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1. Introduction

Recently there has been quite some interest in the possibility that there exist hidden sector particles

with masses below a TeV but very weak couplings to Standard Model matter. They are a common

feature of extensions of the standard model based on supergravity or superstrings. Extra U(1)

gauge bosons, so-called hidden photons are a prime candidate for such particles. At low energies,

their interactions with the visible sector occur primarily via kinetic mixing [1, 2] (studied in string

theory in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]) with the electromagnetic1 U(1),

L ⊃ −1

4
F (vis)
µν Fµν

(vis) −
1

4
F (hid)
µν Fµν

(hid) +
χ

2
F (vis)
µν F (hid)µν +m2

γ′A(hid)
µ A(hid)µ +A(vis)

µ jµ, (1.1)

1Of course, the mixing is originally with the hypercharge U(1) but after electroweak symmetry breaking this

mixing is inherited by the electromagnetic U(1).
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Figure 1: Constraints on the kinetic mixing parameter χ vs. hidden photon mass mγ′ from astrophysics,

cosmology and laboratory experiments. Phenomenologically interesting regions are marked in yellow. Com-

pilation from [29].

where χ is the kinetic mixing parameter and mγ′ the mass of the hidden U(1), which may arise

via a hidden Higgs or a Stückelberg mechanism. In addition jµ is the current caused by charged

Standard Model matter such as electrons and protons.

There are two mass regimes that are of particular phenomenological interest: the meV range

and the GeV range, marked “hCMB” and “Dark Forces” in Fig. 1, respectively. The characteristic

behaviour of these two regimes is best understood in slightly different pictures.

At very low masses the most prominent implication of kinetic mixing is that, similar to neutrino

mixing, the propagation and the interaction eigenstates are misaligned. As a result one expects

photon ↔ hidden photon oscillations [1]. These oscillations could lead to a variety of interesting

phenomena. In the early universe they convert thermal photons into hidden photons, generating

a “hidden CMB” (hCMB) [14]. Its signature is an increase in the effective number of relativistic

degrees of freedom contributing to the cosmic radiation density in the era between big bang nucle-

osynthesis and recombination beyond the value accounting for the photon and the three standard

neutrino species. Intriguingly, some global cosmological analyses that take into account precision

cosmological data of the cosmic microwave background and of the large scale structure of the

universe appear to require some extra radiation density. The case for this was strengthened by

the recently released WMAP 7 year data whose global analysis points to the requirement of an

equivalent of ∆N eff
ν = 1.3± 0.9 (68% C.L.) neutrinos [15].

Luckily, hidden photons in the meV range can be nicely searched for in purely laboratory based

laser-light-shining-through-a-wall experiments [16, 17], such as ALPS [18], BMV [19], GammeV,

LIPSS [20], and OSQAR (cf. the bounds marked “LSW” in Fig. 1), with great discovery potential

in the near future [21] and even the possibility of long distance communication through matter [22].

The discovery potential is also shared by upcoming microwave cavity experiments [23, 24, 25],

which are currently in the pioneering phase [26, 27]. In addition, dedicated helioscope searches, e.g.

such as SHIPS at the Hamburg Observatory, for hidden photons produced in the sun could also

sensitively explore this region [28].

At larger masses &MeV a convenient choice of basis is such that charged Standard Model
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matter acquires a small charge under the extra hidden U(1) leading to a “Dark Forces” interaction.

This type of interactions can be used to explain a variety of puzzling observations connected to

dark matter and astrophysics, such as the results of DAMA, CoGeNT and PAMELA [30, 31, 32,

33, 34, 35]. Moreover, they provide an interesting explanation for the deviation (g − 2)µ from the

Standard Model prediction [36]. These higher masses, too can be sensitively probed in laboratory

experiments. A tool of choice are fixed target experiments [37] where a high current beam of

electrons or protons impacts on a block of material. A significant number of such experiments

are in planning or in trial phases: DESY (HIPS [38]), MAMI [39] and Jefferson Lab (APEX [40],

HPS [41] and DarkLight [42]).

Given this great phenomenological interest and the huge discovery potential for hidden photons,

it is timely to ask whether there are interesting classes of string compactifications which will lead

to kinetic mixing and masses in the ranges described above.

We shall argue that this is indeed the case in a variety of string models based on type IIB flux

compactifications on Calabi-Yau orientifolds with D3/D7-branes and O3/O7-planes [8, 10], unlike

for example the heterotic case [3, 11] where there is no natural way to suppress the mixing and

masses. The hidden photon can be realised as an excitation of a space-time filling D3 or a D7-brane

wrapping an even 4-cycle in the extra dimension separated from the locus of the D-brane hosting

the hypercharge U(1) by distances greater than a string length. This ensures that there are no light

states with masses . Ms charged under both the Standard Model and the hidden gauge groups,

ensuring that the extra U(1) is indeed “hidden”.

In the D3-brane case the kinetic mixing cannot be much smaller than χ ≃ 10−3, while if a

D7-brane wraps a large 4-cycle τhid, giving rise to a tiny gauge coupling g−2 ≃ τhid, the physical

mixing parameter can be significantly suppressed. Therefore we shall focus on hidden photons

living on these “milliweak” or “hyperweak” D7-branes. The hidden photon becomes massive via

the Green-Schwarz mechanism by turning on a non-zero world-volume flux. Some Kähler moduli

get charged under the hidden U(1) and a particular combination of the corresponding axions get

eaten up by the hidden photon. We stress that this is a truly stringy mechanism that leads to

robust predictions unlike the case of a Higgs mechanism which depends more heavily on the details

of the particular brane construction 2.

The turning on of gauge fluxes also generates a moduli-dependent Fayet-Iliopoulos term whose

effect on moduli stabilisation has to be taken into account. One of the most promising ways to fix

the geometric moduli in a controlled manner is given by the type IIB LARGE Volume Scenario

[43, 44]. We shall embed our models into this moduli stabilisation framework since it does not

require fine-tuning of the background fluxes and can generate exponentially large extra dimensions

with the subsequent possibility to lower the string scale, χ and mγ′ .

Ref. [10] studied the properties of hidden photons within the original formulation of the LARGE

Volume Scenario where the compactification is isotropic in that the largest two-cycle tbig is of the

order of the cube root of the volume: tbig ≃ V1/3, but without analysing the rôle played by D-terms

in moduli stabilisation. In this paper we show that D-terms for the hyperweak brane are in general

dangerous since they give rise to a run-away for the volume mode. We propose then a solution where

D-terms do not cause any decompactification but dynamically reduce more complicated topologies

to the ones studied in [10].

The isotropic case leads to nice predictions which however fail to reach the interesting regions

of parameter space corresponding to either hidden CMB or dark forces. However, once we consider

more involved compactification manifolds with a fibration structure as in [44], the desired masses and

mixings can be easily accommodated due to the anisotropic shape of the extra dimensions. In fact,

2Moreover, if we aim to generate masses of O(meV) with a sizeable mixing χ ∼ 10−6, the very stringent constraints

on millicharged particles would require an extremely steep hidden Higgs potential in order that their masses would

be above a MeV.
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we show that the moduli can be fixed with a single two-cycle that scales as entire volume: tbig ≃ V .
This is complementary to some work in progress [45], which shows how maximally anisotropic extra

dimensions can be stabilised. In this case, closed strings propagating along this cycle would be

extremely diluted, and would allow vastly smaller masses for U(1) fields that they couple to. In

this way, the relationship between kinetic mixing and U(1) masses changes dramatically giving

rise to a very interesting phenomenology in the case of “milliweak” D7-branes where we find two

scenarios:

• “Dark force scenario”: the Kähler moduli are stabilised without fine-tuning leading to hidden

photons with mγ′ ≃ 1 GeV and χ ≃ 10−6. The string scale turns out to be intermediate and

the Calabi-Yau geometry is slightly anisotropic;

• “Hidden CMB scenario”: fine-tuning the underlying parameters, the stabilisation of the

Kähler moduli leads to hidden photons with mγ′ ≃ 1 meV and χ ≃ 10−6. This corresponds to

the extreme case of TeV-scale strings and very anisotropic compactification manifolds. Fur-

thermore, Kaluza-Klein replicas of the hidden gauge bosons turn out to be in the dark force

mass regime.

This paper is organised as follows: section 2 provides the essential background information on

the properties of D-brane U(1)s in IIB compactifications, and establishes our notations; additional

description and derivations are presented in the appendix A. In section 3 we describe how anisotropy

in IIB compactifications can lead to interesting phenomenology. In section 4 we show how to stabilise

the moduli. Section 5 presents our main results; the predictions for scenarios with stable moduli.

It is relatively self-contained so a reader interested only in the predictions testable in experiments

can skip the interim sections. Finally we conclude in section 6.

2. Abelian gauge bosons in IIB compactifications

In this section we shall summarise the formulae pertaining to abelian gauge bosons on D-branes

in IIB compactifications that we shall require later. While the material here is not new, we hope

that the novel presentation will facilitate their use in model building, specifically for models with

stabilised moduli. We present additional explanations and derivations for readers unfamiliar with

the material in appendix A.

Such models are compactified on a Calabi-Yau threefold which supports a basis of (1,1)-forms

D̂i, with Kähler form expanded in terms of these forms J = tiD̂i, intersection numbers

kijk =

∫

M6

D̂i ∧ D̂j ∧ D̂k, (2.1)

and thus the volume of the manifold is V = 1
6

∫

J ∧J ∧J = 1
6kijkt

itjtk. Gauge and matter fields are

supported on D7 branes wrapping divisors (four-cycles) on the compact space. There is a canonical

basis of four-cycles where the Poincaré dual two-form is a {D̂i}; these have volume τi =
1
2kijkt

jtk

where (neglecting cycles odd under the orientifold) the τi are the real part of the good Kähler

coordinates for the field theory. A stack of N branes on such a cycle supports a U(N) gauge theory

if it is not pointwise invariant under the orientifold projection; if it is then the gauge group is either

Sp(N) or SO(N) (depending upon whether the orientifold plane wrapped by the brane is of O+ or

O− type). For a U(1) ⊂ U(N) the gauge coupling on a brane wrapping such a cycle is given by

2π

g2i
= τi. (2.2)

Importantly if the volume of the four cycle is large the gauge coupling can be weak or even hyper-

weak [46].
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The theory has a classical Kähler potential given by

K0 ≡ −2 logV , (2.3)

which will be modified in the later sections to include corrections due to finite string length and

coupling. The above may also be augmented by contributions from collapsed cycles of volume

τ0 ≈ 0 of the form ∆K = c (τ0)
2

V . However, derived from the above is the classical Kähler metric for

the moduli, given by derivatives with respect to the Kähler coordinates

(K0)ij ≡
∂2

∂τi∂τj
K0. (2.4)

2.1 Stückelberg masses

We shall consider only U(1)s supported on D7 branes (rather than R-R U(1)s [47, 11] since these

are generically present in the theory, have the possibility of mixing kinetically with the hypercharge

(which must itself be supported on a D7 brane in such models) and crucially may obtain Stückelberg

masses. The Stückelberg mass matrix for the U(1)s a, b that do not couple to any cycles odd under

the orientifold are given by [48, 49, 50, 10] 3

m2
ab =gagb

M2
P

4π2
qaα(K0)αβqbβ , (2.5)

where MP = 2.4× 1018 GeV is the reduced Planck mass, and where we have defined qij

qij =

∫

Di

D̂j ∧
F

2π
= fk

i kijk . (2.6)

which correspond to the “charges” of the R-R four-forms under the U(1) supported on brane i with

two-form (gauge) flux F
2π = fk

i D̂k for (half4) integers fk
i . Here we are being somewhat cavalier: the

above notation somewhat obscures the possibility that a brane may support several U(1) factors.

Crucially the above depends only upon global quantities, i.e. forms and cycles that are defined

in the (co)homology of the whole Calabi-Yau, rather than on the branes. In general there will

be cycles supported on the branes which are trivial globally, and we should be careful about the

correspondence between the global forms and those defining the flux on the branes.

Throughout the text we shall calculate the masses not using the above master formula, but

rather using the canonically normalised two-forms to expose where the contributions to the masses

come from. As described in the appendix, we define diagonalisation matrices

(K−1
0 )ijC

j
a = Ciaλa, with (Ct)iaCib = λ−1

a δab. (2.7)

which leads to an interaction Lagrangian with canonically normalised fields (A.21)

L = − 1

12
Hj

µνρHµνρ
j − 1

4
F i

µνF i µν +MijDj
2 ∧ F i

2. (2.8)

As shown in Appendix A.2 this Lagrangian directly leads to Stückelberg masses for the U(1) gauge

fields given by the sum of contributions from the different canonical forms,

m2
ab =

∑

j

MajMbj, (2.9)

where

Mij =
(

gi qipC
p
j

)MP

2π
=

(

qipC
p
j√

2πτi

)

MP . (2.10)

3Allowing for cycles odd under the orientifold plane leads to larger masses and thus less interesting phenomenology;

nevertheless the full expression is given in appendix equation (A.28)
4The charges can be shifted by a half-integer either in the presence of a discrete B-field or in order to cancel

Freed-Witten anomalies.
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2.2 Kinetic mixing between hidden and visible photons

As explained in [51, 10], supersymmetric kinetic mixing is determined by a holomorphic function

of only the complex structure moduli which is typically of order a loop factor, but the physical

parameter must be multiplied by the gauge coupling of each U(1), giving

χ ∼ gvisghid
16π2

, (2.11)

where gvis and ghid are the visible and hidden sector gauge groups, respectively.

