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Abstract

A method is introduced for constructing lattice discretizations of large classes of in-
tegrable quantum field theories. The method proceeds in two steps: The quantum
algebraic structure underlying the integrability of the model is determined from the
algebra of the interaction terms in the light-cone representation. The representation
theory of the relevant quantum algebra is then used to construct the basic ingredients
of the quantum inverse scattering method, the lattice Lax matrices and R-matrices.
This method is illustrated with four examples: The Sinh-Gordon model, the affine
sl(3) Toda model, a model called the fermionicsl(2|1) Toda theory, and theN = 2
supersymmetric Sine-Gordon model. These models are all related to sigma models in
various ways. TheN = 2 supersymmetric Sine-Gordon model, in particular, describes
the Pohlmeyer reduction of string theory onAdS2×S2, and is dual to a supersymmet-
ric non-linear sigma model with a sausage-shaped target space.

1. Introduction

1.1 Motivation

There is a growing family of quantum field theories that are known or expected to be integrable

at the quantum level. If this is the case, then one may learn much about certain non-perturbative

phenomena in these quantum field theories. One gains, in particular, full control over interesting

topics such as non-perturbative dualities, giving deep insight into the nature and the relevance

of these in quantum field theory. A particularly striking example is the conjectured duality

between theN = 4 super Yang-Mills theory and string theory onAdS5 in the limit where the

rank of the gauge group is large. There is considerable evidence for the integrability of both

theories and for their equivalence as quantum theories, see[AdS] for a review.

http://arxiv.org/abs/1102.5716v1
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However, a proof of the integrability of these theories has so far remained elusive. More gen-

erally, despite a lot of important progress in the field of integrable models, there are only a few

quantum theories for which quantum integrability has been fully established. In most cases, one

needs to regularize ultraviolet divergences. Integrability is hard, if not impossible, to control in

this process unless the regularized theory is itself integrable. One of the most successful reg-

ularization schemes uses integrable lattice regularizations for which a certain supply of known

techniques is available.

Among the integrable lattice regularizations, the spin-chain models seem to be the most pop-

ular. A spin-chain is defined by choosing a collection of representations of a Lie algebra (or

some deformation thereof). These representations are thenassociated with certain sites of a

given lattice. However, it is often not clear at the beginning if a given spin chain will corre-

spond to the quantum field theory that one is trying to regularize. The proper definition of the

continuum limit may be intricate and important characteristics of the theory may depend heavily

on how exactly this limit is taken.

Another class of lattice regularizations exists which appears to capture more of the features

of the quantum field theory that the lattice model is supposedto regularize. We will call a

lattice-discretizationtailor-madeif

• the local degrees of freedom of the lattice model are in direct relation to the field variables

of the corresponding continuum quantum field theory, and

• the quantum algebraic structure underlying the integrability is the same in the continuum

models and the corresponding discretization.

Formulating these requirements more precisely is one of ouraims in this paper. The first of these

two features is, in particular, realized when the variablesof the lattice model can be identified

with averages of the continuum field variables over small regions of space and/or time. The

second is naturally much more subtle. Another of our aims in what follows is to explain in

some detail how this can be precisely realized for a certain family of examples.

From a practical point of view, it seems to be preferable to use a tailor-made lattice-

discretization when possible. One then has very good reasonto expect that the continuum limit

will be the quantum field theory which one is interested in. Itcan also facilitate the solution

of the theories considerably — important consequences of the integrable structure are already

under full control in the discretized version, and these features remain essentially unchanged

when the continuum limit is taken. This remark applies in particular to the functional rela-

tions obeyed by the generating functions for the eigenvalues of the conserved quantities (such

functional relations are collectively known as T-, Q- or Y-systems).



3

1.2 Aims

To reiterate, our main aim in this paper is to present a methodfor constructing tailor-made

lattice regularizations that appears to be applicable to a large class of models. We illustrate this

method with several physically relevant examples. Very roughly, the method proceeds in two

steps:

• First, we identify the algebraic structure underlying the integrability of the model in ques-

tion. This follows from the algebra generated by the chiral halves of the interaction terms.

The consideration of these chiral halves is physically well-motivated in the light-cone rep-

resentation, as we will explain in Section 4. The relevant algebraic structures for our

examples turn out to be quantum affine (super)algebras.

• The second step then consists of constructing the basic building blocks of the lattice regu-

larization from the representation theory of the algebraicstructure identified above. Prac-

tically, this means computing Lax matricesL±
n (λ ) on the lattice using our knowledge of

the relevant quantum affine (super)algebra. In doing this, it is crucial in our approach to

use a discrete light-cone representation for the two-dimensional lattice. The monodromy

matrices may then be constructed in the form

M(λ ) = L−
N(λ )L

+
N(λ ) · · ·L−

1 (λ )L
+
1 (λ ). (1.1)

The Lax matricesL±
n (λ ) represent parallel transport along the light-cone directions in a

two-dimensional discrete space-time. Our construction will be similar, but not equivalent,

to the previous constructions of this type described in [FV1, BBR].

The four examples which we will consider in the following have been chosen for their phys-

ical interest and because they appear to be prototypical in the sense that they exhibit a certain

variety of different qualitative features. These models are the Sinh-Gordon model, thesl(3)

affine Toda theory, a model that we call the fermionicsl(2|1) affine Toda theory, and theN = 2

supersymmetric generalization of the Sine-Gordon model.

The last two models are of particular interest. They seem to be the first models contain-

ing a mixture of fermions and bosons for which a lattice regularization has been constructed.

