentum and which can be expressed
using elements of the matrix Bij as follows

æij
52 = æij

22æ
ij
16 − æij

12æ
ij
26 . (15)

From (14) one sees, that the matrix M will have the full column rank if and only
if there are at least three beam position monitors with indices i, j and k such that
the transport matrices between them satisfy the condition

æij
52æ

jk
12 − æij

12æ
jk
16 6= 0 (16)

or (equivalently) the condition

æij
12 æ

ik
16 − æij

16 æ
ik
12 6= 0. (17)

Note that both conditions, (16) and (17), involve elements of two transfer ma-
trices, but while (16) uses matrices between neighboring BPMs (Bij and Bjk), con-
dition (17) operates with the transport matrices from first to two remaining BPMs
(Bij and Bik). In simple words the condition (17), for example, means that one
can not vary particle transverse momentum and particle energy at the first BPM
location in such a fashion that these variations are invisible at the two downstream
BPMs.

3 Beam Dynamical Parametrization of

Covariance Matrix of Reconstruction Errors

Let A(r1, r2) be a matrix which transport particle coordinates from the point
with the longitudinal position s = r1 to the point with the longitudinal position
s = r2

A(r1, r2) =





m11 m12 m16

m21 m22 m26

0 0 1



 , m11 m22 −m12m21 = 1. (18)
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Similar to [1], one can easily show that for any given value of ~ς the estimate of the
difference orbit parameters δ~zς propagates along the beam line exactly as particle
trajectory

δ~zς(r2) = A(r1, r2) · δ~zς(r1), (19)

as one changes the position of the reconstruction point. So again we can consider
a virtual beam consisting from virtual particles obtained as a result of application
of formula (10) to “all possible values” of the error vector ~ς. The dynamics of the
centroid of this beam δ~z0 coincides with the dynamics of the true difference orbit

δ~z0(r)
def
=
〈

δ~zς(r)
〉

= δ~z(r) , (20)

and the error covariance matrix (11) can be treated as the matrix of the second
central moments of this virtual beam distribution and satisfies the usual transport
equation

Vz(r2) = A(r1, r2) Vz(r1)A
⊤(r1, r2). (21)

Consequently, for the description of the propagation of the reconstruction errors
along the beam line, one can use the accelerator physics notations and represent the
error covariance matrix in the familiar form

Vz =
(

M⊤
ς Mς

)−1
= ǫς





βς −ας 0
−ας γς 0

0 0 0



+∆2
ς





ηx,ς
ηp,ς
1









ηx,ς
ηp,ς
1





⊤

=

=





ǫς βς +∆2
ς η

2
x,ς −ǫς ας +∆2

ς ηx,ς ηp,ς ∆2
ς ηx,ς

−ǫς ας +∆2
ς ηx,ς ηp,ς ǫς γς +∆2

ς η
2
p,ς ∆2

ς ηp,ς
∆2

ς ηx,ς ∆2
ς ηp,ς ∆2

ς



 . (22)

As usual for the particle dynamics, this parametrization has two invariants (quan-
tities which are independent from the position of the reconstruction point), namely
transverse error emittance ǫς and rms error energy spread ∆ς , which can be calcu-
lated according to the formulas

ǫς =
1

√

Γ (~aς , ~cς)
, ∆ς =

√

Γ (~aς , ~cς)

Γ (~aς , ~cς , ~gς)
, (23)

where we have used the notations

~aς = R−⊤
ς ~a, ~cς = R−⊤

ς ~c, ~gς = R−⊤
ς ~g (24)

and Γ (~u1, . . . ~um) is the Gram determinant of the vectors ~u1, . . . ~um.
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The error Twiss parameters, of course, remain the same as they were earlier
published in [1], namely

βς(r) = ǫς ‖~cς(r)‖22 , ας(r) = ǫς (~aς(r) · ~cς(r)) , γς(r) = ǫς ‖~aς(r)‖22 , (25)

and for the new objects, the coordinate and momentum error dispersions, we have

ηx,ς(r) = ǫς

(

ας(r) (~cς(r) · ~gς(r)) − βς(r) (~aς(r) · ~gς(r))
)

, (26)

ηp,ς(r) = ǫς

(

ας(r) (~aς(r) · ~gς(r)) − γς(r) (~cς(r) · ~gς(r))
)

. (27)

As it was shown in [1], the error Twiss parameters (25) are not simply one of
many betatron functions which could propagate through our beam line, they are by
themselves solutions of some minimization problem and are uniquely determined by
transport matrices between BPM locations and by BPM resolutions. And we would
like to show, that the same is true also for the error dispersions (26) and (27).

Let ηx(r) and ηp(r) be some dispersions specified in the reconstruction point.
Then the corresponding coordinate dispersion at the m-th BPM location can be
calculated as follows

ηx(sm) = am(r) ηx(r) + cm(r) ηp(r) + gm(r). (28)

Consider a vector

~D (r, ηx(r), ηp(r)) = R−⊤
ς (ηx(s1), . . . , ηx(sn))

⊤ = ηx(r)~aς + ηp(r)~cς + ~gς (29)

and a minimization problem

min
ηx(r), ηp(r)

∥

∥ ~D (r, ηx(r), ηp(r))
∥

∥

2

2
. (30)

By standard means it is not difficult to show that if Γ (~a, ~c) 6= 0 then the solution
of this minimization problem is unique and is given by the formulas (26) and (27).

