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Abstract: We construct flux-stabilised Type IIB string compactifications whose extra dimensions

have very different sizes, and use these to describe several types of vacua with a TeV string scale.

Because we can access regimes where two dimensions are hierarchically larger than the other four,

we find examples where two dimensions are micron-sized while the other four are at the weak

scale in addition to more standard examples with all six extra dimensions equally large. The

phenomenology of these models is richer than vanilla large-dimensional models in several generic

ways: (i) they are supersymmetric, with supersymmetry broken at sub-eV scales in the bulk but

only nonlinearly realised in the Standard Model sector, leading to no MSSM superpartners for

ordinary particles and many more bulk missing-energy channels, as in supersymmetric large extra

dimensions (SLED); (ii) small cycles in the more complicated extra-dimensional geometry allow

some KK states to reside at TeV scales even if all six extra dimensions are nominally much larger;

(iii) a rich spectrum of string and KK states at TeV scales; and (iv) an equally rich spectrum of

very light moduli exist having unusually small (but technically natural) masses, with potentially

interesting implications for cosmology that nonetheless evade new-force constraints. The hierarchy

problem is solved in these models because the extra-dimensional volume is naturally stabilised at

exponentially large values: the extra dimensions are Calabi-Yau geometries with a 4D K3-fibration

over a 2D base, with moduli stabilised within the well-established LARGE-Volume scenario. The

new technical step is the use of poly-instanton corrections to the superpotential (which, unlike for

simpler models, are present on K3-fibered Calabi-Yau compactifications) to obtain a large hierarchy

between the sizes of different dimensions. For several scenarios we identify the low-energy spectrum

and briefly discuss some of their astrophysical, cosmological and phenomenological implications.
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1. Introduction

The observation that quantum gravity could become important at energies as low as the TeV scale

[1, 2] considerably raises the stakes for what might be found at the LHC. Besides its implications for

the LHC, if gravity is really a TeV effect it could also imply a variety of novel new non-accelerator

phenomena, including modifications to gravity over micron and macroscopic distances and novel

cosmology and astrophysics. It raises the prospect of forging a link between between astrophysical

observations, terrestrial tests of gravity, and collider experiments at very high energies.

In these scenarios predictions for the LHC tend to be quite robust, in that they do not de-

pend strongly on nitty gritty details like the exact shape of the extra dimensions. By contrast,

non-gravitational predictions are much more model-dependent, since they typically probe only the

existence and properties of very low-energy states in the sub-eV regime. For instance, in a ten-

dimensional world with a TeV gravity scale, predictions for the LHC don’t depend in detail on

whether all six dimensions are large or whether two are much larger than the other four. By con-

trast, observable deviations from gravity on micron scales depend on this very much, since only in

the latter case can any dimensions be big enough to be detected. Because of this any real connection

between gravity at the LHC and lower-energy observables requires a fairly detailed understanding

of the extra dimensions and how they are stabilised.

String theory provides a natural framework for such an understanding, yet detailed mechanisms

for stabilising moduli in string theory have been understood in a controlled way only fairly recently,

amongst type IIB Calabi-Yau flux compactifications [3, 4]. Most interestingly, solutions arise within

this framework with the volume, V6, of the extra dimensions naturally stabilised at exponentially

large values, V6 ∝ ec/gs , where gs ≪ 1 is the string coupling and c is a positive constant of order

– 1 –



unity. In particular, relatively small changes to the input parameters can generate the extremely

large values,

V := V6M
6
s ∝

M2
p

M2
s

≃ 1030 , (1.1)

that are required if the string scale, M−1
s := ls := 2π

√
α′, is to be as low as: Ms ∼ 1TeV. These

models, called the LARGE volume scenario [5, 6] or LVS for short, tend to be very predictive, in

particular making specific predictions for a rich spectrum of light moduli with masses below the

(already small) Kaluza-Klein (KK) scale.

In the ‘Swiss cheese’ geometries first studied, TeV strings within the LVS tend to predict similar

sizes for all of the extra dimensions, making them all equally large — i.e. L ≃ V
1/6
6 ∼ (10MeV)−1 ≃

10 fm — but not so large as the sub-millimetre scales to which tests of Newton’s laws are presently

sensitive. What is missing so far are models whose extra dimensions are extremely asymmetric in

size, with L ∼ 10µm for two dimensions, and l ≃ (V6/L
2)1/4 ∼ 10−4 fm ∼ (10GeV)−1 ≪ L. It

is the purpose of this paper to begin filling in this regime, seeking in particular Type IIB models

where two dimensions are much larger than the other four.

Another issue relevant to the low-energy spectrum is the pattern of supersymmetry breaking.

A low string scale tends also to lower the flux-induced supersymmetry breaking scale, leading to a

gravitino mass of order m3/2 ≃ M2
s /Mp ≃ Ms V−1/2, regardless of whether or not all dimensions

are similar in size. Since this implies m3/2 ∼ 10−3 eV when Ms ∼ 1 TeV, supersymmetry provides

another important complication for phenomena at the sub-eV energies of interest to some tests of

gravity [7, 8, 9, 10]. Brane back-reaction can also be important at such low energies, possibly allow-

ing new approaches to the dark energy puzzle [7, 11]. A detailed study of low-energy observables

requires these models to be embedded into a stabilised string framework, within which the entire

low-energy spectrum is understood.

In order to find anisotropic stabilisations, in §2 we explore compactifications that are topologi-

cally K3 fibrations over a CP 1 base. We find the moduli of such spaces can stabilise at sufficiently

anisotropic shapes to allow the size, L, of the base to be of sub-millimetre size. Thus the low-energy

limit is described by a 6-dimensional effective field theory (EFT), comprising a stringy derivation

of the supersymmetric large-volume scenario [1, 7]. The crucial ingredient for obtaining this is the

use of poly-instanton corrections to the superpotential [12]. These are instantonic corrections to

the gauge kinetic functions, that contribute to stabilisation through the influence of these kinetic

terms on the superpotential. Although usually neglected for modulus stabilisation due to their

exponentially small dependence on moduli, they can dominate when the zero-mode structure of a

non-rigid K3 surface forbids single-instanton contributions to the superpotential.

We begin a preliminary exploration of some phenomenological consequences in §3 and §4,
assuming that the Standard Model itself is localised on D7-branes wrapping small cycles within

the large overall extra-dimensional volume. We find in §3 a generic prediction of a rich spectrum

of states whose masses are light enough to be relevant to terrestrial tests of gravity, yet which are

not already explicitly ruled out. We argue that brane back-reaction can play a competitive rôle in

the masses of some light states, putting their detailed properties beyond the present state of the

art. This motivates more detailed calculations to determine their masses and couplings to matter,

in hopes of making more precise comparisons with observations.

§4 provides a preliminary discussion of some of the phenomenological implications. This in-

cludes the several ways these string compactifications differ from more naive extra-dimensional

phenomenology, as well as distinctive implications for macroscopic tests of gravity. We focus on

distinguishing those features that are generic to large-volume and sub-millimetre extra-dimensional

models from those more specific to the stabilisation mechanism considered here.

A summary of these results appears in §5.
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We finally point out that these anisotropic compactifications turn out to be very promising to

make contact with current experiments also from the study of the phenomenological properties of

hidden Abelian gauge bosons with a kinetic mixing with the ordinary photon. In fact, they lead

naturally to dark forces for an intermediate string scale or even to a hidden CMB allowing some

fine-tuning of the underlying parameters for the extreme case of TeV-scale strings [13].

2. Fibred constructions

This section lays out the guts of our construction. It starts by describing K3-fibred Calabi-Yau

geometries, and what an asymmetric compactification looks like when expressed in terms of their

moduli. After a brief summary of modulus stabilisation for these geometries, two types of asymmet-

ric stabilisations are described; one relying on string-loop generated interactions, and one relying

on poly-instanton interactions. These models differ in the degree of asymmetry obtainable using

ordinary input parameters, with the poly-instanton proposal allowing the extreme hierarchies of

scale required for large extra dimensions.

2.1 Type IIB compactified on K3-fibered Calabi-Yau three-folds

We focus throughout on Calabi-Yau three-folds whose volume can be written in the form

V = λ1t1t
2
2 + λ2t

3
3, (2.1)

where the ti are volumes of internal 2-cycles in the geometry, and λ1,2 are the intersection numbers

for these cycles (that depend on the details of the Calabi-Yau of interest).

The volumes, τi, of the 4-cycles dual to these 2-cycles are defined by τi = ∂V/∂ti, and so

τ1 = λ1t
2
2, τ2 = 2λ1t1t2, τ3 = 3λ2t

2
3 . (2.2)

These define the real part of the geometry’s complex Kähler moduli

Ti = τi + i

∫
Di

C4 , i = 1, ..., h1,1 = 3 , (2.3)

where Di is the 4-cycle (divisor) whose volume is given by τi, C4 is the Ramond-Ramond 4-form,

and hm,n (with m,n = 1, 2, 3) are the manifold’s Hodge numbers. In terms of the T -moduli, the

volume (2.1) reads:

V = α
(√

τ1τ2 − γτ
3/2
3

)
= t1τ1 − αγτ

3/2
3 , (2.4)

where α and γ are given in terms of the λi by: α = 1/(2
√
λ1) and γ = 2

3

√
λ1/(3λ2).

Topologically, this Calabi-Yau three-fold has a CP 1 base of size t1 := (LMs)
2
, a K3 fibre of

size τ1 := (lMs)
4
and a point-like singularity resolved by a blow-up mode whose volume is given

by τ3 := (dMs)
4
. For LARGE-volume models we restrict attention to orientifold projections that

project out none of these Kähler moduli and focus on the large-volume regime, for which

t1τ1 ≫ αγτ
3/2
3 in which case V ≃ t1τ1 = L2l4M6

s . (2.5)

We seek asymmetric compactifications for which the two dimensions of the base — spanned

by the cycle t1 — are hierarchically larger than the four dimensions of the K3 fibre — spanned by

τ1, making the base 2-cycle much bigger than its dual 4-cycle. The following sections describe two

particular constructions, for which the potential energies are minimised by

Small Hierarchy: ⟨t1⟩ >
√
⟨τ1⟩ ≫

√
⟨τ3⟩ and so L >∼ l ≫ d ;

Large Hierarchy: ⟨t1⟩ ≫
√
⟨τ1⟩ ≃

√
⟨τ3⟩ and so L≫ l >∼ d .

In our later applications the first of these gives six dimensions that are all at MeV – GeV scales;

the second gives two micron-sized extra dimensions.
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2.2 Boilerplate Kähler-modulus stabilisation

We work within the now-familiar framework of Type IIB string theory compactified with back-

ground fluxes sourced by 7- and 3-branes [3]. The 10D theory is IIB supergravity (with orientifold

projections with h−1,1 = 0), and so the closed-string moduli that require stabilisation include the

axio-dilaton, S = e−ϕ + iC0 (where ϕ is the 10D dilaton and C0 the Ramond-Ramond 0-form);

a variety of complex-structure moduli, Uα (with α = 1, ..., h−1,2); and the Kähler moduli, Ti (with

i = 1, ..., h+1,1 defined in eq. (2.3)). Of these, the S and the U -moduli can be stabilised at leading

order in gs and α′ if nonzero 3-form fluxes are present in the background geometry. By contrast,

the Kähler moduli Ti remain unstabilised at leading semiclassical order.

The stabilisation of these remaining Kähler moduli is more complicated, since it involves dy-

namics beyond leading order in gs and α′. If this dynamics involves energies smaller than the

Kaluza-Klein scale, it can be described in the low-energy effective 4D theory within which the

extra-dimensional moduli appear as scalar fields. This effective theory is an effective N = 1 4D

supergravity (possibly with soft-breaking terms) if the bulk fluxes do not break supersymmetry too

badly.

This 4D effective supergravity is described by a Kähler potential and superpotential that — at

string tree-level and to lowest order in α′ — take the form [14]

Ktree = K0 − 2 lnV and Wtree =W0 , (2.6)

where W0 =
∫
G3 ∧ Ω and K0 = − ln

(
S + S̄

)
− ln

(
−i
∫
Ω ∧ Ω̄

)
describe the S- and U -dependent

terms, with U appearing through its appearance in the holomorphic (3,0)-form, Ω(U). Here G3 is

the usual IIB complex 3-form flux. These determine (among other things) the N = 1 F-term scalar

potential,

VF = eK
[
Kij̄ (Wi +WKi)

(
W̄j̄ + W̄Kj̄

)
− 3|W |2

]
, (2.7)

which vanishes identically (as a function of Ti) when evaluated using Ktree and Wtree after S and

U are evaluated at their minima.

