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Abstract

Izergin-Korepin’s lattice discretization of the non-lareSchrédinger model along
with Oota’s inverse problem provides one with determin@presentations for the
form factors of the lattice discretized conjugated fieldrapar. We prove that these
form factors converge, in the zero lattice spacing limitthose of the conjugated
field operator in the continuous model. We also compute tlgelaolume asymptotic
behavior of such form factors in the continuous model. Ttaesen particular charac-
terized by Fredholm determinants of operators acting osecl@ontours. We provide
a way of defining these Fredholm determinants in the casersdrigeparamateres.

Introduction

Finite volume lattice discretizations provide a naturaywécircumventing problems related with the ultraviolet
and infrared divergencies of quantum field theories in itdinolume. As such, theyfier a possibility of a
rigorous analysis of the spectrum and correlation funstidthe strategy being first to obtain expressions for the
lattice discretized finite-volume model and then take appabe limits so as to reach the results relative to the
continuous models of quantum field theory in infinite volur@éearly, in general, carrying out such a program is
hopeless in as much as finite-volume lattice discretizatinotroduce tremendous complication of the model. Yet,
in the case of integrable quantum field theories i1(ldimensions it has been shown that, for a wide variety of
models, there do indeed exist finite volume lattice diszaditbns preserving the integrable structure of the model
[1,16,[18]. The latter can be solved either by means of thebadge Bethe Ansatz [3,/6] or through the quantum
separation of variables][1] 3,116]. Such methods lead eaintio the caracterization of the spectrum be means
of non-linear integral equationsl[4,123]. It is then possitd take the continuous (infinite number of sites) limit
on the level of such non-linear integral equations. Thiggiaccess to the spectrum of the associated quantum
field theory in finite volume. In such a way, it was shown forezay models[[4, 15] that the infinite volume limit
of such a description reproduces the prediction$ [24] ferStmatrix and the spectrum that were building on the
factorizable scattering theory in infinite volume.
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The purpose of this paper is to push the study of continuouisliof integrable lattice regularizations of
quantum field theories a step further, this time in respettta@orrelation functions. We will focus on the simplest
possible example, the non-linear Schrodinger model (NLSB#8rting from its lattice discretization introduced
by Izering and Korepirn [6], we recall the inverse problem @t®[17] and Slavnov’s scalar product formulal[21]
S0 as to provide determinant representations for the daffiproximation of the conjugated field operator. By
generalizing and simpifying the approach [of [5], we showt thase form factors, along with the generic scalar
products and norms, converge, when the lattice spacing tgasso, to the associated quantities arizing in the
continuous model in finite volumie. This constitutes the main result of the paper. Our approaatbe applied to
many other correlators in this model. In particular, it pd@s the missing steps in the derivation of the previously
obtained determinant representations for the field, cat@ufield and current operatofrs [12] 17] in the continuous
model. Finally, building on the techniques introduced[ig][2nd further developed inl[7) 9] we compute the
large volumeL behavior of the properly normalized determinant repregamnt for the conjugated field’'s form
factors. These results are alternative to those obtaing?] im as much as we start fromféérent determinant
representations. The large volume asymptotics we obta&irused in([13] to derive the long-time and large-
distance asymptotic behavior of the so-called one panadieiced density matrix in the NLSM. We also would
like to recall that such large asymptotics of properly normalized form factors involvedtnolm determinants
of integral operators acting on a closed contour. Thesametants may fail to be well-defined in the case of
arbitrary excited state. In the core of this paper we progigdey to circumvent such fliculties.

This paper is organized as follows. In sectidn 1, we intredtie lattice discretisation of the NLSM and
recall several known facts about the model. In sedtion 2, iesgmt the main result of the paper: the convergence
(in the zero lattice spacing limit) of the form factors foethattice discretisation of the model to those of the
continuous model. We also provide determinant represengaffor these form factors in the continuum. In
section B, we provide formulae for the large volume limit foese form factors in the so-callegparticlghole
sector. In addition we proove a theorem providing somefidation in respect to the definition of the Fredholm
determinants occuring in these expressions. The proofeafrém{ 2.2, which is slightly technical, is gathered in
appendiXA.

1 The lattice discretization of the model

1.1 The Lax matrix

The Lax matrix proposed by Izergin and Korepin [6] for theitz non-linear Schrdodinger model reads

A
~i5A + Zn + Cxixn/2 —i VCxpoz,
Lln()=| 2 " . where Zy=1+(-D)"cA/4. (L1

i VGoz,xn i2A+Zn+CX*an/2

It is represented as ax22 matrix on the auxiliary spacéy ~ C? whose entries are operators acting on some
dense subspace @i, ~ L?(R). The operatorgn, %, are canonical Bose fields with commutation relations
s Xl = Adnm. In particular,y}, is the adjoint ofy, andpz, = +/Zn + Cxiyn/4. The parametet plays the role
of the lattice spacing.

The indexn labels the copy of the quantum spaklg where the canonical fieldg,, x;, act non-trivially. It is
readily checked that the various fields entering in the didimf the Lax matrix satisfy to the additional relations

XnPz,-s¢ = PzoXn and Pz,-5 Xn = XnPZy - (1.2)
The Lax matrix[(1.]1) satisfies the Yang-Baxter equation
Roo (4 = 1) Lon (4) Lo (1) = Lon (1) Lon (4) Roo (A = 4) (1.3)



driven by the rational R-matriRyy (1) = 1 — icPqy, With Poy being the permutation operator ¥y ® V. The
matrix R(1) becomes a one-dimensional projectoriat ic. As a consequence, the Lax mattiy, (1) satisfies
the quantum determinant relation

. A? 2iZ, . 2iZ A? _ . . 2iZ
Lon(/l)o%Lgn(/ch)o%:Z(ﬁ— A”+|c)(/l+ A”):T(/l—vn)(/l—vnﬂc) with vy = — A”.
(1.4)

Above and in the followingz stands for the complex conjugateof

It was observed by Izergin and Korepin [6] that the zeroedefuantum determinant define the values of the
spectral parameter where the Lax matrix has rank one. Nathelyax matrix[(1.ll) becomes a direct projector at
the pointsvy, vy, — icC:

oo (leo = a7 A7) . witn o= 3P0 ) L gm0 as

[Lon % — i€)]ap = @5 (M) B(N) . with — aP(n) =( ‘Ziﬁén—AC/“ ) . BOAn) 1

2ipz,-Ac/4
" (16
Z 2( ) (L6)

Vexn
It is a reverse projector at the points+ ic, vy,

. . 1 *
[Lon (n + i6)]ap = 5C7() Y() . with 6(+>(n)=—( Vexn ) y<+><n)=( Ve ),<1.7>
2\ —2ipz,-ac/a 2ipz,-Ac/a