Moreover, theN = 2 supersymmetric generalization of the Sine-Gordon model appears in the

Pohlmeyer-reduction of string theory onAdS2×S2 [GT]. Proving that this theory is integrable

supports the hope that Pohlmeyer-reductions of string theories on anti-de Sitter spaces can be

consistently quantized.

We mention that all of the models under investigation share one important feature: The pres-

ence of a non-compact bosonφ1 with exponential interactionseεbφ1, ε =±1,±2. This feature is
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shared by all non-linear sigma models with anti-de Sitter spaces as targets. As we will explain

in more detail, the presence of such exponential interactions produces subtle divergences in the

ultraviolet. The proper treatment of these divergences produces non-perturbative counterterms

which dominate the deep-quantum behavior of the theories, leading to interesting duality phe-

nomena [T2]. In the case of theN = 2 Sine-Gordon model, one finds a dual description in

terms of a non-linear sigma model with a sausage-shaped target [F2, HK]. This means that

the corresponding lattice model constructed in this paper is simultaneously an integrable lattice

regularization for theN = 2 supersymmetric sausage sigma model.

1.3 Structure of this paper

The structure of this paper is as follows. Section 2 first introduces the models of interest via

their Lagrangian descriptions and discusses some of their basic features. In Section 3, the

integrability of these models is discussed at the classicallevel. Zero curvature representations

are given for the classical equations of motion, making the classical integrability of these models

manifest.

Section 4 then reviews the known relations between quantum affine algebras and the integra-

bility of the bosonic affine Toda theories. The algebra of theinteraction terms in the light-cone

representation plays a crucial role. The fact that one can construct representations of the nilpo-

tent subalgebras of certain quantum affine algebras from these interaction terms leads, in certain

cases, to direct constructions of quantum monodromy matrices.

Letting ourselves be guided by these examples, we continue in Section 5 with the identifica-

tion of the relevant quantum algebraic structures underlying the fermionicsl(2|1) affine Toda

theory and theN = 2 super Sine-Gordon model. It turns out that we have to consider quantum

affine superalgebras in these cases.

In section 6, we reformulate the known lattice discretization of the Sinh-Gordon model in

way that serves as a paradigm for the construction to be presented for the other models. We

commence Section 7 by formulating a general recipe for the construction of integrable lattice

discretizations that should be applicable to large classesof integrable quantum field theories.

This recipe is then illustrated by working out the basic building blocks (the Lax matrices) for

the remaining three models studied here. The article concludes with a brief outlook and two

appendices which discuss some technical points.

2. The models of interest

We will be interested in the following family of models whichare related in various ways, but

also exhibit a certain variety of different qualitative features. These models are of affine Toda
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type or some generalization thereof. In the following, we will use the anticipated relations with

certain affine Lie (super)algebras as a classification tool.

2.1 Lagrangian formulations

Let us begin by listing the action functionals defining the models of interest on the classical

level.

• The Sinh-Gordon model. This model is classically defined by the action

S=
∫

d2z
( 1

4π
(∂αφ1)

2+µe−2bφ1 +νe2bφ1

)
(2.1)

and is formally related to the Sine-Gordon model by settingb= iβ .

• Thesl(3)affine Toda theory. The action is

S=
∫

d2z
( 1

4π
(∂αφ1)

2+
1

4π
(∂αφ2)

2+µe−bφ12cosh(
√

3bφ2)+νe2bφ1

)
. (2.2)

• The fermionicsl(2|1) affine Toda theory. Interesting new features arise when we consider

models containing fermions. As one of the simplest examples, we shall consider the model

defined classically by the action

S=
1

2π

∫
d2z

(
1
2
(∂αφ1)

2+ ψ̄+∂−ψ++ ψ̄−∂+ψ−− b2

4
ψ+ψ̄+ψ−ψ̄−

−2πµb(ψ̄+ψ̄−+ψ+ψ−)e−bφ1 +8π2µ2e−2bφ1 +4πνe2bφ1

)
. (2.3)

The reason for calling this model the fermionicsl(2|1) affine Toda theory will be explained

in Section 3.3.

• The N= 2 Super Sine-Gordon model. We will also study a supersymmetric model, the

N = 2 super Sine-Gordon model. The action is

S=
1

2π

∫
d2z

(
1
2

(
(∂αφ1)

2+(∂αφ2)
2)+ ψ̄+∂−ψ++ ψ̄−∂+ψ−

)

−b
∫

d2z
(

µ
(
ψ̄+ψ̄−e−ibφ2 +ψ+ψ−eibφ2

)
e−bφ1 +ν

(
ψ̄+ψ̄−eibφ2 +ψ+ψ−e−ibφ2

)
ebφ1

)

+4π
∫

d2z
(
µ2e2bφ1 +ν2e−2bφ1 −2µν cos(2bφ2)

)
. (2.4)

TheN = 2 supersymmetry can be made manifest using the superspace formalism [KU].
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An important parameter in each of the models that we are considering is the constantb which

appears in the exponential interaction terms. By a rescaling of the fields, one may factor it out in

front of the action, leading one to identifyb2 with Planck’s constant̄h as it controls the strength

of quantum fluctuations. The above action functionals may therefore be used as the starting

point for constructing a perturbative expansion in the parameterb. The method to be used is a

variant of the background field method in which one expands around a solution to the classical

equations of motion that follow from these functionals.

2.2 Descriptions as perturbed free field theories

Another way to approach the definition of these models is to quantize the field theories whose

actionS0 is obtained by settingµ = ν = 0 in their respective action functionals. One then tries to

define the interaction terms as certain composite operatorsconstructed from the quantum fields

present in the theory defined byS0, leading to a prescription for the evaluation of the correlation

functions as formal series in powers ofµ andν. In the implementation of this procedure, one

typically encounters two types of difficulties:

• The treatment of ultraviolet divergences requires the renormalization of both the composite

fields appearing in the interaction terms and the coupling constants.