From this we can immediately see that the kinetic mixing is of the order of χ ∼ 10−3 unless

the hidden gauge coupling is significantly weaker than the observed visible ones. This, however,

occurs naturally if the D7 brane on which the hidden U(1) is realized has a sizable extent in the

extra dimensions. If such a brane has volume τhid, this gives (using 2.2)

χ ∼ 1

8π

√

2α

τhid
∼ 0.5× 10−2

√
τhid

. (2.12)

For large τhid the gauge coupling becomes hyperweak and the kinetic mixing can be significantly

smaller than the naive expectation.

It is also possible that the supersymmetric kinetic mixing vanishes identically. To determine

this, we must have a microscopic understanding of it, and this has so far not been possible on general

backgrounds. However, for mutually hidden U(1)s it can be understood as arising from exchange

of Kaluza-Klein modes of the form fields [8, 10], and thus if both branes intersect some two-cycle

then we expect there to be mixing. This is very similar to the generation of loop corrections to the

Kähler potential (we are excluding the other contribution in that case - winding modes - since we

are insisting that the cycles do not intersect). Furthermore, since it is the excitations of the form

fields that mediate the mixing rather than the zero modes, as argued in [10] we expect that they are

sensitive to even globally trivial fluxes on the branes, so that even if the hypercharge arises from a

GUT structure there should still be mixing.

2.3 Kaluza-Klein modes

In addition to the hidden gauge bosons, there will inevitably be a tower of Kaluza-Klein excitations

of the hidden gauge field. The determination of the spectrum and couplings of these is in general

a complicated task; however, the scaling with the Kähler moduli is easily determined and allows

us to make a reasonable estimate for the masses of the lightest states (which typically scale as

mKK ∼ 1/(length scale of extra dimension)). To do this we must examine the geometry of the

four-cycle supporting them. For example, if it is of the form P1×P1 then clearly there are two sets of

KK modes with different characteristic length scales; if it is of the form P2 (or blown up with globally

trivial exceptional cycles) there is just one. The first example corresponds to τi = αijt
jβikt

k, while

the second is τi = (αijt
j)2. In the latter case, clearly we can take mKK = 2π

lsτ1/4 =
√
πMP

V1/2τ1/4 , while

in the former we should take mKK =
√
πMP

V(αijtj)1/2
assuming that αijt

j > βikt
k.

The other property of interest is whether the Kaluza-Klein modes of the hidden U(1) also

kinetically mix with the hypercharge. Indeed, from a calculation on a torus, this seems to be

impossible due to Kaluza-Klein momentum conservation. However, this is due to the presence of

isometries on the torus which are not present for general geometries. In general the Kaluza-Klein

modes are “unstable” [52], implying that they can mix with the zero mode. We can then ask

what the size of the mixing is; here the best estimate we can make is that it is the same order of

magnitude as the mixing of the zero modes.
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2.4 Fayet-Iliopoulos terms

In the presence of a gauge flux the gauge coupling constant gi is modified to 2π
g2
i
= τi−hi(F c

2 )Re(S),

where Re(S) = e−φ and the flux-dependent factor is given by hi(F
c
2 ) =

fkfjkijk

2 =
fjqij

2 where qij
are the flux-dependent U(1) charges of the Kähler moduli (2.6). The Fayet-Iliopoulos term can

then be written as:

ξi
M2

P

=
1

4πV

∫

Di

(

J ∧ l2s
2π
F c
2

)

=
1

4πV t
jfkkijk =

qij
4π

tj

V = −qij
4π

∂K

∂τj
. (2.13)

Including also the presence of unnormalised charged matter fields ϕj (open string states) with

corresponding U(1) charges given by cij , the resulting D-term potential looks like (considering the

dilaton fixed at its VEV: eφ = gs):

VD =
g2i
2





∑

j

cijϕj
∂K

∂ϕj
− ξi





2

=
π

(τi − gsf jqij/2)





∑

j

cijϕj
∂K

∂ϕj
+
qij
4π

∂K

∂τj





2

. (2.14)

As we will see later in more detail the significance of the FI-terms is that they have a tendency

to destabilise the compactification. In Sect. 4 we will discuss ways around this problem.

2.5 Branes at singularities

Note that the above still applies for U(1)s on branes at singularities. Denoting the two-form

corresponding to the canonical class as D̂sing with Kähler modulus tsing, if this is a blow-up mode

with only self-intersections then it will only appear in the volume form via a term at3sing and the

U(1) will have a string-scale mass. If, however, the singularity intersects some other two-cycle ti
via a term V ⊃ −btit2sing5, then a flux on tsing will yield a mass

m2
sing =

M2
P

4π2V
1

bti
. (2.15)

This is particularly interesting since, as described above, in this case the U(1) can mix with the

hypercharge if the Standard Model brane also intersects ti (for example if it is also at a singularity

with V ⊃ −b′tit2sing′) and also because of the potentially large suppression of the mass if ti is large;

for example if we had a very anisotropic compactification we could have ti ∼ V ! However, since

the branes sit on singular cycles we cannot suppress the hidden gauge coupling, and so the kinetic

mixing will always be of the order 10−3.

Since we cannot suppress the kinetic mixing (without cancelling it or invoking some fine tuning)

in this case, we shall not explore it in detail in the subsequent sections. However, the reader should

be aware that such U(1)s can be embedded into string compactifications with minimal impact upon

moduli stabilisation, and could be interesting for the Dark Forces regime.

3. Explicit Calabi-Yau examples

3.1 Isotropic compactifications

Let us start by studying the case of an orientifold of the Calabi-Yau three-fold given by the degree 18

hyper-surface embedded in the weighted projective space CP 4
[1,1,1,6,9]. The relevant Hodge numbers

of this manifold are h1,1 = 2 and h2,1 = 272 and its defining equation reads:

z181 + z182 + z183 + z34 + z25 − 18ψz1z2z3z4z5 − 3φz61z
6
2z

6
3 = 0, (3.1)

5Note that such an intersection corresponds to the presence of N = 2 sectors on toroidal orbifolds, and such

intersection forms can be found in the blow-ups [53].
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where ψ and φ are the only two complex structure moduli left invariant under the mirror map.

The Kähler form can be expanded as J = t1D̂1 + t2D̂2 while the only non-vanishing intersection

numbers are k112 = 1, k122 = 6, k222 = 36. Thus the overall volume looks like:

V =
1

6

∫

CY

J ∧ J ∧ J =
1

6

(

3t21t2 + 18t1t
2
2 + 36t32

)

. (3.2)

The volumes of the divisors D1 and D2 take the form:

τ1 =
1

2

∫

D1

J ∧ J = 3t2(t1 + t2), τ2 =
(t1 + 6t2)

2

2
, (3.3)

and the Calabi-Yau volume can be rewritten in terms of the 4-cycle volumes as:

V =
1

9
√
2

(

τ
3/2
2 − (τ2 − 6τ1)

3/2
)

. (3.4)

The combination of 4-cycles D2−6D1 defines another divisor which is topologically a rigid blow-up

mode resolving a point-like singularity. It is therefore useful to perform the following change of

basis: Ds = D2 − 6D1, Db = D2 and expand the Kähler form as J = tbD̂b− tsD̂s. The intersection

numbers in the new basis are very simple since only two of them are non-zero: ksss = kbbb = 36.

The new expression for the overall volume is:

V = 6(t3b − t3s) =
1

9
√
2

(

τ
3/2
b − τ3/2s

)

. (3.5)

The subscripts b and s stay for ‘big’ and ‘small’ respectively since we shall be interested in the large

volume limit ts ≫ tb ⇔ τb ≫ τs ⇔ V ≃ τ
3/2
b /(9

√
2). In this limit, the Kähler metric and its inverse

look like (defining ǫ ≡
√

τs/τb ≪ 1):

K0 =
3

2τ2b

(

ǫ−1 −3ǫ

−3ǫ 2

)

and K−1
0 =

2τ2b
3

(

ǫ 3ǫ2/2

3 ǫ2/2 1/2

)

. (3.6)

The leading order behaviour of the normalised eigenvectors of K−1
0 is:

~v1 =

√

3

2

{

1

τ
3/4
b τ

1/4
s

,
3τ

3/4
s

τ
7/4
b

}

and ~v2 =

√
3

τb

{

3ǫ2, 1
}

, (3.7)

resulting in the following diagonalising matrix:

Ci
j =

1

τb

√

3

2

(

ǫ−1/2 3
√
2ǫ2

3ǫ3/2
√
2

)

. (3.8)

Moreover, the internal gauge flux can be expanded in a basis of 2-forms as F c
2 = fbD̂b + fsD̂s.

We are now ready to explore the mass spectrum of possible hidden photons living on D7-branes

wrapped either around the large divisor Db or the small 4-cycle Ds.

D7 wrapping Db

We start by analysing the case of a D7-brane wrapping the large 4-cycle Db. Hence we have to set

i = b in the general expression (2.10) for the mass of the hidden photon. Due to the particularly

simple structure of the intersection numbers, we obtain:

Mbb =

(

1√
2πτb

fbkbbbC
b
b

)

MP =

(

54

√

3

5π
fb

)

MP

τ
3/2
b

=

(

3

√

6

5π
fb

)

MP

V , (3.9)
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and

Mbs =

(

1√
2πτb

fbkbbbC
b
s

)

MP =

(

54

√

6

π
fbτs

)

MP

τ
5/2
b

∼ fbτs
MP

V5/3
. (3.10)

Therefore a particular combination of Db
2 and Ds

2 couples to F2, but given that Mbb ≫ Mbs for

large volume V ≫ 1, we realise that:

Lint =

(

Mbb

4
Db

2 +
Mbs

4
Ds

2

)

∧ F2 ≃ Mbb

4
Db

2 ∧ F2 ⇒ mγ′ ≃Mbb ≃
MP

V ≃ Ms

V1/2
. (3.11)

Furthermore the kinetic mixing between the hidden and the visible photon looks like:

χ ≃ 0.5 · 10
−2

√
τb
. (3.12)

Inverting this relation, we can eliminate τb in the expression (3.9) and obtain a direct relation

between χ and mγ′ :

χ ≃ 2 · 10−3f
−1/3
b

(

mγ′

MP

)1/3

≃ 10−9 · f−1/3
b

( mγ′

1 GeV

)1/3

. (3.13)

The exact value of χ depends on τb whose value should in the end be determined dynamically via

moduli stabilisation. However, regardless of this, the key observation is that once χ is fixed, the

relation (3.13) also sets the value of mγ′ as a function of the flux coefficient fb which has to be an

integer. This makes it somewhat difficult to reach the interesting regions in the (mγ′ , χ)-parameter

space corresponding to either hidden CMB or dark forces. In fact, setting χ ≃ 10−7 and fb ≃ O(1)

in (3.13), we obtain mγ′ ≃ 106 GeV which is definitely too heavy to explain the extra relativistic

degree of freedom in the CMB and very far beyond detectability for dark forces. Increasing χ the

situation gets even worse since also mγ′ increases. We finally stress the fact that since fb has to be

an integer, there is even no room for fine-tuning the mass of the hidden photon.

D7 wrapping Ds

Let us now turn to study the case of a D7-brane wrapping the small blow-up mode Ds. Setting

i = s in the general expression (2.10) for the mass of the hidden photon, we find:

Msb =

(

1√
2πτs

fsksssC
s
b

)

MP ∼ fs√
τs

MP

τb
∼ fs√

τs

MP

V2/3
, (3.14)

and

Mss =

(

1√
2πτs

fsksssC
s
s

)

MP ∼ fs

τ
3/4
s

MP

τ
3/4
b

∼ fs

τ
3/4
s

MP

V1/2
. (3.15)

We find again that a particular combination of Db
2 and Ds

2 couples to F2, but given thatMss ≫Msb

for V ≫ 1, we end up with:

Lint =

(

Msb

4
Db

2 +
Mss

4
Ds

2

)

∧ F2 ≃ Mss

4
Ds

2 ∧ F2 ⇒ mγ′ ≃Mss ≃
MP

V1/2
≃Ms. (3.16)

We realise that this case is not very interesting for us since the Green-Schwarz mechanism generates

an O(Ms)-mass for this Abelian gauge boson which disappears from the low energy effective field

theory. This is the typical behaviour of an anomalous U(1).
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3.2 Anisotropic compactifications

We shall now turn to study compactification manifolds whose overall volume is not controlled by

just one large 4-cycle but by several 4-cycles. Therefore in this case the extra dimensions can have

in principle a very anisotropic shape which can crucially modify the properties of hidden photons.