Lo Glas =670 500 with 60 =( 22 ) 0w = (2 ) 18)

1.2 The lattice and the continuous models
The Hamiltonian for the lattice model on an even number e is is built out of the monodromy matrix:

To;]__M(/l) = To(/l) = Lom (/l) ...Lo1 (/l) = ( égjg S%j)) ) with Me2zZ. (19)

We have represented it as ax2 matrix on the auxiliary spac¥; whose entries are operators acting on the
quantum spacgé{ = ®r'\]":1?(n. In the following, we set

. 2 .c
VEVzn_1:V2n+|C:—Z+|§ . (110)

The fact that Lax matrices become projectors (or reversiegars) atl = v allows one to build the below local
Hamiltonian out of the transfer matrix(1) = tro[To (2)]:

M/2

10) ) = Y { B2k + D)]Loadv) Loa-a() ¥ (k- 2))
k=1

- 0[BM (2K + )]0, [Loak(A) Lozk-1(D] ], ¥ (2k - 2)

Above, © refers to the operation of transpotion of the ve@6?(2k + 1). According to Izergin and Korepin [6],
the above local Hamiltonians goes, in the continuum limit:

A—0 with L=AM fixed (1.11)



to the Hamiltonian of the NLSM

Hiis = [ {0,27() dy® () + c 07 (y) DT (y) @ (y) ()} dy . (1.12)

og}r_

In (LI2)® and®" are canonical Bose fields subjectiperiodic boundary conditions. In such a continuous limit,
thek™" site of the lattice model can be though of as contributindiéo"tontinuous coordinatet = kA. Then, the
discreet fieldg, are expected to be related to the canonical Bose fieldg as
(n+1)A
Xn = f ®(x) dx. (1.13)
nA
However, such an identification can only be given a formaseén as much as, strictly speaking, the does not

have a precise mathematical meaning. On the other hanthghas a sens in its own: the local operatgssand
X can be constructed explicitly, for instance as the harmosiillator creatiofannihilation operators.

1.3 The spectrum and eigenvectors

The transfer matrid — 7 (1) is diagonalized by means of standard considerations ofigfebeic Bethe Ansatz.
One introduces the so-called pseudo-vacuum $€ate= |0); ® ...|0)y where|0), is uniquely defined by the
conditionyy, |0), = 0 for all n. The commutation relations issuing from the Yang-Baxteragign [1.3)

A- ;1+IC

AWB) = —= B(u)A(/l)——B(/l)A(ﬂ) (1.14)
DA)B) = /1/1” B(p)D(/l)+—B(/1)D(/u) (1.15)

lead to the conclusion that the state
| v (12a}})) = B(11) ... B(An) | O) (1.16)

is an eigenstate of the transfer matr{x) associated with the eigenvalue

- Ap +ic A= ap—ic
A1) =a() ]_[ +d(A )]_[ — Ap (1.17)
where
M M
AA CcA . AA CA AA CA|Z(.AA CA\ ?
a(/l) {—74'1 4} { 2 1—7} and d(/l)—{|7+l 4} {|7+1—Z} (118)
provided that the paramete{psa}’l\' solve the Bethe Ansatz equations (BAE)
N .
Ar—A4 c
dur):]_[ et N, (1.19)

a(l) g d—dp-

p#r



The solutions to(1.19) are real valued, satisfy to the dieadt@aepulsion principle:
ifazb then A3+ Ap, (1.20)

and are in a one-to-one correspondence with a certain s{gegending o andL for AM = L fixed) of the sets
of all ordered integeré; < --- < €N, fa € Z. More precisely, given any choice of integelis< --- < ¢y, there
exists aA such that, forr < A (with AM = L fixed) there exists a unique solution to the below set of litigaic
Bethe equations

N .
—i In(g((zi:;) + pzzllé’(ygr—ugp)=27r(gr_ N;-l) , r=1...,N with 0(/1):i|n(:zij) . (1.21)

Finally, using elementary properties 6f (1.21), it can bevahthat, given a fixed produ&tM = L and any choice
ofinegers; < - -- < £\, there exists &g > 0 such that the parameterg = ., (A) are continuous ih € [0; Ag ].

In fact, theA — 0, MA = L limit of such a solutior)u‘ga = lima—oue, (A) gives rise to the set of parameters
solving the logarithmic Bethe equations arizing in tejuasi-particle sector of the continuous model described
by the Hamiltonian[(1.72):

N
N+1
Ly, +29(ﬂ2—u§p)=2ﬂ(fr— 5 ) ,  r=1..,N. (1.22)
p-1

Throughout this paper, we will always use the superscrifat @&ssto indicate tha(pga}’l\' stands for the solution of
the Bethe Ansatz equations for the continous model. Likewviise absence of such a superscript will indicate that
one deals with the solution of the model at finiteWe will omit the explicit wirting of thisA dependence.

It has been shown in[5] that the vectcl)r;s({pga}'f» converge, in some suitable sense, to the eigenfunctions

L
| W({ug )0 )) = f o(xa, - xn g ) ©F (xa) ... @ (xn) 10) dx (1.23)
0

of the continuous Hamiltoniah_(1.112) in ti¢ quasi-particle sector. The functiam(xl, ces XN {/la}T) can be
constructed by means of the coordinate Bethe Ansaiz [14ieans

N . N
()D(Xl, XN | {ﬂa}T) _ (—| \/E)N Z 1—[ {/10'(6.) - /lo'(b) - ICSgn(Xa - Xb)} . 1_[ ei/lu.(a)xae—i/lu—(a)% . (124)

B a<h Ao@) = (o) a-1
In (I.24) we made use of the following definition for the sigmdtion:
sgn(x) =1 forx>0 , sgn(x)=0 forx=0 , sgn(x)=-1 forx<O. (1.25)

1.4 Structure of the space of states

The very setting of the algebraic Bethe Ansatz allows onehtvacterize the structure of the space of states by
providing determinants representations for the normss §bdi|the scalar products between Bethe vectoris [21].