• The dependence of the correlation functions onµ andν involves non-perturbative behavior

which depends sensitively on the choice of infrared regularization.

In this section, we shall briefly discuss the first of these issues for the interesting regime cor-

responding tob = iβ , β ∈ R. The problem of constructing the interaction terms turns out to

be fairly tame in this case in the sense that there exist formulations of the models in which

standard free field normal ordering suffices. For real valuesof b, which is the case of our main

interest, there arise additional subtleties in the ultraviolet behavior of the theories which will be

discussed in Section 2.3.

The description as perturbed free field theories is absolutely straight-forward for the actions

(2.1) and (2.2). Defining the exponential functions of the fields φ1 andφ2 by standard free field

normal ordering will be sufficient. The situation is more subtle in the remaining two cases.
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2.2.1 The fermionicsl(2|1) affine Toda theory as a perturbed free field theory

Instead of (2.3), let us consider the action

S=
1

2π

∫
d2z

(
1
2
(∂αφ1)

2+ ψ̄+∂−ψ++ ψ̄−∂+ψ−− b2

4
ψ+ψ̄+ψ−ψ̄−

−2πµb(ψ̄+ψ̄−+ψ+ψ−)e−bφ1 +2πνe2bφ1

)
, (2.5)

which differs only by dropping the term proportional toµ2. Settingµ = ν = 0 yields an action

S0 which describes a free bosonic fieldφ1 and a decoupled massless Thirring model. The terms

proportional toµ andν are considered to be interactions coupling the bosonic and fermionic

fields.

One should note, however, that the action (2.5) is not suitable for constructing the semiclas-

sical expansion in powers ofb. In the limit b → 0, the products of the terms proportional to

e−bφ1 generate the finite additional contribution 8πµ2∫ d2z e−2bφ1 to the action. Indeed, let us

consider the following contribution at orderµ2:

µ2b2
∫

d2z1d2z2 ψ̄+(z1)ψ̄−(z̄1) : e−bφ1(z1,z̄1) : ψ+(z2)ψ−(z̄2) : e−bφ1(z2,z̄2) : . (2.6)

Directly takingb→ 0 would produce a non-integrable singularity∼ |z1−z2|−2 from the fermion

operator product expansion

ψε(z)ψ̄ε ′(w) =
−2iεδεε ′

z−w
+ . . . (2.7)

We need to introduce a cut-offε and split the integral into a contribution from|z1−z2|< ε and

the rest. For smallε, we get a good approximation for the contributions from|z1−z2| < ε by

using the operator product expansion:

∫
d2z

∫

|w|<ε
d2w

4µ2b2

|w|2+b2 : e−2bφ1(z) : =−8π
µ2

εb2

∫
d2z : e−2bφ1(z) : . (2.8)

The term on the left has a finite limit forb → 0 which isε-independent. It can be taken into

account by adding the term 8πµ2∫ d2ze−2bφ1 to (2.5). The resulting action is exactly (2.3).

In order to arrive at a description of this model as a perturbed free field theory, it is useful to

apply the boson-fermion correspondence to the model definedby (2.5). This yields the action

S=
∫

d2z

(
1

4π
(∂αφ1)

2+
1

4π
(∂αφ2)

2−2µbe−bφ1 cos(
√

κφ2)+νe2bφ1

)
, (2.9)
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where the parametersb andκ in (2.9) are related byb2= κ−2. The action (2.9) was the starting

point for the investigation of this model in [F1].

2.2.2 The N= 2 Sine-Gordon model as a perturbed free field theory

In the case of theN = 2 Sine-Gordon model with action (2.4), we may takeS0 to be defined

by the terms in the first line of (2.4), treating the terms in the second line as perturbations and

considering the terms in the third line of (2.4) as counterterms generated from the renormaliza-

tion of the perturbations in the limitb→ 0. Bosonizing the fermions in theN = 2 Sine-Gordon

model, we obtain the action

S=
1

4π

∫
d2z

(
(∂αφ1)

2+(∂αφ2)
2+(∂αφ3)

2
)

−µb
∫

d2z2cos
(√

2φ3+bφ2
)
e−bφ1 −νb

∫
d2z2cos

(√
2φ3−bφ2

)
ebφ1. (2.10)

In this form, one easily recognizes the model as a special case of the so-called SS-model intro-

duced by Fateev [F2].

2.3 The ultraviolet behavior of real exponential interactions

Turning to the case of our main interest,b∈R, it is worth noting that the exponential interactions

now lead to rather subtle ultraviolet behavior. As an illustration, let us consider the simple

example of Liouville theory:

S=

∫
d2z
π
(
∂zφ∂z̄φ +πµe2bφ ). (2.11)

Consider thosen-th order terms in the perturbative expansion of this actionwhich contain

(−µ)n

n!

∫
d2u1 · · ·

∫
d2un e2bφ(u1,ū1) · · ·e2bφ(un,ūn). (2.12)

By using the operator product expansion

e2bφ(z,z̄)e2bφ(w,w̄) ∼ |z−w|−4b2
e4bφ(w,w̄),

it is easy to see that there are singularities produced by thepossible “clustering” of integration

variables. Ifmof the integration variables are close to coinciding, one may effectively represent

the product of themfieldse2bφ(u1,ū1) · · ·e2bφ(um,ūm) by e2mbφ(um,ūm). It follows that the integration

overum+1 encounters an effective singularity of the form|um−um+1|−2mb2
. As a function of

b2, one will therefore encounter poles in perturbative computations whenb2 is rational. Even if
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one excludes the rational values ofb2 from consideration, there will still be a small denominator

problem to surmount. For takingb2 irrational means that the summation overn will produce

terms in whichnb2 comes arbitrarily close to the values where (2.12) has poles.

