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Abstract

The Higgs sector of the Standard Model offers a unique opportunity to probe the hidden
sector. The Higgs squared operator is the only dimension two operator which is Lorentz and
gauge invariant. It can therefore couple both to scalar curvature and the hidden sector at
the dim–4 level. We consider the possibility that a combination of the Higgs and a singlet
from the hidden sector plays the role of inflaton, due to their large couplings to gravity.
This implies that the quartic couplings satisfy certain constraints which leads to distinct low
energy phenomenology, including Higgs signals at the LHC. We also address the unitarity
issues and show that our analysis survives the unitarization procedure.
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1 Introduction

Cosmic inflation [1] is a paradigm beyond the Standard Big Bang Cosmology which addresses the

flatness, isotropy, homogeneity, horizon and relic problems. Furthermore, quantum fluctuations

during inflation provide a seed for the large–scale structure formation. On the other hand, the

nature of the inflaton remains a mystery. It has recently been conjectured that the only scalar

of the Standard Model (SM), the Higgs field, may play its role [2], given a large Higgs coupling

to scalar curvature. The Higgs sector is also quite special because it has a direct access to the

“hidden sector” [3], whose existence is motivated by various ideas including string theory, dark

matter, etc. Understanding the Higgs couplings would thus provide us with unique information

about the hidden world.

There are two dim-2 operators in the Standard Model that can couple to the hidden sector

at the renormalizable level: F Y
µν and H†H. The latter is also Lorentz invariant, so it can in

addition couple to scalar curvature R. One can therefore add the following dim–4 operators to

the Standard Model Lagrangian,

∆L1 = c1 H†H|S|2 ,

∆L2 = c2 H†HR , (1)

where S is a singlet under the Standard Model and ci are dimensionless constants. In what

follows, we consider the minimal option for the hidden sector: we take S to be a real scalar s

and impose the symmetry s ↔ −s. The coupling c1 controls the Higgs decay into the hidden

sector as well as the Higgs–singlet mixing, which can be measured at the LHC. c2 can be

responsible for inflation: with |c2| ≫ 1, a large value of the Higgs field in the early universe

leads to exponential expansion.

In this work, we consider the possibility that the inflaton is a mixture of the Higgs with

the singlet from the hidden sector. The nature of the inflaton depends on the relations among

various couplings. For example, if c1 is positive, stability of the potential requires a mixed

inflaton. On the other hand, for negative c1 the inflaton can be purely the Higgs or the singlet

field. These considerations leave an imprint on the low energy physics, affecting the couplings

of the Higgs–like particles to be studied at the LHC.

We also study the unitarity issues which plague the original Higgs inflation [4, 5]. We

construct a unitary completion [6] of the Higgs portal inflation and show that the constraints

on the couplings survive the unitarization procedure.
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The paper is organized as follows. We first present a general analysis of the SM extension

with a real singlet in the presence of large couplings to scalar curvature. We study stability of

the system during inflation and derive the corresponding constraints on the couplings. Then

we study implications for low energy physics. We further discuss the differences from the pure

Higgs [7] and singlet inflation [8, 9], and present an example of the unitary completion of our

model.

2 Higgs–singlet combination as the inflaton

In this section, we study an extension of the Higgs sector with a real scalar s in the presence

of large couplings ξh,s to scalar curvature R. This system can lead to inflation based on scale

invariance of the Einstein frame scalar potential at large field values. The relevant Jordan frame

Lagrangian in the unitary gauge HT = (0, h/
√
2) is

L/√−g = −1

2
M2

PlR− 1

2
ξhh

2R− 1

2
ξss

2R+
1

2
(∂µh)

2 +
1

2
(∂µs)

2 − V (2)

with ξh,s > 01 and

V =
1

4
λhh

4 +
1

4
λhss

2h2 +
1

4
λss

4 +
1

2
m2

hh
2 +

1

2
m2

ss
2 . (3)

The transformation to the Einstein frame, in which the only coupling to curvature is −1/2M2
PlR,

is defined by

g̃µν = Ω2gµν , Ω2 = 1 +
ξhh

2 + ξss
2

M2
Pl

. (4)

Consider now the limit

ξhh
2 + ξss

2 ≫ M2
Pl (5)

and set MPl to 1. In this case, Ω2 ≃ ξhh
2 + ξss

2. Then, according to [10], the kinetic terms and

the potential in the Einstein frame take the form

Lkin =
3

4

(

∂µ log(ξhh
2 + ξss

2)

)2

+
1

2

1

ξhh2 + ξss2

(

(∂µh)
2 + (∂µs)

2

)

,

U =
1

(ξhh2 + ξss2)2
V . (6)

Introduce new variables

χ =

√

3

2
log(ξhh

2 + ξss
2) ,

τ =
h

s
. (7)

1We do not consider negative ξi since in this case the theory is not well defined at large field values.
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In terms of these variables, the kinetic terms read

Lkin =
1

2

(

1 +
1

6

τ2 + 1

ξhτ2 + ξs

)

