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A Mellin Space Program for W= and Z° Production at NNLO
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We present a program for the evaluation of full unpolarizezss sections for the/* and Z° production
in the narrow width approximation at NNLO in perturbative Q@sing Mellin space techniques.
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1 Introduction

The Drell-Yan process, originally described in the contéxhe parton model]1], concerns the production
of a lepton pair of large invariant mass in hadron-hadrolisiohs. With the increase of the centre of mass
energy at particle accelerators, the Drell-Yan processdetle discovery of/’* and Z° bosons at UA1
and UA2 experiment$]2] 3]. Since then the properties of imasgctor bosons have been studied in great
detail. At present the production & * and Z° provides an important benchmark for the LHC and a test
of the Standard Model (SM) in a new range of centre of masgyee].

As guaranteed by the factorisation theoréin [5], one canraeptne physics of soft energy scales from
the physics at hard energy scales where perturbation ttegapljes. The higher order QCD corrections
to the Drell-Yan process have been calculated up to nereid-to-leading order (NNLO), seel [6-8] and
references therein. The full cross section is obtained asnotution with the parton distribution functions
(PDFs) that encode the non-perturbative information.

In this paper, we present a program for evaluation of theifidlusive cross section fdi’* and Z°
production in a fast and accurate way using a Mellin spacecagh. After a brief description of the basic
ingredients of the calculation we give formulae for the Mettansforms. We then present a comparison
with the code ZWPROD[78] and discuss possible applicatard extensions within this framework.

2 Formalism

We consider the inclusive production of a single vector bogo= W+, W~ or Z° in hadron-hadron
collision with a centre of mass energyvhich subsequently decays into a lepton pair of an invarzags

Q2. The decay of the vector boson is treated within the narrosittwapproximation which replaces the
propagator by a delta function such tt@gt = AM2. We consider massless quarks. The cross section for
this process can be expressed as

Uh1h2—>V—>l1l2 (8) _ wO.V—>l1l2WV($, Q2)7 T = QQ/S, (1)

wheresV ~!1!2 represents the kinematically independent part of the Bawel lsubprocesgy — V — 111
(the point-like cross section) multiplied by the approf@ibranching ratio. The exact form of the point
like cross section can be found in Réf. [7], formulae (A.10) QA.ll).E

* Corresponding author E-mapetra.kovacikova@desy.de, Phone: +00493 376 277 193
1 There is an extra factor of 2 in the denominator of the forngald 1), corrected by([9]
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The structure functiodVV (z,Q?) is written as a convolution of two parton distribution fuiocts
Ja (;@) andfb(ufc) and a hard scattering cross section represented by coeffigiectionsA,;,

WY(Q%) = ) CaV.,b[fa(u?)®fb(u§)®Aab(Q2,u§,uf) (z). )

a,b=q,q,9

The perturbative coefficients are known up to NNLLO [7, 8],

AN (2, Q13 o Z 4“’“ AW (2, Q% 13, 12). (3)

The factorCVb in Eq.[2) contains information about couplings of vectosdias to partona andb. For
the detailed form of the E@J(2) we refer the reader to the papldamberg, Matsuura and van Neerven [7]
whose notation we follow closeﬂl The convolution sign represents an integral

(1@ fa®- @ fr)(x)
/dxl/ dacg.../ dag 6(x — x1x0 .. ap) f1(z1) fa(a2) ... fag). (4)

In principle one can perform the integrals in [E¢).(2) dingttbwever, the problem is much better addressed
after transforming to Mellin space,

f) = / dez¥1f(z), (5)

This transformation turns the integrals in [E¢.(2) into aediy products such that the structure function
reads

WY(N,Q) = Y ClfaN, Q) (N, Q)Aw(N, Q%)  py=p=0Q>  (6)
a,b=q,q,9

and therefore it is possible to evaluate it in a fast and efficivay. The formula for the inverse Mellin
transform defines how to recover the original momentum spesagt,

1% oy L etiee _NyiV 2
WY (2, Q%) = / AN VWY (N, Q2), @)

270 Jo—ioo

wherec represents a point on the real axis such that all pdlem the functionW (N, Q?) lie to the left
from c. Further on, we will refer to functions in Mellin space Asspace functions and functions from
momentum space asspace functions.