It can be argued [T2] that the proper renormalization of these singularities necessitates dual

interactions which contain exponential operators proportional toe±b−1φ1. At the moment, the

lattice regularization seems to be the most powerful approach to the quantization of these theo-

ries as is illustrated by the results obtained for the Sinh-Gordon model and for Liouville theory

in [ByTe1, T1, ByTe2].

2.4 Description as perturbed conformal field theories

It is important to note that all of the models above share one salient feature: They have interac-

tion terms proportional toeεbφ1, ε = ±1,±2, that become strong whenφ1 →±∞. If however,

one setsν = 0 in the above actions, one obtains models in which all interactions vanish for

φ1 → ∞. This is closely related to the appearance of conformal invariance in theν = 0 models.

The following table summarizes the resulting models and their chiral algebras.

Massive model Limit ν = 0 Chiral symmetry

sl(2) affine Toda Liouville theory Virasoro algebra

sl(3) affine Toda conformal Toda theory W3 algebra

sl(2|1) affine Toda Sine-Liouville theory Parafermion algebra

N = 2 super Sine GordonN = 2 Liouville theory N = 2 superconformal algebra

All of these conformal field theories are non-rational. The key features, including the spectrum

and the three-point functions, are known in the cases of Liouville theory, Sine-Liouville theory

andN = 2 Liouville theory.

3. Classical integrability

3.1 The Sinh-Gordon model

The classical Sinh-Gordon model is a dynamical system whosedegrees of freedom are de-

scribed by a fieldφ(x, t) defined on(x, t) ∈ S1
R×R (assuming periodic boundary conditions

φ(x+R, t) = φ(x, t)). The dynamics of this model may be described in the Hamiltonian formal-

ism in terms ofφ(x, t) andΠ(x, t) = ∂tφ(x, t), the Poisson brackets being

{Π(x, t),φ(x′, t)}= 2πδ (x−x′). (3.1)
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The time-evolution of an arbitrary observableO(t) is then given as

∂tO(t) = {H,O(t)}, (3.2)

with the HamiltonianH being defined as

H =
∫ R

0

dx
4π
[
Π2+(∂xφ)2+8πµ cosh(2bφ)

]
. (3.3)

It is well known that the equation of motion for the Sinh-Gordon model can be represented

as the zero curvature condition

[
∂t −Ut(x, t;λ ),∂x−Ux(x, t;λ )

]
= 0, (3.4)

where the matricesUx(x, t;λ ) andUt(x, t;λ ) are given by

Ux(x, t;λ ) =

(
b∂tφ/2 m(λe−bφ +λ−1e+bφ )

m(λe+bφ +λ−1e−bφ ) −b∂tφ/2

)
, (3.5a)

Ut(x, t;λ ) =

(
b∂xφ/2 m(λe−bφ −λ−1e+bφ )

m(λe+bφ −λ−1e−bφ ) −b∂xφ/2

)
, (3.5b)

and wherem is related to the coupling constantµ by m2 = πbµ. The constantλ ∈ C is known

as the spectral parameter.

The classical integrability of the Sinh-Gordon model follows from the existence of suffi-

ciently many conserved quantities. These conserved quantities are generated from the trace of

the monodromy matrix of the connection∂x−Ux(x, t;λ ):

T(λ ) = tr(M(λ )), M(λ ) = P exp

(∫ R

0
dx Ux(x, t;λ )

)
. (3.6)

The Poisson brackets for the elements of the matrixM(λ ) can be written in the form

{
M(λ )⊗,M(µ)

}
=
[
R(λ/µ),M(λ )⊗M(µ)

]
, (3.7)

whereR(λ ) is the matrix

R(λ ) =
λ +λ−1

λ −λ−1

H⊗H

2
+

2
λ −λ−1(E⊗F+F⊗E) (3.8)
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with

E=

(
0 1

0 0

)
, H=

(
1 0

0 −1

)
, F=

(
0 0

1 0

)
. (3.9)

The mutual Poisson commutativity
{

T(λ ),T(µ)
}
= 0 follows easily from (3.7).

3.1.1 Light-cone representation

Another useful representation of the zero curvature condition (3.4) is obtained by passing to the

light-cone coordinatesx± = t ±x and the corresponding derivatives∂± = 1
2(∂t ±∂x). The zero

curvature condition (3.4) can now be written as

[
∂+−U+(λ ),∂−−U−(λ )

]
= 0, (3.10)

where the matricesU+ = 1
2 (Ut +Ux) andU− = 1

2 (Ut −Ux) are given by

U+(λ ) = +
b
2
H∂+φ +mE1e−bφ +mE0ebφ , (3.11a)

U−(λ ) =−b
2
H∂−φ −mF1e−bφ −mF0ebφ . (3.11b)

Here, we have used the notationE1 = λE, E0 = λF, F1 = λ−1F, F0 = λ−1E which is motivated

by the relationship to the affine Lie algebraŝl(2) (this will be important for us later). Recall that

the affine Lie algebrâsl(2) has Chevalley generatorsEi , Hi , Fi , i = 0,1. It is easy to see that the

identifications

πa,λ (Ei) = Ei , πa,λ (Fi) = Fi , πa,λ (H1) =−πa,λ (H0) = H, (3.12)

define a representation ofŝl(2) in which the central elementH0+H1 is represented by zero.