In this section we shall assume an anisotropic shape of the Calabi-Yau, and show that this property

allows us to decouple mγ′ from χ being able to reach the more interesting regions of our parameter

space corresponding to either hidden CMB or dark forces. More precisely, we shall show that

the relation (3.13) has to be modified introducing a new parameter whose value should be fixed

dynamically. In the next sections, we will then describe a moduli stabilisation mechanism that

naturally gives rise to these anisotropic compactification manifolds.

We shall focus now on the Calabi-Yaumanifold defined by the degree 12 hyper-surface embedded

in CP 4
[1,1,2,2,6]. This Calabi-Yau is a K3 fibration and has (h1,1, h2,1) = (2, 128) with Euler number

χ = −252. Including only the complex structure deformations that survive the mirror map, the

defining equation is:

z121 + z122 + z63 + z64 + z25 − 12ψz1z2z3z4z5 − 2φz61z
6
2 = 0. (3.17)

In terms of 2-cycle volumes the overall volume takes the form:

V = t1t
2
2 +

2

3
t32, (3.18)

which gives the following relations between the 2- and 4-cycle volumes:

τ1 = t22, τ2 = 2t2 (t1 + t2) ,

t2 =
√
τ1, t1 =

τ2 − 2τ1
2
√
τ1

, (3.19)

Hence the overall volume can be written as:

V =
1

2

√
τ1

(

τ2 −
2

3
τ1

)

. (3.20)

In what follows we shall be interested in anisotropic compactifications for which t1 ≫ t2 ⇔ τ2 ≫ τ1,

and so the previous relations can be simplified to:

V ≃ t1t
2
2 =

1

2

√
τ1τ2 = t1τ1, (3.21)

with k122 = 2 the only non-vanishing intersection number. The 2-cycle and 4-cycle volumes take

the form:

τ1 = t22, τ2 = 2t1t2,

t2 =
√
τ1, t1 =

τ2
2
√
τ1
. (3.22)

The cycle τ1 is a “milliweak” cycle, being between a “small” and “hyperweak” cycle, and arises

due to the fibration structure. In the large volume limit described above, the Kähler metric and its

inverse look like (defining ǫ ≡
√

τs/τb ≪ 1):

K0 =

(

τ−2
1 0

0 2τ−2
2

)

, and K−1
0 =

(

τ21 0

0 τ22 /2

)

. (3.23)

The normalised eigenvectors of K−1
0 are given by:

~v1 =
{

τ−1
1 , 0

}

and ~v2 =
{

0,
√
2 τ−1

2

}

(3.24)
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resulting in the following diagonalising matrix:

Ci
j =

(

τ−1
1 0

0
√
2 τ−1

2

)

. (3.25)

Moreover, the internal gauge flux can be expanded in a basis of 2-forms as F c
2 = f1D̂1 + f2D̂2.

We are now ready to explore the mass spectrum of possible hidden photons living on D7-branes

wrapped either around the “milliweak” K3 divisor D1 or the large 4-cycle D2.

D7 wrapping D2

We start by analysing the case of a D7-brane wrapping the large 4-cycle D2. Hence we have to set

i = 2 in the general expression (2.10) for the mass of the hidden photon. Due to the particularly

simple structure of the diagonalising matrix, we find:

M21 =

(

1√
2πτ2

k122f2C
1
1

)

MP ∼ f2
MP√
τ2τ1

. (3.26)

and:

M22 =

(

1√
2πτ2

k122f1C
2
2

)

MP ∼ f1
MP

τ
3/2
2

. (3.27)

Therefore the particular combination of D2
2 and D1

2 that couples to F2, reads:

Lint =

(

M22

4
D2

2 +
M21

4
D1

2

)

∧ F2, (3.28)

with the corresponding coefficients that depend on the two different flux parameters f1 and f2.

Given that we are free to turn on the magnetic gauge flux on either t1 or t2, this implies that when

f1 = 0 only D1
2 couples to F2, while viceversa when f2 = 0 then the only 2-form that couples to the

U(1) field strength is D2
2 . The generic case when both f1 6= 0 and f2 6= 0 has the same behaviour

of the case with f1 = 0 since M21 ≫ M22 in the anisotropic limit τ2 ≫ τ1. Let us study the two

different cases separately.

Gauge flux on t1: f2 = 0

If we turn on a gauge flux only on t1 setting f2 = 0, we find that D1
2 does not couple to F2 since

M21 = 0. Then the interaction Lagrangian takes the form:

Lint =
M22

4
D2

2 ∧ F2 ⇒ mγ′ =M22. (3.29)

Furthermore the kinetic mixing between the hidden and the visible photon looks like:

χ ≃ 0.5 · 10
−2

√
τ2
. (3.30)

Inverting this relation, we can eliminate τ2 in the expression (3.27) and obtain a direct relation

between χ and mγ′ :

χ ≃ 5 · 10−3f
−1/3
1

(

mγ′

MP

)1/3

≃ 4 · 10−9f
−1/3
1

( mγ′

GeV

)1/3

, (3.31)

which looks like the same expression for the isotropic case (3.13). Hence this case does not look

very promising for particle phenomenology.
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Generic gauge flux: fi 6= 0 ∀i = 1, 2

If a generic flux is turned on with both f1 6= 0 and f2 6= 0, the interaction Lagrangian can be

approximated as:

Lint =

(

M22

4
D2

2 +
M21

4
D1

2

)

∧ F2 ≃ M21

4
D1

2 ∧ F2 ⇒ mγ′ ≃M21, (3.32)

since M21/M22 ≃ τ2/τ1 ≫ 1. Hence the phenomenological implications of this set-up are the same

as the case in which f1 = 0 and exactly just D1
2 couples to F2. The relation between mγ′ and χ

now depends on an additional parameter since:

χ ≃ 10−2 τ1
f2

mγ′

MP
≃ 5 · 10−21 τ1

f2

mγ′

GeV
. (3.33)

Therefore we have managed to decouple the kinetic mixing parameter from the mass of the hidden

photon. However χ and τ1 are not completely independent parameters since the validity of the

anisotropic limit τ2 ≫ τ1, when expressed in terms of χ using (3.30), sets a lower bound on mγ′ :

τ1 ≪ τ2 ⇔ τ1 ≪ 25 · 10−6χ−2 ⇔ mγ′ ≫ 4 · 1024f2χ3 GeV, (3.34)

which brings us back to phenomenologically uninteresting regions of our parameter space.

The intuitive reason why we are not finding any relevant difference with the isotropic case is

that we are considering a D7-brane wrapped around the large 4-cycle D2. In this sense we are not

probing the anisotropy of the Calabi-Yau manifold which, on the other hand, plays a crucial rôle

only if we consider hidden photons living on the small K3 divisor D1. We shall now turn to study

this case showing how we can get more interesting results.

D7 wrapping the “milliweak” cycle D1

Let us now turn to study the case of a D7-brane wrapping the small K3 divisor D1. Setting i = 1 in

the general expression (2.10) for the mass of the hidden photon, the simple form of the diagonalising

matrix and the intersection numbers forcesM11 = 0. On the other hand, M12 is non-zero and looks

like:

M12 =

(

1√
2πτ1

f2k122C
2
2

)

MP ∼ f2
MP√
τ1τ2

. (3.35)

Thus if we turn on a gauge flux on t1, we do not couple any 2-form to F2. This result is in agreement

with the general statement that an Abelian gauge boson can become massive if a non-zero gauge

flux is supported on a 2-cycle internal to the 4-cycle wrapped by the corresponding D7-brane.

Nevertheless in our case the 2-cycle t1 is not internal to τ1 = t22.

Hence we need to turn on a gauge flux on t2, i.e. f2 6= 0, which couples D2
2 to F2:

Lint =
M12

4
D2

2 ∧ F2 ⇒ mγ′ =M12 ≃
MP

V ≃ Ms

V1/2
. (3.36)

Moreover the kinetic mixing between the hidden and the visible photon looks like:

χ ≃ 0.5 · 10
−2

√
τ1
. (3.37)

Inverting this relation, we can eliminate τ1 in the expression (3.35) and obtain a relation between

χ and mγ′ which again depends on an additional parameter:

χ ≃ 10−2 τ2
f2

mγ′

MP
≃ 5 · 10−21 τ2

f2

( mγ′

GeV

)

. (3.38)
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Contrary to the previous case of a D7-brane wrapped around D2, now we have really managed to

decouple χ from mγ′ since the anisotropic limit τ2 ≫ τ1, when expressed in terms of χ using (3.37),

now gives just an irrelevant upper bound on mγ′ :

τ1 ≪ τ2 ⇔ τ2 ≫ 25 · 10−6χ−2 ⇔ mγ′ ≪ 4 · 1024f2χ3 GeV. (3.39)

Setting χ ∼ 10−7 and f2 ≃ O(1), this upper bound becomes mγ′ ≪ 105 GeV without ruling out

any interesting region of our parameter space. Clearly, increasing χ this upper bound becomes even

less stringent.

Hence we have found a very promising set-up in an anisotropic compactification which opens

up the possibility to reach regions of the (mγ′ , χ)-parameter space that are very appealing for

hidden CMB and dark forces. However in order to be able to get a sensible prediction, one needs

to understand the dynamics of the extra dimensions and fix the value of τ1 and τ2. In the next

section we shall present a moduli stabilisation mechanism that will allow us to derive a concrete

prediction for mγ′ and χ in this set-up in a completely top-down approach from string theory.

4. Stabilisation of the extra dimensions

In this section we shall follow [44] and present a moduli stabilisation mechanism that naturally

leads to anisotropic compactifications with both τ1 and τ2 fixed at large values in string units. We

shall then explore the phenomenological implications of this class of string vacua and show that

they can give rise to two interesting scenarios for hidden photons:

• Considering natural values of the underlying parameters leads to hidden photons withmγ′ ≃ 1

GeV and χ ≃ 10−6, for intermediate string scale Ms ≃ 1012 GeV. These values of the kinetic

mixing parameter and the mass of the hidden photon are in the region of parameter space

that will be soon tested by the next beam dump and fixed target experiments, and produce

a particle with the right properties to explain the Dark Forces phenomena. On top of that,

an intermediate string scale naturally yields TeV-scale supersymmetry, a QCD axion with a

decay constant fa ≃ Ms within the allowed window, and the right Majorana scale for right

handed neutrinos.

• Fine tuning the underlying parameters leads to hidden photons with mγ′ ≃ 1 meV and

χ ≃ 10−6 for the extreme case of a TeV string scale Ms ≃ 1 TeV. These values of the kinetic

mixing parameter and the mass of the hidden photon yield a new particle with the right

properties to account for the observational evidence of an extra relativistic degree of freedom

in the CMB.

Moreover, in this case there is no need to have TeV-scale supersymmetry since the hierarchy

problem is solved by the low string scale, that would also allow to probe string scale physics

at the LHC.6 We also find as an accidental bonus in this case that the Kaluza-Klein modes

of the hidden gauge boson have masses of the right order of magnitude to be observed in the

“Dark Forces” regime (assuming they also kinetically mix with the zero modes):

mKK ∼ Ms

τ
1/4
1

∼ 1− 10 GeV. (4.1)

Large radiative corrections to the moduli masses due to the absence of supersymmetry and

the weakness of some of the moduli couplings (which might be much weaker than 1/MP )

due to the geometric separation between different 4-cycles within the Calabi-Yau, lead to no

conflict with fifth force experiments [54, 45].

6Here the string scale is simply defined as Ms ≡ 1/ls. However, the string resonances occur at multiples of 2π/ls;

the lowest such universal states should be seen therefore at 2πMs.
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We shall now focus on the stabilisation of all the geometric moduli which emerge in the low

energy effective field theory of type IIB compactified on an orientifold of the Calabi-Yau three-fold

given by the addition of a blow-up mode to the geometry CP 4
[1,1,2,2,6][12] studied in the previous

sections. Explicit compact Calabi-Yau examples with these features have been recently constructed

in [55]. We point out that, as we shall see later on, the inclusion of an extra blow-up mode is

required to guarantee the existence of controlled large volume solutions. Therefore the Calabi-Yau

volume in terms of its three Kähler moduli looks like:

V = λ1t1t
2
2 + λ3t

3
3 = α

(√
τ1τ2 − γτ

3/2
3

)

= t1τ1 − αγτ
3/2
3 , (4.2)

with the constants α and γ which depend on the intersection numbers and are taken to be positive

and typically of order unity. In order to obtain light hidden photons we are interested in large

values of the overall volume, and so we shall work in the parameter regime:

V ≃ α
√
τ1 τ2 ≫ αγτ

3/2
3 ≫ 1. (4.3)

Regarding the relative size of each Kähler modulus, we shall consider the limit τ2 ≫ τ1 ≫ τ3 ⇔
t1 ≃ τ2/

√
τ1 ≫ t2 ≃ √

τ1 ≫ t3 ≃ √
τ3, corresponding to the interesting anisotropic case having the

two dimensions of the base, spanned by the cycle t1, hierarchically larger than the other four of the

K3 fibre, spanned by τ1.

