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orre
tions to the produ
tion of two bottom-antibottom pairs at the LHCNi
olas Greiner,1 Alberto Gu�anti,2 Thomas Reiter,3, 4 and J�urgen Reuter5, 21Department of Physi
s, University of Illinois at Urbana-Champaign, Urbana IL, 61801, USA2Physikalis
hes Institut, Albert-Ludwigs-Universit�at, 79104 Freiburg, Germany3Nikhef, 1098 XG Amsterdam, The Netherlands4Max-Plan
k-Institut f�ur Physik, 80805 M�un
hen, Germany5DESY, 22607 Hamburg, Germany(Dated: May 19, 2011)We report the results of a 
omputation of the full next-to-leading order QCD 
orre
tions to theprodu
tion of two b�b pairs at the LHC. This 
al
ulation at the parton level provides predi
tionsfor well separated b-jets. The results show that the next-to-leading order 
orre
tions lead to anenhan
ement of the 
ross-se
tion for the 
entral s
ale 
hoi
e by roughly 50% with respe
t to theleading order result. The theoreti
al un
ertainty estimated by variation of the renormalization andfa
torization s
ales is strongly redu
ed by the in
lusion of next-to-leading order 
orre
tions.PACS numbers: 12.38.Bx, 13.85.Hd, 14.65.FyINTRODUCTIONThe sear
h for the Higgs boson, and more in generalthe study of the Ele
troweak Symmetry breaking me
h-anism, is a major goal of the experiments at the LHC
ollider at CERN. In various extensions of the StandardModel the signature of two light Higgs bosons de
aying intwo pairs of b-quarks, hh ! b�bb�b, is a viable 
hannel forthe Higgs Boson dis
overy. Examples of these models arethe Minimally Supersymmetri
 Standard Model (MSSM)for large values of tan� and moderate mA [1{4℄, hiddenvalley s
enarios where the de
ay of hadrons of an addi-tional gauge group 
an produ
e additional b-jets [5, 6℄and two Higgs doublet models. The possibility of mea-suring the Higgs self-
oupling through H ! hh ! b�bb�bhas been investigated in [7℄. This and other related stud-ies, however show that su
h a measurement would beextremely diÆ
ult, primarily due to the large StandardModel ba
kground. The pre
ise knowledge of the b�bb�b�nal state within the Standard Model is therefore an im-portant fa
tor for the su

ess of these measurements.Be
ause of its importan
e this pro
ess has been addedto the Les Hou
hes wish list of relevant next-to-leadingorder 
al
ulations [5℄.In an earlier publi
ation [8℄, we presented the next-to-leading order (NLO) QCD 
orre
tions to the produ
tionof b�bb�b via quark-antiquark annihilation. In the presentLetter we 
omplete the existing work in
luding the gluoninitiated 
ontributions and present the results for the fullNLO QCD 
orre
tions to pp! b�bb�b at the LHC.We show that the in
lusion of the NLO 
orre
tionsredu
es the unphysi
al s
ale dependen
e of the leadingorder (LO) predi
tion greatly, improving the pre
isionof this predi
tion and allowing a better estimation of theStandard Model ba
kground to possible New Physi
s sig-nals in this 
hannel.

METHODA 
omplete NLO QCD des
ription requires the 
al
u-lation of the 2! 4 subpro
esses q�q ! b�bb�b and gg ! b�bb�bat the tree and the one-loop level as well as the 2! 5 par-ti
le pro
esses q�q ! b�bb�bg, gg ! b�bb�bg and (�)q g ! b�bb�b(�)qat tree level.We sum over four massless quark 
avours q 2fu; d; s; 
g in the initial state. Negle
ting the 
ontribu-tion from initial state b-quarks is justi�ed by the small-ness of the b parton distribution fun
tion (PDF) withrespe
t to the other quark PDFs. Moreover the fa
t thatthe gluon-gluon 
hannel is the dominant 
ontribution atLHC energies further redu
es the relative importan
e ofthe quark 
hannels. We treat the b-quarks as massless,whi
h is a very good approximation for LHC kinemati
salso due to the 
uts imposed in order for the �nal stateb-quarks to be dete
ted and separated in phase spa
e.E�e
ts of the heavy top quark are negle
ted altogetherin the �nal result after having shown that they are nu-meri
ally not important.The LO and the real radiation matrix elements are gen-erated using MadGraph [9℄. For the subtra
tion of theinfrared singularities we use Catani-Seymour dipoles [10℄,supplemented with a sli
ing parameter � as proposedin [11, 12℄, implemented in the MadDipole pa
kage [13,14℄.As des
ribed in our earlier work [8℄, we 
ompute theone loop 
orre
tions to s
attering matrix elements us-ing an approa
h based on Feynman diagrams. The 
odefor the numeri
al evaluation of the virtual 
orre
tions isgenerated using the automated one-loop matrix elementgenerator golem-2.0 [15{17℄ whi
h employs QGraf [18℄,Form [19℄, the Form library Spinney [20℄ and the 
odegenerator Haggies [21℄ at intermediate levels of the dia-gram and 
ode generation. The redu
tion and evaluationof the loop integrals is performed using the Samurai [22℄and OneLoop [23℄ pa
kages respe
tively.
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2The integration over phase spa
e is 
arried out usingMadEvent [24℄ and it has been split up in independentparts in order to optimize the 
omputational time re-quired.The �rst 
ontribution 
onsists of the real emission ma-trix element supplemented with the subtra
tion terms.The integration of this 
ontribution over the 
orrespond-ing 13-dimensional phase spa
e is one of the main 
ompu-tational bottlene
ks of su
h a 
al
ulation. This integra-tion has been performed using up to 2 � 109 phase spa
epoints. For the q�q and gg subpro
ess the evaluation ofa single phase spa
e point requires the evaluation of 30subtra
tion terms for ea
h partoni
 