The zero curvature condition (3.4) implies that

M(λ ) = P exp

(∫ R

0
dx Ux(x, t;λ )

)
= P exp

(∫

C

ds
dxα

ds
Uα(λ )

)
, (3.13)

for any contourC that can be deformed intoC0 = {(x, t) : 06 x6 R}, preserving the start and

end points. We may, in particular, choose the “saw-blade” contourCN =
⋃N

k=1C
+
k ∪C

−
k , where

C
±
k are the light-like segments

C
+
k =

{
(k∆+u, t+u) : 06 u6 ∆/2

}
,

C
−
k =

{
(k∆+v, t+∆−v) : ∆/26 v6 ∆

} (∆ := R/N). (3.14)
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C
−
k−1

C
+
k

C
−
k

C
+
k+1

This allows us to rewriteM(λ ) as

M(λ ) = L−
N(λ )L

+
N(λ ) · · ·L−

1 (λ )L
+
1 (λ ), (3.15)

where

L+
k (λ ) := P exp

(∫

C
+
k

dx+ U+(λ )
)
, L−

k (λ ) := P exp

(∫

C
−
k

dx− U−(λ )
)
. (3.16)

This representation of the monodromy matrixM(λ ) will be a particularly useful starting point

for the quantization.

3.1.2 Massless limit

The Sinh-Gordon model is well known to be related to (m)KdV-theory. This can be seen as

follows. The massless limitm→ 0 turns the Sinh-Gordon equation into the equation for the

massless free field, whose general solution is

φ(x, t) = φ+(x+)+φ−(x−). (3.17)

Interesting integrable structures can be preserved in the massless limit if the limitm→ 0 is

combined with the limitλ → ∞ or λ → 0, keepingλ+ = mλ or λ− = mλ−1 fixed, respectively.

In order to discuss the limitm→ 0, λ → ∞ with λ+ =mλ fixed, for example, it will be useful

to consider the saw-blade contourCN with N = 1 which leads to the factorization

M(λ ;m) = N−(λ ;m)N+(λ ;m). (3.18)

In the limit under consideration, we see thatN−(λ ;m) becomes a simple diagonal matrix while

N+(λ ;m)→ N+(λ+), say, does not. The main point to observe is that

T+(λ+) := Tr(N+(λ+)) (3.19)

is a functional ofφ+(x+) from which one may obtain the conserved quantities of the (m)KdV

hierarchy in the asymptotic expansion for largeλ+.

In order to explain this statement in more detail, let us firstrewrite T+(λ+) in a way that

makes manifest that it is a functional of the left-moving part φ+(x+) only. To this aim, let us
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use the gauge transformation

∂+−W+(x+) := g−1(x, t)(∂+−U+(λ+))g(x, t), (3.20)

with matrixg(x, t) chosen asg(x, t) := ebH(φ+(x+)−φ−(x−))/2. The matrixW+(x+) is found to be

W+(x+) = λ+(e
−2bφ+(x+)E+e+2bφ+(x+)F) . (3.21)

It will furthermore be convenient to considerM+(λ+) := (g(0,0))−1N+(λ+)g(0,0). It is then

easy to show thatM+(λ+) can be represented in terms of the Lax connectionW+(λ+) as

M+(λ+) = eπbHp+P exp

(∫ R

0
dx+ W+(x+)

)
, (3.22)

wherep+ = (φ+(R)− φ+(0))/2π . It now remains to observe that the Hamiltonian functions

H+
n of the (m)KdV theory are obtained from the asymptotic expansion of log(T+(λ+)) as

1
2π

log(T+(λ+))∼ λ++
∞

∑
n=1

cnH+
n λ 1−2n

+ , for λ+ → ∞. (3.23)

The cn are normalization constants whose precise forms will not beneeded in the follow-

ing. With a proper choice of thecn we find, for example, thatH+
1 =

∫ R
0 dx+U(x+) and

H+
2 =

∫ R
0 dx+ (U(x+))2, where

U(x+) = (∂+φ+(x+))2− 1
b

∂ 2
+φ+(x+) . (3.24)

Let us also note that the Poisson brackets following from (3.1) for φ+ are

{
φ+(u),φ+(v)

}
+
=

π
2

sgnR(u−v), (3.25)

where sgnR(u) is the sign function for|u| < R/2, continued to all realu via sgnR(u+R) =

sgnR(u)+1. The Hamiltonian functionsH+
n will then generate the (m)KdV-flowsW+ via

∂t+n
W+(t

+
1 , t+2 , . . .) =

{
H+

n ,W+(t
+
1 , t+2 , . . .)

}
+
, (3.26)

where one should identifyx+ andt+1 .

In the limit m→ 0, λ → 0 with λ− = mλ−1 fixed, a similar development leads to

M−(λ−) = P exp

(
−
∫ −R

0
dx− W−(x−)

)
eπbp−H , (3.27)
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with W−(x−) = λ−(e2bφ−(x−)E+ e−2bφ−(x−)F) and p− = (φ−(0)− φ−(−R))/2π . The matrix

M−(λ−) defines the integrable structure of the right-moving partφ−(x−) in a way that is analo-

gous to what was described above. Note that

2π (p+− p−) = φ+(R)+φ−(−R)−φ+(0)−φ−(0) = φ(R,0)−φ(0,0) = 0, (3.28)

hencep+ = p− ≡ p.