4.1 F -term potential

4.1.1 Tree-level effective action

The geometric moduli of the N = 1 4D supergravity obtained as a low-energy limit of type IIB

string theory compactified on a Calabi-Yau orientifold, include h1,1 Kähler moduli defined in (A.3)

which parameterise the size of the internal manifold, h2,1 complex structure moduli Uα which

parameterise the shape of the Calabi-Yau, and the axio-dilaton S = e−φ + iC0, defined in terms

of the R-R 0-form C0 and the dilaton φ, whose vacuum expectation value sets the string coupling:

g−1
s = 〈Re(S)〉.

The tree level Kähler potential Ktree takes the factorised form (setting MP = 1 for the time

being):

Ktree(T + T̄ , S + S̄, U) = −2 lnV − ln
(

S + S̄
)

− ln



−i
∫

CY

Ω ∧ Ω̄



 , (4.4)

where V depends only on (T + T̄ ) and Ω is the Calabi-Yau holomorphic (3, 0)-form which is a

function of the complex structure moduli.

A key ingredient to fix most of the geometric moduli is the turning on of background fluxes

G3 = F3 + iSH3, where F3 and H3 are respectively the R-R and NS-NS 3-form fluxes [56]. These

fluxes generate a tree-level superpotential which takes the Gukov-Vafa-Witten form [57]:

Wtree(S,U) =

∫

CY

G3 ∧ Ω, (4.5)

As Wtree is independent of the Kähler moduli, the N = 1 F -term supergravity scalar potential

looks like:

VF = eK





∑

S,U

Kαβ̄DαWDβ̄W̄ +

(

∑

T

Kij̄KiKj̄ − 3

)

|W |2


 . (4.6)

Due to the no-scale property of the tree-level Kähler potential (4.4),
∑

T K
ij̄KiKj̄ = 3, all the T -

moduli are exactly flat directions at semiclassical level. Thus one is left with a semi-positive definite

scalar potential for the S and U -moduli which admits a Minkowski minimum forDSW = DUW = 0.
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If we are then interested in fixing the Kähler moduli at subleading order via perturbative and

non-perturbative corrections, we can safely set the dilaton and the complex structure moduli equal

to their vacuum expectation values. Then the superpotential is constant, W = 〈Wtree〉 ≡ W0 and

the Kähler potential is K = Kcs − ln (2/gs) +K0 with:

K0 = −2 lnV and e−Kcs =

〈

−i
∫

CY

Ω ∧ Ω̄

〉

. (4.7)

4.1.2 Leading order corrections

Let us now consider the leading order corrections to the tree level action which lift the remaining

flat directions. These are the leading order α′ corrections to K [58]:

K = K0 + δKα′ = −2 ln

(

V +
ξ

2g
3/2
s

)

≃ −2 lnV − ξ

g
3/2
s V

, (4.8)

and non-perturbative corrections to W :

W =W0 +A3e
−a3T3 . (4.9)

The correction (4.8) comes from the reduction of the O(α′3)R4 10D term and corresponds to

higher derivative corrections in the effective supergravity description. The parameter ξ is given

by ξ = − χζ(3)
2(2π)3 , where χ = 2 (h1,1 − h2,1) is the Calabi-Yau Euler number, and the Riemann zeta

function is ζ(3) ≃ 1.2.

On the other hand, the non-perturbative correction to the superpotential (4.9) can be generated

wrapping the blow-up mode D3 with either a Euclidean D3-brane instanton (in which case a3 = 2π)

or a stack of D7-branes supporting an SU(N) gauge theory that undergoes gaugino condensation

(in which case a3 = 2π/N). Notice that the fact that D3 is a rigid divisor guarantees the existence

of such kind of non-perturbative effects. The coefficient A3 corresponds to threshold effects and it

depends on U and D3-position moduli, but not on the Kähler moduli.

Therefore the F -term scalar potential at leading order in a large volume expansion, looks like:

VF =
gse

KcsM4
P

8π

[

8 a23A
2
3

3αγ

(√
τ3
V

)

e−2a3τ3 + 4W0a3A3 cos(a3b3)
( τ3
V2

)

e−a3τ3 +
3 ξW 2

0

4g
3/2
s V3

]

, (4.10)

where we have explicitly included the right prefactor obtained from dimensional reduction (see

appendix of [59]). Taking both W0 and A3 to be real and positive without loss of generality, the

minimum for the axion b3 is at b3 = kπ/a3 with k ∈ Z. The potential for τ3 and V then admits a

minimum for ξ > 0 (i.e. h2,1 > h1,1 = 3) located at:

〈τ3〉 =
1

gs

(

ξ

2αγ

)2/3

and 〈V〉 =
(

3αγ

4a3A3

)

W0

√

〈τ3〉 ea3〈τ3〉 . (4.11)

This is the typical non-supersymmetric AdS minimum of LARGE volume scenarios [43, 44]. Super-

symmetry is broken spontaneously by non-zero F -terms of the Kähler moduli [60] and the minimum

is found without fine-tuning the background fluxes, i.e. settingW0 ≃ O(1). The exponentially large

volume allows to explain many hierarchies observed in nature and guarantees that the low-energy

effective field theory is under good control.

Due to the fact that, within this level of approximation, VF depends only on two of the three

original Kähler moduli, VF = VF (V , τ3), we have been able to fix only a particular combination of τ1
and τ2 corresponding to the overall volume. The potential along the other orthogonal combination

is therefore so far completely flat. This direction played the rôle of the inflaton in [61, 62, 63, 64]

and can be lifted via subleading contributions to (4.10) coming from string-loop corrections to the

Kähler potential.
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4.1.3 Subleading order corrections

The next to leading order correction to the flat tree-level potential for the T -moduli comes from

1-loop open string contributions to the Kähler potential. Their form has been explicitly computed

only in the simple case of N = 1 toroidal orientifolds and looks like [65]:

δK(gs) = δKKK
(gs)

+ δKW
(gs)

, (4.12)

where δKKK
(gs)

can be interpreted from the closed string point of view, as coming from the exchange

of Kaluza-Klein modes between D7 and D3-branes or non-intersecting stacks of D7-branes, while

δKW
(gs)

is due to the exchange of winding strings between intersecting stacks ofD7-branes. Assuming

that all the three 4-cycles of the torus are wrapped by D7-branes, these two corrections read:

δKKK
(gs)

= − 1

128π4

3
∑

i=1

EKK
i (U, Ū)

Re (S) τi
, and δKW

(gs)
= − 1

128π4

3
∑

i=1

EW
i (U, Ū)

τjτk

∣

∣

∣

∣

j 6=k 6=i

, (4.13)

where the functions Ei(U, Ū) are encoding the very complicated dependence of these corrections on

the complex structure moduli.

These results have been used to conjecture the form of the string loop corrections to K for an

arbitrary Calabi-Yau compactification using two observations: the interpretation as the tree-level

propagation of Kaluza-Klein and winding modes respectively, and the Weyl rescaling needed to

convert the string computation to 4D Einstein frame [66]. The final proposal is:

δKKK
(gs)

=
∑

i

CKK
i (U, Ū)m−2

KK

Re (S)V =
∑

i

CKK
i (U, Ū)

(

ailt
l
)

Re (S)V , (4.14)

and:

δKW
(gs)

=
∑

i

CW
i (U, Ū)m−2

W

V =
∑

i

CW
i (U, Ū)

(ailtl)V
. (4.15)

The linear combination
(

ailt
l
)

of the volumes of the basis 2-cycles tl, in (4.14) gives the 2-cycle

that is transverse to the 4-cycle wrapped by the i-th D7-brane, whereas in (4.15) it gives the 2-

cycle where the two D7-branes intersect. The unknown functions CKK
i (U, Ū) and CW

i (U, Ū) can be

simply regarded as free parameters since the complex structure moduli are already stabilised at the

semi-classical level by background fluxes.

A key property of these corrections is that their leading contribution to the scalar potential is

vanishing, leading to an ‘extended no-scale structure’ which has a nice low-energy interpretation in

terms of the Coleman-Weinberg potential [67]. This leading order cancellation is crucial to render

δV(gs) subdominant with respect to δV(α′). In fact, the first non-vanishing contribution to the scalar

potential of the corrections (4.14) and (4.15) reads [67]:

δV 1−loop
(gs)

=
[

(

gsCKK
i

)2
K0

iı̄ − 2δKW
(gs)

] W 2
0

V2
. (4.16)

This contribution is subdominant relative to the leading α′ correction, since it scales as δV(gs) ∼
V−3t−1 while δV(α′) ∼ g

−3/2
s V−3. Hence their ratio behaves as δV(α′)/δV(gs) ∼ g

−3/2
s t ≫ 1 since we

require gs ≪ 1 to be in the perturbative regime and t ≫ 1 (in string units) to trust the effective

field theory.

We shall now apply these general results to our K3 fibred Calabi-Yau case where we wrap a

stack of D7-branes around each divisor. The stack of D7-branes wrapped around D3 is needed

to generate the non-perturbative effects via gaugino condensation, while the two stacks wrapped
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around D1 and D2 generate the loop corrections needed to fix the remaining flat direction and

provide hidden U(1) gauge bosons.

The general formula (4.16) then gives rise to four corrections to the scalar potential (4.10):

δVF =
gse

KcsM4
P

8π

[

δV KK
(gs),τ1

+ δVW
(gs),τ1∩τ2

+ δV KK
(gs),τ2

+ δV KK
(gs),τ3

]

, (4.17)

which have the form:

δV KK
(gs),τ1

=
AW 2

0

τ21V2
, δVW

(gs),τ1∩τ2
= − BW 2

0

V3√τ1
, (4.18)

δV KK
(gs),τ2

=
CW 2

0 τ1
V4

, δV KK
(gs),τ3

=
DW 2

0

V3√τ3
,

with:

A =
(

gsC
KK
1

)2
> 0, B = 4αCW

12 , C = 2
(

αgsC
KK
2

)2
> 0, D =

(

gsC
KK
3

)2
> 0.

Notice that the last term in (4.17) can be safely neglected since it does not introduce a dependence

on the remaining flat direction, which, on the other hand, is lifted by the first three terms. In fact,

minimising δVF with respect to τ1 at fixed V and τ3, we find:

1

〈τ1〉3/2
=

(

B

8A〈V〉

)

[

1 + (signB)

√

1 +
32AC

B2

]

, (4.19)

which, when 32AC ≪ B2 ⇔ 4 g4s
(

CKK
1 CW

12

)2 ≪
(

CKK
2

)2
, reduces to:

〈τ1〉 ≃
(

−B〈V〉
2C

)2/3

if B < 0 or 〈τ1〉 ≃
(

4A〈V〉
B

)2/3

if B > 0. (4.20)

Choosing for definiteness B > 0, we can reexpress the relation (4.20) in terms of τ1 and τ2 as:

〈τ1〉 = κ 〈τ2〉, with κ ≡
(

gsC
KK
1

)2

CW
12

. (4.21)

We finally point out that due to the incompatibility between chirality and non-perturbative effects

[68], the visible sector (the Standard Model or any generalisation thereof) cannot be wrapped

around τ3 but it has to be supported by another blow-up mode which we shall call τ4 (see Fig. 2).

This additional 4-cycle can be fixed either via D-terms [68] or via string loop corrections [44].

4.2 D-term potential

As we have seen in the previous sections, every time a gauge flux is turned on to give a Stückelberg

mass to the hidden photon, also a moduli dependent Fayet-Iliopoulos term gets generated. In this

case, it is therefore inconsistent to study moduli stabilisation focusing just on the F -term scalar

potential and neglecting the D-term contribution.

When D-terms are properly taken into account, they turn out to dominate over VF generically

giving rise to a dangerous run-away behaviour for the overall volume mode. Here are some possible

way-outs:

• In the absence of matter fields charged under the U(1), there are two solutions:

1. Fine-tune the coefficients of VD. Given that all these are O(1) numbers, the only way to

achieve small D-terms is via warping. Then VD could be used to turn the AdS minimum
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Figure 2: Pictorial view of the K3 fibred Calabi-Yau three-fold and the brane set-up under consideration.

Four-cycles are shown as surfaces and two-cycles as lines.

into a Minkowski or slightly de Sitter one. However this solution is not very satisfactory

since it is hard to envisage a situation where a D7-brane wrapping a large 4-cycle is in

a highly warped region. In addition one should check if also VF is affected by warping.