(∂µχ)
2 +

1√
6

(ξs − ξh)τ

(ξhτ2 + ξs)2
(∂µχ)(∂

µτ)

+
1

2

ξ2hτ
2 + ξ2s

(ξhτ2 + ξs)3
(∂µτ)

2 . (8)

We are interested in the case of large non-minimal couplings, ξ ≡ ξh + ξs ≫ 1. Since the (∂µτ)
2

term scales like 1/ξ and so does the mixing term (∂µχ)(∂
µτ), in terms of (approximately)

canonically normalized variables the mixing is suppressed. Then, to leading order in 1/ξ, we

have

Lkin =
1

2
(∂µχ)

2 +
1

2

ξ2hτ
2 + ξ2s

(ξhτ2 + ξs)3
(∂µτ)

2 . (9)

In the following limiting cases, one can define a particularly simple canonically normalized

variable τ ′ :

ξs ≫ ξh or τ → 0 , τ ′ =
τ√
ξs

,

ξh ≫ ξs or τ → ∞ , τ ′ =
1√
ξhτ

,

ξh = ξs , τ ′ =
1√
ξh

arctan τ . (10)

The scalar potential at large χ reads

U =
λhτ

4 + λhsτ
2 + λs

4(ξhτ2 + ξs)2
. (11)

Its minima are classified according to

(1) 2λhξs − λhsξh > 0 , 2λsξh − λhsξs > 0 , τ =

√

2λsξh − λhsξs
2λhξs − λhsξh

,

(2) 2λhξs − λhsξh > 0 , 2λsξh − λhsξs < 0 , τ = 0 ,

(3) 2λhξs − λhsξh < 0 , 2λsξh − λhsξs > 0 , τ = ∞ ,

(4) 2λhξs − λhsξh < 0 , 2λsξh − λhsξs < 0 , τ = 0,∞ . (12)

Note that in the last case there are 2 local minima. We are primarily interested in the first case,

when the inflaton is a combination of the Higgs field and the singlet. The corresponding value

of the potential is then

U
∣

∣

∣

min (1)
=

1

16

4λsλh − λ2
hs

λsξ
2
h + λhξ2s − λhsξsξh

, (13)

while in cases (2) and (3), it is λs/(4ξ
2
s ) and λh/(4ξ

2
h), respectively. The condition 4λsλh−λ2

hs > 0

guarantees the absence of very deep minima with negative vacuum energy at field values mh,s ≪
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h, s, which make the electroweak vacuum metastable. With this constraint, the vacuum energy

above is positive (the denominator is positive by the minimization conditions).

In all of the cases, the τ -field is heavy and can be integrated out. Indeed, the mass of

the canonically normalized τ ′ scales as 1/
√
ξ in Planck units, while the Hubble rate scales like

√
U |min ∼ 1/ξ. Thus

m2
τ ′ ≫ H2 . (14)

The potential value (13) plays the role of the quartic coupling over ξ2 in the single field

inflation model of Bezrukov–Shaposhnikov [2]. Retaining the subleading M2
Pl/(ξhh

2 + ξss
2)

term in Ω2, the inflaton potential for option (1) becomes

U(χ) =
λeff

4ξ2h

(

1 + exp

(

− 2χ√
6

)

)−2
(15)

in Planck units, where

λeff =
1

4

4λsλh − λ2
hs

λs + λhx2 − λhsx
(16)

and

x =
ξs
ξh

. (17)

The inflationary parameters are read off from this potential [2]. At large χ, the potential is

flat and inflation takes place. As χ rolls to smaller values, the ǫ-parameter approaches 1 and

inflation ends. In terms of

h̃ ≃ 1√
ξh

exp
(

χ/
√
6
)

, (18)

the ǫ-parameter is given by

ǫ =
1

2

(

dU/dχ

U

)2

≃ 4

3ξ2hh̃
4
. (19)

This gives h̃end = (4/3)1/4/
√
ξh. Then, for a given number of e-folds N , the initial value of the

inflaton is h̃in ≈
√

4N/(3ξh). Together with the COBE normalization U/ǫ = 0.0274 [11], this

fixes ξh in terms of λeff ,

ξh ≃
√

λeff

3

N

0.0272
. (20)

For
√
λeff ∼ 1 and N = 60, the non-minimal gravity coupling ξh is about 50000. The spectral

index is predicted to be

n ≃ 1− 2

N
≃ 0.97 , (21)

while the tensor to scalar perturbation ratio is r ≃ 12/N2 ≃ 0.0033. These are robust (tree–

level) predictions of our framework to be tested in the future.2 They are independent of the

2In multi–field variants of this scenario, large non–Gaussianity can also be generated [12].
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nature of the inflaton and result from the shape of the potential, which in turn follows from a

large coupling to scalar curvature.