Proposition 1.1 [11] Let {ﬂga}T+1 be any solution to the Bethe Ansatz equatihZ]) then the norm of the
associated Bethe state admits the below determinant repiaison

, N+l ’\ﬁll (ke — pe, —iC)
o (e D) = | ] {2imLE] ) (ea) Al )l )} s detu.1 [2¢] . (1.26)
a=1 l—l (/‘l[a - /‘[[b)
ey

The entries of the matriz® read

—w _ . Klue, —pa)
Eik =0k — = .
277'—,6{5&}(/1&))

and we have agreed upon(K) = ¢'(J1).

d(aﬁ) 1 N+1

with .’f\{[a} (w) = —ﬁ In(m o Za(w He,) + M . (1.27)

Theorem 1.1 [21] Let {,uga}'Il+1 be a solution to the logarithmic Bethe equaticﬂ@l)and{/la}'l\l+l a generic set
of parameters. Then, the below scalar product reads

N-+1
l:[1 d (ue,)
(0 (e o (112 ) = == detus1 [Q (e {4a))] (1.28)
al]b (ke, — pey) (b — Aa)
where
N-+1 N-+1
[ ({ua), ()] = a4 t () ) [ | (a— A =€) = d (@)t (o) [ | (a— A +ic) (1.29)
a=1 a=1
and
t(4 ) = —ic (1.30)

(A-w@-pu—ic)”

It was found by Oota [17] that the reduction of the Lax mataptojectors at zeroes of the quantum determi-
nant that allows one to build local Hamiltonians from thengf@r matrix can also be used to reconstruct certain
local operators of the theory. In particular, one has thatitle

2
“10)-B0) = { Y0 MEP® | s (1.31)
r=1
Using the explicit formulae fop™*) (k) 8*) (k) one gets

2
P IMEND) = S + 2, w0z and AW = i VExiy ez - (1.32)

Thus, at least formally, one expects the below reconstmdtrmula for operators in the continuous model to
hold.

Ve

) -BW) = - A@@+om% (1.33)



2 Form factors of the conjugated field operator

The formal identification[(1.33) of products of entries of thonodromy matrix with operators in the continuous
model can be made rigorous. This is one of the main resultsopaper. It allows one to provide the missing steps
in the passage from determinant representations for nddeal operators in the lattice model obtained through
the solution of the inverse problem |17] to those for the fdagtors of the local operators in the continuous case.
The proof of this theorem is postponed to appedix A. Theeealso prove a similar result for the determinant
representations of scalar products for the continuous mode

Theorem 2.1 Let{/lga}'l\' be a solution of the logarithmic Bethe equatidfis?1)in the N particle sector an(;ua}’l\'
a set of generic, pairwise distinct complex numbers. Theméhow scalar product in the lattice model converges,
in theA — 0 limit, to the scalar product in the continuous model

A—0
0

L
dNx
(v (tead) ¥ (1221)) ) — fﬁ @(xa, - x| {al)) @(as - xn HAE )Y - (2.1)
As a consequence, one has the below determinant represanfat the scalar products in the continuous model:

N
1 d(2S)
a=1

S dety [ QA Y, {ual))] - (2.2)
al;lb(ﬁc - /1C ) (ub — pa)

Theorem 2.2 Let {u.,}N** and {4,,}Y be any two solution of the logarithmic Bethe equati§h®l)in the N+ 1
and N patrticle sectors respectively. Then, the expectatibne

2
FO (e e 0Y) = == - (0 (™) | 7200 BO) [w (14, 1Y) ) (2.3)
Ay
converges to the below form factor of the field operator indbietinuous model
L
N+1. [ qC d"x c \N+1 ¢ N

For (g5 5Y) = | S @00 X0 T D) - .o | (E, 1) (2.4)

0

The latter admits the below determinant representation

N+, 'L/f -5ag ~2inFe(a8,) = '“gb — A5 —ic
1] (4 - 4, +ic)
A —AS +ic
K = —i ﬁl A g, gV e K (2 - 47) (2.6)
Ui =~ Cc - . .
/l +ic N —2JinFe(As.
K (g -) € -1
a=1
#]
Above, we made use of the so-called the discreet shift umiefi for the continuous model:
_ N+1,,C _ i N ¢,
N ey e
zlﬂt’a_“’_'c a1 A, —w+IC



2.1 Determinant representation in the lattice model

Determinant representations for the form factors of thgugmated field operator in the NLSM have been obtained
in [10] through the use of the two-site model, and[in/[17] wiltle help of the inverse problem previously dis-
cussed. These results all relied on the hypothesis of theeagence of the lattice discretiztion to the continuous
model has been proven in theoréml 2.2 above. Actually, we pemgded a slightly dierent (in respect to the
aforecited [[10[_17]) determinant representation Fgy ({,ng N+ SVERH ) The equivalence of our represention
with the previous ones can, in principle, be checked Wlthhhkp of determinant identities analogous to those
established in [8,]7]. We now derive a determinant represiemnt forFEDAT) defined in[(Z.8). This provide a slightly
different representation in respect to the one obtained by @¢}a [

Proposition 2.1 The discreet approximation(ﬁ ( pe ) () ) defined in(2.3) admits the determinant repre-
sentation

N
[T (A, —v+iC) N+1 N

F(A)({ }N+l {/l}) 2\/EN1—[+1 V—Hty a=1 l_[l—[ 1
(o) He, a A L 1V U, —ic N+l lufa_/lrb

(#ea —y) alb=l

N+1 N+1

]—[d(,l[a) ﬂ{a(ark)[ 2'”F(’l'k)]l—[(,uga Ar, — |c)} det [ox + UL . (28)

Ar; — A, +1C
U(A)z_il\ﬁ1 /lrj_,ufa aEI( '] ).K(/lrj,/lrklv)
ik a=1l /lrj —ﬂ€a+ic

—2inF (1) ' (2.9)
H (/ll'j - /lra) e - 1
a;jl
and, recalling that K(1) = ¢ (1) with 6 (2) given in(1.21)andv in (1.10)

K(w,w’lv):%;ic{K(w—w’) —i(l— a)’+ic)( ! — — 1 . )} (2.10)

yv—w —-IC/\w—-—w +IC w-Vv+IC

Also, above, we made use of the so-called the discreet ghdftién F¢ for the continuous model:

N-+1

_ . N .
e 2nFw) _ [ M@ *IC [ Ay —w-lc (2.11)
g Mea —w—1C 2 1 A, —w+IC

Proof —
Using thatl ¥ ({ue,)y ™) ) is an eigenstate af-%(2) for any 4, it readily follows that

N-+1

Pl (bl ) = T2 1000 11—[VVM :“a (v () [ (120 ) (2.12)

In the scalar product formula, we agree upb, = v.
Using techiques proposed inl [7, 8] it is possible to factaraaCauchy determinant from the determinant of
Q. This leads to the representation

et [ (2, ) [0, )] = Dot [M ] dety.a[S] - (2.13)

la — /lrb



The matrixS takes the form
N+1
Hl (/lrJ /Jfa)
a=

Sik = oY (An Hueh ™) + v gy (il a) lyai=iaa) (2.14)
A — A

egl( g ra)
a#]

forke[1; N+1], je[1; N]andSns1k =Y (Ar, | {Ar,}).