If, additionally, Γ (~a, ~c, ~g) 6= 0 then the minimum in (30) is bigger than zero
(and is equal to zero otherwise) and the following identity holds

∥

∥ ~D (r, ηx,ς(r), ηp,ς(r))
∥

∥

2

2
=

1

∆2
ς

. (31)

Note that geometrically the vector ηx(r)~aς + ηp(r)~cς is nothing else as taken
with an opposite sign projection of the vector ~gς onto a linear subspace formed by
vectors ~aς and ~cς and hence the vector ~D (r, ηx,ς(r), ηp,ς(r)) is orthogonal to both,
vector ~aς and vector ~cς .

To finish this section let us, for the case when readings of different BPMs are
uncorrelated, i.e. when the covariance matrix Vς is a positive diagonal matrix

9



Vς = diag
(

σ2
1, σ

2
2 , . . . , σ

2
n

)

> 0 , (32)

write down the following useful expressions for the Gram determinants

Γ (~aς , ~cς) =
1

2

n
∑

i, j=1

(

æij
12

σi σj

)2

, (33)

Γ (~aς ,~cς , ~gς) =
1

6

n
∑

i, j, k=1

(

æij
52æ

jk
12 − æij

12æ
jk
16

σi σj σk

)2

=
1

6

n
∑

i, j, k=1

(

æij
12æ

ik
16 − æij

16æ
ik
12

σi σj σk

)2

, (34)

which enter formulas (23) for the transverse error emittance and for the rms error
energy spread.

4 Three BPMs in Symmetric Arrangement

Let us assume that we have three beam position monitors in our beam line which
deliver uncorrelated readings with rms resolutions σ1, σ2 and σ3, and let B12 and
B23 be transfer matrices between first and second, and between second and third
BPM locations respectively

B12 =





r11 r12 r16
r21 r22 r26
0 0 1



 , B23 =





m11 m12 m16

m21 m22 m26

0 0 1



 . (35)

When the phase advance between the first and the second BPMs or the phase
advance between the second and the third BPMs is not multiple of 180◦ , i.e. when

r212 + m2
12 6= 0, (36)

this system can be used for the measurement of the transverse orbit jitter with the
transverse error emittance given by the following expression

ǫς =
σ1 σ2 σ3

√

σ2
1 m

2
12 + σ2

2 (m11 r12 + r22m12)
2 + σ2

3 r
2
12

. (37)

In order to be able to resolve both, transverse and energy, jitters simultaneously
we have to assume, additionally to (36), that

m12 r52 − r12m16 6= 0 , (38)

where the r52 and r51 coefficients can be expressed using elements of the matrix
B12 as follows
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{

r51 = r21r16 − r11r26
r52 = r22r16 − r12r26

. (39)

With (36) and (38) satisfied, we obtain for the square of the rms error energy spread

∆2
ς =

σ2
1 m

2
12 + σ2

2 (m11 r12 + r22m12)
2 + σ2

3 r
2
12

(m12 r52 − r12 m16)
2 . (40)

To complete description of the covariance matrix of the reconstruction errors
(22) for the three BPM case, we also need formulas for the error coordinate and
momentum dispersions, and for the error betatron functions. And although it is
not very difficult to provide some formulas using (25), (26) and (27), the results are
not very informative and it is not easy to derive some nontrivial conclusions from
them. So in this section we will give more digestible expressions for error dispersions
and error betatron functions making an additional simplifying assumption about our
measurement system that the transfer matrix B23 between the second and the third
BPM is not an arbitrary beam transport matrix, but is obtained as a result of some
symmetry manipulation with the transfer matrix between the first and the second
BPM.

4.1 Mirror Symmetric Optical System

Let a magnet system between the second and the third BPMs be a mirror symmet-
ric image of the magnet structure between the first and the second BPM locations.
Then

B23 =





r22 r12 −r52
r21 r11 −r51
0 0 1



 . (41)

The transverse error emittance of this measurement system is given by

ǫς =
1

|r12|
· σ1 σ2 σ3
√

σ2
1 + 4 σ2

2 r
2
22 + σ2

3

, (42)

and the error betatron functions at the BPM locations can be calculated as follows

βς(s1) = |r12| ·
σ1

σ2 σ3
· 4 σ2

2 r
2
22 + σ2

3
√

σ2
1 + 4 σ2

2 r
2
22 + σ2

3

, (43)

ας(s1) = sign (r12) ·
σ1

σ2 σ3
· 2 σ2

2 r22 (1 + 2r12r21) + σ2
3 r11

√

σ2
1 + 4 σ2

2 r
2
22 + σ2

3

, (44)

βς(s2) = |r12| ·
σ2

σ1 σ3
· σ2

1 + σ2
3

√

σ2
1 + 4 σ2

2 r
2
22 + σ2

3

, (45)
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ας(s2) = sign (r12) ·
(

σ1

σ3

− σ3

σ1

)

· σ2 r22
√

σ2
1 + 4 σ2

2 r
2
22 + σ2

3

, (46)

βς(s3) = |r12| ·
σ3

σ1 σ2
· σ2

1 + 4 σ2
2 r

2
22

√

σ2
1 + 4 σ2

2 r
2
22 + σ2

3

, (47)

ας(s3) = −sign (r12) ·
σ3

σ1 σ2
· σ2

1 r11 + 2 σ2
2 r22 (1 + 2r12r21)