Finally it might still be complicated to estimate the new predictions for mγ′ and χ since

the kinetic terms of the 2-forms which couple to F2, cannot be explicitly canonically

normalised in the presence of warping.

2. Consider more complicated topologies with intersecting large 4-cycles. In this case,

requiring a vanishing Fayet-Iliopoulos term fixes a particular combination of the large

divisors and the contribution of VD gets cancelled dynamically. One should check that

indeed no matter gets generated at the intersection of the two 4-cycles.

• In the presence of matter fields charged under the U(1), there are two situations:

1. If all the U(1)-charges of the matter fields have the same sign, the U(1) is anomalous

and each scalar acquires a vanishing vacuum expectation value. Hence, as far moduli

stabilisation is concerned, we get back to the situation above where we did not consider

any matter field, but with the additional phenomenological constraint of avoiding the

experimental bounds on millicharged particles. Therefore this case does not look very

promising.

2. If not all the U(1)-charges of the matter fields have the same sign, the U(1) can be

non-anomalous and some matter fields can acquire a non-zero vacuum expectation value

partially cancelling the Fayet-Iliopoulos term. In fact, the scalar potential for the matter

fields involves also supersymmetry breaking contributions to their masses coming from

F -terms which are generically subleading with respect to the D-terms, resulting in a non

exact cancellation of VD. Once the matter fields are integrated out, it turns out that the

remaining contribution to the moduli potential is still dominating the moduli F -term
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potential. Hence we are still facing the dangerous decompactification problem due to the

run-away behaviour of the volume direction.

For compactification manifolds whose volume is controlled by just one 4-cycle like in the

isotropic case, the only way to solve this problem is via fine-tuning by means of warping.

Due to the leading order cancellation in VD, the amount of fine-tuning is less than in the

case with no matter fields, but we would then face the same resulting problems due to

the use of warping. On the contrary, Calabi-Yau three-folds, whose volume is controlled

by more than one 4-cycle like in the K3-fibration examples, look more promising since

the dangerous contribution from the scalar potential of the matter fields could compete

against the string loop corrections, resulting in the stabilisation of the K3 divisor and in

the generation of an up-lifting term. In this case we could achieve a Minkowski vacuum

without invoking warping since the fine-tuning could be performed on the coefficients of

the gs corrections.

On top of this, one should check that the Abelian gauge boson which gets a Stückelberg

mass does not also get a Higgs mass due to the non-zero VEV of the matter fields, since

the contribution from the Higgs mechanism would generically be the leading effect. We

should then envisage a situation similar to the Standard Model where SU(2)L×U(1) →
U(1)Y leaving a massless photon, which in our case would then acquire a mass just via the

Stückelberg mechanism. Finally no matter field should violate the experimental bounds

on millicharged particles. In order to achieve this, we should compute the mass of the

scalars studying their potential and ensure that our brane set-ups allows the generation

of appropriate Yukawa couplings needed to give a mass to the fermions.

4.2.1 Decompactification problem

Let us now see why the contribution of D-terms from magnetised D7-branes wrapping large 4-

cycles, tend to develop a dangerous run-away for the overall volume mode. We shall first examine

the isotropic case following [69] and then we shall extend these results also to the anisotropic one.

Isotropic case

Focusing on the case of a D7-brane wrapping Db with a non-vanishing gauge flux supported on tb,

the general expression (A.34) for the D-term potential takes the form:

VD =
π

(τb − gsfbqbb/2)





∑

j

cbjϕj
∂K

∂ϕj
+
qbb
4π

∂K

∂τb





2

≃ p1
V2/3





∑

j

cbjϕj
∂K

∂ϕj
− p2

V2/3





2

, (4.22)

where p1 ≡ π
(

9
√
2
)−2/3

and p2 ≡ 9fb/
(

61/3π
)

, while the volume scaling of the Kähler potential

for the matter fields φj is given by (assuming a diagonal structure) [70]: K ≃ ∑

j |φj |2V−9/4.

Considering also F -term contributions, the total scalar potential becomes:

V = VF + VD =
p1
V2/3





∑

j

cbj
|φj |2
V9/4

− p2
V2/3





2

+
∑

j

kj
|φj |2
V22/9

+ VF (T ), (4.23)

where the kj are O(1) numbers and VF (T ) denotes the scalar potential (4.10) for the Kähler moduli.

If the U(1)-charges of the matter fields have all an opposite sign with respect to the FI-term, then

clearly the total potential (4.23) is minimised for 〈φj〉 = 0 ∀j. Setting each matter field equal to

its vacuum expectation value, we are then left with just the moduli-dependent contribution of the

Fayet-Iliopoulos term:

V =
p

V2
+ VF (T ), with p = p1p

2
2 =

9f2
b

2π
. (4.24)
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Given that (4.10) scales as VF (T ) ≃ O(V−3), we realise that in order to get a Minkowski vacuum

we need to fine-tune p ≃ O(V−1/2), while from (4.24) we notice that p can never be made so small

for integer values of the flux coefficient fb. A possible way-out is to invoke warping but, as we

pointed out above, it is hard to envisage a situation where this can be done without loosing control

over the effective field theory.

If some of the matter fields have a U(1)-charge with the same sign of the FI-term, then we

can have a leading order cancellation in the D-term scalar potential, so that the F -term potential

for the matter fields dominates over the contribution from D-terms. Nevertheless we still obtain a

run-away for the volume mode since the total potential becomes (focusing on just one canonically

normalised matter field ϕc):

V = VF + VD =
p1

V2/3

(

cb|φc|2 − ξ
)2

+ k
|φc|2
V2

+ VF (T ), with ξ =
p2
V2/3

. (4.25)

The minimum for the matter field is at:

〈|φc|2〉 =
ξ

cb
− k

2c2bp1V
≃ ξ

cb
, (4.26)

so that, after integrating out φc we are left with:

V ≃ k

cb

ξ

V2
+ VF (T ) =

p

V8/3
+ VF (T ), with p =

9kfb
61/3πcb

. (4.27)

In this case the fine-tuning needed to obtain a Minkowski vacuum is reduced to p ≃ O(V−1/3), but

(4.27) is showing again that p cannot be rendered so small since k is an O(1) number coming from

the computation of the supersymmetry breaking contribution to the mass of the matter scalars, fb
is an integer flux-coefficient and cb is the U(1)-charge of the matter fields.

Anisotropic case

This problem subsists also in the anisotropic case. In fact, focusing on the phenomenologically

interesting case of a D7-brane wrapping D1 with a non-vanishing gauge flux supported on t2, the

general expression (A.34) for the D-term potential takes the form:

VD =
π

(τ1 − gsf2q12/2)





∑

j

c1j ϕj
∂K

∂ϕj
+
q12
4π

∂K

∂τ2





2

≃ π

τ1





∑

j

c1j ϕj
∂K

∂ϕj
− p

√
τ1

V





2

, (4.28)

where p ≡ f2/ (2π). The volume scaling of the Kähler potential for the matter fields φj can be

inferred to be (following the same philosophy of [70] and assuming a diagonal structure): K ≃
∑

j τ
1/3
1 V−2/3|φj |2. Considering also F -term contributions, the total scalar potential becomes:

V = VF + VD =
π

τ1





∑

j

c1jτ
1/3
1

|φj |2
V2/3

− p

√
τ1
V





2

+
∑

j

kjτ
1/3
1

|φj |2
V8/3

+ VF (T ), (4.29)

where the kj are O(1) numbers and VF (T ) denotes the scalar potential (4.10) for the Kähler moduli.

If the U(1)-charges of the matter fields have all an opposite sign with respect to the FI-term, then

we find 〈φj〉 = 0 ∀j, leading again to a dangerous run-away behaviour for the volume mode since

the resulting potential is V = πp2V−2 + VF (T ).

If some of the matter fields have a U(1)-charge with the same sign of the FI-term, then we

can have a leading order cancellation in the D-term scalar potential, so that the F -term potential

for the matter fields dominates over the contribution from D-terms. Nevertheless we still obtain a
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run-away for the volume mode since the total potential becomes (focusing on just one canonically

normalised matter field ϕc):

V = VF + VD =
π

τ1

(

c1|φc|2 − ξ1
)2

+ k
|φc|2
V2

+ VF (T ), with ξ1 = p

√
τ1
V . (4.30)

The minimum for the matter field is at:

〈|φc|2〉 =
ξ1
c1

− k τ1
2πc21V2

≃ ξ1
c1
, (4.31)

so that, after integrating out φc we are left with:

V ≃ k

c1

ξ1
V2

+ VF (T ) = λ

√
τ1

V3
+ VF (T ), with λ =

kf2
2πc1

. (4.32)

The τ1-dependent term is still dangerous for the destabilisation of the volume mode since in order

to trust the effective field theory we need to work in the regime τ1 ≫ 1. On top of this, we need now

also to fix the K3 divisor τ1 balancing the term in (4.32) against other τ1-dependent contributions

to the scalar potential. These can only arise via string loop corrections to K, as we have seen in

section 4.1.3, since the fact that this cycle is non-rigid prevents the presence of non-perturbative

effects in τ1
7. Adding to (4.32) the gs correction coming from wrapping just a D7-brane around

D1, the τ1-dependent part of the scalar potential looks like:

V =

(

λ

√
τ1
V +

A

τ21

)

W 2
0

V2
, with λ =

f2
6πc1

and A =
(

gsC
KK
1

)2
, (4.33)

where we have substituted in λ the correct factor coming from the computation of the supersym-

metry breaking contribution to the mass of the matter scalars: k = W 2
0 /3. The potential (4.33)

admits a minimum for τ1 at:

〈τ1〉 =
(

4A

λ

)2/5

〈V〉2/5 ⇔ 〈τ1〉 =
(

2A

λ

)1/2

〈τ2〉1/2, (4.34)

which implies τ1 ≪ τ2 in agreement with the anisotropic limit we are interested in. Substituting

(4.34) in (4.33), we end up with a total potential of the form:

V = δ
W 2

0

V14/5
+ VF (T ), with δ =

5λ

4

(

4A

λ

)1/5

≃ 0.16 ·
(

f2
c1

)4/5

A1/5. (4.35)

If we now integrate out τ3 from (4.10) we are left with a potential for just the volume mode (setting

γ = 1):

V =

[

−
(

lnV
a3

)3/2

+
ξ

g
3/2
s

+
4δV1/5

3

]

3W 2
0

4V3
. (4.36)

The minimum for V is localised at 〈V〉 ≃ e a3ξ
2/3/gs and the requirement of obtaining a vanishing

cosmological constant fixes δ = 45
√
lnV/

(

8 a
3/2
3 V1/5

)

≃ 45ξ1/3/
(

8 a3g
1/2
s V1/5

)

. Using the ex-

pression (4.35) for δ, we see that the level of fine-tuning of the coefficients of the loop corrections

is:

CKK
1 ≃ 7.33 · 103ξ5/6

a
5/2
3 g

9/4
s V1/2

(

c1
f2

)2

⇔
(

4A

λ

)2/5

=
324π2c21 lnV
f2
2a

3
3V2/5

. (4.37)

7Even taking non-perturbative effects into account, assuming that the deformation moduli might be fixed by

means of non-trivial fluxes, it turns out that no minimum would exist for τ1 ≫ 1.
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Substituting this result in (4.34) we notice that the VEV of τ1 is of the order:

〈τ1〉 =
324π2c21 ln〈V〉

a33f
2
2

≃
(

18πc1
a3f2

)2
ξ2/3

gs
≫ 1. (4.38)

As we shall see in the next section, this case requires always a large amount of fine tuning to reach

the interesting regions of the (mγ′ ,χ)-parameter space. Moreover, it relies on the model-dependent

assumption of realising an explicit brane construction where the hidden photon does not get a large

Higgs mass of the order 〈ϕc〉 ∼ √
ξ1 ∼ Ms, and the fermions can evade the stringent bounds on

millicharged particles due to the presence of appropriate Yukawa couplings.

Using similar arguments as above, it can be shown that when we wrap a D7-brane also around

D2 with a non-vanishing gauge flux, we face the same destabilisation problem for the volume

direction but without the possibility to fix it by having a leading order cancellation of the D-terms

as in the case of a D7-brane wrapping D1.

We conclude that D-terms associated to U(1) factors living on 4-cycles controlling the overall

volume are the source of a serious run-away problem for the volume mode. Except for the case

of a K3 fibration with a D7-brane wrapping D1, where this problem can be avoided by means

of fine-tuning and some model-dependent assumptions, the general solution seems to rely on the

absence of gauge fluxes that prevents the presence of any Fayet-Iliopoulos term, corresponding to

the uninteresting situation of massless hidden photons.