Above, we have set

N+1 N+1
Y (a1 a(/l)n(Tk— —ic)+d(/l)lk1(rk—/l+ic). (2.15)

One can reduce the dimensionality of gdet[S] by 1 thanks to the below linear combination of columns

«y(ﬁrk | {ar, I1\I+1)
(V | {/lra}N+l)

Then, using explicitly that,,,, = v, one gets

Cy « Cx - Cnst - (2.16)

y /lr |{/lra}N+l
dety,1[S] = Y (v | {4, }4") - dety [Sik — Sjn+a (i ) ) (2.17)
Y (v )
The functions¥ (4, | {ue,}y™) can be recast in terms of the shift functisa,) given in (Z11)
N+1 o
Y (A e ¥) = 20 [ | G = Ay = i) - {1 - ) (2.18)
a=1

To obtain [2.1B) we have used tHatk}l'(\'zl is the solution of theN-particle BAE. Then, computing explicitly the
difference in the determinant and factoring out¥h&nctions, we get that

]detN o+ U] . 2.19)

ta = “ra

N
det [Q({us)» (4] = Y (v K[ [ (A e i) et 1
k=1

It only remains to put all the formulae together. [

3 Large volume behavior of the Form Factors of conjugated figls

In this subsection, we provide formulae for the large volummit of the form factorskF g for a specific class of
excited states. Namely, we assume that the state descvyvuagaq\'*l correponds to an-particlghole excitation
above theN + 1-quasi particle ground state whereas the s{t&’ge’l\' stands for the ground state (, = afora =
1,...,N)in theN-quasi particle sector. The methods for carrying out suchmgdations have been developped in
[7,19,[22].



3.1 Rudiemnts of the thermodynamic limit in the NLSM

Given the set of Bethe roofsl} for the ground state in thBl quasi-particle sector, one builds their counting
function as

N
T = Fo ) = @, L oy e N e Fae 2 @
The latter has the below behavior in the thermodynamic lahihe model (e N,L — +oco with N/L — D)
q
£(w) =) +0O(L™Y) where &(w) = % + g with  p(2) - fe(/l—u) p’ () dﬁ =1. (3.2

-q
The parameteq corresponds to the right end of the Fermi interyaly; q] on which the ground state’s Bethe
roots condensate in the thermodynamic limit. It is definethasinique solution t@(q) = #D.

Recall that any solutio(yga}’l\I+l of the Bethe equations in tid+ 1 quasi-particle sector is uniquely detemined
by the choice oN + 1 integersy < --- < {n41. Itis convenient to parameterize the integgris terms of particle-
hole excitations above tHe + 1 quasi-particle ground state:

=] for je[1; N+1]\hy,....,hy and ¢, =pa for a=1,...,n. (3.3)

The integerg, andhy are suchthap, ¢ [1; N+1]={1,...,N+1}andh,e[1; N+1].
One can actually associate a counting function to any mil{m‘ga}'l\”l by

~ ~ w 1" N + 2
£ty () = G g 1) = Py aZ:; 0w - pg) + oL (3.4)

By construction, itis such thﬁga}(y‘ga) = ta/L, fora=1,...,N+1. Actually, &, (w) defines a set of background
parameterglis}, a € Z, as the unique solutions &, (7a) = a/L. The latter allows one to define the rapidities
Hp,» €SP, Of the particles, resp. holes, entering in the descriprbib{r/m‘[fa}T*l.
It can be shown that the shift function
Fo(w) = L|€(@) - &1y ()] (3.5)

has a well defined thermodynamic limit

F ()= F(ﬂ‘ o )= 22 - 6a) - 3 [$hsp) ~ 6 (L) (3.6)

a a=1

where the dressed phagét, 1) and the dressed chargd 1) solve the linear integral equations

q q
¢(/l,p)—fK(/l—T)¢(T,u)d—2;:%9(/1—/1) and Z(/l)—fK(/l—T)Z(T)%zl. 3.7)
-q -q

This thermodynamic limit of the shift function depends og fharticles’{up,} and holes’{uy,} positions in the
thermodynamic limit. These are defined as the solutions to

E(up,) = Pa/L and & (un,) = ha/L . (3.8)

We remind that the above shift function measures the spdmtgeen the ground state rootg and the back-
ground parametefg, defined byé.,;: ta—da=F (1a) - [Lg’(/la)]‘l (1+0O(L™Y)).

10



3.2 Thermodynamic limit of form factors

By applying propositions 111 and 2.1 it readily follows titta¢ normalized modulus squared of the form factor of
the conjugated field admits the factorization

2
¥ (e N [T (0) | (AN . -
Ce etz O] (ua)) = Dn (1,05 1481) G (kG 075 LAGIY) (3.9)

a

o (i )| e (aga|

into the products of its so-called smooth pén and discreet paiDy.

The smooth part reads:

. c N AS-pS  —ic 2 dety [5jk + Ujk] dety [5jk + Ujk]
N+1. W ( g 1y ) VSR 3.10
on ({,u[a} M ) " E g Hg, — Mg, —iC dety,1 [EW] - dety [EW] (3.10)
There
(zal) ) N (22— Wh —ic) Wa — 2, — ic)
%4 N |= - — 3.11
N( Waly a!b—zll (Za — 25 — ic) (Wa — Wp — iC) (.11)
The discreet part takes the form
_ N 4sinz[arF (9] A 2
Dy ({Wa}ml (s )_ — k 1{ } n(%) .deﬁl[ = _ACI . (3.12)
Henaa He, b

/10
[ {2rL, w8 )} {mw ) a1t
a=
In the remainder of this subsection we discuss the largehavior of these two quantities.

The smooth part

Gn is called the smooth part as its thermodynamic lighitonly depends on the value of the rapidities of the
particles{up,}; and holegun,}] entering in the description of the thermodynamic limit of #xcited state. We
recall that these are defined adin{3.8). The funagigoan be readily expressed [7] in terms of the thermodynamic
limit F (3.8) of the shift function associated to the excited s{;age}’\”l.

o (g 5 (1Y) = gn( L’jp; )[F] x(1+0(LY) (3.13)

a

with

. ‘ 2|n 2 C[F](g+eic)
ﬂpa [F] = 1_[ 1—[ Hhy — G+ €lC e CIF) g +<i) . gColF]
Up, — O + €iC @2inCIF] (upa+eic) de12 [l — K/2n]

a=1 e=%

< W, ( o ) - dety, [1 + U TF] (lep 5 n )] det [1 -+ T [F] (g (an D] - (3.14)
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ThereC [F] is the Cauchy transform dn-q; q] andCq [F] is given by a double integral

q q
du F () F)F ()
CIFI() = | =———— and Cyp[F]=- | ———=dadu. 3.15
[F1() _fZW_ﬁ o=~ [ g (3.15)
All determinants appearing in(3.114) are Fredholm deteamtis pof integral operators of the typeA. The integral
operatorl — K/2r acts on[ —q; q]. The integral kernelt) andU are given by