√

σ2
1 + 4 σ2

2 r
2
22 + σ2

3

. (48)

If we will assume that BPM resolutions follow mirror symmetry of the system,
which means that σ1 is equal to σ3, then, as it could be expected, the error Twiss
parameters will satisfy the following symmetry relations

βς(s3) = βς(s1), ας(s3) = −ας(s1), ας(s2) = 0. (49)

For the square of the error energy spread we have the following expression

∆2
ς =

σ2
1 + 4 σ2

2 r
2
22 + σ2

3

4 r252
, (50)

and the coordinate and momentum error dispersions at the BPM locations are given
below

ηx,ς(s1) = − 2 σ2
1 r52

σ2
1 + 4 σ2

2 r
2
22 + σ2

3

, (51)

ηp,ς(s1) =
σ2
1 (r16 + 2 r12 r51) − 4 σ2

2 r12 r22 r26 − σ2
3 r16

r12 · (σ2
1 + 4 σ2

2 r
2
22 + σ2

3)
, (52)

ηx,ς(s2) =
4 σ2

2 r22 r52
σ2
1 + 4 σ2

2 r
2
22 + σ2

3

, (53)

ηp,ς(s2) =
(

σ2
1 − σ2

3

)

· r52
r12 · (σ2

1 + 4 σ2
2 r

2
22 + σ2

3)
, (54)

ηx,ς(s3) = − 2 σ2
3 r52

σ2
1 + 4 σ2

2 r
2
22 + σ2

3

, (55)

ηp,ς(s3) =
σ2
1 r16 + 4 σ2

2 r12 r22 r26 − σ2
3 (r16 + 2 r12 r51)

r12 · (σ2
1 + 4 σ2

2 r
2
22 + σ2

3)
. (56)
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Figure 1: Schematic layout of four bend chicane.

One sees that if BPM resolutions will follow mirror symmetry of the system, they,
similar to the error betatron functions, will satisfy

ηx,ς(s3) = ηx,ς(s1), ηp,ς(s3) = −ηp,ς(s1), ηp,ς(s2) = 0, (57)

independently if r26 is equal to zero or not.4 One also sees that if mirror symmetric
system can be used for energy jitter measurement (i.e. if r52 6= 0 ), then the error
dispersion is nonzero at the system entrance and exit, again independently if r26 is
equal to zero or not.

As a more specific example, let us consider three BPMs integrated into four bend
magnetic chicane, as shown by red circles in figure 1. For this system

B12 =





1 r12 r16
0 1 0
0 0 1



 , (58)

where

r12 = L1 + L4 +
2L2

cos(ϕ)
+

L3

cos3(ϕ)
6= 0 (59)

and

r16 = r52 =
1

cos(ϕ)
·
(

2L2 tan(ϕ/2) +
L3

cos(ϕ)
tan(ϕ)

)

6= 0. (60)

Therefore this system always can be used for the transverse and energy jitter mea-
surement, and, as a concrete case, let us consider the first bunch compressor of the
FLASH facility [3, 4], which is the four bend chicane of the discussed layout. The

4Let us remind, that the condition r26 = 0 applied in the symmetry point is the necessary and
sufficient condition for the total transfer matrix of the mirror symmetric system to be achromatic.
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Figure 2: Resolutions of orbit and energy BPMs (shaded area) which are needed in
order to be able to resolve energy jitter 5 · 10−5 in the first bunch compressor of the
FLASH facility. BPMs are positioned as shown by red circles in figure 1.

typical deflection angle for this chicane is about 18◦ and the distances L2 and L3 are
equal each other and are equal to 0.5m (see, for example, [5]). Let us assume that the
first and the third BPMs (orbit BPMs) have the same rms resolutions σ1 = σ3 = σorb

and for the second BPM (energy BPM) let us introduce the notation σ2 = σenr. Let
∆des will be energy jitter resolution desired for the system. With these numbers and
notations, and using the usual three sigma criterion (3∆ς ≤ ∆des) we obtain from
(50) the following inequality

σ2
orb + 2 σ2

enr ≤ 0.02663 ·∆2
des , (61)

which gives us limitations on the range of the BPM resolutions which can provide
the required precision for the energy jitter measurement. Figure 2, for example,
shows the area of acceptable BPM resolutions defined by the inequality (61) for
∆des = 5 · 10−5.

To finish the chicane discussion, let us move the first and the third BPMs into
positions shown as green circles in figure 1. For this case

B12 =





r11 r12 r16
0 r22 r26
0 0 1



 , (62)
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r22 =
1

r11
= cos(ϕ), r12 =

L5

cos2(ϕ)
+ L2 + L4 cos(ϕ), (63)

r16 = −L2 tan(ϕ/2) − L4 sin(ϕ), r26 = − sin(ϕ), (64)

r52 = L2 tan(ϕ/2) +
L5

cos(ϕ)
tan(ϕ), (65)

and one sees that this BPM positioning still can be used for the jitter measurement,
because r12 6= 0 and r52 6= 0, but both, the transverse error emittance and the error
energy spread become larger (for the same BPM resolutions) than for the original
BPM layout. Nevertheless, it is a good example of a mirror symmetric system for
which r52 6= r16 and the total transfer matrix is not achromatic.