2.1 Parameter space analysis

In this subsection, we analyze the parameter space consistent with the inflaton being a mixture

of the Higgs and singlet fields. The relavant inflation parameters are evaluated at a high energy

scale µ. A particular choice of µ advocated in [13] is to take µ ∼ mt(χ) which minimizes the

effect of logarithms in the Coleman-Weinberg potential. In this case, µ ∼ MPl/
√
ξ for large

χ. However, as we discuss in Sec. 5, the theory is only well defined up the scale MPl/ξ at

which unitarity violation appears. We thus expect new physics to set in at the unitarity scale

µU ∼ MPl/ξ and take µU as the scale at which the input parameters are specified. We will

assume that the new physics does not significantly affect the tree level relations of the previous

section (see an example in Sec. 5), yet it is likely to affect the running of the relevant parameters

above µU . For successful Higgs–singlet inflation, we impose at µU :

2λhx− λhs > 0 ,

2λs
1

x
− λhs > 0 ,

4λsλh − λ2
hs > 0 . (22)

The third inequality provides an independent constraint for λhs < 0, while for positive λhs it

follows from the first two. In addition we require perturbativity and stability at µU :

|λi| < 1 ,

λh,s > 0 . (23)

Our (judicial) definition of the perturbative couplings is motivated by perturbativity at the

Planck scale. We note that above MPl/ξ, the running of λi slows down due to the suppression of

the inflaton self-coupling or, equivalently, suppression of its propagator in the Jordan frame (see,

e.g. [8]). Therefore, our procedure is expected to take into account the bulk of radiative correc-

tions. Finally, given uncertainties from new physics above µU , the running of the parameters,

e.g. the spectral index [14, 15], during inflation cannot be reliably calculated in our framework

and we therefore omit it.

The renormalization group (RG) equations governing the evolution of couplings below µU
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are given by [8]:

16π2 dλh

dt
= 24λ2

h − 6y4t +
3

8

(

2g4 + (g2 + g′2)2
)

+ (−9g2 − 3g′2 + 12y2t )λh +
1

2
λ2
hs ,

16π2 dλhs

dt
= 4λ2

hs + 12λhλhs −
3

2
(3g2 + g′2)λhs

+ 6y2t λhs + 6λsλhs ,

16π2 dλs

dt
= 2λ2

hs + 18λ2
s , (24)

where t = ln(µ/mt). The RG equations for the gauge and the top Yukawa couplings can be found

in [13]. The low energy input values for these couplings are g(mt) = 0.64, g′(mt) = 0.35, g3(mt) =

1.16, while for the top Yukawa coupling we use its running value at mt, yt(mt) = 0.93 [16]. For

a given set of the low energy couplings at t = 0, we use the above RG equations to run them up

to t ≈ 26 and impose the constraints (22) and (23).
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Figure 1: Parameter space consistent with the mixed Higgs–singlet inflaton. λi are given at the
scale mt, while x is a high energy input.
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In addition, we impose the low energy constraint at mt

4λsλh − λ2
hs > 0 (25)

for λhs < 0. This ensures that there are no deep minima at some intermediate scale s, h ≫
ms,mh which can make the electroweak vacuum short-lived. It is a complementary constraint

and (22) does not guarantee that it is satisfied. We find that for λhs < 0 the combination λsλh

can increase with energy faster than λ2
hs such that parameter space allowed by (22) may violate

(25).

Our results are presented in Fig. 1. In the {λhs, λs} plane, the parameter space at λhs > 0 is

most strongly constrained by 2λs
1
x −λhs > 0 and, for larger λs, by 2λhx−λhs > 0. In the latter

case, λs contributes significantly to the running of λhs, but not to that of λh, which eliminates

parameter space to the right of some critical value λhs. For negative λhs, the main constraint

is 4λsλh − λ2
hs > 0 (both at µU and mt) as well as perturbativity which cuts off large values of

λs and |λhs|. At x ≫ 1 or x ≪ 1, it becomes more difficult to satisfy either 2λs
1
x − λhs > 0 or

2λhx − λhs > 0, so only small positive values of λhs are allowed. On the other hand, negative

λhs are not affected by x. Decreasing λh eliminates most of the parameter space and leaves

a strip around λhs = 0. The negative top quark contribution to the β–function of λh makes

it run slower, reducing λh(µU ) and making it more difficult to satisfy the constraints at µU .

Naturally, at larger λh, parameter space opens up. The range of allowed λh is similar to that

of the Standard Model subject to the perturbativity and stability requirements, i.e. roughly

0.14 < λh < 0.25.

Note that the value of ξh is not important for our analysis. Given λeff , it is fixed at the

scale µU by Eq.(20). Since we are not interested in its value at low energies, its running is not

relevant for us.