The Kähler metric produced by this Kähler potential simplifies considerably in the large-volume

limit, which neglects any terms that are subdominant in inverse powers of the two large moduli, τ1
and τ2. The leading contribution to the Kähler metric and its inverse in this limit is

K0
iȷ̄ =

1

4τ22


τ2
2

τ2
1

γ
(
τ3
τ1

)3/2
− 3γ

2

√
τ3

τ
3/2
1

τ2

γ
(
τ3
τ1

)3/2
2 −3γ

√
τ3√
τ1

−3γ
2

√
τ3

τ
3/2
1

τ2 −3γ
√
τ3√
τ1

3αγ
2

τ2
2

V√
τ3

 , (2.8)

and

K ı̄j
0 = 4

 τ21 γ
√
τ1τ

3/2
3 τ1τ3

γ
√
τ1τ

3/2
3

1
2 τ

2
2 τ2τ3

τ1τ3 τ2τ3
2

3αγV
√
τ3

 . (2.9)

Perturbative corrections

But the juice of Kähler modulus stabilisation lies not in the above quantities, but rather in the cor-

rections that cause deviations from them. Potentially the most important of these are perturbative

corrections in α′ and gs, which non-renormalisation theorems [15] imply can appear only in K.

The leading α′ corrections modify K to [16]

K = Ktree + δK(α′) = −2 ln

(
V +

ξ

2g
3/2
s

)
, (2.10)
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where ξ is given by ξ = (h1,2 − h1,1)ζ(3)/[2(2π)
3], with ζ(3) ≃ 1.2.

String loops also correct K and the changes that depend on the Kähler moduli typically arise

from open-string loops; they depend on the moduli of the cycles on which the corresponding D

branes are wrapped. As a result the precise form of the correction, δK(gs), depends on the details

of which branes wrap which cycles. A few examples suffice to indicate the kinds of one-loop

contributions that can arise.

1. D7s wrapping τ1 and τ2; ED3 wrapping τ3: For instance, suppose we wrap a stack of

spacetime-filling D7-branes – denoted D71 – around the 4-cycle τ1 in the K3-fibred Calabi-

Yau considered above; and wrap another stack – D72 – around the cycle τ2. Finally suppose

a Euclidean D3-brane instanton (ED3), wraps the rigid blow-up cycle τ3. We assume that

the tadpole-cancelation conditions can be satisfied with this choice by an appropriate set of

background fluxes.

In this case open-string loops arising from the branes D71 and D72 generate 1-loop corrections

to the Kähler potential of the form [17]:

δK(gs) =
gs (CKK

1 t1 + CKK
2 t2)

V
+

CW
12

Vt2
, (2.11)

where CKK
i , i = 1, 2, and CW

12 are constants which depend on the complex structure moduli.

We restrict ourselves to natural values for these constants, α ∼ CKK
i ∼ CW

12 ∼ O(1) and

gs . 0.1. In what follows we find that this scenario leads to the ‘small hierarchy’ (MH) case

described above.

2. D7s wrapping τ3 and ED3 wrapping τ1: In this case, because there are noD7-branes wrapping

either τ1 or τ2, the open string loop correction δK(gs) is independent of τ1 (closed string loop

corrections are expected to be very suppressed, and so we shall neglect them).

Non-perturbative corrections

Smaller than all loop corrections are non-perturbative effects, that are typically exponentially small

in the small dimensionless expansion parameters. These get swamped by perturbative corrections

in K, but dominate the corrections to W since loop corrections to this are forbidden by non-

renormalisation theorems [15]. The typical corrections to W that arise in this way have the form

δW ≃ Ae−2πaf , (2.12)

where f is the appropriate holomorphic gauge coupling function for the relevant strongly interacting

sector and a is a constant.

A similar story applies to the gauge coupling functions themselves, although these can receive

perturbative corrections, if only at one loop. At the non-perturbative level the gauge coupling

function, f1, for a particular gauge group can receive non-perturbative contributions from those of

another gauge groups

δf1 ≃ A+B e−2πbf2 . (2.13)

In specific situations the leading dependence of W on f2 may be through the ‘poly-instanton’

contribution of eq. (2.13) to eq. (2.12), rather than from the direct instanton correction obtained

by using f2 directly in eq. (2.12) [12].

Consider, for instance, the two scenarios discussed above for the loop corrections:

1. D7s wrapping τ1 and τ2; ED3 wrapping τ3: In this case the ED3 generates a non-perturbative

contribution to the superpotential of the form:

W =W0 +A3e
−2πT3 , (2.14)
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where the tree-level superpotential W0 and the threshold effect A3 are T3-independent con-

stants once the S and U -moduli are fixed and integrated out.

2. D7s wrapping τ3 and ED3 wrapping τ1: Assuming the gauge sector of the D7s to involve

two gauge group factors that independently condense, one expects to generate a racetrack

superpotential:

W =W0 +Ae−a3T3 −Be−b3T3 . (2.15)

On the other hand, as discussed in more detail below, the ED3 on τ1 generates polyinstanton

corrections [12] to the superpotential (2.15) of the form:

W = W0 +Ae−a3(T3+C1e
−2πT1) −B e−b3(T3+C2e

−2πT1)

≃ W0 +Ae−a3T3

(
1− a3C1e

−2πT1

)
−B e−b3T3

(
1− b3C2e

−2πT1

)
. (2.16)

It is this setup that leads to the huge hierarchy between L and l appropriate to the ‘large hierarchy’

(LH) case described above.

We now discuss these two different cases in somewhat more detail.

Τ
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ED3

Hidden D7
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t
1

t

t

2

2

Τ

Τ
2

1 3

H

ED3

Hidden D7
Hidden D7

t

t

t

3

2

2

Τ

Τ

Τ

2

1

1

Figure 1: Pictorial view of the small hierarchy case (left panel) and large hierarchy case (right panel).

2.3 Small hierarchy

Using the leading order — tree level, eq. (2.10) — Kähler potential and the leading order nontrivial

superpotential — non-perturbative, eq. (2.14) — in the ‘small hierarchy’ scenario gives rise to the

following F-term scalar potential (after minimising with respect to the axion, ψ3 = ImT3)

VF =
32π2A2

3

3αγ

√
τ3
V

e−4πτ3 − 8πW0A3
τ3
V2
e−2πτ3 +

3ξW 2
0

4g
3/2
s V3

. (2.17)

Notice that VF depends only on τ3 and the particular combination of τ1 and τ2 that corresponds

to the overall volume, V. Consequently one combination of τ1 and τ2 parameterises a flat direction

(within this approximation), while the potential (2.17) fixes the other two fields, τ3 and V,

⟨τ3⟩ =
1

gs

(
ξ

2αγ

)2/3

, ⟨V⟩ =
(

3αγ

8πA3

)
W0

√
⟨τ3⟩e2π⟨τ3⟩, (2.18)

where we assume ξ ∝ (h2,1 − h1,1) > 0 in order to have a sensible solution for ⟨τ3⟩.
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This reveals the LARGE-volume magic: the minimum is generically at exponentially large

volume, since ⟨τ3⟩ ∼ O(1/gs) and ⟨V⟩ ∝ e2π/gs , without fine-tuning the background fluxes, i.e.

W0 ∼ O(1). For example, the following illustrative numerical choices for the various underlying

parameters,

λ1 = λ2 = 1 (and so α = 0.5, γ = 0.385) ;

gs = 0.1, ξ = 0.47 (and so ⟨τ3⟩ = 11.42) ,

and W0 = A3 = 1 so ⟨V⟩ = 1.15 · 1030.

lead to values of V large enough to allow Ms ∼ 1 TeV.

The flat direction in the (τ1, τ2)-plane is lifted once corrections to the above choices for K and

W are included, and first arise once loop corrections are included in the Kähler potential.

String loop corrections

The loop corrections to K in this model are estimated in eq. (2.11), with the first term coming from

the exchange of closed strings carrying Kaluza-Klein momentum between the D71 or D72 branes

and spacetime filling D3-branes (whose presence is required in general due to tadpole cancelation

conditions). The second term similarly arises due to the exchange of winding strings between the

intersecting D7 stacks, D71 and D72.

Inserting the corrections of eq. (2.11) into the scalar potential gives the sub-leading contribution

to VF in inverse powers of V. Because they are perturbatively small they do not ruin the minimum,

(2.18), but they can lift the flat direction of the lowest-order solution. The potential turns out to

take the form [18],

δV(gs) =

[
(gsCKK

1 )
2
K0

11̄ + (gsCKK

2 )
2
K0

22̄ − 2
CW
12

Vt2

]
W 2

0

V2

=

(
A
τ21

− B
V√τ1

+
Cτ1
V2

)
W 2

0

V2
, (2.19)

where

A =
(
gsCKK1

)2
> 0,

B = 2 CW12λ
−1/2
1 = 4αCW12 , (2.20)

C = 2
(
αgsCKK2

)2
> 0 .

Notice that A and C are both positive (and suppressed by g2s) but B can take either sign.

K3 fibre stabilisation

The structure of δV(gs) makes it very convenient to use τ1 to parameterise the flat direction. Min-

imising δV(gs) with respect to τ1 at fixed V and τ3 gives

1

⟨τ1⟩3/2
=

(
B

8AV

)[
1 + (signB)

√
1 +

32AC
B2

]
, (2.21)

which, when 32AC ≪ B2 — or equivalently g2s ≪ CW12 /(2CKK1 CKK2 ) — reduces to:

⟨τ1⟩ ≃
(
−BV

2C

)2/3

if B < 0 or ⟨τ1⟩ ≃
(
4AV
B

)2/3

if B > 0 . (2.22)

In order to have sensible solutions we must require either C > 0 (if B < 0) or A > 0 (if B > 0), a

condition that is always satisfied (see (2.20)).
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The proportionality τ1 ∝ V2/3 shows that this modulus also naturally stabilises at hierarchically

large values, τ2 > τ1 ≫ τ3, without making unusual choices for the parameters in the potential. A

useful illustrative benchmark choice of parameters is

CKK

1 = CKK

2 = 0.1, CW

12 = 5 ,
(
which imply A = 10−4, B = 10, C = 5 · 10−5

)
,

in which case ⟨τ1⟩ = 1.3 · 1017 and ⟨τ2⟩ = 3.2 · 1021.

This construction is essentially identical to the one used in [19] to derive an inflationary model, whose

inflaton is τ1, although inflationary applications require smaller values for the volume, V ∼ 103, in

order to provide observable density fluctuations. Because of this smaller volume the modulus τ1 is

minimized at smaller values, and Ms is of order the GUT-scale.

Unfortunately this framework does not allow a sufficiently large hierarchy between τ1 and τ2
without also building in a large hierarchy into the parameters of the potential. In particular, to get

smaller values for ⟨τ1⟩ — and so also a larger hierarchy between L ≃
√
t1M

−1
s ≃

(
τ
1/2
2 /τ

1/4
1

)
M−1
s

(∼ 3 × 106 M−1
s in the above example) and l ≃ τ

1/4
1 M−1

s (∼ 2 × 104 M−1
s in the example) — at

fixed ⟨V⟩ ∼ 1030, requires pre-tuning a very small hierarchy into the values of gs and the coefficients

of the loop-corrected potential.

2.4 Large hierarchy

The brane set-up chosen above in the ‘large hierarchy’ example is meant to ensure the dominance of

poly-instanton corrections to the superpotential, of the form (2.16). Before explaining their crucial

rôle in fixing the K3 divisor at small values, let us present a brief description of this new kind of

non-perturbative effect.