4.2 Mirror Antisymmetric Case

If a magnet system between the second and the third BPMs is a mirror antisym-
metric image of the first part of the system, then

B23 =





r22 r12 r52
r21 r11 r51
0 0 1



 . (66)

The transverse error emittance and the error beta functions remain the same
as for the mirror symmetric case, but the measurement of the energy jitter is not
possible anymore, independent of the BPM resolutions following symmetry of the
system or not. The coordinate error dispersion is always zero at the BPM locations
with the momentum error dispersion taking the values

ηp,ς(s1) = ηp,ς(s3) = −r16
r12

, ηp,ς(s2) = −r52
r12

, (67)

which are independent from BPM resolutions. Note that this impossibility of the
energy jitter measurement does not depend on the value of r16 which could be zero
or not.5

4.3 Two Periodic System

Let us assume that our measurement system is periodic, by which we mean
that B23 = B12. We named it in the title as two periodic owing the fact that two
equal transfer matrices are involved, but, more correctly, it should be treated as

5The condition r16 = 0 is the necessary and sufficient condition for the total transfer matrix of
the mirror antisymmetric system to be achromatic.
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a three cell system because we consider three BPMs. Note that general periodic
measurement systems constructed from n identical cells will be studied in details in
the next section, but with additional simplifying assumptions that the cell transfer
matrix allows periodic beam transport and that all BPMs have the same resolutions.

The transverse error emittance of the two periodic system can be expressed in
the form

ǫς =
1

|r12|
· σ1 σ2 σ3
√

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

, (68)

where

trx (B12) = r11 + r22 , (69)

and calculation of the error betatron functions gives the following results

βς(s1) = |r12| ·
σ1

σ2 σ3

· σ2
2 · tr2x (B12) + σ2

3
√

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

, (70)

ας(s1) = sign (r12) ·
σ1

σ2 σ3
· σ

2
2 · trx (B12) · (r11 · trx (B12) − 1) + σ2

3 r11
√

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

, (71)

βς(s2) = |r12| ·
σ2

σ1 σ3

· σ2
1 + σ2

3
√

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

, (72)

ας(s2) = sign (r12) ·
σ2

σ1 σ3
· σ2

1 r11 − σ2
3 r22

√

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

, (73)

βς(s3) = |r12| ·
σ3

σ1 σ2

· σ2
1 + σ2

2 · tr2x (B12)
√

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

, (74)

ας(s3) = −sign (r12) ·
σ3

σ1 σ2
· σ2

1 r22 + σ2
2 · trx (B12) · (r22 · trx (B12) − 1)

√

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

. (75)

Let us assume in the following that BPM resolutions follow symmetry of the
system, which, in the periodic case, naturally mean that σ1 = σ2 = σ3. In this
situation βς(s1) and βς(s3) are always equal to each other and, it seems, it is the
only symmetry which does not require additional assumptions about coefficients of
the cell transport matrix B12.
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The error betatron functions will be cell periodic (will stay unchanged after trans-
port through the first half of the system), if and only if

tr2x (B12) = 1 , (76)

and, if (76) is satisfied, then

cos(µp) = ±1

2
(77)

and, therefore,

sin(3µp) = sin(µp) ·
(

4 cos2(µp) − 1
)

= 0 , (78)

where µp is the cell phase advance corresponding to the periodic betatron function.
The error betatron functions will be two cell periodic (will stay unchanged after

transport through the whole system), if and only if

tr3x (B12) = trx (B12) , (79)

which, when compared with (76), gives equation

trx (B12) = 0 , (80)

as the condition for the “true two cell periodicity” (two cell periodic, but not one
cell periodic). This condition means that the transverse part of the total system
matrix B2

12 (two by two submatrix located in the left upper corner) is equal to the
minus identity matrix for which arbitrary incoming beta and alpha functions will be
transported without changes through the system, but the error betatron functions
will also bring the sum of the beta function at the BPM locations to the minimal
possible value.

To finish the discussion about error betatron functions let us note, that if in the
matrix B12 the first two diagonal coefficients are to equal each other ( r11 = r22 ),
then

ας(s3) = −ας(s1), ας(s2) = 0, (81)

and one may say that in this situation the error betatron function becomes mirror
symmetric.

For the error energy spread and the error coordinate and momentum dispersions
we have in the case of the two periodic measurement system the following formulas

∆2
ς =

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

(r16 − r52)
2 , (82)

ηx,ς(s1) =
σ2
1 (r16 − r52)

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

, (83)
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ηp,ς(s1) =

= −σ2
1 (r16 + r11 (r16 − r52)) + σ2

2 · trx (B12) · ((trx (B12) + 1) r16 − r52) + σ2
3r16

r12 · (σ2
1 + σ2

2 · tr2x (B12) + σ2
3)

,(84)

ηx,ς(s2) = −σ2
2 · trx (B12) · (r16 − r52)

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

, (85)

ηp,ς(s2) =

= −σ2
1r16 + σ2

2 · trx (B12) · (trx (B12) · r52 + r22 (r16 − r52)) + σ2
3r52

r12 · (σ2
1 + σ2

2 · tr2x (B12) + σ2
3)

, (86)

ηx,ς(s3) =
σ2
3 (r16 − r52)

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

, (87)

ηp,ς(s3) =

= −σ2
1r52 + σ2

2 · trx (B12) · ((trx (B12) + 1) r52 − r16) + σ2
3 (r52 + r22 (r52 − r16))

r12 · (σ2
1 + σ2

2 · tr2x (B12) + σ2
3)

,(88)

and, if resolutions of all three BPMs will be equal, the error dispersion will satisfy
the equality

ηx,ς(s1) = ηx,ς(s3) . (89)

The condition for the error dispersion to be cell periodic is more restrictive than
for the error betatron functions, namely

trx (B12) = −1 , (90)

and the condition for the “true two cell periodicity” is

trx (B12) = −2 , (91)

which does not lead to any noticeable symmetry of the error betatron functions and
which means that the transverse part of the cell matrix B12 is equal to the sum of
the minus identity matrix plus some nilpotent matrix N (N2 = 0 ).