3 Phenomenological implications

There are two phenomenologically acceptable possibilities for the vacuum of our theory: (a)

〈h〉 6= 0, 〈s〉 6= 0 and (b) 〈h〉 6= 0, 〈s〉 = 0. They lead to different phenomenological implications.
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3.1 〈h〉 6= 0, 〈s〉 6= 0

Denoting 〈h〉 = v, 〈s〉 = u, extremization of the low energy scalar potential (3) requires

v2 = 2
λhsm

2
s − 2λsm

2
h

4λsλh − λ2
hs

,

u2 = 2
λhsm

2
h − 2λhm

2
s

4λsλh − λ2
hs

. (26)

The diagonal matrix elements of the Hessian at this point are 2λsu
2 and 2λhv

2, while its deter-

minant is (4λsλh − λ2
hs)v

2u2. Then, the extremum is a local minimum if

λhsm
2
h − 2λhm

2
s > 0 ,

λhsm
2
s − 2λsm

2
h > 0 ,

4λsλh − λ2
hs > 0 . (27)

In this case, the mass squared eigenvalues are

m2
1,2 = λhv

2 + λsu
2 ∓

√

(λsu2 − λhv2)2 + λ2
hsu

2v2 (28)

with the mixing angle θ given by

tan 2θ =
λhsuv

λhv2 − λsu2
. (29)

Here the mixing angle is defined by

OT M2 O = diag(m2
1,m

2
2) , O =

(

cos θ sin θ
− sin θ cos θ

)

, (30)

where M2 is a 2×2 mass squared matrix. The range of θ is related to the ordering of the

eigenvalues through sign(m2
1 −m2

2) = sign(λsu
2 − λhv

2) sign(cos 2θ) and we take m1 to be the

smaller eigenvalue. The mass eigenstates are

H1 = s cos θ − h sin θ ,

H2 = s sin θ + h cos θ . (31)

Note that the lighter mass eigenstate H1 is “Higgs–like” for λsu
2 > λhv

2 and “singlet–like”

otherwise. The former case corresponds to |θ| > π/4.

One of the mass parameters, say m2
h, can be fixed by requiring the correct electroweak

symmetry breaking, v = 246 GeV. Then the constraints (27) specify the allowed range of

r =
m2

s

m2
h

. (32)
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The required local minimum exists in the following cases:

λhs < 0

m2
h < 0 , m2

s < 0 : 0 < r < ∞ ,

m2
h < 0 , m2

s > 0 : |r| < |λhs|
2λh

,

m2
h > 0 , m2

s < 0 : |r| > 2λs

|λhs|
,

λhs > 0

m2
h < 0 , m2

s < 0 :
λhs

2λh
< r <

2λs

λhs
. (33)

r=2

r=0.3

r=1.1

-0.3 -0.2 -0.1 0.0 0.1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Λhs

A
bs
@si

n
Θ
D

9ΛS ® 0.15, Λh ® 0.2=

m2Hr=2L

m2Hr=1.1L

m1Hr=2L
m1Hr=1.1L

m2Hr=0.3L

m1Hr=0.3L

-0.3 -0.2 -0.1 0.0 0.1

50

100

150

200

250

300

350

Λhs

H
ig

gs
m

as
s

9ΛS ® 0.15, Λh ® 0.2=

Figure 2: | sin θ| and the Higgs masses as functions of λhs and r for m2
h < 0,m2

s < 0. (Here
we redefine θ to be in the range |θ| < π/4). The parameter range is consistent with the mixed
Higgs–singlet inflaton at x ∼ 1.

We see that at negative λhs there is more parameter space available. In fact, negative values

of λhs are preferred by the mixed Higgs-singlet inflaton (Fig. 1), especially away from the point

x = 1. Indeed, the relations among the couplings ensuring 〈h〉 6= 0, 〈s〉 6= 0 at high and low

energies are similar up to ξi ↔ −m2
i . Representative values of the mixing angle consistent with

the Higgs-singlet inflaton are displayed in Fig. 2.3

Inspection of Eq. (28) shows that the lighter eigenvalue reaches its upper bound at λhs = 0.

In this case, the mixing angle is zero and

m2
1 = 2λhv

2, (34)

3 Eq. (29) defines θ up to π/2, so in Fig. 2 we take |θ| < π/4. The small kinks in sin θ at λhs = −0.24 and
λhs = −0.08 correspond to | tan 2θ| → ∞, which signals the change in the nature of the lighter mass eigenstate.
In the rest of the paper, we take − sin θ to be the h-component of the H1–state.
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as in the Standard Model. According to Fig. 1, this is about 175 GeV. The lower bound on the

heavier eigenvalue is also given by Eq. (34). With the lowest allowed λh, it is about 135 GeV.

On the other hand, the heavier eigenvalue can be arbitrarily large. Indeed, parametrizing

u2 = v2
2λhr − λhs

2λs − λhsr
, (35)

we see that u → ∞ as r → 2λs/λhs, corresponding to the boundary of the region allowed by

(33). In this case, m2
2 ≃ 2λsu

2 → ∞ and the mixing angle approaches zero. In terms of the

input mass parameters, this corresponds to |m2
h,s| → ∞. The singlet state can also be arbitrarily

light: in the limit r → λhs/(2λh), u vanishes and the light eigenstate becomes massless.