U (w, o) [F] = 1 w-q ﬁ{(w—ﬂpa) (w_/‘[ha+ic)} Cl2inF] (w)-Cl2inF] (w+ic) K(w-w’) (3.16)

—qg+ic el (w = pn,) (W = pp, +1iC) g 2rF(w) — 1
and
n .
w—9 (@ — pp,) (w — pn, —ic) (C12inF] (@) -Cl2inF] (w-ic) K(w-w)
] F : ARl (@)-ClRinF)(w-ie) 20— W) (3 47
(0, ) IF] = 27ra) q-ic}_ 1{(a) Hh,) (W = pp, — IC) enF(w) — 1 ( )

Above, so as to lighten the notations, we have kept the dgmeedon the particles’ and holes’ rapidities implicit.
The operators + U [F] and| + U [F] should de understood as acting on function defined on a ewzlatkwise
contourég surrounding the intervdl—q; ¢ | but not any other singularity of the integrand. In particulae poles
atw = up, are located inside ofy whereas the zeroes @f e27F() — 1 are located outside of the contour.
In sectior3.B below we provide a more precise definition ebéhdeterminants, as, in principle, the existence of
such a contour is not guaranteed for all possible choiceamafrpetersup, }, {tn,}.

The discreet part

The name discreet part originates in that the leading théymamic behavior oDy not only depends on the
"macroscopic” rapiditiegup,} and {un,} entering in the description of the excited state but alsohenset of
integers| pa} and{h,} characterizing the excited state. By using the technigaesldpped in [, 19, 22] one readily
shows that the leading in L thermodynamic behaviobgftakes the form

B (105,374 149E) = DolF1 R (451221 )17 x (1 0 T (3.18)

where

q
1 [ YOV
2 f : /l—;‘: dadu

29 (x-D] +21—[(AN+1—upa)2 G?(1-v_)G2(2+v.)

’ , 3.19
o (ks [V AN+1 — Hh, (2r)+- - [2qL§’+](V++1)2+V§ ( )

Do[v] =

The parametenyn,1 appering above is defined as the unique solutiobh&o(in.1) = N + 1, G is the Barnes
function and

v -yl } (3.20)

k[v](A) = exp{ v

12



Finally, we agree upon,

L Pa IDI ? a> I~ Pb Z(lu 2> b)
RN,n( {upa}-{pai )[F]= {so(ﬂha,uha)so(upa,upa)ex(u )}a<bso (Hpas Hpy) 2 (tthg: i . [ L ]

L4 (ﬂ Pa> “ha) L4 (ﬂha,/lpa) eN(ﬂha) al;—rzlb 502 (/“‘ pa’/lhb) o™ Py

xﬁ(sin[m(yha)])z_rz({pa N — 1+v(,1pa) {pa),{IN+2-ha— v(,uh)},{ha+v(,uha)})'

a1 b {Pa— APa+v(up)) N + 2 = ha}, {ha}
(3.22)
There
so(w,Q)) fvu) () o) A—p
Nw)=2v(w)In| ——=|+2 and ¢ (Au)=21———— . 3.22
@ =2 n( L2 J T P = 2 O = e 422
Above, we have used the standard hypergeometric-typesemagion for products df-functions:
fad | _ 7@
r = . 3.23
( {bk} ) 1—[ T (by) (3.23)

3.3 The Fredholm determinants

In this section we provide a way to define Fredholm determ#antering in the leading asymptotic behavior
of the properly normalized form factors of the conjugatettifia the case where the conto#t, as it has been
described previously, does not exist. Acutally, this ddbniholds as well in the case of compex valued rapidities.
Prior to stating the result, we need to introduce some rartatiGiverns > 0 ande > 0, we introduce

Us={zeC : |9(@|<s] and #={zeC:|3(@)|<s/2and|R@)|<q+¢|. (3.24)
Finally, givengg € C, we denote
Ug, = {z€ C : 10R (Bo) 2 R (D = R (Bo) and |3 (2)] < T (o)} (3.25)

and agree thaDo . stands for the open disk of radiaghat is centered at 0. Als& refers to the closure of the set
S.

Proposition 3.1 Let me N be fixed and;, § > 0 be small enough. Assume that one is given two holomorphic
functionv and h on U;, such that

h(Uxg)c{z: R(2>0 and z— J(h(2) is bounded orJys . (3.26)
Then, there exists
e By € Cwith R (Bg) > 0large enough and (8g) > 0 small enough
e vo > 0but small enough

« a small counterclockwise logg; around.# . and in Uy;
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such that giveng (1) = v (1) +ih (1), one has
e 20+ _ 120  vA onandinsides; and uniformly in(3,y) € Ug, X Do, - (3.27)

Moreover, given an integral kernel [yvg]({up, )], {7 (w, ') as defined by8.18) the function

F(2) = G(1 -y (-0))G2 + v (@) [ [ (€72 () — 1) - dety, 1 + YU lyvsl(ip 5. lune}])|  (3.28)

a=1

is holomorphic inz = ({zp,}], {uns}1 - B, ¥) belonging taDg = U x 2" x Uﬁo X Doy, this uniformly in0 < n < m.
It admits a (unique) analytic continuation 10 = U7 x 7" x {ze C : R (2) > —€} X Do 14e.

Proof —
We begining by proving the first statement. We choose a sroatiterclockwise loof¥ around.# . and in
Uos. We denote by the compact such thaK = 5. Then one has{d € K

Ivp() =z - S|l<J|O|3 (v ()] = 3 (Bo) Sll(lp|5 (h(2))| + R (Bo) inf [R (h())] (3.29)

Thus,3(vs (1)) > 0 prodided thag € Ug,, with I (8g) = 6 and’R (Bo) such that

R (Bo) > ][sgpw (v ()] + 3 (Bo) sup|3 (h()|| - (3.30)

1
infic [R (h(1))

Then,yo is chosen such that
1
0 <0< 3 [supi (0] + 10K (60 + 3 (50 sup (0| (3.31)

It is then easy to show that, for suchyg, one hasygsupc |vﬁ(/1)| < 1/2. This estimate holds uniformly in
(B,7) € Ug, X Dg,,. As a consequence, the functiam- ¢ (1,3, y) with

o (LBy) = e 2 1 (3.32)

has no zeroes iK.