However this is not the end of the story. In fact, in the previous analysis, we never considered the

supersymmetric case of vanishing D-terms with zero FI-terms since, due to the particularly simple

form of the overall volume, this situation would have corresponded to the limit V → ∞. In the

next section, we shall therefore solve this problem associated with the D-term potential, focusing

on Calabi-Yau three-folds with more complicated topologies where ξ = 0 does not correspond

to V → ∞, but the requirement of having vanishing FI-terms reduces dynamically the initial

compactification manifold to the simple ones we were considering before.

4.2.2 Vanishing FI-terms with finite volume

Consider a Calabi-Yau orientifold with h+1,1 = h1,1 (i.e. h−1,1 = 0) even divisors with n < h1,1 of

them wrapped by a stack of D7-branes with generic gauge fluxes:

FD7i
2 = f j

(i)D̂j , ∀i = 1, ..., n, (4.39)

that give rise to the following Fayet-Iliopoulos terms:

ξi =
1

V f
k
(i)kijkt

j =
1

V qij t
j . (4.40)

It is interesting to notice the nice relation between the U(1)-charges qij = fk
(i)kkij and the chiral

intersections:

ID7i−D7j =

∫

CY

D̂i ∧ D̂j ∧
(

FD7i
2 − FD7j

2

)

=
(

fk
(i) − fk

(j)

)

kijk = qij − qji, (4.41)

ID7i−D7i′ = 2

∫

CY

D̂i ∧ D̂i ∧ FD7i
2 = 2f j

(i)kiij = 2qii, (4.42)

ID7i−D7j′ =

∫

CY

D̂i ∧ D̂j ∧
(

FD7i
2 + FD7j

2

)

=
(

fk
(i) + fk

(j)

)

kijk = qij + qji, (4.43)

where we have used the fact that D′
i = Di, while the gauge flux inverts its sign under the orientifold

action. We can then rewrite the Fayet-Iliopoulos terms as a function of the chiral intersections as:

ξi =
1

V





n
∑

j=1

(

ID7i−D7j + ID7i−D7j′

2

)

tj +

h1,1
∑

j=n+1

qijtj



 , (4.44)
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where the first sum is over the 2-cycles dual to the wrapped 4-cycles while the last one is over the

unwrapped ones.

If we then impose the absence of chiral intersections between the D7-branes and their orientifold

images in order to avoid any problem with millicharged particles, the FI-terms (4.44) simplify to:

ξi =
1

V

h1,1
∑

j=n+1

qijtj , (4.45)

with an explicit dependence only on the 2-cycles dual to the 4-cycles not wrapped by any brane.

Focusing on the supersymmetric locus corresponding to vanishing FI-terms, we then obtain a

homogeneous system of n linear equations in m ≤ (h1,1 − n) unknowns (we have m < (h1,1 − n) if

some unwrapped 4-cycles do not intersect any of the wrapped ones) which, in the case of linearly

independent equations, admits only the trivial solution if m ≤ n.

We shall therefore focus on the case m = (h1,1 − n) ⇔ n < h1,1 ≤ 2n, and look for Calabi-Yau

geometries that admit a singular limit to our previous examples, dynamically driven by the super-

symmetric requirement of having vanishing D-terms. Moreover the absence of chiral matter renders

our results truly model independent and the resulting improved control over moduli stabilisation

strengthens the robustness of our predictions.

Isotropic case

In this section we shall show how the supersymmetric requirement of having vanishing D-terms

allows us to obtain isotropic compactifications with just one large 4-cycle controlling the overall

volume, as a singular limit of different Calabi-Yau three-folds with more complicated topologies.

We shall start from the same manifold discussed in section 3.2, that is an orientifold of the

Calabi-Yau given by the degree 12 hyper-surface embedded in CP 4
[1,1,2,2,6]. The volume can be

expressed in terms of the 2-cycle moduli as in (3.18) or as a function of the 4-cycle moduli as in

(3.20) with the only two non-zero intersection numbers given by k122 = 2 and k222 = 4.

We now wrap a single D7-brane around the divisor D2 whose volume is τ2 = 2t2 (t1 + t2)

turning on also a generic gauge flux on this brane: F2 = f1D̂1 + f2D̂2. On the other hand, we do

not wrap any D7-brane around the other divisor D1 with volume given by τ1 = t22.

The requirement of avoiding the generation of chiral matter at the intersection between the

D7-brane and its orientifold image, constraints the form of the integer flux coefficients. In fact, the

number of chiral bi-fundamental states at this intersection reads:

ID7−D7′ = 2

∫

CY

D̂2 ∧ D̂2 ∧ F2 = 4 (f1 + 2f2) = 0 ⇔ f1 = −2f2, (4.46)

where we have used the fact that we are dealing with even 4-cycles under the orientifold, i.e.

D′
1 = D1, while the gauge flux flips sign: F2 → −F2. Recalling the general relation between the

U(1)-charges and the Fayet-Iliopoulos terms, we find that the only non-vanishing charge is q21 = 2f2
leading to:

ξ2 =
q2jtj
V =

2f2t1
V . (4.47)

The supersymmetry requirement of having vanishing D-terms then forces the 2-cycle t1 to shrink

to zero size: t1 → 0. In this singular limit, the initial Calabi-Yau takes exactly the same form of

the isotropic case studied in section 3.1 while all the divisors stay finite:

V =

(

t1 +
2

3
t2

)

t22 → 2

3
t32 =

2

3
τ
3/2
1 ⇔ τ1 = t22, τ2 = 2t2 (t1 + t2) → 2t22 = 2τ1. (4.48)

Therefore in this case the D-term potential is under control and the U(1) gauge boson living on

D2 can become massive via the Green-Schwarz mechanism due to its coupling to a particular
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combination of the canonically normalised two-forms D1
2 and D2

2 . In order to compute the mass of

the hidden photon we need the diagonalising matrix evaluated at τ2 = 2τ1 which looks like:

Ci
j =

1

τ1

(

c1 c3
c2 c4

)

, with c1,2 = (−1∓
√
17)

√

3

2(51∓ 5
√
17)

, and c3,4 = 2

√

6

51∓ 5
√
17
.

Therefore the mass of the hidden photon living on D2 turns out to be:

mγ′ =
√

M2
21 +M2

22 ∼ f2
MP

τ
3/2
1

∼ f2
MP

τ
3/2
1

, (4.49)

which is exactly of the same form as (3.9) once we identify τ1 with the big 4-cycle τb.

Anisotropic case

Start from a Calabi-Yau with three Kähler moduli and volume of the form:

V = t1t2 (t2 + t3) , (4.50)

so that the only non-zero intersection numbers are k122 = 2 and k123 = 1. It can be checked that the

Hessian ∂2V/ (∂ti∂tj) admits one positive and two negative eigenvalues in accord with the generic

property of Calabi-Yau manifolds that requires the signature of the Hessian to be (1, h1,1 − 1).

The 4-cycle moduli are given by:

τ1 = t2 (t2 + t3) , τ2 = t1 (2t2 + t3) , τ3 = t1t2, (4.51)

and the volume can be reexpressed in terms of them as:

V =
√

τ1τ3 (τ2 − τ3). (4.52)

We now wrap a single D7-brane both around the divisor D1 and D2. In addition we turn on

generic gauge fluxes on these branes:

FD71
2 = f2D̂2 + f3D̂3, and FD72

2 = g1D̂1 + g2D̂2 + g3D̂3, (4.53)

with the additional constraint that no chiral matter is generated at each of the possible intersections

between branes and their orientifold images:

ID71−D72 =

∫

CY

D̂1 ∧ D̂2 ∧
(

FD71
2 − FD72

2

)

= 2 (f2 − g2) + f3 − g3 = 0 (4.54)

ID71−D71′ = 2

∫

CY

D̂1 ∧ D̂1 ∧ FD71
2 = 0 (4.55)

ID71−D72′ =

∫

CY

D̂1 ∧ D̂2 ∧
(

FD71
2 + FD72

2

)

= 2 (f2 + g2) + f3 + g3 = 0 (4.56)

ID72−D72′ = 2

∫

CY

D̂2 ∧ D̂2 ∧ FD72
2 = 4g1 = 0 (4.57)

ID72−D71′ = ID71−D72′ , ID72′−D71′ = −ID71−D72. (4.58)

We remind the reader that in the previous expressions we have used the fact that we are dealing

with even 4-cycles under the orientifold, i.e. D′
i = Di, while the gauge flux flips sign: F i

2 → −F i
2.

The combined constraints (4.54) and (4.56) imply f3 = −2f2 and g3 = −2g2, while (4.55) is satisfied

by construction since the divisor D1 has no self-intersection, i.e. k1ij = 0 ∀i, j, and (4.57) forces

g1 = 0.
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Recalling the general relation between the U(1)-charges and the Fayet-Iliopoulos terms, we find

that the only non-vanishing charge is q13 = f2 leading to:

ξ1 =
q1jtj
V =

f2t3
V , and ξ2 =

q2jtj
V = 0. (4.59)

The supersymmetry requirement of having vanishing D-terms then forces the 2-cycle t3 to shrink

to zero size: t3 → 0. In this singular limit, the initial Calabi-Yau takes exactly the same form of

the K3 fibration studied in the previous section while all the divisors stay finite:

V → t1t
2
2 =

1

2

√
τ1τ2 ⇔ τ1 → t22, τ2 → 2t1t2, τ3 → t1t2 = 2τ2. (4.60)

Therefore in this case the D-term potential is under control and the brane set-up is the right one

to generate the string loop correction to the Kähler potential needed to fix the K3 divisor.

However in the previous sections, we have seen that the U(1) gauge boson living on D1 becomes

massive due to its coupling with the two-form D2
2 while in our case q12 = 0 and FD71

2 couples to

a particular combination of the canonically normalised two-forms D2
2 and D3

2 . However the final

mass of the hidden photon takes the same form since the diagonalising matrix evaluated at τ3 = 2τ2
looks like:

Ci
j =

1

τ2





τ2/τ1 0 0

0 λ1 λ3
0 λ2 λ4



 , with λ1,2 =
1∓

√
5

51/4
√√

5∓ 2
, and λ3,4 =

2

51/4
√√

5∓ 2
.

Therefore the mass of the hidden photon living on D1 turns out to be:

mD71
γ′ =

√

M2
12 +M2

13 =

√

(λ22 + λ24)

4π2
f2

MP√
τ1τ2

∼ f2
MP√
τ1τ2

, (4.61)

which is exactly of the same form as (3.35). We finally point out that the hidden photon living on

D2 is exactly massless since the corresponding FI-term is vanishing, ξ2 = 0, due to the requirement

of avoiding chiral intersections and the particularly simple structure of the intersection numbers.

5. Phenomenological implications

Let us focus on the phenomenologically interesting case of K3 fibrations with a D7-brane wrapped

around D1 with f2 units of gauge flux on t2. We have seen that there are two ways to stabilise

the K3 divisor either via gs corrections to K for vanishing FI-terms or by making these corrections

compete with D-terms for non-zero FI-terms. Let now examine the predictions for the features of

the hidden photon in these two separate scenarios.

5.1 Vanishing FI-term

Fixing τ1 via string loop corrections to the Kähler potential we can rewrite the relation (3.38)

between mγ′ and χ as:

χ

10−8
∼ κ−1/3

( mγ′

GeV

)1/3

⇔ κ ∼
(

10−8

χ

)3
( mγ′

GeV

)

, (5.1)

where κ is a free parameter that is naturally small since it is proportional to g2s ≪ 1:

〈τ1〉 = κ 〈τ2〉, with κ ≡
(

gsC
KK
1

)2

CW
12

. (5.2)
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Figure 3: Predictions from anisotropic compactifications. The area predicted by models with vanishing

FI-terms is shown in light blue and marked as “Stückelberg anisotropic”. The lines denote different values

of from bottom to top, κ = 1, 10−3
, 10−6

. . . 10−21. The red line denotes a natural κ = 10−6. The green

area marked “KK anisotropic” denotes the region where we expect the corresponding Kaluza-Klein modes.

Finally the light red area “Non-zero FI-terms” corresponds to parameter values expected in models with

non-vanishing Fayet-Iliopoulos terms. The existing experimental and observational constraints are marked

in grey. As in Fig. 1 we have marked phenomenologically interesting areas in yellow.

The masses and mixings reachable in this type of setup are shown in Fig. 3 as the light blue area.

For large volumes of the cycle supporting the hidden photon we typically also obtain fairly light KK

modes of the hidden photon. Assuming that their mixing with the zero mode of the electromagnetic

field is of similar size we expect values in the light green area of Fig. 3.

Let us show some interesting values:

• χ ∼ 10−6 gives mγ′ ∼ κ 106 GeV and we obtain:

1. Dark forces: mγ′ ∼ 1 GeV for κ ∼ 10−6,

2. Hidden CMB: mγ′ ∼ 1 meV for κ ∼ 10−18,

• χ ∼ 10−7 gives mγ′ ∼ κ 103 GeV and we obtain:

1. Dark forces: mγ′ ∼ 1 GeV for κ ∼ 10−3,

2. Hidden CMB: mγ′ ∼ 1 meV for κ ∼ 10−15,

Therefore we realise that we can reach the dark force regime naturally while we need some amount

of fine-tuning to allow for the presence of a hidden CMB.