3.1.1 LEP and electroweak constraints

LEP has set stringent limits on the Higgs mass and couplings. For our purposes, the relevant

constraint is given in Fig. 10 of [17], which sets a bound on

ζ2 ≡
(

gHZZ

gSMHZZ

)2

= |O2i|2 (36)

depending on the mass mi. For a state with an O(1) component of h, the bound is

m > 114 GeV , (37)

while for a state with a small admixture of h the bound relaxes and can be read off from Fig. 10

of [17]. For example, with |O2i|2 ∼ 10−2, the mass can be as low as 20 GeV. In our case,

the bound applies to the lighter state only since the mass of the heavier state is greater than
√
2λhv > 114 GeV. We therefore require that if m1 < 114 GeV, then

sin2 θ < ζ2(m1) . (38)

For our purposes, at ζ2 < 0.5 it suffices to use an approximation log10 ζ
2(m) ≃ m/60 − 2.3 for

m measured in GeV, which describes the data within a 95% probability band.

Both mass eigenstates contribute to electroweak observables at a loop level. For example,

the correction to the ρ–parameter is [18]

∆ρH =
3GF

8
√
2π2

∑

i

O2
2i

(

m2
W ln

m2
i

m2
W

−m2
Z ln

m2
i

m2
W

)

. (39)

This is very similar to the SM Higgs contribution and therefore one can easily translate the

indirect Higgs mass bounds into a bound on
∑

iO
2
2i lnm

2
i [18, 19]. As the benchmark numbers
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we use the results of [20], mH < 148 GeV (197 GeV) at 95% (99.5%) CL. These bounds also

incorporate results of the LEP and Tevatron direct searches, although purely indirect constraints

give similar numbers [21]. Keeping in mind that the other oblique as well as vertex corrections

behave similar to the ρ–parameter in the heavy Higgs limit and that the sensitivity to the Higgs

mass is only logarithmic, we will use the combined fit results to impose

sin2 θ lnm1 + cos2 θ lnm2 < ln 148 (197) (40)

at 95% (99.5%) CL, where the masses are measured in GeV.
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Figure 3: Parameter space allowed by the LEP and electroweak constraints for m2
s,h < 0. The

region within the contour is allowed by the mixed Higgs-singlet inflaton; grey – allowed by LEP
(and automatically consistent with the 99.5% CL electroweak constraints); black – preferred by
the 95% CL electroweak constraints. λi are given at the scale mt.

The allowed parameter space is presented in Fig. 3. The main effect of the LEP constraint is

to restrict the size of |λhs|. The reduction of |λhs| has a two–fold effect: it decreases the mixing

angle and (typically) increases the mass of the lighter state (Fig. 2), both of which help satisfy

the constraint. As expected, at larger λh more parameter space survives. Also, increasing r has

a positive effect by making the light state somewhat heavier (Fig. 2).
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The 99.5% CL electroweak constraint is satisfied in all the regions allowed by the LEP bound.

However, only a relatively small portion of parameter space survives the 95% CL constraint. For

instance, none of the points at λs = 0.2, r = 0.7 are allowed. Increasing r to 1.1 opens up some

parameter space close to the border of the LEP allowed region. At these points, the nature of

the lighter eigenstate changes compared to the r = 0.7 case: it becomes Higgs-like. If the light

state is singlet-like, it is more difficult to satisfy the EW bound since it is dominated by the

term cos2 θ lnm2 with cos θ ∼ 1 and m2 >
√
2λhv.

In the {λhs, λh} plane, the preferred region is at lower λh, typically λh < 0.18. At r = 0.3 and

r = 3, the range of λhs must be restricted to satisfy (33). As mentioned above, the composition

of the lighter state changes with r: it is typically singlet–like at r < 1 and Higgs–like otherwise.

Thus, at r = 0.3 the EW constraint is dominated by cos2 θ lnm2, while at r = 3 it is dominated

by sin2 θ lnm1.

A generalization of the analysis to x different from 1 is straightforward. As clear from Fig. 1,

at x ≫ 1 or x ≪ 1, most points at λhs > 0 get eliminated and negative values of λhs are strongly

favored.

The collider signature of the 〈s〉 6= 0 scenario is a universal suppression of production of the

Higgs–like states,

σ(Hi) = σ(h) |O2i|2 . (41)

It is also possible that the decay H2 → H1H1 will play a role [22]. It is kinematically allowed

when λhs is considerable (see Fig. 2). Negative λhs are then largely ruled out by LEP, while

positive λhs are usually consistent with LEP, especially when r is small or large. For example,

at r = 0.3, λhs = 0.05, the point m1 = 57 GeV, m2 = 144 GeV and sin θ = 0.07 is allowed by

all the constraints. When H2 is Higgs-like, for m2 > 135 GeV it will decay predominantly into

gauge bosons and H1 pairs. The branching ratio for H2 → H1H1 scales like λ2
hsv

4/m4
2 [22, 23],

which is significant for λhs > 10−1 and a light H2. These values are however disfavored by LEP,

so the mode H2 → H1H1 is only competitive below or close to the WW threshold. In this case,

the final state contains 4 b–quarks with relatively low (pairwise) invariant mass. On the other

hand, if H2 is singlet–like, its production cross section is too small and the effect of H2 → H1H1

is unimportant.
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3.2 〈h〉 6= 0, 〈s〉 = 0

In this case,

v2 = −m2
h

λh
. (42)

It is a local minimum if

m2
h < 0 ,

λhsm
2
h − 2λhm

2
s < 0 . (43)