3.2 Classicalsl(3) affine Toda theory

The classical equations of motion of thesl(3)-Toda theory are

−∂+∂−φ1 = 2πνe2bφ1 −2πµe−bφ1 cosh(
√

3bφ2), (3.29a)

−∂+∂−φ2 = 2πµ
√

3e−bφ1 sinh(
√

3bφ2). (3.29b)

In order to formulate the zero curvature representation of the equations, let us introduce the

Chevalley generatorsEi , Hi, Fi , i = 0,1,2, of the affine Lie algebrâsl(3). They satisfy in

particular the relations

[
Hi,E j

]
= Ai j E j ,

[
Hi,Fj

]
=−Ai j Fj ,

[
Ei ,Fj

]
= δi j Hi , (3.30)

whereA is the Cartan matrix

A=




2 −1 −1

−1 2 −1

−1 −1 2


 . (3.31)

Let ŝl(3)0 be the loop algebra defined by setting the central elementH0+H1+H2 to zero. We

may then define the followinĝsl(3)0-valued fields:

U+(λ ) = +
b
2

(
H1∂+(φ1+

1√
3
φ2)+H2∂+(φ1− 1√

3
φ2)
)

+m
(
E1e−b(φ1+

√
3φ2)/2+E2e−b(φ1−

√
3φ2)/2+E0ebφ1

)
, (3.32a)

U−(λ ) =−b
2

(
H1∂−(φ1+

1√
3
φ2)+H2∂−(φ1− 1√

3
φ2)
)

−m
(
F1e−b(φ1+

√
3φ2)/2+F2e−b(φ1−

√
3φ2)/2+F0ebφ1

)
. (3.32b)

The zero curvature condition

[
∂+−U+(λ ),∂−−U−(λ )

]
= 0 (3.33)
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reproduces (3.29) ifµ = ν = m2/2πb. In order to get the corresponding Lax matrices, note

that we could use any representation ofŝl(3)0. Of particular interest are the two fundamental

representations realized onC3. These may be defined by

πa,λ (E0) = λE31, πa,λ (H0) = E33−E11, πa,λ (F0) = λ−1E13, (3.34a)

πa,λ (E1) = λE12, πa,λ (H1) = E11−E22, πa,λ (F1) = λ−1E21, (3.34b)

πa,λ (E2) = λE23, πa,λ (H2) = E22−E33, πa,λ (F2) = λ−1E32 (3.34c)

and

π ′
a,λ (E0) =−λE31, π ′

a,λ (H0) = E33−E11, π ′
a,λ (F0) =−λ−1E13, (3.35a)

π ′
a,λ (E1) = +λE23, π ′

a,λ (H1) = E22−E33, π ′
a,λ (F1) = +λ−1E32, (3.35b)

π ′
a,λ (E2) = +λE12, π ′

a,λ (H2) = E11−E22, π ′
a,λ (F2) = +λ−1E21, (3.35c)

respectively, whereEi j denotes the matrix with 1 in the(i, j)-th entry and zero everywhere else.

The resulting Lax matrices differ only by the permutation ofsome matrix elements and some

signs. We will, however, find interesting differences between the lattice versions of these Lax

matrices when we consider discretizations in Section 7.2.

3.3 The fermionicsl(2|1) affine Toda theory

Turning our attention to the theory defined classically by the action (2.3), we observe an inter-

esting feature: The presence of fermions necessitates consideration of Lie superalgebras for the

formulation of a zero curvature condition. Let us consider the affine Lie superalgebrâsl(2|1)
with Cartan matrix

A=




0 −1 +1

−1 2 −1

+1 −1 0


 . (3.36)

This superalgebra has Chevalley generatorsEi , Hi, Fi , i = 0,1,2, with E0, E2, F0 and F2

fermionic, all other generators being bosonic. They satisfy in particular the relations

[
Hi,E j

]
= Ai j E j ,

[
Hi,Fj

]
=−Ai j Fj , EiFj − (−1)pi p j FjEi = δi j H j , (3.37)

in which pi ∈ {0,1} denotes the parity ofEi andFi. The loop algebrâsl(2|1)0 is again defined

by settingH0+H1+H2 = 0.

We now introduce a real bosonic fieldϕ and two complex fermionic fieldsχ+, χ− (depending

on bothx+ andx−). These fermions anticommute among themselves and also anticommute with
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the fermionic generators of̂sl(2|1). With these, we construct

U+(λ ) =−
(
H1∂+ϕ −2(H0−H2)χ+χ̄+

)

+m
(
E1e2ϕ +2E2χ+e−ϕ +2E0χ̄+e−ϕ)+m2e−2ϕ{E0,E2

}
, (3.38a)

U−(λ ) = +
(
H1∂−ϕ −2(H0−H2)χ−χ̄−

)

−m
(
F1e2ϕ +2F2χ−e−ϕ +2F0χ̄−e−ϕ)+m2e−2ϕ{F2,F0

}
. (3.38b)

The zero curvature condition (3.33) then yields the system of equations

0= ∂+∂−ϕ +
m2

2
(e4ϕ −m2e−4ϕ)−m2(χ+χ−+ χ̄+χ̄−)e−2ϕ , (3.39a)

0= ∂+(χ−e−ϕ)+(∂+ϕ +2χ+χ̄+)χ−e−ϕ −m2χ̄+e−3ϕ , (3.39b)

0= ∂−(χ+e−ϕ)+(∂−ϕ +2χ−χ̄−)χ+e−ϕ +m2χ̄−e−3ϕ . (3.39c)

These equations are equivalent to those following from (2.3) once we identify

φ = 2b−1ϕ, 2πbν = m2, 2πµb= m2, ψ± = 2
√

2b−1χ±. (3.40)

We take the fact that the equations of motion follow from a Lie-algebraically defined Lax pair,

similar to the ones used in the purely bosonic affine Toda theories, as a justification for calling

this theory the fermionic affine Toda theory associated withsl(2|1).