hannel and an addi-tional 10 subtra
tion terms are needed for the qg 
hannel.This means that a substantial fra
tion of CPU time isspent 
al
ulating the dipole 
ontributions. In su
h a sit-uation the use of a value smaller than one for the sli
ingparameter �, as proposed in [11, 12℄, speeds up substan-tially the 
omputation by avoiding that ea
h subtra
tionterm is evaluated for ea
h phase-spa
e point. Besides theredu
tion of the 
omputational time per point this set-ting has a se
ond advantage. If not 
lose to a singularitythe integrand is given just by the real emission matrixelement. Close to a singularity, where also subtra
tionterms are 
al
ulated, these subtra
tion terms per de�-nition have the same kinemati
al stru
ture as the realemission matrix element whi
h is not ne
essarily true foran arbitrary point in phase spa
e. So for ea
h point theintegrand is either exa
tly the real emission matrix el-ement or something with the same stru
ture but withone singularity subtra
ted. But as this is an integrandwhere our integration routine is optimized for, 
hoosinga value for � smaller than one leads to an improvementof the 
onvergen
e of the integral. In our 
al
ulation weset � = 0:01.The se
ond 
ontribution to the integration 
ombinesthe tree-level 
ontribution and the integrated subtra
-tion terms. The virtual matrix element is integrated overphase spa
e by reweighting a sample unweighted Bornlevel events, as des
ribed in [15℄. This leads to a 
on-siderable redu
tion of the required CPU-time sin
e lessphase spa
e points have to be evaluated. For the resultsshown below, event samples 
onsisting of 104 � 105 un-weighted events have been used. The LO event samplesused for the reweighting have been generated with Mad-Event [24℄ and WHIZARD [25, 26℄.In order to establish the 
orre
tness of the results ob-tained we have performed a number of non-trivial tests.The dipole 
ontributions for single phase spa
e pointsand at the phase spa
e integration level have been 
om-pared with the HELAC 
ode [27, 28℄ and agreement hasbeen established up to double pre
ision a

ura
y for sin-gle phase spa
e points and within integration errors forthe integrated results. The phase spa
e integration of thedipole 
ontributions is validated by 
he
king the indepen-den
e of the result of the sli
ing parameter �. Also the


an
ellation of the single and double poles between thevirtual amplitude and the integrated subtra
tion termshas been veri�ed. Finally, the virtual matrix element
omputation for a single phase spa
e point has been 
om-pared to the result published in [29℄. In order to performthis 
omparison the 
ontribution from top quark loopshas been added, even though it is negle
ted in the re-sults presented in the following se
tion. Our result is inagreement with the result of [29℄, providing a very strongtest of our virtual 
ontributions 
omputations.RESULTSIn the following we 
onsider the pro
ess pp ! b�bb�b +X at the LHC at a 
enter of mass energy of ps =14TeV. The �nal state jets are de�ned by apply-ing the kT -algorithm as explained in [30℄ with a ra-dius in R-spa
e of 0:8. More pre
isely, the jet algo-rithm requires exa
tly four b-jets in the �nal state forthe event to be a