There is no mixing between the Higgs and the singlet, and the mass squared values are

m2
1 = 2λhv

2 , m2
2 =

1

2
λhsv

2 +m2
s . (44)

The allowed range of r is

λhs < 0

m2
s > 0 : |r| > |λhs|

2λh
,

λhs > 0

m2
s < 0 : r <

λhs

2λh
,

m2
s > 0 : 0 < |r| < ∞ . (45)

The analysis of phenomenological constraints is straightforward. Since λh > 0.14, the Higgs

LEP bound is satisfied automatically. The electroweak precision data favor λh < 0.18 (0.32) at

95% (99.5%) CL, as in the Standard Model. The allowed parameter space can then be easily

read off from Fig. 1.

A collider signature of the presence of the singlet “hidden sector” would be an invisible

decay h → ss, which for m1 > 2m2 would typically have a significant branching ratio. Note

that since 〈s〉 = 0, the symmetry s → −s is not broken spontaneously and the singlet must be

pair–produced. It is relatively easy, especially at small r, to satisfy the kinematic constraint

m1 > 2m2: it requires λhs < (1 + 2r)λh (see Eq. (44)). The corresponding decay width is [22]

Γ(h → ss) =
λ2
hsv

2

32πm1

√

1− 4m2
2

m2
1

. (46)

For λhs ≫ 10−2, this would be the dominant decay mode until the channel h → WW opens

up. Above the WW threshold, its branching ratio drops to O(λ2
hsv

4/m4
1), which can still be

significant for λhs > 10−1. Note that for the 〈s〉 = 0 case, larger values of |λhs|, up to 0.4, are

allowed.
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4 Comparison with the pure singlet or Higgs inflation

It is instructive to compare the above scenario to the pure singlet or Higgs inflation. According

to Eq. (12), the singlet inflation (τ = 0) requires at high energies

2λsξh − λhsξs < 0 , (47)

in which case the “vacuum” energy is λs/(4ξ
2
s ). This immediately implies

λhs > 0 . (48)

The combination 2λhξs − λhsξh can be either positive or negative, depending on whether there

exists another local minimum at τ = ∞. We thus leave 2λhξs−λhsξh unconstrained. We further

impose the perturbativity and EW vacuum stability bounds (23).4

The phenomenological constraints depend crucially whether or not the singlet develops a

VEV at low energies. For the case 〈s〉 6= 0, representative examples are presented in Fig. 4.

The existence of the local minimum requires 4λsλh − λ2
hs > 0 at low energies, which together

with the LEP Higgs bound eliminates almost all of the parameter space at x = ξs/ξh ∼ 1. For

λs = 0.15 and x = 1.5, Eq. (47) requires λhs > 0.2 at µU . Due to the positive RG contribution

from λh, this bound is easier to satisfy at larger λh, hence the slanted boundary on the left.

Perturbativity and stability further cut off large values of λh, λhs and small values of λh.

Considerable parameter space is only available at x ≫ 1, in which case (47) amounts to

positivity of λhs and the allowed region is mainly constrained by the perturbativity and stability

considerations. Since λhs contributes positively to the running of λh, smaller values of the latter

are allowed by λh(µU ) > 0 at large λhs. On the other hand, λhs beyond 0.2 is ruled out by

the LEP bound. The 99.5% CL electroweak precision constraint is satisfied in the entire region,

while the 95% CL limit prefers λh at the lower end.

If the singlet has a zero VEV, there is no Higgs–singlet mixing and the low energy constraints

relax. The analysis is very similar to that of Sec. 3.2 and phenomenology restricts the values

of λh within the inflation–allowed contours of Fig. 4. For example, the EW preferred region is

λh < 0.18.

Finally, Higgs inflation (τ = ∞) requires

2λhξs − λhsξh < 0 (49)

4Note that singlet inflation is impossible for negative λhs even if ξs ≫ ξh. In this case, the point h = 0, s → ∞
is unstable and h rolls to infinity. Similarly, Higgs inflation is impossible for λhs < 0. For positive λhs, our
numerical results are in qualitative agreement with those of [7, 8].
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Figure 4: Constraints on pure singlet and Higgs inflation. The region within the contour is
consistent with singlet (left, center) and Higgs (right) inflation; grey – allowed by 〈s〉 6= 0 and
LEP; black – favored by the 95% CL electroweak constraints. Here m2

s,h < 0 and λi are given
at the scale mt.

at high energies, which again implies λhs > 0. Significant parameter space exists only at x ≪ 1

and the above considerations largely apply, up to h ↔ s. An example is shown in the right panel

of Fig. 4.

The main difference between the “mixed” and “pure” inflaton scenarios lies in the sign of

λhs: the former allows for both signs, while the latter requires a positive λhs. Note that λhs > 0

typically leads to 〈s〉 = 0 for a wide range of the parameters, while λhs < 0 prefers 〈s〉 6= 0 (see

Eqs. (33),(45)). Thus the “pure” inflation would favor no singlet–Higgs mixing at low energies

and the only collider signature of the singlet would be an invisible decay h → ss, if kinematically

allowed. In the mixed inflaton case, 〈s〉 = 0 and 〈s〉 6= 0 are almost equally likely. One therefore

often expects Higgs–singlet mixing at low energies which would manifest itself in the existence

of 2 Higgs–like states with universally suppressed couplings to the SM fields.