Note that under condition (90) we have for the periodic cell phase advance the
following relations

cos(µp) = −1

2
, sin(3µp/2) = sin(µp/2) · (2 cos(µp) + 1) = 0. (92)
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4.4 Cell Followed by Switched Cell

If a magnet system between the second and the third BPMs repeats the magnet
system between the first and the second BPMs but with switched directions of dipole
magnets, then

B23 =





r11 r12 −r16
r21 r22 −r26
0 0 1



 . (93)

In analogy with transition from mirror symmetric to mirror antisymmetric case, the
transverse error emittance and the error betatron functions remain the same as for
the two periodic measurement system, but, in contrast to mirror antisymmetric case,
this system still can be used for the energy jitter measurement if

r16 + r52 6= 0 , (94)

which, in particular, forbids the magnet system between the first and the second
BPMs to be mirror symmetric by itself.

For this measurement system we obtain

∆2
ς =

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

(r16 + r52)
2 , (95)

ηx,ς(s1) = − σ2
1 (r16 + r52)

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

, (96)

ηp,ς(s1) =

= −σ2
1 (r16 − r11 (r16 + r52)) + σ2

2 · trx (B12) · ((trx (B12)− 1) r16 − r52) + σ2
3r16

r12 · (σ2
1 + σ2

2 · tr2x (B12) + σ2
3)

,(97)

ηx,ς(s2) =
σ2
2 · trx (B12) · (r16 + r52)

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

, (98)

ηp,ς(s2) =

=
σ2
1r16 − σ2

2 · trx (B12) · (trx (B12) · r52 − r22 (r16 + r52))− σ2
3r52

r12 · (σ2
1 + σ2

2 · tr2x (B12) + σ2
3)

, (99)

ηx,ς(s3) = − σ2
3 (r16 + r52)

σ2
1 + σ2

2 · tr2x (B12) + σ2
3

, (100)
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ηp,ς(s3) =

=
σ2
1r52 + σ2

2 · trx (B12) · ((trx (B12)− 1) r52 − r16) + σ2
3 (r52 − r22 (r52 + r16))

r12 · (σ2
1 + σ2

2 · tr2x (B12) + σ2
3)

,(101)

and one sees that for equal BPM resolutions the property

ηx,ς(s1) = ηx,ς(s3) (102)

is still preserved.
There is no reasons to expect that coordinate error dispersion and simultaneously

momentum error dispersion could stay constant at all three BPM locations (analogy
of cell periodicity for the two cell measurement system) and, as one can check, there
is no solution for that. Nevertheless, both error dispersions still can stay unchanged
after transport through the whole system, if

trx (B12) = 1 or trx (B12) = 2. (103)

5 Periodic Measurement Systems

Let us consider a measurement system constructed from n identical cells assuming
that the cell transfer matrix allows periodic beam transport with phase advance per
cell µp being not a multiple of 180◦. Additionally, we will assume that BPMs placed
in our beam line deliver uncorrelated readings, all with the same rms resolution σbpm.

Let us first consider the case when we have one BPM per cell (identically posi-
tioned in all cells) with the periodic betatron function and the periodic dispersion
function at the BPM locations equal to βp(s1) and ηx,p(s1) 6= 0 respectively.

In this situation the formulas for the error transverse emittance and the error
betatron function remain the same as was already published in [1], and the square
of the error energy spread is given by the following expression

∆2
ς =

σ2
bpm

n η2x,p(s1)
· ̺n(µp) , (104)

where the function

̺n(µp) =

1 +
1

n
· sin(nµp)

sin(µp)

1 +
1

n
· sin(nµp)

sin(µp)
− 2

(

1

n
· sin(nµp/2)

sin(µp/2)

)2 (105)

is defined only for n ≥ 3.6 Note that for n ≥ 3 this function could be extended by
continuity for all µp not multiple of 360◦ where it becomes unbounded.7

6For n = 1, 2 the denominator in the formula (105) is equal to zero independent of the value of
the cell phase advance µp

7The nonnegative denominator in the formula (105) is equal to zero not only when µp is a
multiple of 360◦, but also when n is even and, simultaneously, µp an odd multiple of 180◦.
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The coordinate and momentum error dispersions ηx,ς and ηp,ς at the BPM lo-
cations are given below

ηx,ς(sk) = ηx,p(s1) ·
(

1 − ωn(µp) · cos
(

n+1−2k
2

µp

))

, (106)

ηp,ς(sk) = ηp,p(s1) − ηx,p(s1) ·
ωn(µp)

βp(s1)

(

sin
(

n+1−2k
2

µp

)

−

− αp(s1) · cos
(

n+1−2k
2

µp

))

, (107)

ωn(µp) = 2

(

1

n
· sin(nµp/2)

sin(µp/2)