Poly-instanton corrections

The authors of [12] noticed that the action of a string instanton can receive non-perturbative

corrections from another string instanton wrapping a different internal cycle. For example, let

us consider two internal 4-cycles, Σi and Σj , wrapped respectively by the Euclidean D3-brane

instantons ED3i and ED3j . Now due to the fact that the instantonic action of ED3i, which we

shall call Si, is related to the gauge kinetic function fi on fictitious D7-branes wrapping Σi, the

fact that fi can get instanton corrections from ED3j of the form:1

fi = Vol(Σi) + h(Fi)S + f1−loopi (U) +Aj(U)e−2πVol(Σj), (2.23)

implies that the instanton action Si gets non-perturbative corrections which look like

Si → Si + e−Sj . (2.24)

Now if both Σi and Σj are rigid cycles, then both ED3i and ED3j contribute to W as a

single instanton plus poly-instanton corrections coming from the other instanton. Hence the N = 1

superpotential becomes

W =W0 +Aie
−2π(Ti+Cje

−2πTj ) +Aje
−2π(Tj+Cie

−2πTi). (2.25)

However if one of these cycles, say Σj , is non-rigid and such that h2,0(Σj) = 1 and h1,0(Σj) = 0,

then, due to its deformations, it cannot contribute to W as a single instanton but it can still give

rise to an instanton correction to Si [12]. This turns out to be the case if Σj = K3, implying the

superpotential (2.25) reduces to:

W =W0 +Aie
−2π(Ti+Cje

−2πTj ). (2.26)

1Notice that in (2.23), h(Fi) is a function of the world-volume flux Fi on Σi whereas the 1-loop correction f1−loop
i

can only depend on the complex structure moduli U .
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In our case we identify Σi with the τ3-cycle and Σj with the τ1-cycle, and assume that the

gauge group on τ3 can be broken into two separate gauge groups which separately undergo gaugino

condensation, so that the superpotential (2.26) takes the form (2.16). Then the ED3 on τ1 gives rise

to non-perturbative corrections to the gauge kinetic functions of both condensing gauge theories.

The absence of single instanton contributions toW for a K3 surface then renders the poly-instanton

corrections important for modulus stabilisation.

Modulus stabilisation

To compute the stabilised values of the moduli we set α = γ = 1 (for simplicity) and trade τ2 for

the volume V using τ2 =
(
V + τ

3/2
3

)
/
√
τ1. The N = 1 F-term scalar potential at leading order in

a large volume expansion then reads (writing Ti = τi + i ψi, ∀i),

VF = VO(V−3) + VO(V−3−p), with p > 0, (2.27)

where O(V−n) counts both explicit powers of 1/V and powers of e−a3τ3 ∝ 1/V. Explicitly,

VO(V−3) =
8
√
τ3
[
A2a23e

−2a3τ3 − 2ABa3b3e
−a3τ3−b3τ3 cos(a3ψ3 − b3ψ3) +B2b23e

−2b3τ3
]

3V

+
4W0τ3

[
Aa3e

−a3τ3 cos(a3ψ3)−Bb3e
−b3τ3 cos(b3ψ3)

]
V2

+
W 2

0 ξ̂

V3
,

and at leading order (where, to be as general as possible, we write the exponential term e−2πT1 as

e−cT1)

VO(V−3−p) = −
16
√
τ3e

−cτ1

3V

(
A2a33C1e

−2a3τ3 +B2b33C2e
−2b3τ3

)
cos(cψ1)

+
4W0e

−cτ1

V2

[
Bb3C2 (b3τ3 + cτ1) e

−b3τ3 cos(b3ψ3 + cψ1)−Aa3C1 (a3τ3 + cτ1) e
−a3τ3 cos(a3ψ3 + cψ1)

]
+
16ABa3b3

√
τ3e

−a3τ3−b3τ3−cτ1

3V

[
b3C2 cos(a3ψ3 − b3ψ3 − cψ1) + a3C1 cos(a3ψ3 − b3ψ3 + cψ1)

]
+ P,

where P is a τ1-independent piece (which we neglect from now on since our interest is in the

minimisation of τ1).

We start by minimising VF with respect to the axion ψ3 = ImT3, whose leading appearance in

the potential is dominated in the term of order V−3. The relevant derivatives are:

∂VF

∂ψ3
=

4W0τ3
[
Bb23e

−b3τ3 sin(b3ψ3)−Aa23e
−a3τ3 sin(a3ψ3)

]
V2

+
16ABa3b3

√
τ3(a3 − b3)e

−a3τ3−b3τ3 sin(a3ψ3 − b3ψ3)

3V
,

∂2VF

∂ψ2
3

=
4W0τ3

[
Bb33e

−b3τ3 cos(b3ψ3)−Aa33e
−a3τ3 cos(a3ψ3)

]
V2

+
16ABa3b3

√
τ3(a3 − b3)

2e−a3τ3−b3τ3 cos(a3ψ3 − b3ψ3)

3V
.

Notice that ∂VF/∂ψ3 automatically vanishes at ψ3 = 0, and this is a minimum if

∂2VF

∂ψ2
3

∣∣∣∣
ψ3=0

=
4W0τ3

(
Bb33e

−b3τ3 −Aa33e
−a3τ3

)
V2

+
16ABa3b3

√
τ3(a3 − b3)

2e−a3τ3−b3τ3

3V
, (2.28)

is positive.
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Assuming this to be true we can (classically) integrate out ψ3 by setting it to zero, leaving the

residual potentials

VO(V−3) =
8
√
τ3
(
A2a23e

−2a3τ3 − 2ABa3b3e
−a3τ3−b3τ3 +B2b23e

−2b3τ3
)

3V

+
4W0τ3

(
Aa3e

−a3τ3 −Bb3e
−b3τ3

)
V2

+
W 2

0 ξ̂

V3
, (2.29)

and

VO(V−3−p) =

{
−
16
√
τ3e

−cτ1

3V

[
A2a33C1e

−2a3τ3 +B2b33C2e
−2b3τ3 −ABa3b3e

−a3τ3−b3τ3 (a3C1 + b3C2)
]

+
4W0e

−cτ1

V2

[
Bb3C2 (b3τ3 + cτ1) e

−b3τ3 −Aa3C1 (a3τ3 + cτ1) e
−a3τ3

]}
cos(cψ1) .

(2.30)

The case of a single gaugino condensate on τ3 with polyinstanton corrections can be easily recovered

setting A or B to zero.

Let us now evaluate τ3 at its minimum. Notice that this is determined by the dominant O(V−3)

term, but because this is independent of τ1 the resulting potential for this field is found by evaluating

VO(V−3−p) at the resulting minimum. We first do so dropping all sub-dominant powers of 1/(a3τ3)

and 1/(b3τ3), and find a potential for τ1 whose minimum lies at small moduli, and so lies outside

the domain of validity of our approximations. We then show (for racetrack superpotentials) how a

legitimate minimum can be found once we include subdominant contributions.

A false start: Dropping sub-dominant powers of 1/(a3τ3) and 1/(b3τ3), the vanishing of (∂/∂τ3)VO(V−3)

implies

A2a33e
−2a3τ3 +B2b33e

−2b3τ3 −ABa3b3(a3 + b3)e
−a3τ3−b3τ3 =

3W0
√
τ3
(
Bb23e

−b3τ3 −Aa23e
−a3τ3

)
4V

(2.31)

Writing a3 = b3 +m, eq. (2.31) reduces to

e−b3τ3 =
3W0

√
τ3

4ZV
, (2.32)

with

Z := Bb3 −A(b3 +m)e−mτ3 . (2.33)

In addition the condition (2.28) takes the form

Bb3 −A(b3 +m)e−mτ3 > 0, (2.34)

which implies Z > 0. In the special case m = 0 (i.e. when a3 = b3) Z > 0 reduces to B > A (since

b3 > 0). In the case of a single exponential (A = 0) we have Z = Bb3.

Writing C2 = C1 + n, the scalar potential for τ1 then becomes

VO(V−3−p) =

{
C1

[
−
16

√
τ3e

−2b3τ3

3V
[
B2b33 −ABb3(b3 +m) (2b3 +m) e−mτ3 +A2(b3 +m)3e−2mτ3

]
+
4W0e

−b3τ3

V2

[
Bb3 (b3τ3 + cτ1)−A(b3 +m) ((b3 +m)τ3 + cτ1) e

−mτ3
]]

(2.35)

+n

[
−
16Bb23

√
τ3e

−2b3τ3 (Bb3 −A(b3 +m)e−mτ3)

3V
+

4W0Bb3e
−b3τ3

V2
(b3τ3 + cτ1)

]}
e−cτ1 cos(cψ1)
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which takes the form

VO(V−3−p) =
3W 2

0

√
τ3

ZV3
(r1cτ1 + r2b3τ3) e

−cτ1 cos(cψ1)

once eq. (2.32) is used. The quantities r1 and r2 evaluate to

r1 = C1Z + nBb3 and r2 = 0 . (2.36)

The final leading-order potential for τ1 is therefore

VO(V−3−p) =
β

V3
cτ1e

−cτ1 cos (cψ1) , (2.37)

with β an O(1) constant which does not depend on τ1. Unfortunately, the global minimum of this

potential is at c⟨ψ1⟩ = π and c⟨τ1⟩ = 1, which lies outside the large-modulus regime where we trust

our effective field theory treatment. In particular, in the case of interest c = 2π since the K3 divisor

is wrapped by an Euclidean D3-brane instanton, leading to too small a value for ⟨τ1⟩ = 1/(2π) < 1.

A better approach: We next show that the potential can have solutions within a trustable regime

provided we include the sub-leading corrections to the expression (2.32) in powers of 1/(a3τ3) and

1/(b3τ3), that had earlier been dropped. It turns out that even these would not save the day if we

had assumed a single-exponential superpotential, and it is for this reason that we instead started

with a racetrack superpotential, as appropriate to the condensation of two gauge group factors.

The racetrack form helps by allowing the sub-leading corrections to compete with the potential,

eq. (2.37). Let us see why.

The sub-leading corrections to the expression (2.32) in a 1/(a3τ3) and 1/(b3τ3) expansion are

given by:

e−b3τ3 =
3W0

√
τ3

4ZV
fcorr (2.38)

where

fcorr ≡ 1 +

1− 2m
3

(
1
b3

+ B3

Z

)
1 +m

(
1
b3

− B3

Z

)
 3ϵ, (2.39)

with

ϵ ≡ 1

4b3τ3
≪ 1 for b3τ3 ≫ 1. (2.40)

We notice that in the single exponential case (m = 0), (2.39) reduces to:

fcorr = 1 + 3ϵ, (2.41)

implying that for b3τ3 ≫ 1, the corrections are always subleading.

Substituting now the new corrected result (2.39) in (2.35), we find the corrected potential

VO(V−3−p) =
3W 2

0

√
τ3

ZV3
fcorr (r1cτ1 + r3b3τ3) e

−cτ1 cos(cψ1), (2.42)

where this time

r3 ≡
[
r1
b3

(b3 +m)−mB(C1 + n)

]
(1− fcorr) , (2.43)

does not vanish (though it would if ϵ = 0, since this implies fcorr = 1).

The potential (2.42) is of the form:

VO(V−3−p) =
β

V3
(cτ1 − p b3τ3) e

−cτ1 cos (cψ1) , (2.44)
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where β is an unimportant O(1) constant while p is given by:

p ≡ −r3
r1

=

[
mB(C1 + n)

r1
− (b3 +m)

b3

]
(1− fcorr) . (2.45)

The potential (2.44) admits a global minimum at c⟨ψ1⟩ = π and c⟨τ1⟩ = p b3⟨τ3⟩ + 1 ≃ p b3⟨τ3⟩,
regardless of the value of β (which determines only the depth of the vacuum).

In the case of only a single exponential (m = 0), p reduces to:

p = 3ϵ =
3

4b3τ3
≪ 1 ⇒ c⟨τ1⟩ =

3

4
< 1, (2.46)

reproducing our earlier calculation, where the solution lies in the small-modulus regime beyond the

reach of effective field theory. However in the general racetrack case parameters can be chosen that

ensure p is large enough to believe the minimum. Consider the following illustrative, benchmark,

values (with a3 = 2π/Na and b3 = 2π/Nb):

W0 = B = Nb = 10, A = 0.02, Na = 11, C1 = 1, n = −0.4494, c = 2π, ξ = 0.7, gs = 0.01.

These numbers yield

⟨τ3⟩ ≃
(√

2 ξ
)2/3

gs
≃ 1

gs
= 100, p = 0.997 ≃ 1 ⇒ ⟨τ1⟩ ≃

⟨τ3⟩
10

= 10, (2.47)

with Z = 2.83 > 0 and fcorr = 1.01. Notice that the value l = ⟨τ1⟩ ls ≃ 10 ls gives a good large-

modulus approximation since corrections are controlled by2 α′/l2 = 1/
(
4π2⟨τ1⟩1/2

)
≃ 1/12π2.