We also observe that, at λhs > 0, there is an overlap in the allowed parameter space for

the mixed and pure inflaton (at different x), so the collider data alone may not be sufficient to

discriminate among the different scenarios.5

5 Unitarity issues

The most problematic aspect of Higgs inflation and alike has to do with unitarity. In the pres-

ence of large non-minimal couplings to gravity, unitarity violation appears around the inflation

5Presently it also seems challenging to determine the sign of λhs at the LHC. One is likely to need a linear
collider to measure scalar self–interactions.
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(Hubble) scale MPl/ξ [4, 5]. This signals that the theory as it stands is incomplete and should

be supplemented by additional fields [6] or operators [24] at high energies.

To see how unitarity violation comes about, consider our setup at field values |h| ≪ 1/ξh

and |s| ≪ 1/ξs in Planck units. With Ω2 given in Eq. (4), the kinetic terms are

Lkin =
3

4

(

∂µ log(1 + ξhh
2 + ξss

2)

)2

+
1

2

1

1 + ξhh2 + ξss2

(

(∂µh)
2 + (∂µs)

2

)

. (50)

To leading order in hξh and sξs, the mixing between h and s is negligible and we have

Lkin ≃ 1

2
(1 + 6ξ2ss

2)(∂µs)
2 +

1

2
(1 + 6ξ2hh

2)(∂µh)
2 . (51)

The canonically normalized variables are therefore

ρ = s(1 + ξ2ss
2), ϕ = h(1 + ξ2hh

2) . (52)

We can now expand the fields in terms of expectation values and fluctuations:

ρ = ρ0 + ρ̄ , ϕ = ϕ0 + ϕ̄ , (53)

and, similarly, s = s0 + s̄ and h = h0 + h̄. The fluctuations of the original and the canonically

normalized fields are related by s̄ ≃ (1− 3ξ2ss
2
0)ρ̄− 3ξ2ss0 ρ̄

2 and h̄ ≃ (1− 3ξ2hh
2
0)ϕ̄− 3ξ2hh0 ϕ̄

2.

Consider interactions of the Higgs with the gauge bosons. The conformal rescaling brings in

terms of order ξhh
2 and ξss

2, which are negligible compared to ξ2hh
2 and ξ2ss

2. We thus have

Lgauge =
1

2
g2h2W+

µ W µ− (54)

=
1

2
g2ϕ2

0

(

1 + 2a
ϕ̄

ϕ0
+ b

ϕ̄2

ϕ2
0

)

W+
µ W µ− (55)

with a = 1− 3ξ2hϕ
2
0 and b = 1− 12ξ2hϕ

2
0. Here we have neglected the difference between ϕ0 and

h0. We see that the Standard Model gauge–Higgs interactions (a = b = 1) have changed due

to the non–canonical normalization. It means that the Higgs exchange no longer unitarizes the

WW scattering and the amplitude grows with energy: A(WW → WW ) ∼ E2∆a/ϕ2
0 ∼ ξ2hE

2,

where ∆a is the deviation of a from its SM value. Thus unitarity is violated at E ∼ 1/ξh.

Furthermore, unitarity is violated by scalar interactions. Rewriting the Einstein frame scalar

potential in terms of ϕ and ρ, we get

U ≃ 1

4
λhϕ

4(1− 4ξ2hϕ
2) +

1

4
λsρ

4(1− 4ξ2sρ
2) +

1

4
λhsϕ

2ρ2(1− 2ξ2hϕ
2 − 2ξ2sρ

2) . (56)

The 6–point interactions induce 2 → 4 scattering with a cross section growing as E2/Λ4 with

Λ = 1/ξs,h, while the unitary bound is 1/E2. Again, for E > 1/ξs,h, unitarity is violated.
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5.1 Example of unitarization

We see that at the scale 1/ξs,h new physics unitarizing scattering amplitudes should show up.

It may come in a form of new degrees of freedom and/or new operators. One possibility is

to complete the theory into a σ–model by adding a heavy scalar σ [6]. The corresponding

Jordan–frame Lagrangian reads

LJ/
√−gJ = −1

2
(ξσσ

2 + ξ̃hh
2 + ξ̃ss

2)R+
1

2
(∂µσ)

2 +
1

2
(∂µh)

2 +
1

2
(∂µs)

2

−1

4
κ(σ2 − Λ2 − αh2 − βs2)2 − VJ(h, s) , (57)

where VJ(h, s) is the Higgs portal potential and Λ = 1/
√
ξσ. Here the VEV of σ generates the

Planck scale (one may also add a bare M2R term [6]) and we take ξ̃h, ξ̃s ≪ ξσ; Λ ≫ v, u. In the

low energy limit, the heavy σ–field can be integrated out by minimizing the scalar potential (in

the Jordan or Einstein frames),

σ2 = Λ2 + αh2 + βs2 . (58)

The resulting effective action is that of the Higgs portal inflation with effective couplings to

gravity ξh = ξ̃h + αξσ ≃ αξσ and ξs = ξ̃s + βξσ ≃ βξσ.