)(

1 +
1

n
· sin(nµp)

sin(µp)

)−1

, (108)

and one sees that while the coordinate error dispersion ηx,ς always have mirror
symmetry

ηx,ς(sk) = ηx,ς(sn+1−k) , k = 1, . . . , n, (109)

the momentum error dispersion will be mirror antisymmetric

ηp,ς(sk) = −ηp,ς(sn+1−k) , k = 1, . . . , n (110)

only in the case when αp(s1) = 0 and ηp,p(s1) = 0.
Note, that the mean value of the coordinate error dispersion and the mean value

of its squares satisfy the following relations

1

n

n
∑

k=1

ηx,ς(sk) =
ηx,p(s1)

̺n(µp)
,

1

n

n
∑

k=1

η2x,ς(sk) =
η2x,p(s1)

̺n(µp)
. (111)

The function ̺n(µp) is never smaller than one and is equal to one (reaches its
minimum) only in the points

µp = k
360◦

n
(mod 360◦), k =

{

1, . . . , n− 1 if n is odd
1, . . . , n

2
− 1, n

2
+ 1, . . . , n− 1 if n is even

(112)

in which error dispersion coincides with periodic dispersion and which seem to be
good candidates to be selected for improving resolution of the energy jitter measure-
ment (see figure 3), if we are free in choosing the cell phase advance while, for some
reasons, the dispersion at the BPM location has to stay unchanged. But, when we
optimize a cell in which periodic dispersion at the BPM location is by itself function
of the cell phase advance, the situation, of course, changes. Let us, like in [1], con-
sider a thin lens FODO cell of the length L in which two identical thin lens dipoles
with transfer matrix
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Figure 3: Functions ̺n(µp) shown for n = 3, 4, 5, 6 (magenta, red, green and blue
curves respectively).
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 (113)

are inserted in the middle of drift spaces separating the focusing and defocusing
lenses. Let us assume that the BPM is placed in the “center” of the focusing lens
with the periodic dispersion at this locations being

ηx,p(s1) = η+ =
Lϕ

4
· 1 +

1
2
sin(µp/2)

sin2(µp/2)
, (114)

where ϕ is the cell deflection angle.
In this situation we can write

∆2
ς =

σ2
bpm

n

(

4

Lϕ

)2

·Ψn(µp) , (115)

where functions Ψn depend only on the cell phase advance µp and are converging
(from above) to the function

Ψ∞(µp) =
sin4(µp/2)

(

1 + 1
2
sin(µp/2)

)2 (116)
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Figure 4: Functions Ψn(µp) shown for n = 3, 4, 5, 6 (magenta, red, green and blue
curves respectively). The gray curve shows function Ψ∞(µp).

as n goes to infinity.
The functions Ψn (µp) for n = 3, 4, 5, 6 are plotted in figure 4 together with their

values in the points (112) shown as small circles at the corresponding curves. One
sees that, again like in [1], there is nothing really special about points (112) except
the trivial fact that all of them belong to the graph of the function Ψ∞ .

Before switching to the situation when we have two BPMs per cell let us rewrite
expression (105) for the function ̺n(µp) in the form

̺n(µp) =

(

1 − βp(s1)

2mp (βς , βp) η2x,p(s1)
· Ix (βς , ηx,ς − ηx,p, ηp,ς − ηp,p)

)−1

, (117)

where

mp (βς , βp) =

(

1 −
(

1

n
· sin(nµp)

sin(µp)

)2
)− 1

2

(118)

is the mismatch between the error and the periodic betatron functions (even so we
do not assume, in general, periodic betatron functions and/or periodic dispersion
being the design betatron functions and/or design dispersion matched to our beam
line) and

Ix (βς , ηx,ς − ηx,p, ηp,ς − ηp,p) =
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Figure 5: Functions Φn(µp) shown for n = 3, 4, 5, 6 (magenta, red, green and blue
curves respectively). The gray curve shows function Φ∞(µp).

= γς (ηx,ς − ηx,p)
2 + 2ας (ηx,ς − ηx,p) (ηp,ς − ηp,p) + βς (ηp,ς − ηp,p)

2 =

=
4 η2x,p(s1)m

3
p (βς , βp)

βp(s1)
·
(

1

n
· sin(nµp/2)

sin(µp/2)

)2

·
(

1 − 1

n
· sin(nµp)

sin(µp)

)

(119)

is the difference between periodic and error dispersions measured by using the Courant-
Snyder invariant formed out of error Twiss parameters.

Note, for completeness, that if one will express the difference between periodic
and error dispersions using Courant-Snyder invariant formed using periodic Twiss
parameters, then one will have the following relation

Ix (βp, ηx,ς − ηx,p, ηp,ς − ηp,p) =

= mp (βς , βp)

(

1 − 1

n
· sin(nµp)

sin(µp)

)

· Ix (βς , ηx,ς − ηx,p, ηp,ς − ηp,p) =

=

√

√

√

√

√

√

√

1 − 1

n
· sin(nµp)

sin(µp)

1 +
1

n
· sin(nµp)

sin(µp)

· Ix (βς , ηx,ς − ηx,p, ηp,ς − ηp,p) . (120)
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Let us now turn to the situation when we have two BPMs per cell with θ being
the phase shift between the first and second BPM location.