The overall volume in this case evaluates to the extreme case of TeV-scale strings

V ≃ 5.2× 1028 ⇒ Ms =
Mp√
4πV

≃ 3TeV. (2.48)

Some comment is required as to why we choose gs as small as 1/100. This is driven by the

interplay of the two conditions:

1. a3 should be close enough to b3 to allow p to be sufficiently large;

2. V should be large enough, V ∼ 1030, to obtain TeV-scale strings.

Given that the volume goes like V ∼ eb3/gs , if gs = 0.1 then b3 has to be b3 = 2π. However with

such a large b3, a3 can not be very close to b3 (at most we can choose a3 = π). On the contrary for

gs = 0.01 then b3 can be b3 = 2π/10, and so a3 = 2π/11 can now be very close to b3. In order to

allow larger values of gs, one should drop the phenomenological requirement of getting TeV-scale

strings, or keep it but then allowing more fine-tuning in the choice of the other parameters.

To summarise: the above construction shows how poly-instanton corrections open up the pos-

sibility of achieving both a very large volume (to allow Ms ∼ 1 TeV), and a very anisotropic

shape of the compactification manifold (to allow a huge hierarchy among the sizes of the different

dimensions)

d ≃ ⟨τ3⟩1/4ls & l ≃ ⟨τ1⟩1/4ls ∼ 10−17 mm ≪ L ≃ ⟨t1⟩1/2ls =
√
⟨V⟩/⟨τ1⟩ ls ∼ 0.01 mm .

2If a D7 brane had been wrapped on this cycle there is also a 4D understanding of why the 4π’s break our way like

this. Since any gauge coupling for such a D7 satisfies τ1 = 4π/g2, gauge loops are controlled by (g/4π)2 = 1/4πτ1
and are small even if g2 = 4π/τ1 is order unity.
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3. Mass scales and low-energy spectrum

This section identifies the mass scales of relevance to phenomenological applications, for both the

large- and small-hierarchy examples. Because we explicitly stabilise the moduli we can be explicit

about the spectrum of light states that are potentially relevant to low-energy physics, and how are

their properties are correlated with those of the higher-energy particles relevant to physics at the

LHC.

The spectrum of bulk fields in these models shares the generic features of the LARGE volume

scenario, with a rich variety of states predicted with masses and couplings that scale as different

powers of the large volume, V. To these must be added more model-dependent predictions, including

in particular a specification of precisely where observable Standard Model particles are situated.

We first very briefly remind the reader about the generic features, before turning to the more

model-dependent assumptions about how the Standard Model fits in.

3.1 Bulk mass scales

Since factors of 2π can make a difference, we first summarize the basic scales occurring in our small-

and large-hierarchy scenarios. Recall the Einstein term in the 10D type IIB supergravity action in

string frame is

S
(s)
10D ⊃ 1

(2π)7α′4

∫
d10x

√
−g(s)10 e

−2ϕR(s)
10 , (3.1)

and so the action in Einstein frame is obtained via the Weyl rescaling g
(s)
MN = eϕ/2g

(E)
MN . In terms

of ls = 2π
√
α′ = 1/Ms the 10D Planck scale therefore satisfies M8

10D = 4π/l8s , and so

M10D = (4π)
1/8

Ms ≃ 1.4Ms. (3.2)

Dimensionally reducing from 10D to 6D then yields the 6D Planck scale M4
6D = (4π/l8s) VE(K3),

where VE(K3) =
∫
d4y

√
g
(E)
4 := l4 = τ1l

4
s , and so

M6D = (4πτ1)
1/4

Ms =M2
10D l. (3.3)

Notice that because M10D l ≃Ms l > 1, we have M6D > M10D. The further dimensional reduction

from 6D to 4D then yields M2
p = (4π/l8s)V6, where V6 =

∫
d6x

√
g
(E)
6 := V l6s , and so we find

Mp =
√
4πVMs. (3.4)

KK scales

The extra-dimensional geometries of interest come with a variety of KK scales. The basic transition

from 4D to a higher-dimensional description occurs at the smallest KK scale, which we’ve seen is

set by the volume of the largest cycle,

M6D
KK =

Ms

t
1/2
1

=
1

L
. (3.5)

Above this scale the effective description is 6-dimensional for a range of energies up to

M10D
KK =

Ms

τ
1/4
1

=
1

l
, (3.6)

above which the full 10 dimensions become visible. When L ≃ l the transition is directly from

4D to 10D and the pattern of KK masses is broadly similar to what is expected if all six internal

dimensions were roughly the same size.
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However there is an important difference between these examples and the simplest ADD-style

models of large extra dimensions. This is due to the existence of small stabilised 4-cycles in the

geometry, with sizes like τ3 = d4/l4s ≃ 1/gs ∼ 10, and so for which

M c
KK :=

1

d
≃ Ms

τ
1/4
3

. (3.7)

Although counter-intuitive for those brought up using tori and spheres, the existence of such a

variety of geometrical scales is generic for the more complicated geometries that naturally arise in

flux compactifications.3

Using the illustrative values given above for V, τ1 and τ3 in the large- and small-hierarchy cases,

we find the numerical values listed in Table 1

Ms M6D M10D M c
KK M10D

KK M6D
KK

small hierarchy 1 TeV 2000 TeV 2 TeV 0.5 TeV 50 MeV 0.3 MeV

large hierarchy 3 TeV 10 TeV 4 TeV 1 TeV 1 TeV 0.01 eV

Table 1: Relevant mass scales for small- and large-hierarchy examples using the numerical values for

modulus sizes given in §2.

Generic moduli

Some of the would-be moduli of the lowest-order theory are fixed by D-terms which generate

O(Ms) masses, but others are systematically light compared with generic KK masses (and so can

be described within the effective 4D theory). Many of these — such as complex structure moduli, U ,

and the dilaton S — obtain masses from background fluxes, which from the 4D perspective generate

a tree level F -term potential. These states generically couple with 4D Planck strength, and their

potential scales like VF ≃M4
s , so the resulting masses are generically of order M2

s /Mp ≃Mp/V.
This is numerically of order ≃ 10−3 eV for Ms in the TeV mass range for both the large-

and small-hierarchy examples. For large hierarchies the mass of these moduli is similar to the

lightest KK states, M6D
KK , but they are parametrically light relative to all KK scales for the more

conventional small-hierarchy case. Remarkably, a combination of low gravity scale and volume-

suppressed interactions ensures these small masses are stable against radiative corrections [21].

The flux-induced contributions to the gravitino mass are similarly small, m3/2 ≃Mp/V ≃ 10−3 eV

(more about this below).

Masses for the Kähler moduli are generically just as small, and can be even lighter in some

instances, because of the no-scale structure which keeps them massless to leading order in α′ and

gs. A detailed determination of their size requires diagonalising their kinetic and mass terms, and

depends somewhat on the precise scenario considered (as is described below in detail). Before doing

so we must first become more specific about precisely where the Standard Model degrees of freedom

are located.

3.2 Locating the Standard Model

Particle phenomenology requires the identification of where Standard Model states arise within

the model. For the remainder of this paper we suppose them to be localised on a brane, which

we supposed to be an appropriate stack of magnetised D7s and D3s since these are known to be

promising starting points for model building [22]. If so, the coupling of these fields to other light

3The observation that higher-dimensional compactifications can be very rigid, and so have KK scales much larger

than their volumes would indicate, has been occasionally used by model-builders [20].
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states depends crucially on where they are located in the extra dimensions and on which cycles the

D7s wrap.

There are several considerations that can be used to guide the choice of the cycle wrapped by

the SM D7 branes:

• it cannot be too large, or else the resulting gauge couplings, g2/4π ≃ τ , become too large;

• it cannot be too large or else the KK excitations of SM states would have been observed;

• its intersections with other cycles in the geometry must not destroy the dynamics that sta-

bilises the moduli describing these other cycles.

We now argue that none of the cycles discussed so far for the K3 fibrations considered above

are suitable to be wrapped by the SM branes in this way. Because the gauge coupling for fields on

the brane scales like 4π/g2 ∼ τSM , the SM branes must wrap one of the relatively small cycles of

the geometry to prevent having exponentially small gauge couplings. Hence τSM cannot be τ2 in

either of the K3 fibrations examined above. In the small-hierarchy case, it also cannot be τ1 for the

same reason.

The K3 fibre τ1 can also be eliminated for the large-hierarchy scenario, but for a different

reason. If the SM wraps τ1 then string loop corrections to K depending on τ1 would be generated,

and these would dominate over the tiny poly-instanton corrections, making this case degenerate

into the former one.

The only candidate 4-cycle left is the blow-up mode τ3. However even this cycle cannot be τSM .

For the small-hierarchy case this is because τ3 is already wrapped by an ED3. Also wrapping the SM

brane around this cycle would then produce chiral intersections between the ED3 and the SM brane,

which would induce a pre-factor for the instanton correction to W that is proportional to powers of

the SM chiral fields. But unbroken gauge symmetries require these fields to have vanishing VEVs,

thereby removing any possible non-perturbative contribution to the superpotential [23]. That is,

Wnp ∼ (ΠiΦi) e
−2πT3 = 0 with ⟨Φi⟩ = 0. (3.8)

In the large-hierarchy case, on the other hand, non-perturbative corrections depend on τ3, since

this cycle supports the branes containing the two condensing gauge sectors. The incompatibility

between chirality and non-perturbative effects implies that τ3 also cannot support the SM brane in

this case.

All roads lead to Rome: another 4-cycle is needed — call it τ4 — on which to wrap the SM

branes, D7SM . We now describe the two natural choices for size of this cycle: making it large or

small compared to the string scale.

The geometric regime

The conceptually simplest choice places the SM on intersecting D7-branes wrapping an internal

4-cycle whose volume, τ4 = τSM , is stabilised at a value that is ‘geometric’, in the sense of being

larger (but not too much larger) than the string scale [24].

If τ4 is a blow-up mode that intersects τ3, it can be stabilised in the geometric regime using

either D-terms [23, 25], or via string loop corrections to the Kähler potential [6]. World-volume

fluxes on D7SM and on another stack of D7-branes, D7int, wrapped around a combination of τ3 and

τ4, can then be appropriately chosen to ensure there are no chiral intersections between D7SM and

the ED3 (or the stack of D7-branes) that yields the non-perturbative superpotential. Instead they

arise only between D7SM and D7int [23]. In this way non-perturbative corrections to W depending

on τ3 do not get destroyed. In the absence of SM singlets which can get a non-vanishing VEV,

D-terms can fix τ4; and if singlets are present then τ4 could instead be fixed by gs corrections.
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The upshot is that the volume, eq. (2.4), changes to:

V = α
(√

τ1τ2 − γτ
3/2
3

)
→ V = α

[√
τ1τ2 − γ (c3τ3 + c4τ4)

3/2
]
. (3.9)

The geometric scenario is strongly constrained by the existence of KK excitations of SM states

in the 4 extra dimensions along the cycle wrapped by the SM brane. The absence of any evidence

for such states [26, 27] implies these KK modes cannot be lighter than 1 TeV. The good news here is

that such large KK masses are possible, despite the large overall size of the various dimensions, since

small stabilized cycles can exist with M c
KK ∼ Ms/τ

1/4
4 ≫ M10D

KK , M6D
KK . In the present instance,

because τ4 also sets the size of the gauge couplings, τ4 = 4πg−2
SM = α−1

SM , we have

MSM

KK =
Ms

τ
1/4
4

= α
1/4
SMMs . (3.10)

Because αSM is known this puts a direct lower bound on Ms in this scenario.

Fractional branes at singularities

The alternative to the geometric regime is to imagine the SM is built from fractional D-branes

located at the singularity obtained by shrinking the blow-up mode supporting the SM brane: τSM →
0 [28].

In this scenario τSM cannot be any of the Kähler moduli discussed in previous sections, since

these are all larger than ls by assumption. Again we need a fourth cycle, τ4, to support the SM

branes. If this cycle is rigid and does not intersect any of the other cycles, then τ4 can be forced to

shrink at the singularity, τ4 → 0, using D-terms [28].

This picture has two attractive features. First, because the SM branes do not wrap any cycles

there are no KK modes for SM states and the natural scale for all excitations is the string scale.

Second, the SM gauge coupling is unrelated to a cycle volume and is instead directly controlled by

the string coupling, gs.

In this case the volume, eq. (2.4), changes to:

V = α
(√

τ1τ2 − γτ
3/2
3

)
→ V = α

(√
τ1τ2 − γ3τ

3/2
3 − γ4τ

3/2
4

)
. (3.11)

3.3 Supersymmetry breaking

Any realistic description of the Standard Model on a brane with a TeV string scale must include

adequately large supersymmetry breaking. Since phenomenology requires no super-partners to

ordinary particles almost up to the (TeV) string scale, the SM sector must not even approximately

be supersymmetric.