3 Implementation

The main ingredients of the calculation are the coefficientfions up to NNLO and the parton distribution
functions in Mellin space in terms of a complex variaNe The conditionN € C is required for the
numerical evaluation of the inversion formuld (7). For this adopted the technique implemented in
QCD-PEGASUS[10]. The complex integrhl (7) is rewrittenénnhs of an integral over a real variahle

1 [ . iv .
Wiz, Q%) = ;/0 dzImle®z= > "W (N, Q%) N=c+zexp cC (8)

and evaluated using Gaussian quadratures. The parafneter/2 represents the angle with respect to the
positive real axis. Since the rightmost pole of the struefunction isNmax = 1, we chose: = 1.5. These

2 several typos appearing in Réf] [7] have been pointed o@]in [
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values as well as the maximum value of the integration véialare flexible and can be modified by the
user in the main program if desired. For a more detailed gegm of the shape of the integration contour
we refer to the QCD-PEGASUS manual[10].

The coefficient functions iV space were published previously in Réf.][11], includingreotions to
the previous literature. The correspond®@RTRANo0de isDY.f used together withNCONTIL2]. We
performed the Mellin transforms starting from thespace expressions [13] using tharmpol pack-
age [14]. The results can be expressed mostly in terms of lesAvalued simple harmonic sunis [15] 16]
and several more complicated ones which we approximatedibg the minimax meth@dvorked out in
detail in [12] previouslyt The absolute accuracy of our approximation is better fitar? over the whole
kinematic range.

At the moment there are two options for the input parton itistion functions inN space. A toy
input corresponds to the one used for the 2001/2 benchmildstEL8] and is used for comparisons with
ZWPROD [7[8] assuming no evolution of PDFs. The general ferats

:Cfiﬂo)’(x?ﬂg) :nwa(l_‘r)bv { :qv(jaga n,a,beR, (9)
which is in Mellin space represented by an Euler beta functio
fitoy(N, 1g) = npla+ N,b+1), (10)

The second option for the PDF input is using the FORTRAN co@®@PEGASUSI[[10] which can be
linked to our program.

Comparison with ZWPROD

Gy (s) [nb]

2 14e-05
8  1.2e-05
3 1e-05
g 8e-06
° 6e-06
% 4e-06
e 2e-06
4 0

Fig. 1 Cross section foi?//~ production up to NNLO in the narrow width approximation wsite toy
parton distribution functions and a fixed value of the strongpling constant. Upper part: The full cross
section. Lower part: Relative accuracy with respect to tthWéPROD.

4 Results And Outlook

There are several programs on the market using the standamgntum space evaluatidn [19+-21] which
can provide a cross-check for ot space calculation. We performed comparisons of the fuBss®ec-
tions with a program ZWPROD written by the authors of the imagjcalculation of the NNLO Drell-Yan

3 We used the MINIMAX routine implemented in Maple
4 Exact expressions were given in [17].
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coefficient functions[[7,18]. The FigJ(1) shows a comparimrthe W~ cross section using toy input for
PDFs corresponding to the Hg.l10) with no evolution and alfisedue of the coupling constant = 0.1.
The relative accuracy is better thénx 10~ in the relevant kinematical range € (10~%,0.8). As an
intermediate check, we compared the Mellin inversioNopace coefficient functions against thepace
expressions using a program of Gehrmann and Rendiddi [22fhfanumerical evaluation of harmonic
polylogarithms. The framework presented here is suitabteaffurther implementation of those cross
sections whereéV space coefficient functions are also available, like Higgslpction and deep inelastic
scattering (DIS)[[11,23-26]. The setup is well suited forrgieg the program with threshold resum-
mation calculations which are typically performed in Melipace (see e.d. [27]). For the extraction of
PDFs fromiW* andZ production it would be desirable to have an access to thditglistributions in
which case one will need to apply double Mellin transforménad variablesV,; and N; however, this is

a subject to further study. On the side of PDFs we aim for actlirgerface to the LHAPDF grid$ [28]
which will allow the user to freely choose any particular P&#t provided within this framework. Recent
results[[29] onV space input parametrizations also allow for more flexibputrPDF parametrisations in
QCD-PEGASUS. Further improvements with respect to thedpé¢he code are foreseen and together
with an upgrade on the input PDFs this code can become a to®D& fits, where fast and accurate
evaluations of cross sections are needed. The currenbwes$ithe c++ code can be downloaded from
http://www-zeuthen.desy.de/ ~Kkpetra/sbp
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