In this situation the square of the error energy spread can be expressed as

∆2
ς =

σ2
bpm

n
(

η2x,p(s1) + η2x,p(s2)
) ·̟n , (121)

where multiplier

̟n =

(

1− βp(s1) + βp(s2)

2mp (βς , βp)
(

η2x,p(s1) + η2x,p(s2)
) · Ix (βς , ηx,ς − ηx,p, ηp,ς − ηp,p)

)−1

(122)

has a form which is very similar to (117) with

Ix (βς , ηx,ς − ηx,p, ηp,ς − ηp,p) =

= γς (ηx,ς − ηx,p)
2 + 2ας (ηx,ς − ηx,p) (ηp,ς − ηp,p) + βς (ηp,ς − ηp,p)

2 =

=
4
(

η2x,p(s1) + η2x,p(s2)
)

m3
p (βς , βp)

βp(s1) + βp(s2)
·
(

1

n
· sin(nµp/2)

sin(µp/2)

)2
[

(

1− 1

n
· sin(nµp)

sin(µp)

)

·

·
βp(s1) η

2
x,p(s1) + 2 cos(θ)

√

βp(s1) βp(s2) ηx,p(s1) ηx,p(s2) + βp(s2) η
2
x,p(s2)

(βp(s1) + βp(s2))
(

η2x,p(s1) + η2x,p(s2)
) +

+ 2 sin2(θ)
βp(s1) βp(s2)

(βp(s1) + βp(s2))
2 ·
(

1

n
· sin(nµp)

sin(µp)

)

]

(123)

and with the mismatch between the error and the periodic betatron functions having
now the following form

mp (βς , βp) =

(

1−
(

1− 4 sin2(θ)
βp(s1)βp(s2)

(βp(s1) + βp(s2))
2

)

(

1

n
· sin(nµp)

sin(µp)

)2
)− 1

2

. (124)

For a thin lens FODO cell with BPMs placed in the “centers” of focusing and
defocusing lenses we have θ = µp/2 and the periodic beta function and the periodic
dispersion at the BPM locations are equal to

β± = L · 1 ± sin(µp/2)

sin(µp)
, η± =

Lϕ

4
· 1 ± 1

2
sin(µp/2)

sin2(µp/2)
. (125)
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Figure 6: Ratio Ψ∞ /Φ∞ as a function of the phase advance µp.

With these assumptions we can write

∆2
ς =

σ2
bpm

n

(

4

Lϕ

)2

· Φn(µp) , (126)

with functions Φn(µp) converging to the function

Φ∞(µp) =
sin4(µp/2)

2 + 1
2
sin2(µp/2)

(127)

as n goes to infinity.
The functions Φn (µp) for n = 3, 4, 5, 6 are plotted in figure 5 and one can see

that though we are using two times larger number of BPMs, the energy resolution
improves mainly in the region of the low phase advances, while for the high phase
advances it stays almost unchanged. To understand the situation better, it is useful
to look at the figure 6 where the ratio of the limiting functions Ψ∞ and Φ∞ is
shown.

6 Courant-Snyder Invariant as Error Estimator

When we consider the jitter problem, the subject of our real interest is the actual
difference δ~z0 between parameters of the instantaneous and the golden trajectory.
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Our measurement system delivers us an estimate δ~zς of this parameter, which in-
cludes the effect of the BPM reading errors ~ς .

Thus, in the framework of the model considered, the only information which we
could obtain about the true difference δ~z0 is the statistical information based on the
properties of the random variable δ~zς − δ~z0, which, due to our assumptions, has zero
mean and whose statistical distribution does not depend on the actual value of δ~z0 .

It seems to be natural to use the module |δες − δε0| as a numerical measure
of the difference between estimated and true beam energies, but the quantitative
measure of the difference δ~zς − δ~z0 from zero in the transverse phase space could be
chosen differently. One may simply use the Euclidean vector norm, but, as it was
already stated in [1], the usage of the Courant-Snyder quadratic form has certain
advantages. For example, when one considers errors only in the reconstruction of
the transverse orbit parameters in the beam line without dispersion, the Courant-
Snyder quadratic form is an invariant and therefore all estimates based on it do not
depend on the position of the reconstruction point. And, as one will see below, even
for dispersive particle motion the Courant-Snyder quadratic form is a “much better
conserved quantity” than the Euclidean norm.

6.1 Transverse Jitter

Let us first return to the situation whose study was already started in paper [1],
where we considered errors in the reconstruction of transverse orbit parameters in
the beam line without dispersion.

Let β0(r), α0(r) and γ0(r) be the design betatron functions, and

Ix( r, x, p ) = γ0(r) x
2 + 2α0(r) x p + β0(r) p

2 (128)

be the corresponding Courant-Snyder quadratic form.
According to the above discussion, the object of our current interest is the random

variable

I ςx = Ix( r, δxς − δx0 , δpς − δp0 ). (129)

The mean value of this random variable was already calculated in [1] and is equal

〈

I ςx
〉

= 2 ǫς mp(βς , β0) , (130)

where mp(βς , β0) is the mismatch between the error and the design betatron func-
tions. That is, probably, all what one can obtain without making additional assump-
tions about distribution of BPM reading errors.

In this subsection we will assume that the random vector ~ς has a multivariate
normal distribution and will find not only higher order moments of the random
variable I ςx , but also its probability density.

Calculations made in [1] show that we can represent the variable I ςx in the form
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I ςx = ~η⊤K⊤(r)K(r)~η , (131)

where

K = TVzM
⊤R−1

ς , T =

(

1/
√
β0 0

α0/
√
β0

√
β0

)

, M =







a1 c1
...