Since the SM must in any case be localised on a brane when Ms ≃ 1 TeV, the most natural

supersymmetry-breaking mechanism is to have the SM brane itself not be supersymmetric. For a

non-supersymmetric brane, supersymmetry is only realised nonlinearly: a supersymmetry transfor-

mation acting on a particle state returns the same particle plus a brane-localised goldstino. This

goldstino is then eaten by the gravitino once the brane is coupled to gravity in the bulk. The upshot

is that there are no super-partners for any of the known particles, and the low-energy limit is not

described by the MSSM, even though supersymmetry is broken at the weak scale [8, 9]. Explicit

local non-supersymmetric brane models are constructed in string theory in [22].

Notice that in these scenarios supersymmetry only plays an indirect rôle in the hierarchy prob-

lem. Instead, the hierarchy problem is solved by having a TeV gravity scale, but with the volume

stabilisation mechanism providing the usually missing (but crucial) step of explaining why the extra

dimensions are so large.
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Although supersymmetry is badly broken in the SM sector, the scale of supersymmetry breaking

this induces in the bulk turns out to be very small and similar in size to SUSY-breaking flux effects:

m3/2 ≃ M2
s /Mp ≃ Mp/4πV ∼ 10−3 eV. This small a breaking arises naturally because the bulk

generically couples to the supersymmetry breaking sector with gravitational strength.

3.4 Modulus spectrum and couplings: leading order

We next estimate the mixing and masses of Kähler moduli, including the fourth Kähler modulus,

τ4, whose existence is required by the presence of the SM brane. In this section we canonically

normalise the leading order kinetic terms and diagonalise the resulting mass matrix. (The next

section discusses corrections to these leading results.) This amounts to finding the eigenvectors

and the eigenvalues of the mass-squared matrix
(
M2
)i
k
:= Kij̄Vj̄k. Our goal is to track how these

quantities scale with the small parameter V−1. We quote the result for τ4 in both the geometric

and singular regimes.

Geometric regime

The diagonalisation of moduli states and a determination of their mass spectrum is worked out in

some detail for the small-hierarchy geometries in [29, 30]. The derivation for the large-hierarchy

case is very similar, so we simply outline here the main results for the case when τ4 is stabilised in

the geometric regime.

The transformation that canonically normalises the kinetic terms for fluctuations about the

potential minimum reads [30]

δτ1 ≃
2∑
i=1

ω1i δϕi +
4∑
j=3

ω1j

V1/2
δϕj ≈

2∑
i=1

ω1i δϕi, (3.12)

δτ2 ≃
2∑
i=1

ω2iV δϕi +
4∑
j=3

ω2jV1/2 δϕj ≈
2∑
i=1

ω2iV δϕi, (3.13)

δτk ≃ ωk1
Vn

δϕ1 + ωk2 δϕ2 +
4∑
j=3

ωkjV1/2 δϕj ≈
4∑
j=3

ωkjV1/2 δϕj for k = 3, 4, (3.14)

where n = 1/3 for small hierarchies; and n = p (with p ≃ 1 for our choice of parameters) in

the large-hierarchy case. The constants ωki are order-unity constants. The resulting spectrum of

modulus masses is

m1 ≃
√
gs
4π

Mp

V(3+n)/2
, m2 ≃

√
gs
4π

Mp

V3/2
, m3 ≃

√
gs
4π

Mp

V
and m4 ≃

√
gs
4π

Mp

Vm/2
, (3.15)

where m = 1 if τ4 is fixed by D-terms, or m = 2 if the SM cycle is fixed using gs corrections to K.

This is an interestingly complicated hierarchy of masses, that is exquisitely sensitive to the

size of the extra-dimensional volume. Many of its features have simple physical interpretations. As

shown in [30], which inverts the exact form of (3.12), δϕ2 turns out to be the particular combination

of δτ1 and δτ2 that corresponds to the overall volume, whereas δϕ1 is a direction orthogonal to this

that is fixed only at sub-leading order — either by string loops in the small-hierarchy case or by

poly-instanton corrections for the large hierarchy. It is because δϕ1 first receives it mass at higher

order that makes it systematically lighter than δϕ2, as can be seen from (3.15).

The volume-scaling of the canonical normalisation of the small blow-up modes (3.14) can also

be understood from a geometric point of view. Each canonically normalised field, δϕk, k = 3, 4,

mostly overlaps a combination of the two intersecting blow-up modes with a power of V1/2. The

next mixing in a large volume expansion is with δϕ2, which corresponds to the volume mode.
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The O(1) mixing between the two blow-up modes is due to their non-vanishing intersection, while

the suppression with respect to the mixing with δϕ2, reflects the locality of the two blow-up modes

within the Calabi-Yau volume. Finally the mixing with the other modulus δϕ1 is further suppressed

by a power of V−n due to the fact that the shape of the lagrangian in the direction of the (τ1− τ2)-
plane orthogonal to V is only fixed at sub-leading order.

For later purposes what is important is that these are extremely small masses when Ms is in

the TeV range. In particular, m3 ≃ 10−3 eV, m2 ≃ 10−18 eV and m1 ≃ 10−32 eV (for n = p = 1)

when the benchmark numbers of previous sections are used. These correspond to macroscopic

wavelengths: m−1
3 ≃ 10−4 m, m−1

2 ≃ 1011 m — of order the Earth-Sun distance — and m−1
1 ≃ 1025

m — which is about 104 times bigger than the size of the Milky Way.

Because these leading contributions to masses are so light, the danger is that they are dominated

by nominally subdominant effects. We examine this in the next section, and find that some get

significant contributions from loops but (remarkably) others do not.

Couplings:

Before turning to loops we first examine the size of the couplings between these moduli and states

(like the SM) localized on the branes. As an estimate of these couplings we work out the V-
dependence of the interaction

LΣi =
ζi
Mp

δϕF (i)
µν F

µν
(i) , (3.16)

between fluctuations in these moduli and gauge bosons living on the various cycles, τi, i = 1, 2, 3, 4

[30]. To this end recall that gauge bosons only live on τ1, τ2 and τ4 in the small-hierarchy case, but

only on τ3 and τ4 in the large-hierarchy example.

The V-dependence of the resulting couplings, ζi, are summarised in Tables 2 and 3. These

reveal that δϕ2 always couples gravitationally to all gauge sectors, while the moduli δϕ3 and δϕ4
always couple to fields on the SM brane with weak-interaction (as opposed to gravitational) strength.

More remarkably, the other couplings between moduli and gauge sectors can be orders of magnitude

weaker than gravitational.

δϕ1 δϕ2 δϕ3 δϕ4

ζ1, ζ2 1 1 V−1/2 V−1/2

ζ4 V−n 1 V1/2 V1/2

Table 2: Modulus couplings to brane gauge bosons in the small-hierarchy geometric regime.

δϕ1 δϕ2 δϕ3 δϕ4

ζ3, ζ4 V−n 1 V1/2 V1/2

Table 3: Modulus couplings to brane gauge bosons in the large-hierarchy geometric regime.

Branes at singularities

We next focus on the case where the SM cycle has zero size, τ4 → 0, with the SM built using

fractional D-branes located at the singularity. Canonical normalisation and the mass spectrum are

also computed in detail elsewhere in this case for the small hierarchy so we simply state the main

results, extending them also to the case of large hierarchies.
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The effective field theory at the singularity admits a Kähler potential that can be expanded as

[28]:

K = −2 ln

(
V ′ +

s3/2ξ

2

)
+ λ

τ24
V ′ − ln (2s) , (3.17)

with V ′ = α
(√

τ1τ2 − γ3τ
3/2
3

)
. In (3.17) we leave the dependence on the real part of the axio-

dilaton s =Re(S) explicit, even though this modulus is flux-stabilised (in the perturbative regime,

⟨s⟩ = g−1
s > 1) at tree level. We do so because in this case the SM gauge coupling is given by s

plus a flux-dependent correction in τ4: 4πg
−2 = s+ h(F )τ4, and so to work out the coupling of the

moduli to the SM gauge bosons, we must derive their mixing with both s and τ4.

The particular form of the Kähler potential (3.17) and ⟨τ4⟩ = 0 imply that at leading order

there is no mixing between τ4 and the other moduli, leading to the following canonical normalisation

around the minimum [30]:

δτ1 ≃
2∑
i=1

ω1i δϕi +
ω13

V1/2
δϕ3 +

ω1s

V1/2
δϕs ≈

2∑
i=1

ω1i δϕi, (3.18)

δτ2 ≃
2∑
i=1

ω2iV δϕi + ω23V1/2 δϕ3 + ω2sV1/2 δϕs ≈
2∑
i=1

ω2iV δϕi, (3.19)

δτ3 ≃ ω31

Vn
δϕ1 + ω32 δϕ2 + ω33V1/2 δϕ3 +

ω3s

V1/2
δϕs ≈ ω33V1/2 δϕ3, (3.20)

δτ4 ≃ ω44V1/2 δϕ4, (3.21)

δs ≃ ωs1
V1/2+n

δϕ1 +
ωs2
V1/2

δϕ2 +
ωs3
V

δϕ3 + ωss δϕs ≈ ωssδϕs, (3.22)

where n = 1
3 in the case of a small hierarchy, while n = p in the large-hierarchy case (with p ≃ 1

using our numerical benchmark values). The spectrum of modulus masses in this case is

m1 ∼
√
gs
4π

Mp

V(3+n)/2
, m2 ∼

√
gs
4π

Mp

V3/2
, m3 ∼ ms ∼

√
gs
4π

Mp

V
and m4 ∼

√
gs
4π

Mp

V1/2
, (3.23)

since both s and τ4 are fixed at order V−2 but K−1
ss̄ ∼ O(1) while K−1

44̄
∼ O(V).

Couplings:

The volume scaling of the (ζi/Mp) δϕF
(i)
µν F

µν
(i) couplings to brane gauge bosons, with i = 1, 2, 3, 4

is summarised in Tables 4 and 5 [30], which again reveal a rich pattern of couplings varying from

weak-interaction strength (∼ V1/2/Mp), gravitational strength (∼ 1/Mp) and much weaker than

gravitational strength (∼ 1/MpVk).

δϕ1 δϕ2 δϕ3 δϕ4 δϕs

ζ1, ζ2 1 1 V−1/2 0 1

ζ4 V−1/2−n V−1/2 V−1 V1/2 1

Table 4: Modulus couplings to brane gauge bosons in the small-hierarchy singular regime.

Even in this case the volume scaling of the modulus normalisation and couplings can be under-

stood from a geometrical point of view. Focusing for example on δϕ3, we notice that its coupling to

F
(3)
µν F

µν
(3) is stronger than the coupling to F

(1,2)
µν Fµν(1,2) which, in turn, is stronger than the coupling to

the SM gauge bosons F
(4)
µν F

µν
(4) . This different behaviour reflects the fact that τ3 resolves a point-like

singularity which has a definite location within the Calabi-Yau, together with the sequestering of

the SM at the τ4-singularity.
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δϕ1 δϕ2 δϕ3 δϕ4 δϕs

ζ3 V−n 1 V1/2 0 1

ζ4 V−1/2−n V−1/2 V−1 V1/2 1

Table 5: Modulus couplings to brane gauge bosons in the large-hierarchy singular regime.

3.5 Modulus spectrum and couplings: corrections

We now estimate the size of various correction to the above modulus masses, to study their ro-

bustness against higher loops. As is true for generic large-volume models, the majority of loop

corrections that one might naively expect to dominate do not do so because they are suppressed

by the accumulated powers of 1/V appearing in the masses and couplings. As argued in ref. [21],

such suppressions are a general consequence of having the gravity scale very small compared with

the Planck scale.

However, there are two kinds of loop contributions that are particularly dangerous for the

models of interest here, and we now estimate the size of these. The two kinds of corrections

are: mixings amongst the moduli that are induced by loop contributions to gauge kinetic terms, as

described in ref. [31]; and corrections due to loops of heavy particles on the supersymmetry-breaking

SM brane, as described in ref. [21].

Corrections to gauge kinetic terms

At the one-loop level it can happen that the physical modulus is not as simply related to the holo-

morphic modulus as it is classically. In particular, threshold corrections to the gauge kinetic terms

can introduce large logarithms into the definitions of the gauge couplings, of the form ln(M ′/M)

where M ′ and M are the masses of two kinds of massive states that have been integrated out. But

because we have seen that different states can have masses that depend on different powers of V,
for large-volume compactifications such logarithms need not be either small or holomorphic.