Let us now check the actual amount of fine tuning and the corresponding value of the overall

volume which sets all the fundamental scales in our theory, recalling that we would naturally expect

gs ∼ 0.1 and CKK
1 ∼ CW

12 ∼ O(1).

Natural Dark Forces for intermediate scale strings

• κ = 2.5 · 10−6 ∼ 10−6 can be obtained choosing gs = 0.1, CKK
1 = 0.05 and CW

12 = 0.1

corresponding to a kinetic mixing parameter of the order χ ∼ 10−6. The VEVs of the two
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moduli become τ1 ∼ 10−4χ−2 ∼ 108 and τ2 = τ1/κ ∼ 1014 ≫ τ1 leading to a volume of the

order V ≃ α
√
τ1τ2 ∼ 1017 for α = 0.1. Thus the string scale turns out to be intermediate

Ms ∼ 1011 GeV.

• κ = 10−3 can be obtained choosing gs = CKK
1 = CW

12 = 0.1 corresponding to a kinetic mixing

parameter of the order χ ∼ 10−7. The VEVs of the two moduli become τ1 ∼ 10−4χ−2 ∼ 1010

and τ2 = τ1/κ ∼ 1013 ≫ τ1 leading again to a volume of the order V ≃ α
√
τ1τ2 ∼ 1017 for

α = 0.1 together with an intermediate string scale.

We therefore conclude that we can obtain dark forces for natural values of the underlying parameters

in scenarios where the string scale is intermediate. These scenarios are favoured also by the fact

that TeV-scale supersymmetry can be achieved since the soft masses scale asMsoft ∼W0MP /V ∼ 1

TeV for W0 ∼ 40. MoreoverMs ∼ 1011 GeV yields also a decay constant for the QCD axion in the

allowed region and the right Majorana mass scale for right handed neutrinos.

We finally notice that the dark force case corresponds to Calabi-Yau geometries with a slight

anisotropy since there is only a mild hierarchy between the characteristic size of the base L ∼ t
1/2
1 =

√

V/τ1 ∼ 104 and that of the K3 fibre l ∼ τ
1/4
1 ∼ 102.

Hidden CMB with KK Dark Forces and strings at the LHC

• κ = 10−15 can be obtained choosing gs = 0.01, CKK
1 ∼ 10−4 and CW

12 ∼ 103 corresponding

to a kinetic mixing parameter of the order χ ∼ 10−7. The VEVs of the two moduli become

τ1 ∼ 10−4χ−2 ∼ 1010 and τ2 = τ1/κ ∼ 1025 ≫ τ1 leading to a volume of the order V ≃
α
√
τ1τ2 ∼ 1030 for α = 1. Thus we are in the extreme case of TeV-scale strings: Ms ∼ 1 TeV.

• κ = 10−18 can be obtained choosing gs = 10−3, CKK
1 = 10−4 and CW

12 = 104 corresponding

to a kinetic mixing parameter of the order χ ∼ 10−6. The VEVs of the two moduli become

τ1 ∼ 10−4χ−2 ∼ 108 and τ2 = τ1/κ ∼ 1026 ≫ τ1 leading again to a volume of the order

V ≃ α
√
τ1τ2 ∼ 1030 for α = 1 together with TeV-scale strings.

We therefore conclude that we can obtain a hidden CMB candidate by fine-tuning the values of

the underlying parameters in scenarios with Ms ∼ 1 TeV. These scenarios are very promising from

several other points of view: they provide a solution to the hierarchy problem that does not rely

on supersymmetry, and they might shed new light on the solution of the cosmological constant

problem [45].

Furthermore they can be detected in the lab by four different means: via string resonances

and deviations from Standard Model quark scattering at the LHC; at light shining through a wall

experiments such as ALPS; they lead to large extra dimensions and light moduli mediating long

range fifth forces that would give rise to modifications of Newton’s law at the edge of detectability;

and the Kaluza-Klein excitations of the hidden gauge bosons are in the Dark Forces regime and

could thus be produced in the next generation of experiments searching for these.

We finally notice that the hidden CMB case corresponds to Calabi-Yau three-fold with a very

anisotropic shape since there is a large hierarchy between the characteristic size of the base L ∼
t
1/2
1 =

√

V/τ1 ∼ 1011 and that of the K3 fibre l ∼ τ
1/4
1 ∼ 102.

5.2 Non-zero FI-term

Fixing τ1 via the interplay of D-terms and string loop corrections to the Kähler potential we can

rewrite the relation (3.38) between mγ′ and χ as:

mγ′ ≃ 1020αf2

√
τ1
V χ GeV ≃ 5 · 1017αf2V GeV. (5.3)
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Substituting in (5.3) the expression (4.38) for the VEV of τ1 in terms of χ, we end up with:

mγ′ ≃ 5 · 1017µ1 e
−µ2χ

−2

GeV, (5.4)

where µ1 = αf2 and µ2 = 25 · 10−6σ−1, with σ that is a free parameter whose value is fixed by the

requirement of getting a Minkowski vacuum:

〈τ1〉 = σ ln〈V〉, with σ ≡ 324π2c21
a33f

2
2

. (5.5)

Varying the integers in this equation within reasonable limits (1 − 10) we can reach values within

the red area of Fig. 3.

Let us now illustrate the phenomenological implications of these results with the help of some

parameter fits that lead to χ ≃ 10−6. The dark force case with mγ′ ∼ 1 GeV can be achieved for

µ1 = 0.1 and µ2 = 4.1565·10−11. These two values can be obtained choosing α = 0.1, f2 = 1, c1 = 8

and a3 = 2π/N3 with N3 = 9. The VEV of the K3 divisor becomes τ1 ≃ 25 · 10−6χ−2 = 2.5 · 107
while the volume is of the order V ≃ eτ1/σ ∼ 1018 corresponding to an intermediate string scale.

Given that the volume can be also expressed as a3 lnV ≃ ξ2/3/gs, we can choose ξ = 1.5 and

gs = 0.045. Using (4.37), we can finally check that no fine-tuning of the string loop corrections is

needed in order to get a vanishing cosmological constant since the above choice of parameters sets

CKK
1 ≃ 1.63.

We therefore conclude that, even in this case where the K3 divisor is fixed by the interplay of D-

terms and gs corrections, we can obtain dark forces for natural values of the underlying parameters

in scenarios where the string scale is intermediate. However this case looks less promising than the

one with vanishing FI-terms since the additional constaint coming from the requirement of a viable

up-lifting reduces the reliability of our predictions. In fact, due to the exponential dependence of

mγ′ on χ, a small change in our choice of parameters gives drastic changes for the mass of the

hidden photon at fixed kinetic mixing. For example, if we just change c1 = 8 to c1 = 7 in the above

fit, the prediction for the U(1) mass gets modified from mγ′ ≃ 1 GeV to mγ′ ≃ 10−6 GeV.

With other small changes, like α = 0.1 → 10 and c1 = 8 → 6, we can easily reach the interesting

hidden CMB regime for mγ′ ∼ 1 meV. The VEV of the K3 divisor is still of the order τ1 ≃ 107

while the volume now becomes V ≃ eτ1/σ ∼ 1032 corresponding to the extreme case of TeV-scale

strings. Such a large value of V can be obtained for ξ = 1.5 and gs = 0.025. Using (4.37), we can

finally check that, contrary to the dark force case, the upliting now requires a large fine-tuning of

the coefficient of the loop corrections of the order CKK
1 ≃ 3.3 · 10−7.

6. Conclusions

We have shown that allowing for anisotropy in LARGE volume compactifications greatly enhances

the phenomenological possibilities for hidden D-brane U(1)s. In this case, in addition to collapsed,

small, or hyperweak cycles, it is possible to wrap (hidden) branes on “milliweak” cycles. Each of

these will give different ranges of gauge couplings and thus kinetic mixing with the hypercharge,

but since in this case the Stückelberg masses of the U(1)s become more weakly correlated with the

volume of the cycle, a milliweak cycle allows for the attractive possibility of a very small mass but

moderate (and thus observable) mixing.

In fact, naively there is an embarrassment of riches; the possible masses and mixings become

so diverse as to render the scenario almost unpredictive, with the exception of lower bounds due

to there being a maximum volume of the compactification (of V ∼ 1030 since the string scale

cannot be below O(TeV)). We therefore considered the constraints imposed by insisting on moduli

stabilisation, taking careful account of the relationship between fluxes required to give the U(1)s
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masses and the presence of D-terms and hidden chiral matter. These constraints then translate into

requirements on uncalculable parameters in the model such as the coefficients of the loop corrections

to the Kähler potential. We found that without any fine-tuning it is possible to have hidden U(1)s

in the Dark Forces regime even for intermediate scale strings, and so we could soon be probing

intermediate scale string effects in the lab!

We also found that we can realise the “hidden CMB” scenario of a hidden U(1) of mass ∼
meV and mixing ∼ 10−6, with the price being some fine tuning. In compensation we surprisingly

find multiple ways to test it: other than cosmological observations, it can be directly tested in

lab experiments at very low energies, in Dark Forces experiments due to the hidden Kaluza-Klein

modes, and at the LHC since the string scale must be low.

We hope that we have provided ample motivation and tools to search for these setups in more

complete models, including explicit brane constructions with tadpole cancellation. The reward for

this endeavour would be a way to probe in the lab the hidden sectors that generically arise, and

interesting hidden sector model building.
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A. U(1) masses from dimensional reduction

A.1 U(1) factors from D-branes

A very important ingredient of Calabi-Yau flux compactifications is the presence of Dp-branes

which wrap internal (p− 3)-cycles and have to fill the four-dimensional space-time in order not to

break Poincaré invariance. Each space-time filling Dp-brane comes along with a U(1) gauge theory

that lives on its world volume. Thus string compactifications naturally come along with many U(1)

gauge bosons.

The dynamics of a Dp-brane is governed by the Dirac-Born-Infeld action SDBI together with

a Chern-Simons action SCS :

SDBI = −µpe
−φ

∫

W
dp+1ξ

√

−det [ı∗(G+B2) + l2sF2/(2π)], (A.1)

SCS = µpe
−φ

∫

W

∑

p

ı∗ (Cp) ∧ eı
∗(B2)+l2sF2/(2π), (A.2)

where φ is the dilaton, µp is the tension of the Dp-brane which is equal to its RR-charge since

the Dp-brane has to satisfy a BPS condition, G denotes the 10D metric, B2 is the NS-NS 2-form,

F2 is the gauge field strength, and Cp is a R-R p-form. The integrals in (A.1) and (A.2) are

taken over the (p+1)-dimensional world-volume W of the Dp-brane, which is embedded in the ten

dimensional space-time manifold X10 = R3,1 × M6, where M6 is a 6D Calabi-Yau manifold, via

the map ı : W →֒ X10. ı
∗ denotes the pullback operation.

From now on, we shall focus on type IIB flux compactifications since this is the context where

moduli stabilisation is best understood. We shall also be interested in the case of a D7-brane

wrapping an internal 4-cycle D which is a smooth divisor of the Calabi-Yau three-fold. The volume

of a generic 4-cycleDi is given by the real part of the Kähler modulus Ti which in 4D Einstein-frame
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is defined as:

Ti ≡
(∫

Di

√
g d4y + i

∫

Di

C4

)

e−φ

l4s
≡ τi + ibi, i = 1, ..., h1,1, (A.3)

where h1,1 is one of the Calabi-Yau Hodge numbers and C4 is the 10D R-R 4-form.

The standard Maxwell action can be obtained from expanding the DBI action (A.1) in powers

of the field strength8:

SDBI = −µ7e
−φ

∫

R3,1×Di

d8ξ
√

−det [ϕ∗(G) + l2sF2/(2π)] (A.4)

= −µ7e
−φ

∫

R3,1×Di

d8ξ
√

−det [ϕ∗(G)]

(

1 +
l4s

16π2
FMNF

MN − l8s
128π4

(

FMNF
MN

)2
+ ...

)

,

and then performing the dimensional reduction from 8D to 4D:

−µ7e
−φl4s

16π2

∫

R3,1×Di

d8ξ
√

−det [ϕ∗(G)]FMNF
MN → −

(

µ7l
8
s

16π2

)

τi

∫

R3,1

FµνF
µνd4x.