One can easily verify that in the vacuum (at small u, v) the canonically normalized field in the

Einstein frame is χ =
√
6 ln(σ/Λ) with mass of order

√
κ/ξσ. Substituting σ = Λexp(χ/

√
6) back

in the potential, one finds that the non-renormalizable interactions of χ are Planck–suppressed.

On the other hand, since ξ̃h,s ∼ O(1), unitarity constraints for interactions of h and s are

satisfied up to the Planck scale energies.

Let us now consider the inflationary regime σ ≫ Λ. The kinetic terms in the Einstein frame

are given by

Lkin =
3

4

[

∂µ ln(ξσσ
2 + ξ̃hh

2 + ξ̃ss
2)
]2

+
1

2(ξσσ2 + ξ̃hh
2 + ξ̃ss

2)
·
[

(∂µσ)
2 + (∂µh)

2 + (∂µs)
2

]

. (59)

Defining

χ =

√

3

2
ln(ξσσ

2) , τh =
h

σ
, τs =

s

σ
, (60)

we find to leading order in 1/ξσ ,

Lkin =
1

2
(∂µχ)

2 +
1

2ξσ
(∂µτh)

2 +
1

2ξσ
(∂µτs)

2 , (61)
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while the mixing terms are further suppressed. The Einstein frame scalar potential is

U = (ξσσ
2 + ξ̃hh

2 + ξ̃ss
2)−2

[

1

4
κ(σ2 − Λ2 − αh2 − βs2)2 + VJ(h, s)

]

, (62)

which at large σ and ξσ becomes

U ≃ 1

4ξ2σ

[

κ(1− ατ2h − βτ2s )
2 + λhτ

4
h + λsτ

4
s + λhsτ

2
hτ

2
s

]

. (63)

The extremum at τh,s 6= 0 (“mixed inflaton”) is given by

τ2h =
2κ(2αλs − βλhs)

4λhλs − λ2
hs + 4κ(α2λh + β2λs − αβλhs)

, (64)

τ2s =
2κ(2βλh − αλhs)

4λhλs − λ2
hs + 4κ(α2λh + β2λs − αβλhs)

. (65)

It is a local minimum if

2αλs − βλhs > 0, (66)

2βλh − αλhs > 0, (67)

4λhλs − λ2
hs + 4κ(α2λh + β2λs − αβλhs) > 0 . (68)

The last condition follows from the positivity of the determinant of the Hessian. The value of the

potential at this point determines the energy density during inflation with heavy τh,s integrated

out. The resulting inflaton potential is

U(χ) =
λeff

4ξ2σ

(

1 + exp

(

− 2χ√
6

)

)−2
(69)

with

λeff = κ
4λhλs − λ2

hs

4λhλs − λ2
hs + 4κ(α2λs + β2λs − αβλhs)

. (70)

The denominator of λeff is positive by the stability condition (68), so positivity of the energy

density during inflation requires 4λhλs − λ2
hs > 0. Recalling that ξh ≃ αξσ and ξs ≃ βξσ, this

condition together with (68) implies

2λhξs − λhsξh > 0 ,

2λsξh − λhsξs > 0 ,

4λsλh − λ2
hs > 0 . (71)

These are exactly the conditions we imposed in our parameter space analysis, Eq. (22).6 Note

also that inflation proceeds at the same τ = τh/τs as in the original model.

6 Note also that α2λh + β2λs − αβλhs > 0 follows from 2αλs − βλhs > 0, 2βλh − αλhs > 0 (for positive α, β).

19



Therefore, unitarized Higgs portal inflation leads to the same constraints on the couplings as

the original model does. This is despite the fact that now all three fields participate in inflation,

τh,s = O(1), and the theory involves an unknown couplings κ. The latter affects the energy

density, but not the shape of the potential, so the predictions for the inflationary parameters

n ≃ 0.97 and r ≃ 0.0033 hold.

6 Conclusion

We have studied an extension of the Higgs sector with a real scalar in the presence of large

couplings to scalar curvature. This system supports inflation at large field values, with tree level

predictions n ≃ 0.97 and r ≃ 0.0033.

The nature of the inflaton depends on the relations among the couplings. For instance, at

negative λhs, the inflaton is a mixture of the Higgs and the singlet, while at positive λhs it

can also be a pure Higgs or a singlet. These requirements leave an imprint on the low energy

phenomenology, e.g. the “mixed” inflation often leads to mixed Higgs–singlet mass eigenstates

at low energies. The latter would manifest themselves at the LHC as 2 Higgs–like states with

universally suppressed couplings.

We have shown how Higgs portal inflation can be unitarized by adding an extra scalar with

a sub–Planckian VEV. This extension does not however affect the constraints on the couplings

and the low energy phenomenology remains the same.
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