epted. All jets are required to liewithin a rapidity range of j�(bj)j < 2:5 and to havea transverse momentum pT (bj) > 30GeV. We im-pose a separation 
ut between the jets of �R(bi; bj) =p(�i � �j)2 + (�i � �j)2 > 0:8. All results have beenobtained using the CTEQ6M parton distribution fun
-tions [31℄ with two-loop running of �s both for the LOand the NLO 
ross-se
tion evaluations and �s(MZ) =0:118.The unphysi
al renormalization and fa
torizations
ales are usually 
hosen to be in the vi
inity of the typ-i
al s
ale of the pro
ess. For pro
esses where heavy par-ti
les su
h as top-quarks orW=Z-bosons are involved themasses of these parti
les provide a natural 
hoi
e. Inour 
ase, dealing with massless parti
les only there is nosu
h s
ale, the only s
ale involved in this pro
ess is thepT -
ut imposed to de�ne the b-jets. In this respe
t thepro
ess 
onsidered here is similar to the produ
tion offour light jets. In [12℄ it has been shown that the aver-age transverse momentum pT of a jet is a good 
hoi
e forthe produ
tion of three jets in hadron-hadron 
ollisions.On the basis of the s
ale 
hoi
e we made earlier for thequark initiated 
ase [8℄, we de�ne the 
entral s
ale to be�0 = 14sXi p2T;i ; (1)whi
h turns out to be of the same order of magnitude asthe average pT of the jets.In Figure 1 we plot the variation of the total 
ross se
-tion for the produ
tion of two bottom-antibottom pairsat the LHC, with the 
uts des
ribed previously, when therenormalization s
ale �r and the fa
torization �F are var-ied together, with x de�ned as the ratio to the the 
entrals
ale, �r = �F = x � �0.
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FIG. 1. Total 
ross se
tion as a fun
tion of the s
ale � =�r = �F = x ��0. Renormalization and fa
torization s
ale arevaried in the same dire
tion.If we set the renormalization and fa
torization s
aleto the value �0 as in Eq. (1) we �nd for the total 
rossse
tion with the 
uts des
ribed above�NLOpp!b�bb�b = 140:48 � 0:64 pb : (2)This means that for our preferred 
hoi
e of s
ales we�nd that the in
lusion of the NLO 
ontribution leads toan in
rease of nearly 50% of the total 
ross se
tion withrespe
t to the LO result of �LO = 94:88 � 0:14 pb.However one observes that, as expe
ted, the dependen
eof the result on the unphysi
al s
ales is strongly redu
edin the NLO result with respe
t to the leading order one.
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FIG. 2. Invariant mass distribution of the two b-jets withthe highest pT . The bla
k shaded area denotes the tree level
ontribution, the red area denotes the NLO 
ross-se
tion. Theerror bands for both histograms are determined by a s
alevariation between �0=2 and 2�0.In Figure 2 we plot the invariant mass distribution ofthe two b-jets with the highest transverse momentum.

The error bands are obtained by a variation of the s
alesbetween �0=2 and 2�0. With respe
t to the LO resultone observes a shift of the distribution to lower energiesdue to the in
lusion of the radiative 
orre
tions. The pT
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FIG. 3. pT distribution of the hardest jet. The error bandsare de�ned as in Figure 2.distribution of the jet with the highest pT is shown in Fig-ure 3. Here, the radiative 
orre
tions enhan
e the distri-bution at higher momentum. Both Figure 2 and Figure 3show a signi�
ant redu
tion of the error indu
ed by s
aleun
ertainties on di�erential distributions. Moreover, thedistortion in the shapes of di�erential distributions whengoing from LO to NLO suggests that the appli
ation ofa global K-fa
tor is not suÆ
ient in order to a

uratelydes
ribe the higher-order e�e
ts.A 
omplete phenomenologi
al study of the produ
tionof two bottom-antibottom pairs at the LHC, in
ludingthe study of PDF un
ertainties and the e�e
ts of varyingthe 
uts on the �nal state b-jets is beyond the s
ope ofthe present Letter and will be the subje
t of an up
omingpubli
ation. CONCLUSIONSWe have 
al
ulated the next-to-leading order QCD
orre
tions to the produ
tion of two bottom-antibottomquark pairs at the LHC. This 
al
ulation has been imple-mented in a highly automated framework for the 
ompu-tation of NLO QCD 
orre
tions (the golem-2.0 frame-work) whi
h is based on a Feynman diagrammati
 ap-proa
h for the evaluation of virtual 
orre
tions imple-mented in the Samurai and OneLoop pa
kages, inter-fa
ed to the Madgraph/Madevent and MadDipole pro-grams for the evaluation of the leading-order and dipolesubtra
tion 
ontributions and the phase spa
e integra-tion.The in
lusion of the NLO 
orre
tions leads to a sig-ni�
ant redu
tion of the un
ertainties due to unphysi
al



4s
ale dependen
e of the LO result, while enhan
ing the
ross se
tion by 50% for our 
entral s
ale 
hoi
e. Fur-thermore, we have shown that the radiative 
orre
tionslead to 
hanges in the overall shape of the distributions,whi
h 
annot be a

ounted for in a reliable way by asimple res
aling of the leading order predi
tions.This redu
ed theoreti
al un
ertainty improves theprospe
ts for the use of the b�bb�b 
hannel in sear
hes ofHiggs bosons in various extensions of the the standardmodel like SUSY, two Higgs doublet models or hiddenvalley models.A
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