The D7-brane tension is given by µ7 = 2π/(gsl
8
s), and so we obtain the final result:

Lkin = − 1

4g2i

∫

R3,1

FµνF
µνd4x with g2i =

2π

τi
. (A.5)

A.2 Massive U(1)s from internal fluxes

A U(1) gauge boson living on a D7-brane can acquire a mass by turning on an internal magnetic

flux in the world-volume of the D7-brane. In fact, turning on a 2-form gauge flux on a 2-cycle

internal to the 4-cycle wrapped by the D7 generates a coupling between the U(1) gauge boson and

the Kähler modulus (A.3) corresponding to the 4-cycle Poincaré dual to the 2-cycle supporting the

magnetic flux. Then the axion, that is the imaginary part of the charged Kähler modulus, gets

eaten up by the U(1) gauge boson which becomes massive via the Stückelberg mechanism. This is

the way in which string theory cures any problem coming from dangerous anomalous U(1)s which

acquire O(Ms)-masses through the Green-Schwarz mechanism, and so they disappear from the 4D

effective field theory. However we shall be interested in non-anomalous U(1)s which can still become

massive via the same mechanism, but their mass can be much lighter than Ms. Therefore these

hidden photons have to be included in the description of the 4D effective field theory coming from

string compactifications.

Let us see more in detail how this happens. The expansion of the Chern-Simons action (A.2)

contains a coupling with the 10D R-R 4-form C4 which looks like:

L ⊃ −2π
e−φ

l2s

∫

R3,1×Di

F2

2π
∧ C4 ∧

F2

2π
. (A.6)

The R-R form C4 can be decomposed as:

C4 = Qi
2(x) ∧ D̂i(y) + bi(x)D̃

i(y), i = 1, ..., h1,1, (A.7)

where the D̃i are a basis of harmonic (2,2)-forms of H2,2(M6), dual to the (1,1)-forms D̂i, while

the 4D fields bi(x) are the axions defined in (A.3) and Qi
2(x) are 2-forms dual to the bi(x) (due to

the self-duality of F5 = dC4 = ⋆10DF5). Taking both of the F ’s to be with non-compact indices,

and reducing C4 along the divisor Di, gives rise to the axion-dependent CP-odd coupling:

L ⊃ − e−φ

2πl4s

(∫

Di

C4

)∫

R3,1

F2 ∧ F2 =
bi
2π

∫

R3,1

F2 ∧ F2, (A.8)

8We are neglecting the background NSNS two-form B2 since we shall look at orientifold projections such that

h−

1,1 = 0.
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which combined with the result (A.5) for the CP-even coupling, yields the following expression for

the gauge kinetic function:

fD7i =
Ti
2π
. (A.9)

On the other hand, taking one of the F ’s to be the compact flux (denoted as F c
2 ) and the other to

be with non-compact indices, we obtain (working in Einstein frame):

L ⊃ − 1

2πl4s

(∫

Di

D̂j ∧ F c
2

)∫

R3,1

Qj
2 ∧ F2 =

qij
l2s

∫

R3,1

Qj
2 ∧ F2, (A.10)

where qij is the charge of the 2-form Qj
2 under the U(1) living on the divisor Di. Expanding the

gauge flux F c
2 in the basis of (1,1)-forms D̂i as F

c
2 = f i

cD̂i, and defining the Calabi-Yau intersection

numbers as:

kijk =
1

l6s

∫

M6

D̂i ∧ D̂j ∧ D̂k, (A.11)

we end up with the following expression for the U(1)-charge qij :

qij =
1

2πl2s

∫

Di

D̂j ∧ F c
2 =

fk
c

2πl6s

∫

M6

D̂i ∧ D̂j ∧ D̂k =
fk
c

2π
kijk. (A.12)

Therefore the gauge flux coefficients and the intersection numbers determine which 2-forms couple

to the Abelian gauge boson which lives on the divisor Di. Recalling that the 2-forms Qj
2(x) are 4D

dual to the axions bj(x), we realise that the Kähler moduli which get charged under the U(1), are

those parameterising the volume of 4-cycles that intersect the 2-cycle supporting the gauge flux.

This is topologically equivalent to saying that the Kähler moduli which get a U(1)-charge are a

combination of 4-cycles corresponding to the 4-cycle that is Poincaré dual to the 2-cycle on which

the magnetic flux is turned on. Due to the coupling (A.10), the U(1) gauge boson becomes massive

by eating the axion (or an appropriate combination of axions) which is the imaginary part of the

charged Kähler modulus.

In order to see this mechanism in more detail, we need to include also the kinetic terms for

the Qj
2 which are expressed in terms of the corresponding field strength Hj

3 = dQj
2. They can be

derived from the 10D term S ⊃ − 1
8κ2

10

∫

F5 ∧ ⋆F5:

− 2π

4l6s

∫

R3,1×M6

dC4 ∧ ∗dC4 = − π

l2s

(∫

M6

D̂j ∧ ∗D̂k

)∫

R3,1

1

2
dQj

2 ∧ ∗dQk
2 , (A.13)

where:
1

l6s

∫

M6

D̂j ∧ ∗D̂k =
(K−1

0 )jk
V , (A.14)

with V the dimensionless Calabi-Yau volume. The matrix K−1
0 is defined as the inverse of the

metric obtained by taking the second derivatives of the tree-level Kähler potential K0 = −2 lnV
with respect to the real part of the T -moduli. Thus we end up with:

−π (K
−1
0 )jk
Vl2s

∫

R3,1

1

2
dQj

2 ∧ ∗dQk
2 = −π (K

−1
0 )jk
Vl2s

∫

R3,1

1

12
Hj

µνρH
k,µνρd4x. (A.15)

Our final Lagrangian is then given by the standard Maxwell action (A.5) plus the term (A.10)

describing the coupling of the 2-form Qj
2 to the Abelian gauge boson and the 2-form kinetic term

(A.15). Before showing how the gauge boson becomes massive, let us redefine the 2-form so that it

gets a canonical mass dimension 1:

Zj
2 ≡MPQ

j
2 ⇔ Gj

3 ≡MPH
j
3 . (A.16)
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Using l−2
s =M2

s =M2
P /(4πV), the final Lagrangian takes the form:

L = − (K−1
0 )jk
48V2

Gj
µνρG

k,µνρ − 1

4g2i
FµνF

µν + qij
MP

4πV Z
j
2 ∧ F2. (A.17)

The 2-form kinetic terms can be canonically normalised by defining (suppressing the space-time

indices):

Gi = 2V Ci
jHj , ⇔ Zi

2 = 2V Ci
jDj

2, (A.18)

where the columns of the matrix Ci
j are given by the eigenvectors of K−1

0 normalised as:

(K−1
0 )ijC

j
a = Ciaλa, with (Ct)iaCib = λ−1

a δab. (A.19)

Note that

(Ct)ib(K−1
0 )ijC

j
a = δab → (Ct)ib(K−1

0 )ijC
j
a(C

t)ak = (Ct)bk → Cj
a(C

t)ak = (K0)ik. (A.20)

Canonically normalising also the U(1) field strength as F = giF i, and using the expressions (A.5)

and (2.6) for the coupling constant gi and the U(1)-charge qij respectively, we end up with (defining

the dimensionless flux coefficients f i as f i ≡ l2sf
i
c/(2π)):

L = − 1

12
Hj

µνρHµνρ
j − 1

4
F i

µνF i µν +MijDj
2 ∧ F i

2. (A.21)

where:

Mij ≡
(

gif
kkipkC

p
j

)MP

2π
=
(

gi qipC
p
j

)MP

2π
. (A.22)

with no sum over i since this index simply denotes the 4-cycle Di wrapped by the D7-brane. Hence

we realise that in general F2 couples to a particular combination of all the 2-forms, and not just to

a single 2-form, due to the canonical normalisation which typically introduces a mixing among all

the 2-forms.

Let us see why on dualising D2 to the corresponding axion a, the Lagrangian (A.21) generates

an explicit mass term m2
γ′AµAµ for the U(1) gauge boson. The dual axion a can be introduced

as a Lagrange multiplier for the arbitrary field Hµνρ by imposing the constraint d∗H = 0 which is

locally equivalent to dD2 = H:

L = − 1

12
Hj

µνρHµνρ
j − 1

4
FµνFµν − Mij

6
ǫµνρσHj

µνρ Aσ − Mij

6
aǫµνρσ∂µHj

νρσ. (A.23)

We can now obtain a quadratic Lagrangian for H by integrating by parts the last term in (A.23).

Then the equations of motion for H give:

Hµνρ
j = −Mij ǫ

µνρσ (Aσ + ∂σa) , (A.24)

which inserted back into (A.23) yields:

L = −1

4
FµνFµν −

m2
γ′

2
(Aµ + ∂µa) (A

µ + ∂µa) , with m2
γ′ =

∑

j

M2
ij . (A.25)

The field Aµ ≡ Aµ + ∂µa clearly represents a massive U(1) gauge boson. Thus the axion a is

eaten up by the gauge boson without the need of any Higgs-like field in a stringy realisation of the

standard Stückelberg mechanism. Note that the above can be simplified using A.20 to

(M2)ab =MajM
t
jb =

M2
P

2π
√
τaτb

qapC
p
j (C

t)jrqbr

=
M2

P

2π
√
τaτb

qapqbr(K0)pr. (A.26)
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If we include also the contributions from four-cycles odd under the orientifold D̂c
−, defining

rac ≡
∫

Da

D̂c
−, (A.27)

the final total result is

m2
ab =gagb

M2
P

4π2

[

V−2rac(K−1
0 )cdrbd + qaα(K0)αβqbβ

]

. (A.28)

This expression is equivalent to the one presented in [10] noting the different metrics used and the

different definition of Ms.

A.3 FI-terms

In the previous section we have seen how U(1) gauge bosons can acquire a mass by turning on an

internal magnetic flux in the world-volume of a D7-brane wrapping a divisor Di with corresponding

Kähler modulus Ti. This guarantees that also a moduli-dependent 4D Fayet-Iliopoulos term gets

generated [71, 72, 73]. In fact, denoting as TU(1) the charged Kähler modulus which is in general

a combination of all the basis divisors corresponding to the 4-cycle Poincaré dual to the 2-cycle

supporting the magnetic flux, the axion a = Im(TU(1)) gets eaten up by the U(1) gauge boson via

the Stückelberg mechanism, but τ = Re(TU(1)) is a light modulus that has to be taken into account

in the effective field theory and gives rise to a moduli-dependent Fayet-Iliopoulos term.

This can be seen to arise from the low-energy reduction of the DBI action (A.4):

SDBI = −µ7e
−φΓ(y)

∫

R3,1

d4x

(

1 +
l4s

16π2
Fµν(x)F

µν(x) + ...

)

, (A.29)

where:

Γ(y) =

∫

Di

d4y
√

−det [ϕ∗(gCY )]

(

1 +
l4s

16π2
Fmn(y)F

mn(y) + ...

)

.

From the BPS calibration condition for a D7-brane we find that:

Γ(y) =
1

2

∫

Di

(

J ∧ J − l4s
4π2

F c
2 ∧ F c

2

)

+

(

∫

Di
J ∧ l2s

2πF
c
2

)2

∫

Di

(

J ∧ J − l4s
4π2F c

2 ∧ F c
2

) . (A.30)

When in (A.29) Γ(y) multiplies the first term in parenthesis, after performing the appropriate

Weyl rescaling to 4D Einstein frame9, we obtain two contributions to the 4D scalar potential: the

D7-brane tension TD7 and a moduli dependent Fayet-Iliopoulos term ξi:

TD7 = g−2
i 4π2e2φM4

s , and VD =
g2i
2
ξ2i , with

ξi
M2

P

=
1

4πV

∫

Di

(

J ∧ l2s
2π
F c
2

)

. (A.31)

The D7-brane tension gives no net contribution to the scalar potential since it will be compensated

by by other extended objects due to tadpole cancellation.

On the other hand, considering in (A.29) Γ(y) multiplied by the second term in parenthesis,

we realise that in the presence of a non-vanishing world-volume flux, the expression (A.5) for the

gauge coupling constant gi gets modified to:

2π

g2i
= Re(Ti)− hi(F

c
2 )Re(S), (A.32)

9We recall that the 10D metric in string frame is related to the 10D metric in Einstein frame via g
(s)
MN = eφ/2g

(E)
MN .
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where Re(S) = e−φ and the flux-dependent factor is given by hi(F
c
2 ) =

fkfjkijk

2 =
fjqij

2 where qij
are the flux-dependent U(1) charges of the Kähler moduli (2.6).

The Fayet-Iliopoulos term in (A.31) can be rewritten as:

ξi
M2

P

=
1

4πV

∫

Di

(

J ∧ l2s
2π
F c
2

)

=
1

4πV t
jfkkijk =

qij
4π

tj

V = −qij
4π

∂K

∂τj
. (A.33)

Including also the presence of unnormalised charged matter fields ϕj (open string states) with

corresponding U(1) charges given by cij , the resulting D-term potential looks like (considering the

dilaton fixed at its VEV: eφ = gs):

VD =
g2i
2





∑

j

cijϕj
∂K

∂ϕj
− ξi





2

=
π

(τi − gsf jqij/2)





∑

j

cijϕj
∂K

∂ϕj
+
qij
4π

∂K

∂τj





2

. (A.34)
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