The fundamental representation ofŝl(2|1)0 is defined on the vector superspaceC
2|1 with two

bosonic basis vectorsv1, v2 and one fermionic basis vectorv3. With respect to this basis, the

elementary matricesE13, E23, E31 andE32 are fermionic (parity-reversing), whereas the rest of

theEi j are bosonic. The fundamental representation forŝl(2|1)0 is then

πa,λ (E0) = λE23, πa,λ (H0) = E22+E33, πa,λ (F0) = +λ−1E32, (3.41a)

πa,λ (E1) = λE12, πa,λ (H1) = E11−E22, πa,λ (F1) = +λ−1E21, (3.41b)

πa,λ (E2) = λE31, πa,λ (H2) =−E11−E33, πa,λ (F2) =−λ−1E13. (3.41c)

The second fundamental representation may be obtained fromthis by exchangingJ0 andJ2,

J = E,H,F. We may use the representation (3.41) to get conserved quantities from traces of

the path-ordered integrals of the Lax matrixUx := πa,λ (U+−U−).
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3.4 TheN = 2 Sine-Gordon model

3.4.1 Supersymmetry and equations of motion

In order to write the equations of motion in a manifestly supersymmetric way, let us intro-

duce the complex superfieldΦ(x+,x−;θ+,θ−), which depends upon the additional Grassmann

variablesθ+, θ−, together with the super-derivatives

D+ =
∂

∂θ+
+θ+

∂
∂x+

, D− =
∂

∂θ−
+θ−

∂
∂x−

. (3.42)

With these definitions, we will write the classical equations of motion for theN = 2 Sine-

Gordon model in the form

D−D+Φ = m2sinh(2Φ̄), D−D+Φ̄ = m2sinh(2Φ), (3.43)

whereΦ̄ denotes the complex conjugate superfield. Written out in terms of component fields,

Φ = ϕ +θ+χ++θ−χ−+αθ+θ−, Φ̄ = ϕ̄ +θ+χ̄++θ−χ̄−+ ᾱθ+θ−, (3.44)

one finds the equations

∂+∂−ϕ = 2m2(2χ̄+χ̄− sinh(2ϕ̄)− ᾱ cosh(2ϕ̄)) , ∂+χ− =−2m2χ̄+cosh(2ϕ̄), (3.45a)

α = m2sinh(2ϕ̄), ∂−χ+ =+2m2χ̄−cosh(2ϕ̄). (3.45b)

It is straight-forward to verify that these equations are equivalent to the equations of motion of

theN = 2 Sine-Gordon theory if one identifies the respective fields as

φ = 2b−1ϕ, ψ± = 2
√

2b−1χ±, m2 = 2πbµ, (3.46)

whereφ is the complex combinationφ1+ iφ2.

3.4.2 The super-Lax representation

In order to construct a zero curvature representation for the equation of motion (3.43) of the

N= 2 Sine-Gordon model, let us consider the affine Lie superalgebraŝl(2|2)with Cartan matrix

A=




0 +1 0 −1

+1 0 −1 0

0 −1 0 +1

−1 0 +1 0



. (3.47)
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This superalgebra has fermionic Chevalley generatorsEi , Fi, i = 0,1,2,3, and bosonic genera-

torsHi of the Cartan subalgebra, satisfying the relations (3.37).We will again restrict attention

to the loop algebrâsl(2|2)0 defined by settingH0+H1+H2+H3 = 0. With these definitions,

let us consider the super-zero curvature condition [InKa1,InKa2]

D+L−(λ )+D−L+(λ )−{L+(λ ),L−(λ )}= 0, (3.48)

where

L+(λ ) :=−1
2

(
HD+Φ+ H̄D+Φ̄

)
+ZΞ++m

(
E1eΦ +E2eΦ̄ −E3e−Φ −E0e−Φ̄), (3.49a)

L−(λ ) :=+
1
2

(
HD−Φ+ H̄D−Φ̄

)
−ZΞ−−m

(
F1eΦ +F2eΦ̄ −F3e−Φ −F0e−Φ̄). (3.49b)

Here, we have used the notationH := H2−H0, H̄ := H1−H3 andZ := H0+H2. The zero

curvature condition (3.48) implies, on top of the equationsof motion (3.43), the additional

equation

D−Ξ+−D+Ξ− = m2(cosh(2Φ)−cosh(2Φ̄)). (3.50)

This does not constrain theΞ± uniquely. Rather, it means that there is some freedom to choose

theΞ± to solve (3.50) without constrainingΦ any further than (3.43) does. For later purposes,

we note that the equation for the coefficientξ± of θ± in Ξ± is

∂+ξ−+∂−ξ+ = 4m2(χ+χ−cosh(2ϕ)− χ̄+χ̄−cosh(2ϕ̄)) = ∂+(χ+χ̄+)+∂−(χ−χ̄−), (3.51)

where we have also used (3.45). It follows that setting

ξ± = χ±χ̄± (3.52)

is a particularly natural choice, consistent with the equations of motion (3.43).

In order to get the corresponding super-Lax matrices, one may, for instance, evaluate the Lax

matricesL± in the fundamental representationπa,λ of ŝl(2|2)0 which may be defined by

πa,λ (E0) = λE41, πa,λ (H0) = +E11+E44, πa,λ (F0) = +λ−1E14, (3.53a)

πa,λ (E1) = λE13, πa,λ (H1) =−E11−E33, πa,λ (F1) =−λ−1E31, (3.53b)

πa,λ (E2) = λE32, πa,λ (H2) = +E22+E33, πa,λ (F2) = +λ−1E23, (3.53c)

πa,λ (E3) = λE24, πa,λ (H3) =−E22−E44, πa,λ (F3) =−λ−1E42, (3.53d)

There is of course another fundamental representation, butwe will restrict our attention to this
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one in what follows.