In particular, it can happen that the physical modulus, τ4, controlling the blow-up cycle for a

singularity becomes related to the holomorphic modulus, τ ′4, through the relation

τ4 = τ ′4 − κ lnV , (3.24)

where κ is an O(1) constant. This redefinition is also required in order to have an effective super-

gravity description that is consistent with the general Kaplunovsky-Louis formula for the running

of the gauge coupling [32].

Notice in particular that the holomorphic modulus need not then vanish in the singular limit

where the volume of the blow-up cycle shrinks to zero; i.e. when ⟨τ4⟩ = 0. Hence in this case the

holomorphic SM modulus takes a nonzero VEV at the singularity, and when V is large this VEV

can be comparable to that of a generic blow-up mode within the geometric regime. Although this

is not a significant change for branes that are already in the geometric regime, having ⟨τ ′4⟩ nonzero
can (but need not) significantly change the predictions for branes localised at singularities. Detailed

studies [31] show that this kind of correction really does arise for combinations of D3s/D7s located

at orbifold singularities as well as the phenomenologically less interesting case of D3s at orientifold

singularities, but does not arise if there are only D3s situated at orbifold singularities.

To see why the redefinition can change predictions for masses and couplings, recall that it is the

holomorphic field that transforms in the standard way under 4D supersymmetry and so appears in

the standard 4D supergravity action. Since a non-holomorphic redefinition like eq. (3.24) can change

the form of the kinetic terms, it also changes the transformations required to achieve canonical

normalisation. In particular, the Kähler potential (3.17) and the gauge coupling in this case get
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modified to

K = −2 ln

(
V ′ +

s3/2ξ

2

)
+
λ (τ ′4 − κ lnV ′)

2

V ′ − ln (2s) , (3.25)

4πg−2 = s+ h(F ) (τ ′4 − κ lnV ′) , with V ′ = α
(√

τ1τ2 − γ3τ
3/2
3

)
. (3.26)

The new Kähler potential (3.25) yields additional contributions to the kinetic terms of the 4D fields,

of the form

Lnew
kin = − κλ

⟨V⟩

[
∂µ(δτ1)

2⟨τ1⟩
+
∂µ(δτ2)

⟨τ2⟩

]
∂µ(δτ ′4) +

3ακλγ3
√
⟨τ3⟩

2⟨V⟩2
∂µ(δτ3) ∂

µ(δτ ′4)

=
κλ

⟨V⟩2

[
−∂µ(δV) +

3

2
αγ3

√
⟨τ3⟩ ∂µ(δτ3)

]
∂µ(δτ ′4) (3.27)

which give rise to a non-vanishing mixing between τ ′4 and all the other moduli but the dilaton.

Notice that this mixing is absent if there is no 1-loop redefinition, i.e. κ = 0. Therefore the

canonical normalisation (3.21) changes from δτ4 ≃ ω44V1/2 δϕ4 to

δτ ′4 ≃ ω41

Vn
δϕ1 + ω42 δϕ2 +

ω43

V1/2
δϕ3 + ω44V1/2 δϕ4 ≈ ω44V1/2 δϕ4 . (3.28)

Inspection of eq. (3.14) shows this scales with V in the same way as for the geometric regime, but

with the difference that at leading order there is no mixing between δτ ′4 and δϕ3 (because the two

blow-up cycles do not intersect and so do not experience the O(1) mixing).

Chasing the effects of this change in canonical normalisation (3.28) and the gauge kinetic

function (3.26) through to the modulus/gauge-field couplings yields the couplings to gauge bosons

shown in Tables 6 and 7.

δϕ1 δϕ2 δϕ3 δϕ4 δϕs

ζ1,2 1 1 V−1/2 V−1/2 1

ζ4 V−n 1 V−1/2 V1/2 1

Table 6: Modulus couplings to brane gauge bosons for the small-hierarchy singular regime, including the

1-loop modulus redefinition.

δϕ1 δϕ2 δϕ3 δϕ4 δϕs

ζ3 V−n 1 V1/2 V−1/2 1

ζ4 V−n 1 V−1/2 V1/2 1

Table 7: Modulus couplings to brane gauge bosons for the large-hierarchy singular regime including 1-loop

modulus redefinition.

As expected, the 1-loop redefinition makes the modulus couplings scale the same way with V
as do those of the geometric regime, as summarised in Tables 2 and 3 (with the difference that now

τ3 does not intersect τ4 — where V is given by expressions (3.9) and (3.11) in the geometric and

singular cases, respectively). Thus the coupling of δϕ3 to the SM gauge bosons living on τ4 is more

V-suppressed than the coupling of δϕ4 to the same visible degrees of freedom due to the geometric

separation of the two point-like singularities resolved by these two different blow-up modes.
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Corrections to the scalar potential

Loop corrections to low-energy scalar potentials are notoriously sensitive to the details of the the-

ory’s UV sector, and so must be examined carefully for any calculation that predicts small scalar

masses. For instance, the one-loop corrections to the low-energy scalar potential in four dimensions

has the Coleman-Weinberg form [33]

δV 1−loop
CW (φ) ∝ STr

{
M4(φ) ln

[
M2(φ)

µ2

]}
, (3.29)

where STr denotes the usual spin- and statistics-weighted sum over heavy degrees of freedom cir-

culating in the loop, whose renormalised4 mass matrix — regarded as a function of the low-energy

scalar fields, φ— is denotedM(φ). Here µ is a floating renormalisation point, whose value depends

on the precise renormalisation scheme.

The bad news is that eq. (3.29) involves positive powers of M2 and so can depend sensitively

on the UV spectrum. The good news is that eq. (3.29) holds only in 4 dimensions, and so in higher-

dimensional theories the largest value of M that can appear is the KK scale above which the UV

theory becomes higher dimensional. Of course the low-energy potential might still be sensitive to

the contributions of higher-energy modes, but this sensitivity must be computed in the full higher

dimensional theory (where additional symmetries, like higher-dimensional general covariance can

play a role). In particular, contributions from states at the string scale are described by the usual

local, higher-derivative terms that capture the well-known α′ corrections. Since for Large-volume

models these are already included in what we are calling the ‘leading-order’ corrections, they do

not destabilise any of the conclusions found above.

It is a remarkable feature of theories with low gravity scales — including the large-V models

of interest here — that loop corrections to the low-energy scalar potential are smaller than would

have been indicated by a 4D expression like eq. (3.29). As is argued in ref. [21], this happens both

because the low KK scale that must be used in eq. (3.29) is so low, and because higher-dimensional

symmetries constrain the kinds of contributions that can arise from states much more massive

than the KK scale. Of course, loop estimates are much harder for the very asymmetric geometries

considered here, having many scales between Ms and M6D
KK . We have sought higher-loop, extra-

dimensional contributions that can use this complication, and we now describe the largest we have

found.

The sector we find is the most dangerous in loops consists of the open-string states localized on

the SM brane itself. These are dangerous because of precisely the same features that were required

earlier in this section for successful phenomenology: (i) they must badly break supersymmetry; and

(ii) they must reside on a very small cycle. In particular we know there is a non-supersymmetric 4D

sector localised on the SM brane up to masses of order α
1/4
SMMs ≃ 0.3Ms. Since these are effectively

4D up to these scales, eq. (3.29) applies and predicts contributions of generic size

δV 1−loop
CW (φ) ≃M4

s +m2
3/2M

2
s + · · · ≃

M4
p

V2
+
M4
p

V3
+ · · · . (3.30)

It is useful to compare this estimate with the size of the leading flux-stabilization contributions

to the low-energy potential described in §2. There we found the leading terms are Vf ∼M4
p/V2 but

depend only on the moduli V and τ3. The masses of the rest of the Kähler moduli that don’t appear

in Vf then come from subdominant terms, of order δV ∼M4
p/V3. Because these arise at the same

order in 1/V as the terms in eq. (3.30), loop effects on non-supersymmetric localised branes cannot

4For reasons discussed elsewhere [?, 21] we formulate UV sensitivity in terms of large physical masses rather than

cutoffs.
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be negligible, and besides yielding potentially large corrections to the modulus masses might also

destabilize the vacuum itself.5

The lesson to be drawn from this observation is that brane loops and brane back-reaction can

become important for understanding the full dynamics of the vacuum when non-supersymmetric

branes appear in large-volume models. Although it remains an unsolved problem as to how this

dynamics works in string theory, the effects of on-brane loops [36] and back-reaction [37, 38] have

been studied for non-supersymmetric branes in simpler 6D extra-dimensional models. These sim-

pler systems resemble their 10D cousins in that the back reaction is also competitive with bulk

physics in stabilising the extra dimensions, yet doesn’t destroy the presence of large-volume solu-

tions. Intriguingly they can also allow on-brane curvatures to be parametrically smaller than naive

estimates based on the brane tensions would suggest [38].

For the present purposes we assume the SM back reaction not to destroy the broad properties

of the flux compactification described to this point, and ask how these radiative corrections change

the masses and couplings of the moduli. These are generically of order

δm ≃ ζ M2
s

Mp
≃ ζ Mp

V
, (3.31)

where the modulus-brane coupling ζ is as given in the earlier Tables, and as before we take Ms to

be the UV mass scale on a non-supersymmetric brane. Notice that when ζ is suppressed by inverse

powers of V this correction can be smaller than the generic modulus mass, δm≪Mp/V.

m1/Mp m2/Mp m3/Mp m4/Mp

leading V−(3+n)/2 V−3/2 V−1 V−m/2

loop V−sn V−1 V−1/2 V−1/2

Table 8: Leading and loop-corrected masses for Kähler moduli in the geometric regime. n = 1
3
for the

small-hierarchy case, and n = 1 for the benchmark large-hierarchy example. sn = 1
2
(3+n) when n ≥ 1 and

s = 1 + n if n ≤ 1. The parameter m = 1 when D-terms stabilise the SM brane and m = 2 if this is done

using gs corrections.

m1/Mp m2/Mp m3/Mp m4/Mp

leading V−(3+n)/2 V−3/2 V−1 V−1/2

loop (pot only) V−(3+n)/2 V−3/2 V−1 V−1/2

loop (pot and mix) V−sn V−1 V−1 V−1/2

Table 9: Leading and loop-corrected masses for Kähler moduli in the singular regime. The first loop

estimate excludes changes due to loop-generated mixing among moduli (as is appropriate for some models),

while the second includes this mixing (as appropriate for other models - see text for a description of which

is which). n = 1
3

for the small-hierarchy case, and n = 1 for the benchmark large-hierarchy example.

s = 1
2
(3 + n) when n ≥ 1 and s = 1 + n if n ≤ 1.

Tables 8 and 9 then show how this loop estimate changes the predictions for modulus masses

for both the geometric and singular regimes, with n = 1
3 appropriate for small hierarchies and n = 1

is the value used in the large-hierarchy benchmark given in §2. (Only the n = 1
3 geometrical case

is considered in ref. [21], and agrees with the values shown here.) These tables, when combined

5This may yet prove to be a feature rather than a bug, since it may be the source of the unknown physics

responsible for lifting the present-day vacuum energy to near zero. See [35, 7, 11] for concrete attempts to use brane

back-reaction to address the cosmological constant problem.
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with the earlier tables of coupling strengths, paint an interestingly complex picture. In it the state

δϕ4 is revealed to be pulled up in mass to join the highest-mass KK states, as appropriate for the

modulus of a localised cycle. Its couplings to fields on this cycle are of order ∼ 1/M10D appropriate

to higher-dimensional gravity, making them weak-interaction strength when Ms is at TeV scales.

A similar thing happens in the geometric regime to δϕ3, which is associated with the other

localised cycle. In the singular regime this state instead remains in the same mass range, Mp/V,
that is generic for moduli. Remarkably, this modulus couples to SM brane fields with much weaker

than gravitational strength.

The state δϕ2 — which dominantly corresponds to the volume modulus — is also generically

lifted by loops from its initially smaller value, but in this case only as high as Mp/V. When all of

the dimensions have the same size, their common KK scale is Mp/V2/3 and so these moduli remain

well within the low-energy 4D description. But in the large-hierarchy scenario the generic moduli

are close in mass to the lightest of the 6D KK states and can become lost into mixings with more

generic KK modes, potentially losing their 4D interpretation.