...
an cn






, (132)

and the components of the vector ~η = R−⊤
ς ~ς are independent standard normal

variables. The matrix K⊤K is n by n matrix, but, as it was also shown in [1], it has
only two nonzero eigenvalues, namely

µ± = ǫς

(

mp (βς , β0) ±
√

m2
p ( βς , β0) − 1

)

. (133)

If ~e± are the unit orthogonal eigenvectors of the symmetric matrix K⊤K cor-
responding to its nonzero eigenvalues µ± , then we can rewrite (131) in the form

I ςx = µ+ ξ2+ + µ− ξ2− , (134)

where ξ± = ~e⊤
± ~η are two independent standard normal variables.

With representation (134) calculation of all probabilistic characteristics of the
random variable I ςx becomes rather straightforward. For example, the following
formula gives its variance

V ( I ςx ) =
〈

(I ςx)
2 〉 −

〈

I ςx
〉2

= 4 ǫ2ς
(

2m2
p(βς , β0) − 1

)

. (135)

Moreover, it is not very complicated to calculate the probability density of this
random variable using, for example, results published in [6]. This density p(t) is
equal to zero for negative values of its argument, and for t ≥ 0

p(t) =
1

2ǫς
I0

(

√

m2
p(βς , β0)− 1

t

2ǫς

)

exp

(

−mp(βς , β0)
t

2ǫς

)

, (136)

where I0 is the modified Bessel function of zero order.
Note that for mp(βς , β0) = 1 the density (136) becomes the density of chi-square

distribution with two degrees of freedom and in this case the distribution function
F (t) can be calculated in the explicit form

F (t) = Pr ( I ςx ≤ t ) =

t
∫

0

p(τ) dτ = 1 − exp

(

− t

2ǫς

)

. (137)
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6.2 Transverse and Energy Jitter

When the beam energy is included in both, measurement and dynamics, the
transverse motion could be separated into two parts: dispersive motion and pure
betatron oscillations. One can write

{

δx0 = (δx0 − δε0 · ηx,0) + δε0 · ηx,0
δp0 = (δp0 − δε0 · ηp,0) + δε0 · ηp,0 (138)

and
{

δxς = (δxς − δες · ηx,0) + δες · ηx,0
δpς = (δpς − δες · ηp,0) + δες · ηp,0

(139)

where ηx,0 and ηp,0 are the coordinate and momentum design dispersions respec-
tively.

The first terms in the right hand sides of formulas (138) and (139) represent the
pure betatron oscillations. Let us at the beginning estimate their difference using
the Courant-Snyder quadratic form, which in this case will be an invariant, i.e. let
us consider the random variable

Ĩ ςx = Ix( r, (δxς − δx0)− (δες − δε0) · ηx,0 , (δpς − δp0)− (δες − δε0) · ηp,0 ). (140)

The mean value of this variable is given below

〈

Ĩ ςx
〉

= 2 ǫς mp(βς , β0) + ∆2
ς · Ix ( r, ηx,ς − ηx,0 , ηp,ς − ηp,0 ) , (141)

and one sees that, in addition to the mismatch between error and design betatron
functions, the difference between error and design dispersions starts to play an im-
portant role.

If we again will assume that the random vector ~ς has a multivariate normal
distribution, we can represent Ĩ ςx in the form

Ĩ ςx = µ̃+ ξ̃2+ + µ̃− ξ̃2− , (142)

which is similar to (134) and in which ξ̃± are again two independent standard nor-
mal variables. Unfortunately, the expressions for µ̃± become essentially more com-
plicated than (133) and, with the notations

m̂p = mp(βς , β0), Îx = Ix ( r, ηx,ς − ηx,0 , ηp,ς − ηp,0 ) , (143)

are given below

µ̃± = ǫς m̂p +
∆2

ς

2
· Îx ±

√

ǫ2ς
(

m̂2
p − 1

)

+ ǫς ∆2
ς (m̂p − 1) · Îx +

∆4
ς

4
· Î2x . (144)

With representation (142) one can calculate the variance
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V
(

Ĩ ςx
)

=
〈 (

Ĩ ςx
)2 〉 −

〈

Ĩ ςx
〉2

= 2
(

µ̃2
+ + µ̃2

−

)

(145)

and also find formula for the probability density p̃(t). This density is equal to zero
for negative values of its argument, and for t ≥ 0

p̃(t) =
1

2A
I0





√

(

B

A

)2

− 1 · t

2A



 exp

(

−B

A
· t

2A

)

, (146)

where I0 is the modified Bessel function of zero order and

A =
√

µ̃+ µ̃− , B =
µ̃+ + µ̃−

2
(147)

are the geometric and the arithmetic means of the eigenvalues (144) respectively.
To finish this section, let us note that in order to get probabilistic characteristic

of the random variable (129), i.e. in order to study not the difference in the pure
betatron oscillations, but the total difference in the transverse motion, one simply
has to set to zero the design dispersions in all formulas of this subsection (indepen-
dently, if actual design coordinate and momentum dispersions are equal to zero or
not). The obtained formulas will, of course, not have invariant character anymore.
Nevertheless, the dependence form the position of the reconstruction point will enter
them through the single parameter, namely through the value Ix ( r, ηx,ς , ηp,ς ).
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