Hence, the integral kenrel of the operajdy [yvs]({up,}]. {un,}1 ) is Smooth oriéy x €. As ¢y is compact,
this aforementioned operator is trace classLé(¥;). Moreover, it depends holomorphically dnp, )] € UY,
{un,}] € 2" and(B,y) € Ug, x Do,,. Standard properties of operator detereminants [20] theare thatf (2),
as defined in(3.28) is holomorphic e Dy. We remind that, for the purpose of this section, a bold lettefers

to vectors of the type = ({up,}7, {un,}7. 8, 7).
Let A be the set

A= {z en : [y (e?sl@ - 1) ﬁ y (g2 _ 1) = o} . (3.33)
e=+ a=1

By definition A is an analytic set. Moreover since it is realized as the laxfugeroes of a single, non-zero,
holomorphic function orD, it has at least codimension df, [19].

It follows from the first part of the proof thaf (z) is indeed well defined ofy. It can be naturally extended
to a holomorphic function on the sé \ A by deforming the original contouty in such a way that the zeroes
of e 2™ _ 1 are not surrounded b, whereas the pointgq andun,, . . ., un, are surrounded by it. Such a

14



deformation is always possible as, on the one hagdA so that the zeroes of &7 _1 are indeed distinct from
the points+q and un,, . .., un,. On the other hand, it is allowed to deform the contour by y¥pplthe Cauchy
theorem: the integrand is a holomorphic function on theargihere the deformation of interest takes place.
Indeed, the only terms that are not explicitly holomorphiche integral kernel {3.16) are the various Cauchy
transforms. However, ag; is holomorphic orlJ,s, the cut of the Cauchy transform can be deformed witbyg
as long as it keeps its endpoints 60q.
It thus remains to show th&t(2) can be analytically continued through For this, it is enought to show that
given anyZ? e A, there exists an open neighborhddaf Z% such that settingV = (D \ A)nU, F is bounded.
We parameterize® ¢ Aasz9 = (,ugi)}l, {pﬁo)} BO,y@). This means that jp € D\ Aand is sificiently

close t0Z9, there exists zeroes (not necessarily distizctp) , . . .,z (p) of 1 — (1, 5,) that will approachtq
oru?, ... ,uff’) in the limitp — 29 in D\ A

Indeed the zeroes of a holomorphic function form discrets. sHence, there exists a contdys consisting
of small counterclockiwse circles arouad andu(o) .. .,yﬁo) such thatp(1, 8@, y(©) £ 0 for all 1 € T'yo.

The function(a,8,y) = ¢ (1,8,v) is continuous and]“z(o) is compact. Hence, there exists an open neighbor-
hood B@ of (8©, 1) in €2, such thatp(1,5,y) # 0 for anyi € I'y9 and(8,y) € BO. As a consequence, we
get that for any(3, y) € B, the number of zeroes (counted with their multiplicitie)la—~ ¢ (1,3, y) is constant
and equal to some integér

Let Vg be an open set contained in the bounded connected compdrigyite and letp = ({ypa}g, {un,}1. B y) €
D\ Abe such that, € Voforanya=1,...,nand(,y) € BO. Asp € D\ A, we necessarily have that the zeroes
of 1 — ¢(4,B,v) all differ from+q andun,, @ = 1,...,n. By deforming, if necessary, the initially introduced
contourég, we can represent the Fredholm determinant by its Fredhefiess

detg [I +yU yvﬁ]({ypa 1 {n, 1) Z fdna) detn[Uﬁ (wa, wb)] l—[ ; (3.34)

—2inyvg(wa) _
s m e plwa) — 17

where we have set

1 om0 (O )0 D) oo
U W) = - a a " . g [2imyvg](w) C[2Inyv/g](w+IC)K A 3.35
p (@) 27rw—q+lcazl{(a)—,uha)(a)—ppa+lc) (=) (3.35)

We set? = %q U T z0. Due to the symmetry of the integrand, we may carry out thetgukion

f e = Zs'(m s)'f ¢ fwam_Hl (3.36)

%” Ui-T 40, (T, !

Note that-I" ) appearing above stands for the contbys but endowed with the opposite orientation. Further,
notice that for any symmetric functioh(ws, . . ., ws) that is holomorphic in a neighborhood of the poinig)and
vanishing on the diagonal&( = wy, for £ # p), one has

S : 1
|t ws)l—[e-z.wws)_ Fo=s B @ w0 | G

_ [1;¢]=a-Va,
0 jasl=s

Above, the sum runs through all the partitions of [4]; into two disjoint subsetsr, U a_ such thate, =
(a1,...,as) containss elementsje |a.| = s. Note that we have here tacitly assumed that all of the ro@s a
simple. The case of multiple roots can then be obtained byiogrout a limiting procedure of (3.B7).
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Therefore, we obtain the below representation for the Faledldeterminant

min(m,p) _q\ym m-s
(-1 Z (zzﬂ—)fnudetn[K(wk—wj)]
[1; pl=a_-Va, 7
|y |=s

ﬁ{ ZwP)—d_ T [(Zab(p)—upa)(zab(p)—uha+ic)

dety, [I +yU [yvﬁ]] = Z

— q)l
m>0 s=0 (m S)'

ec[zinm](zab(p))—c[Zinyvﬁ] (2, (p)+ic)
., Zn(P) }
eC[Zinyvlg] (wk)—C[Zinyv/j] (wk+ic)

e—2i7rv/3(wk) -1

Zay(p) — A+ iC L 1| (24, (0) = t1n,) (2 (0) = i, +iC)
ml_[{ w-q T [<wk—upa)<wk—uha+ic>

wk—g+ic L 1| (wk— pn,) (wk = pp, +iC

b=1

} (3.38)

k=1

and we agree upon the shorthand notatign .1 = Z,(p) for j = 1,..., sfor the determinant that occurs in the
first line.
For any fixedo, one has the decompotition in respect to zeroes

¢
g 2myp(0) _ 1 = n (@ - za(p)) - Vs, (@) (3.39)
a=1

with Vi, (w) a holomorphic function ow?; that has no zeroes off and Vo uniformly in (8,7) € B, It thus
follows that the function

: —2iryvg(un > 1
[] {(e Zmynd) — 1) [[] PREETS _#ha} (3.40)

a=1 b=1

is bounded o belonging to(D \ A) N % with % = U} x V[ x BO. Note that the above reasoning holds for
simple roots. In the case of multiple roots, one should fiastycout a limiting procedure on the level ¢f (3138),
which will lead to the appearence of derivatives. The finalabesion however still holds. We leave these details
to the reader.

It only remains to focus on the Cauchy transforms. The lat@rbe represented as

q
) A1) — _ yvp(w)
1l = exp| [0 gy} (Z - 3) | (3.41)

-q

As a consequence, the only divergencies that can arize fierGauchy transform are locatedat +q.