The fibre modulus, δϕ1, is more unusual for several reasons. First, it is the simplest state that

is orthogonal to the volume modulus, for which the potential arises at sub-dominant order in 1/V.
This is why the leading term in its mass is so small.6 In large-volume vacua such a modulus doesn’t

arise unless there are at least three Kähler moduli, and so they are not present in the very simple

compactifications most often explored. But it is also unusual because although loops lift it from its

leading, extremely small, mass, its small coupling to the SM brane ensures they don’t lift it very

far [21]. Although its couplings to states – like bulk KK modes for instance – need not be equally

suppressed, these appear to remain suppressed by the same general covariance and supersymmetry

arguments that generally apply for states deep in the extra-dimensional regime.

3.6 Bulk Kaluza-Klein modes

For later convenience we close this section by noting a few properties of generic, non-modulus,

bulk KK modes, such as for the metric hMN(x), Kalb-Ramond fields, BMN , the axio-dilaton and so

on. For TeV-scale strings there is always a great abundance of these modes, with 10D kinematics

extending down to energies of order M10D
KK , and 6D kinematics continuing down to M6D

KK . A small

number of states — including the 4D graviton and moduli — survive below this scale into the 4D

theory.

Although we’ve seen that the moduli can couple with weaker than gravitational strength, this is

typically to do with having a small overlap with a localised cycle and should not be true for generic

higher KK modes that are free to move throughout the bulk (and are not localised in warped

throats, say [39, 40]). KK modes with short wavelengths that are free to move about the geometry

should couple with gravitational strength, 1/Mp, just as they do in simpler geometries like spheres

or tori.

An important difference compared with tori and spheres is the absence of continuous isometries

on compact Calabi-Yau spaces. Unless broken by other fields isometries show up as unbroken

symmetries in the low-energy 4D theory, under which some KK states are charged. This makes the

lightest 10D KK mode stable, with important phenomenological consequences. Since Calabi-Yau

spaces have none, their KK modes are not protected in this way. It is nevertheless possible to

have isometries for submanifolds of compact Calabi-Yau spaces, and if so states localised near these

submanifolds can be charged under approximate symmetries that make them very long-lived. This

is possible for the K3 fibrations considered here, for which the 2D base of the fibration is CP 1. CP 1

is topologically a 2-sphere, and if it is also metrically a sphere in some regions it can support an

approximate O(3) isometry group.

6It is this small leading mass that motivates using this state as the inflaton in ‘Fibre Inflation’ models [19].
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4. Phenomenological issues

With mass scales and spectra in hand, it is possible to address — at least in a preliminary way

— some of the phenomenological features to be expected of these models. Of particular interest

is the way knowledge of the UV completion provides more information about the low-energy limit

than is generic to a garden-variety phenomenological model with a low gravity scale. What we

find must contain the generic predictions of supersymmetric large extra dimensions [8], but extends

these by providing the more detailed prediction for the low-energy spectrum and couplings that the

UV completion make possible. Both the low-energy bulk supersymmetry and the new states make

the predictions differ even more significantly from those of minimal ‘ADD’ models [2, 41], for which

gravity is the only field that propagates in the bulk.

Scales

We first summarise the predicted mass scales for the main alternatives. For convenience these are

tabulated in Table 10 for both the geometric and singular regimes, including loop corrections to

the various masses (with and without modulus mixing in the singular case). The numerical values

use the benchmarks defined in §2.

hierarchy small large

regime geo sing (w mix) sing geo sing (w mix) sing

Ms 1 TeV 1 TeV 1 TeV 3 TeV 3 TeV 3 TeV

M6D 2000 TeV 2000 TeV 2000 TeV 10 TeV 10 TeV 10 TeV

M10D 2 TeV 2 TeV 2 TeV 4 TeV 4 TeV 4 TeV

M c
KK 0.5 TeV 0.5 TeV 0.5 TeV 1 TeV 1 TeV 1 TeV

M10D
KK 50 MeV 50 MeV 50 MeV 1 TeV 1 TeV 1 TeV

M6D
KK 0.3 MeV 0.3 MeV 0.3 MeV 0.01 eV 0.01 eV 0.01 eV

m3/2 0.01 eV 0.01 eV 0.01 eV 0.01 eV 0.01 eV 0.01 eV

mmoduli 0.01 eV 0.01 eV 0.01 eV 0.01 eV 0.01 eV 0.01 eV

m2 0.01 eV 0.01 eV 10−17 eV 0.01 eV 0.01 eV 10−17 eV

m1 10−12 eV 10−12 eV 10−22 eV 10−32 eV 10−32 eV 10−32 eV

Table 10: Numerical (loop-corrected) spectrum for the geometric regime. This uses n = 1
3
for small-

hierarchies and n = 1 for the benchmark large-hierarchy. For the masses of the two light moduli, m1 and

m2, the powers of n numerically become Mp/V4/3 ∼ 10−12 eV, Mp/V3/2 ∼ 10−17 eV, Mp/V5/3 ∼ 10−22 eV

and Mp/V2 ∼ 10−32 eV).

The main difference revealed by the table is that between large and small hierarchies, since this

dramatically changes the scale at which the lightest KK state arises. This difference is similar to

the usual difference between phenomenological models having two or more large extra dimensions.

The table also shows that for both large- and small-hierarchy geometries the spectrum is similar

when the SM is wrapped on a geometric and singular cycle, provided that there is loop mixing among

the moduli (as is the case for most systems of practical interest, such as those involving D7s at

orbifold points). It is only when this mixing is absent that the spectrum differs for a singular cycle,

and the most important difference is a suppression of the mass of the volume modulus, m2.

Finally, the table shows that both the volume- and the fibre-modulus masses,m1 andm2, can be

remarkably light even once loops are included. Such small masses are stable against loops because

of the very weak couplings between these particles and the supersymmetry-breaking SM sector, and

we argue below that these weak couplings also suppress their contributions to macroscopic tests of
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gravity (to which they can contribute because of their small masses). We discuss the implications

of, and uncertainty in, these masses and couplings in more detail below.

4.1 SLED-related constraints

As might be expected for a theory with so many exotic light states, models of this type are subject

to a variety of stringent constraints. These come in two broad classes: those that are generic to

having supersymmetric large dimensions, and those that arise because of the presence of specific

types of new light fields. We briefly discuss each in turn, starting here with the most robust and

generic consequences: those following just from the existence of supersymmetric large dimensions.

Missing energy and KK exchange

The most robust signature to occur in systems with large dimensions is energy loss into the extra

dimensions, since this assumes nothing about the branching rate for KK modes to produce visible

SM particles. Signals coming from virtual exchange of extra-dimensional particles is also possible,

but is more model-dependent to interpret since it assumes the absence of exotic decay processes

[8] and since exchange also competes with unknown direct brane-localised contact interactions that

need not involve the extra dimensions at all [42]. Because large dimensions were initially proposed

[1] as alternatives to supersymmetry, the study of this loss rate is usually aimed specifically at the

radiation of extra-dimensional gravitons [41], and this has the advantage that the graviton couplings

are relatively model-independent.

Emission cross sections can be sizable because of the enormous phase space of states that can be

emitted; even though each KK graviton mode couples with 4D gravitational strength, σn ∝ 1/M2
p ,

the sum over all modes converts this small coupling to higher-dimensional gravitational strength.

For d extra dimensions σ ∼
∑
n σn ∝ (VdE

d)/M2
p ∝ Ed/M2+d

D , where M2+d
D = (8πGD)

−1 is the

reduced Planck scale in D = 4 + d dimensions. For MD ∼ 1 TeV this leads to weak-interaction

production rates.

Two consequences follow from the strong growth with energy of these cross sections,

σ ∝ 1

M2
D

(
E

MD

)d
. (4.1)

First, such strong growth would eventually violate the unitarity bound once E ∼ MD, indicating

that a fuller string calculation is required at higher energies, where the emission and exchange of

string states is no longer negligible. Second, it shows that it is the highest energy KK states that

dominate in the cross section, and since these also have the shortest wavelength their properties

(and the cross section) is largely insensitive to the details of the higher-dimensional geometry. Con-

sequently cross sections at high energies — such as for processes at colliders — that are computed

using simple toroidal models for the extra dimensions are also likely to capture those for more

complicated Calabi-Yau extra-dimensional geometries.

The absence of this observed energy-loss signal in an experiment at a given energy E can be

quoted as an upper bound on the extra-dimensional gravity scale, MD. Because d controls the

power of the small ratio E/MD in the cross section, the bound on MD obtained from a fixed E

and upper limit on σ(E) weakens with growing d. Searches for graviton emission at the Tevatron

[43] place limits of order MD
>∼ 1 TeV for d = 2 (so D = 6) and MD

>∼ 0.8 TeV for d = 6 (and so

D = 10).

Since supersymmetry introduces many more states into the bulk than just the graviton, there are

potentially many more channels for energy loss when the large extra dimensions are supersymmetric

[8, 9, 44]. This means that the relation assumed between σ(E) andMD differs in the supersymmetric

case from vanilla ADD models where only the graviton appears. To the extent that all of these new
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states also couple to the SM brane with a strength similar to the bulk graviton, on dimensional

grounds their production cross section scales the same way with E, leading to an estimate σSLED ∼
NσLED where N is an estimate of the number of additional states present in the bulk. But because

σ ∝ M−4
6D when d = 2, this means that it is really M6D/N

1/4 that is constrained rather than

MD when upper limits on σ(E) are compared with calculations assuming only graviton emission.

Luckily, this represents a factor of ∼ 3 even if N ∼ 100 [8].

An important assumption in this estimate is that the new field content also couples to branes

with gravitational strength. But this need not be true, particularly given that the SM brane

must badly break supersymmetry. Better yet, in 6D there are some kinds of bulk fields for which

dimensionless couplings are possible, such as a coupling
∫
d4xH†H ϕ where H is the usual Higgs

boson and ϕ is an extra-dimensional scalar. In this case the emission cross section need not grow

as a power of E/M6D, and so can extend the reach of extra-dimensional searches [44].

More recent limits are also available from the LHC, however to date these rely on exchange

processes for which the produced extra-dimensional states are assumed to decay into visible particles

(and so are slightly more model-dependent). These give slightly larger bounds,MD
>∼ 4 TeV [45, 46].

Supersymmetric phenomenology:

The models examined here share another robust consequence of supersymmetric extra dimensions:

the absence of MSSM superpartners for each of the known SM particles. This occurs because

having Ms as low as TeV scales implies the SM must reside on a non-supersymmetric brane. As

a result supersymmetry is nonlinearly realised: applying a supersymmetry transformation to a

particle like the electron gives the electron plus a goldstino and not a selectron [8]. This means that

the spectrum on the SM brane does not include the MSSM, implying the — so far successful [47] —

prediction that LHC searches for MSSM states should find none. SLED models are the remarkable

counter-example to the assertion that weak-scale supersymmetry requires the MSSM.

Astrophysical bounds:

Astrophysical systems provide strong constraints on large dimensions due to the new energy-loss

channels such dimensions would provide for stellar systems and supernovae [2, ?, 49]. Perhaps

surprisingly, these bounds are even stronger than collider limits despite the much lower energies to

which they have access: ambient temperatures set the typical energies as E ∼ T ∼ 10 MeV. Again

the limits obtained come in two forms: model-independent constraints on energy loss; and more

model-dependent bounds that assume specific branching ratios of KK states into ordinary particles.

In particular, standard calculations of supernova energy loss agree well with SN1987A obser-

vations, and if this is interpreted as an upper limit on energy-loss into gravitons it implies M6 >∼ 9

TeV for 2 extra dimensions [49]. Because of the comparatively low energies involved, this bound

collapses toM10 > 10 GeV if all six extra dimensions are similar in size. Although this latter bound

is easily evaded for the small-hierarchy models considered here, they provide a stronger test for the

large-hierarchy case since they robustly require M6D >∼ 10 TeV.

Much more stringent bounds are also possible if the extra-dimensional KK modes have signif-

icant branching fractions into observable particles, like photons or gluons [49, ?]. In this case the

absence of a γ-ray signal in the EGRET satellite impliesM6D >∼ 40 TeV for the large-hierarchy case

(dropping toM10D >∼ 40 GeV when all six dimensions are similar in size). In this case considerations

of neutron-star cooling give even stronger limits: M6D >∼ 700 TeV (or M10D >∼ 200 GeV). Because

they are more model-dependent, these much stronger limits only apply under certain assumptions.