If there exists & such thatz(Z?) = +q, then there existé € Z such thatyvs(z(Z?)) = &. As a conse-
guence, the Cauchy transforms occuring in the second liff8.88) may introduce divergent contributions. Yet,
since the Barnes’ function has a simple zero of oqglerl at—p, with p € N, it is easy to see that

Zk(P) _ q))’V,B(Zk(P)) (3.42)

4
G (L= (-0)G(2+y7 (@) @) - - | | (zk(p) +q
k=1

is bounded fop € (D \ A) N % . The fact that all other terms in (3138) are bounded is evidEne theorem then
follows after applying the analytic continuation theoremmany variables [19].
[ ]
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Conclusion

In this paper, we proved the convergence towards naturabpaated quantities in the continuous model of
scalar products and form factors arizing in the lattice miszation of the NLSM. This provides the last missing
step towards the proof of determinant-based represensafar these object in the continuum. Our approach
was based on a generalization and simplification of the igales proposed ir_[5]. We have also provided a
unambiguous procedure for defining the class of Fredholmroféhants that occurs in the large volume limit of
properly normalized form factors in integrable modelss tim the example of the NLSM. It would be quite natural
to continue this kind of considerations for lattice dis&tions of more involved models such as the Sine-Gordon
model. However, in this case additional complications wailke due to the non-conservations of the number of
particles.

Acknowledgment

| acknowledge the support of the EU Marie-Curie ExcellencanE MEXT-CT-2006-042695. | would like to
thank N.Kitanine, J.-M. Maillet, N. Slavnov, J. Teschnedah Terras for stimulating discussions.

A Proof of theorem

A.1 Combinatorial representation of the eigenstates
LemmaA.1 Let{4;} be N generic parameters, then the below representationshold
B(11)...B(N)I0) = ]_[ argr T (L) By By 10) (A1)

1<m< a=1
~<nNNEM

where we agree upgBf = —i v/Cy;pz, andl’x = {¢ : n, =k}, k=1,..., M. In (AT), we have set

M—na]
2

N : N
Ao(a) — Ao + icsgn(ny — n 1]
flo (o) = 7 [ ] =22 9Ny — e n{a(ﬂa(a))}[ 1@ (o))
a=1

sy ah Ao(@ = Ao(b)
Na a(a)
><||{1 (-1) A( 2)} (A.2)

The sign function appearing above has been defindd.BB) and [-] stands for the floor function and we agree
upon

CA AA CA 1A —
cy(/l) (1 - ? IT) (l + Z + IT) and cy(/l) = a(—/l) . (A3)
Proof — It is a standard fact [11] that, for any generic set of paransdl;}, the action of a product of B
operators on the pseudo-vaccum can be expressed as a suall tvepossible partitions of the set [ N ] into
M non-intersecting sefsy,...,I'v:

[Tewoor= 3 [T T L1222 ] (o 22) [ (2-i22) ] w100

[1;N] ¢=2m=1 *ael'y bel, ael’, bel'n
:Ullilrk
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We stress that in the above decomposition, the orderingeopdntition countsie {1, 2, 3} U {0} is different from
{0} U {1, 2, 3}. Also, we have denoted by# the cardinality of the sdt,.

Note that there is a one-to-one correspondence betweegttbéadl such partitions and choices Mfintegers
Ni,...,Nnin[1; M] by the formulal’y = {¢ : n, = k}. One can thus recast the sums[in {A.5) as ones over such
choices of integers. Namely,

]_[Buk)|0>— 2. ]—[(#F), fl (0w....0N) By, - B, 10) (A5)
e
where

-1

M
f{/l} (nl,...nN) = l_[

oeCN (=2 m=1

{ l:[ 1—[ { /1b+|c} D(zmﬂ%) D(Z[—i%)} (A.6)

No-1(=Mn, 1(b)—€ 1=t Ny-1)=m

In (A.5), we have recast the sum owgye [1; M] into one over the ordered choices of integers bh; < --- <
Ny < M, this by introducing an additional sum over permutations Sy in (A.6). However, so as not to count
elements twice, for each given choice of integers iy < --- < ny < M, we divide by]‘[?z1 (#T'9)!. Indeed, the
permutation group leaves the diagonals unaltered, andadagich diagonals corresponds to elements in the set
I, Occuring in the partitiol .

Then, it is enough to observe that

lM[ ﬁ l—[ l_[ {/la —Ap+ ic} _ ﬁ Ao(a) — Ao(o) + icsgN(ny — Ny) A7)
(=2m=l_ & b: Aa = Ap a<b Ao(@) — Ao(b)
r1:3-*1(21) na—‘l(b):€
and
M (-1 N
AL A/l o

[ [ (Zm“Ta) [1 ( b) [ Jte (s oM @ (@l ]x]—[ {1 (=) A( 2(""’)}
(=2m=1 & b: a1l

ncr’l(a):[ n. 1(b)_m

[ ]
In fact, given a solutior{l/lga}l’\‘ of the Bethe equation5 (1J21), the associated fundiigras defined in[(AlR) is
bounded uniformly im\ small enough. This is an important property in respect tmtathe A — 0 limit.

LemmaA.2 Let{4,}} be a solution of the Bethe equatioff§21)associated with the choice of integefs <
.- < {N. Then, there existag small enough and a constani; solely depending on N, Ag and the choice of
integers{¢a}, such that

[fy (M,....NN)| < Cy uniformly A€ [0;Ao] , (A.8)
where f,, has been defied i@A.2) .
Proof —
It follows from the continuity inA on [0;Ao] of A = A,,a=1,..., N, (cf subsection 113 ) that the function

A = mingep |/l[a Agb| is continuous on [0Ag]. Thus, it attains |ts minimum at sontee [0;Ag]. However, in
virtue of the repulsion principlé_(1.20), this minimum mbst strictly positive, and thus

= inf minf1, -4 0. A.9
Miéa) AE[IO;AO] a<lb| fa [b|> (A.9)
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For eachp, the associated parametelg are bounded. Hence, the functian— ma>gi|/lga| is well defined and
continuous iMA € [0; Ag]. As argued before, this implies that

My = sup max|dg,| < +oo. (A.10)
A€[0;A9] @

Hence, given any choice of integerscdn; < --- < ny < M,

N A N
1_[{1 (- 1)”aA(4 ‘72(""))} < (1+ Z(c+2|\/|{ga})) (A.11)
Na
and, foranyae[1; n]
o (£2a)] < M@+ S (A.12)
Thus, asMA = L
na-1 M-ng
/lo-a [ - ] 3 /l(ra [—] (M{fa 2)AZ[ ] [ ]<e(M{[a,+§)% ) (A13)
@ €)
Last but not least
N2 +icsgn(np —ng)|  (2Myey +c) T
1—[ o(@ — Ao (b) gninp — Ng ( {ta} ) (A.14)
a<b A(@) = Ao(b) LT
Putting all these estimates together leads to:
N cynL [ 2M +C N’\;l
i ] < N (152 (0 20| el (22 ) (A15)
LA
uniformly inA € [0;Agland 1<np <---<ny £ M. u

A.2 The scalar product formula

By settingB; = —i VCxypz, Bk = iVCpzxk andhy = Zy + x; xk it is easy to see that these satisfy

A
[BoBil = Achcdia  and [Nl = S ik (A.16)

These commutation relations readily lead to

n

(018" (Bp™10) = 6nm (Skp + Gnodmo) (A" ! [ | (@ + (€ - 1) Ac/4). (A.17)
=1

Thus, given a solution of the Bethe equatic{mlé}l’\‘ defined by the integer < - -- < {n, and a set of generic
parameters{;ya}’l\' that are bounded, and satisfy the condition gnitjus — up| > 0, building on the representation
for the Bethe vectors (Al1), one gets

M #a-1

< ({,Ua )|l//(/15a )> (Ao Z f (N1, o) fy (g, nN)l—[ 1—[ Zna+pAc/4. (A.18)

1<m< a=1l p=1 P+ 1
-<nNNEM
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Note that, to obtair (A.18), we have used that
(OIBn, - -Br By - Py 10) 0 with 1<nj<...ng<M and 1<n<..nn<M, (A.19)

only if n, = nj for anya. It is convenient to split in[(A.18) the contributions forimetdiagonalsrz = na1 for
somea) from those lying purely fi the diagonal:

(v () v ((e))) ) = Li+ Lz, (A.20)
where
L N
Ly = (AN Z flg (N1, -0 fy (N1, -, ) ]_[ Zn, , (A.21)
1<ni< a=1
<NN<M
and
N-1 N #I
— otz Zn, + PAC/4
|_2 = (AC)N Z Z {ﬂ} (n]_, cees nN) f{/l} (n]_, .. nN) l_[ l—[ d 1 . (A22)
k=1 1<m<... a=1l p=1 p
<N=N4+1<
- <NNEM

The multiplicative factor i, is bounded due to
ﬁ#h Zn, + PAC/4
p+1

a=1 p=1

N #,

<l—[l—[ 1+ACp/4 NAM% . (A23)

a=1 p=1

By applying lemmd AR to the functioffiy (na, ..., nn) and carrying out a similar reasoning to the one of the
lemma, we gef,; (ny,...,nn) < Cn ({u}), uniformly inA € [0; Ag ] and for some:, dependent consta@y ({u}).
Hence, as = AM

ILo < N (Ac)N MN-IC,,, - Cn ({1 De Tt =0() . (A.24)

As a consequencé, does not contribute to thie — 0 limit of the scalar product.
It remains to treat,. Using that the parametens, are all continuously diierentiable in respect ta, it is
readily seen that, uniformly in the choicescIng < --- < ny < M andyi € | Xo,—1; %o, | With Xp = pA, one has

o () = ¢ 2efNo(yr, . yn [ JY) - (L+0(8)) (A.25)
and likewise
g (00 ....w) = ¢ 2eENo (v oy | {pal}) - (L+0(8)) (A.26)
As a consequence,
L
Ly = fso(yl,...,yN [{ual) - e1 - YN HAG D) - Ga (Yoo yn) dY, (A.27)
0
with
N
L= D [ [T |00 - 1+0Q)) . (A.28)
1<n1<M k=1
<<y <
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wherel; 4.5 (X) denotes the indicator function of the interval;b].
Itis readily seen that, foA small enough, syg. ;v lgal < 2, thatga € LY([0;L]V) and that, almost every-
where

Oa (Y1, .-, YN) = 1p (Y1, ... YN) where Z):{(yl,...,yN) : 0sy1<---<yNsL}. (A.29)

As both functionsy are bounded on [0 ]N, we are in position to apply the dominated convergence émeor

(A.Z1) converges to thens of (2.1).
We have thus proven that the scalar product defined in terqudficts of B operators and their adjoints does

converge, in theé\ — 0 limit, to the scalar product of the continuous model. Hogreas follows from theorem
1.1, such scalar products admits a finite-d\zeleterminant representation. It is straightforward to coteghe
A — 0 limit of the rhsin (1.28) hence obtaining the determinant representatiorihie scalar products in the
continuous model. n

A.3 The form factors of the conjugated field operator

In order to prove theorein 2.2, we first notcie that the retgtris of the operatorgy and y; to the N-particle
Hilbert spaces4 = Vect{)(;1 cxp 10) sl <<y < M} are bounded operators:

Xk SR = -1 vkllnn-1 = VNA and k@ AN — i ”/\/ﬁH,\U\l+1 = V(N+1)A. (A30)

Above, ||-Iyn+1 Stands for the operator norm on linear operators fo#fig to 77{,1. It then follows that, forA
small enough,

[77%) - B () - ﬂ>;,|/2||N,N+l = 0(A%?). (A.31)

There,r~X(v) - B(v) is given by [1.31) ang, is as defined in lemnia A.1.

The bound[{A.31L) follows from the fact that all the operatpgs are bounded o and that they can be
represented there, far small enough, are uniformly convergent series. The rekiviisl from standart estimates
of bounded operator-values series.

One can then represent the form factor as

Fovu = (¥ (e N+l)| ~0) B(V)|‘” (1)) = P + Trin - (A.32)
where
Fon = (0 (e[ 101 B - B/2 v (1)) (A.33)

and

(1)) - (A.34)

1

A N+1
T{A};{m‘QW({%}l )
The Cauchy-Schwarz formula leads to

|7_-(A 2) ‘ ||¢ N+1)

|- o ()| 17200 BOY - B/l pn = O3 . (A.35)

There we have used the results following from sedtiod A.2leams of Bethe vectors are bounded uniformly in
A small enough and the estimates (A.31).
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It remains to analyse the limit (%ﬂf{(f}m By computing the scalar products likewise to what has besred
in the previous section, we obtain

N+1 M #p-1
w1y _ (A Z — Zn, + pAc/4
7'-{/1};{#} = > f{ﬂ} (nl, ..., NN, M) fu} (nl, .. I’]N) | | | | D+ 1 . (A36)
1sn1§M a=1 p=1
NS

Above, the set§, are subordinate to the sequence of inegers...,nn, M = nyy1). Very similar estimates and
calculations to those gathered in sub-sedtion A.2, leabdaa@onclusion that

AT ;/_ o1 YN LTSN - @ HAE DI (Y)Y (A.37)
0

Since,A‘lﬁf{(AA}ta} — 0 intheA — 0 limit, we get that indeedA‘lﬁc{(AA}?{ﬂ} does indeed converge to the

form factor of the operatoti v/c®' (0) /2 in the continuous model. The determinant representatiothé form
factor of thed™ operator in the continous model then follows from taking e 0 limit on the determinant
representation given in propositibn .1, which is stréfigtaard.
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