In particular they are evaded if the KK modes have much more efficient branching fractions into

invisible degrees of freedom [2] (such as if decays onto another ‘trash’ brane are faster than those

into SM particles).

– 27 –



This makes it important to know precisely how KK modes decay in any particular candidate

string vacuum. In the models of interest here the rate for generic KK modes decay onto states

localised on both of the small cycles, τ3 and τSM = τ4, are likely to be very similar, provided similar

numbers of states are present on each into which the decay can take place. However, cascade

decays into lower-energy states, either in the bulk or on branes wrapped on the large cycles, are

also possible and would be equally invisible.7 The rate for KK decays to the SM brane is of order

ΓSM ∼M3
KK/M

2
p , while these higher-dimensional decays effectively couple with higher-dimensional

Planck strength depending on the number of dimensions into which the daughter states can move

[2]. Decays into effective 6D states therefore have a rate Γ6D ∼ M5
KK/M

4
6D while those that can

decay into 10D states do so with rate Γ10D ∼M9
KK/M

8
10D. If all three are possible, they occur with

the relative rates

ΓSM : Γ6D : Γ10D ∼ M3
KK

L2l4
:
M5

KK

l4
:M9

KK , (4.2)

showing that (all other things being equal) decays into 6D and 10D states dominate those to the

SM brane by a factor of l2/L2 if MKK ∼ 1/l. For states with MKK ∼ 10 MeV using 1/L ∼ 0.01 eV

and 1/l ∼ 1 TeV gives ΓSM : Γ6D : Γ10D ∼ 10−16 : 100 : 10−18, showing that decays to 6D brane

states can indeed be dominant for states most relevant to astrophysics.

Ensuring the astrophysical energy-loss bounds are not transgressed is an important constraint

on more precise models of the physics on the various branes.

Tests of Newton’s inverse square law

Precise tests of general relativity [50] provide another class of robust tests of the models described

here. These tests are sensitive only to states having masses in the sub-eV range or lower, but in

some circumstances can be sensitive to interactions that are weaker than gravitational in strength.

Tests of Newton’s inverse square law [51] over micron distances provide among the most robust

tests. These are sensitive to two kinds of states: the large number of KK modes with sub-eV masses

in large-hierarchy vacua [2]; and the various moduli that generically lie in this mass range for both

large- and small-hierarchy models. Each of these can mediate a long-range force between test bodies

over a range of order microns or larger.

The force mediated by exchange of moduli would deviate from an inverse square law and instead

would follow the standard exponential Yukawa form for which experimenters search. Those moduli

coupling with 4D gravitational strength, ∝ 1/Mp, become constrained once the range of this force,

∼ 1/m, becomes larger than ∼ 45 µm.

The signature expected from an exchange of a tower of KK modes in the large-hierarchy case

has a slightly different signature, however, since the coherent sum over the KK tower never produces

an exponential form; instead producing a crossover between the 1/r2 law at long distances to a 1/r4

law at short distances [52]. The details of this crossover can depend on the precise shape of the two

large dimensions.

Cosmology

Very-early universe cosmology also furnishes strong constraints on any model with very large di-

mensions [2, 9, 8]. This is because bulk KK modes of the large dimensions can ruin the success of

Hot Big Bang cosmology if they (or their decay products) are too abundant at the epoch of Big

Bang Nucleosynthesis (BBN) or thereafter. This means that there is a ‘normalcy’ temperature [2],

T⋆, above which the thermal history of the universe on the SM brane is not simply described by

the extrapolation of the standard Hot Big Bang to higher temperatures.

7Although energy-momentum conservation forbids straight bulk decays for toroidal dimensions, they can occur

for the more complicated extra-dimensional geometries arising here because of their absence of isometries.
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One way cosmology could become nonstandard is if the SM brane were to cool more quickly

through evaporation into the bulk rather than expansion of the on-brane geometry. In the large-

hierarchy case with M6D ∼ 10 TeV this occurs once T >∼ 100 MeV (and for the small-hierarchy case

with M10D ∼ 1 TeV it instead happens once T >∼ 10 GeV). Since both of these are larger than BBN

temperatures, TBBN ∼ 1 MeV, they need not be a problem. Rather, they are a complication when

extrapolating to the earlier universe (as is of interest, say, when finding a dark-matter candidate).

Relics of bulk KK states are cosmologically dangerous, however. This is because the stabilisation

of the extra dimensions imposes a comparatively large energy cost on changing the geometry’s shape,

making the KK modes lose energy with the universal expansion like massive particles rather than

radiation: ρ ∝ a−3. If produced too abundantly bulk states produced by thermal evaporation

from a SM brane would carry too much energy, and can over-close the universe if T is just a few

MeV in the large-hierarchy case (with M6D ∼ 10 TeV), or T >∼ 300 MeV for small hierarchies (if

M10D ∼ 1 TeV). Furthermore, if KK modes have an appreciable branching fraction into photons,

even a decay rate as small as T 3/M2
p produces enough decays to be noticeable above backgrounds

for temperatures in MeV ranges [2].

These constraints are largely require a pre-BBN history that suppresses the abundance of KK

modes relative to those produced by thermal evaporation from the brane. It helps if they can decay

invisibly once produced, as is required in any case from the neutron star bounds considered earlier.

This might be accomplished by having an inflationary epoch which irons out any wrinkles in the

extra dimensions as well as from the four dimensions we see, followed by a reheat on the SM brane to

temperatures not too far above nucleosynthesis temperatures. Constructing such a scenario in detail

would be worthwhile, but goes beyond the scope of the present paper. It is nevertheless encouraging

that the basic ingredients likely to be required are present in these large-volume constructions.

4.2 Less generic tests

We next turn to potential signals that rely on the existence of particle states associated with the

stringy UV completion, that are not generic consequences of supersymmetric large extra dimensions.

Moduli and precision tests of gravity

The spectrum of moduli in these constructions generically involve several kinds of unusually light

scalars. More remarkably, the masses of these scalars appear to be stable against radiative cor-

rections. As described earlier, the mass of generic moduli lie in the 10−2 eV range that can be of

interest to tests of Newton’s inverse-square law over micron distances. But the mass of the volume

and fibre moduli, δϕ2 and δϕ1, are much smaller, making them potentially relevant to tests of

general relativity in the solar system and with binary pulsars.

Despite these small masses we believe these scalars are unlikely to be observed in present-

day experiments. This is because the low masses for these states come hand-in-hand with the

weakness of their coupling to the SM brane. (Recall for these purposes that it is the SM brane

that breaks supersymmetry the most, and corrections to the scalar mass from SM particles go like

ζMp/V, where couplings to SM fields are of strength ζ/Mp.) Since the discussion of §3 shows that

ζ <∼ 1/V1/2 ∼ 10−15 this means that the masses are only small enough to be of interest for terrestrial

or solar system tests when the couplings are small enough to make the effects of scalar exchange

too small to be measured.8

Cosmology

As we’ve seen, pre-BBN cosmology must be very different than a simple extrapolation of Hot

Big Bang cosmology to higher temperatures. A proper identification of a dark-matter candidate

8Conversely, should we have missed a graph that increases the couplings to ζ ∼ O(1), the same kind of graph is

likely also to lift the mass up to that of a generic modulus, m ∼ O(Mp/V).
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requires a formulation of what this new cosmology is. The good news is that there are a number of

candidate new particles that are not too heavy and do not couple appreciably to SM fields, and so

could plausibly be a dark-matter candidate.

What is more surprising is that the lightest moduli can be light enough to be cosmologically

active into the later universe, and right into the present day for the large-hierarchy models with

m1 ∼ Mp/V2 ∼ 10−32 eV. This suggests that even the much-later universe could be described by

a scalar-tensor model, with its weaker-than-gravitational couplings explaining both the stability of

its small mass and the absence of evidence for new forces. The presence of such a light modulus

resembles experience with six-dimensional models, for which the small scalar mass is related to

the small size of the vacuum energy, leading to a late-time quintessence cosmology [53]. It would

be instructive to explore whether similar cosmologies are possible for the full string constructions,

though a proper calculation requires a quantitative understanding of brane back-reaction.

Accelerator physics

The detailed non-minimal spectrum predicted by the stringy UV completion also has implications

for the signature of these kinds of models in collider experiments. In particular, there is more to

be discovered than the minimal set that comes for any theory of supersymmetric large dimensions.

Among these other states are string states and those states associated with the KK scale of the

small cycles and of the small K3 base, all of which lie at TeV scales. It is noteworthy that the 6D

Planck mass, M6D, is much always larger than either Ms or M
10D
KK in these models. This is crucial

for tests at colliders because it means that there can be observable signals, despite having the 6D

Planck scale above 10 TeV. (By contrast, for the pure graviton emission of simple ADD models,

there are no observable signals if M6D > 10 TeV.

A proper exploration of the precise signals to be seen requires a more detailed construction of

the physics on the SM brane; a topic to be explored in further work.

5. Conclusions

We have shown that there are ways to actually stabilise the closed string moduli in an anisotropic

way such that two dimensions are hierarchically larger than the others. We have found two scenarios

that achieve this, both for K3 fibered Calabi-Yau compactifications. In the first, based on loop

corrections to the Kähler potential, the two extra dimensions are larger than the rest but only

by a few orders of magnitude. In the second, the presence of poly-instanton contributions to

the superpotential allows an exponential hierarchy of the dimensions and therefore gives rise to

the scenario with TeV string theory and 0.01 mm extra dimensions. Both on the edge of being

probed by completely different experiments. The phenomenology of the supersymmetric large extra

dimensions scenario has been largely explored in recent years [7]. Furthermore TeV strings have

been recently studied in detail in [54].

The fact that K3-fibrations are ubiquitous for our scenario to be realized relies on two properties

of K3-fibred Calabi-Yau manifolds:

1. K3 fibrations are needed in order to have a hierarchically large two-cycle modulus t1 keeping its

dual four-cycle modulus τ1 small. For this to happen the volume V, which is a cubic function

of the two-cycle moduli ti, has to depend on t1 as V = t1f(tj) + g(tj) for tj ̸= t1, since only

in this case τ1 = ∂V/∂t1 will be independent of t1 and can be kept small while having large

t1. This volume dependence on the 2-cycle moduli ti defines a K3-fibred Calabi-Yau.

2. In order to achieve the large hierarchy scenario we needed a four-cycle which is not rigid

(h1,0 = 0) in order not to have single-instanton contributions to the superpotentialW but yet

h2,0 = 1 in order to have poly-instantons. The conditions h1,0 = 0, h2,0 = 1 defines K3.
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It is worth emphasising that the progress on modulus stabilisation of the past few years has

made possible to find explicit string theory realisations of the three main proposals to address

the hierarchy problem, namely: low-energy supersymmetry [4, 5], warped extra dimensions [3]

and large extra dimensions [5]. We showed that our scenario allows for the LARGE volume to

be realised in such a way that there is a hierarchy of scales in the Kähler moduli, allowing the

interesting possibility of having two dimensions much larger than the rest and making contact

with the potential phenomenological and cosmological implications of two large extra dimensions

scenarios [1]. Notice that the original proposal of [1] did not solve the hierarchy problem by itself

but only moved the problem to the problem of stabilising the extra dimensions at exponentially

large values. It also lacked an UV completion. We address both issues in this article by dynamically

stabilising the extra dimensions in string theory. Furthermore, the phenomenology of our scenario

differs from the standard two-large extra dimensions scenario in various ways:

• The bulk is supersymmetric with supersymmetry broken at sub eV scales. Supersymmetry is

broken at the TeV scale at the standard model brane, in particular there are no supersym-

metric partners of the standard model particles. This is also a property of the SLED scenario

[7] but not in the original large extra dimension scenario [1]. The next three properties are

not present in the SLED scenario though.

• There are Kaluza-Klein states close to the TeV scale, coming from the smaller cycles.

• There is also a rich string spectrum close to the TeV scale.

• There is a rich spectrum of very light moduli with unusually small masses and couplings

weaker than gravitational coupling, such that they are consistent with present observations

but with potential cosmological and astrophysical implications.

The fact that the different approaches to the hierarchy problem are realised in IIB string

theory opens the possibility that different mechanisms may address different hierarchies. This is

precisely the motivation for the supersymmetric large extra dimensions scenario (SLED) [7], which

generally requires not only exponentially large extra dimensions but precisely two exponentially

large dimensions, as we have found here. It remains to be seen that this realisation may actually

help addressing the more serious dark energy problem within concrete string compactifications.
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