3.4.3 Ordinary Lax representation

The zero curvature condition (3.48) implies a zero curvature condition of the usual form (3.33),

where

U±(λ ) = L
(1)
± (λ )−

(
L

(0)
± (λ )

)2
, (3.54)

given the expansionL±(λ ) = L
(0)
± (λ )+θ±L

(1)
± (λ )+ . . . Indeed, (3.48) guarantees the exis-

tence of solutions to the equations

(D+−L+(λ ))Ψ(λ ) = 0, (D−−L−(λ ))Ψ(λ ) = 0. (3.55)

Expanding inθ±, one easily finds from (3.55) that the lowest componentΨ(0)(λ ) of the super-

field Ψ(λ ) satisfies the equations

(∂+−U+(λ ))Ψ(0)(λ ) = 0, (∂−−U−(λ ))Ψ(0)(λ ) = 0, (3.56)

with theU±(λ ) defined in (3.54). The Lax matrices are explicitly given by

U+(λ ) =−1
2
(H∂+ϕ + H̄∂+ϕ̄)+Zχ+χ̄+

+2m
(
E1χ+eϕ +E2χ̄+eϕ̄ +E3χ+e−ϕ +E0χ̄+e−ϕ̄)

−m2({E1,E2}eϕ+ϕ̄ −{E2,E3}eϕ̄−ϕ +{E3,E0}e−ϕ−ϕ̄ −{E0,E1}eϕ−ϕ̄), (3.57a)

U−(λ ) = +
1
2
(H∂+ϕ + H̄∂+ϕ̄)−Zχ−χ̄−

−2m
(
F1χ−eϕ +F2χ̄−eϕ̄ +F3χ−e−ϕ +F0χ̄−e−ϕ̄)

−m2({F1,F2}eϕ+ϕ̄ −{F2,F3}eϕ̄−ϕ +{F3,F0}e−ϕ−ϕ̄ −{F0,F1}eϕ−ϕ̄). (3.57b)

Here, we have used the choice (3.52) to fix the coefficients ofZ. Then, one finds that all of the

equations which follow from (3.4) and (3.57) are implied by the equations of motion (3.45).

4. Quantum affine algebras and integrable quantum field theories

We have seen that affine Lie (super)algebraic structures underlie the classical integrability of

the models of interest. It therefore seems natural to expectthat the quantization of these models

will lead to some deformation of these structures. In order to identify the precise form of this

deformation, we are going to argue that the algebraic structure behind the integrability becomes

visible through the algebra generated by the interaction terms in the light-cone representation
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of the dynamics. In order to explain this more precisely, note that the light-cone representation

of the classical dynamics admits a fairly direct quantization in which the interaction terms of

the equations of motion are realized as operatorsQi , i = 0, . . . , r, on suitable Fock spaces. The

key observation to be made is that these operators generate arepresentation of the nilpotent part

N− of some quantum affine (super)algebra. The existence of infinitely many local and non-

local conserved quantities can then be deduced from this fact through purely algebraic methods

[FF1, FF2, FF3]. This gives highly non-trivial evidence forthe claim that the quantum affine

(super)algebra behind the integrability is one whose nilpotent part isN−.

This discussion is sharpened considerably by the observation [BLZ3, BHK] that the quantum

monodromy matrices of the corresponding massless models for imaginaryb can bedirectly

obtained from one of the most basic objects associated with quantum affine (super)algebras,

the so-called universal R-matrix, in a way to be described below. In the following section,

we shall review and slightly generalize what is known about these connections for the models

of interest. Based on this discussion, we will try to formulate more precisely the proposed

connection between quantum affine (super)algebras and the integrability of our models.

Relations between integrable quantum field theories and quantum affine algebras have also

been found in [BL1, BL2]. These works are concerned with the non-local conserved charges

related to the appearance of solitonic excitations in the infinite-volume scattering theory. This

does not seem to bedirectlyrelated to the connections discussed in our paper. One may observe,

in particular, that the approach of [BL1, BL2] was generalized to the N=2 Sine-Gordon model

in [KUY], and it was found by these authors that the quantum affine algebra associated with the

non-local conserved charges isUq̃(ŝl(2)) in this case, while we will argue below that it is the

quantum affine superalgebraUq(ŝl(2|2)) which is relevant in our context. Despite the apparent

differences, it seems clear, however, that such appearances of quantum affine algebras must be

related on a deeper level. A better understanding of this relation, in connection to integrable

quantum field theories, seems highly desirable.

4.1 Quantum affine algebras

Let ĝ be the (untwisted) affine Kac-Moody algebra associated to the simple Lie algebrag. We

let r denote the rank ofg and assume, for simplicity, that all the real roots ofĝ have the same

length (this is the only case that will concern us). The quantum affine algebraUq
(
ĝ
)

may then

be defined [J, D] as the Hopf algebra generated by the elements1 (the unit),Ei , Fi , Ki = qHi
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(i = 0,1, . . . , r), andqD, subject to the following relations:

KiE j = qAi j E jKi , KiFj = q−Ai j FjKi , EiFj −FjEi = δi j
Ki −K−1

i

q−q−1 , (4.1a)

qDEi = qδi0Eiq
D, KiK j = K jKi , qDKi = Kiq

D, qDFi = q−δi0Fiq
D, (4.1b)

1−Ai j

∑
n=0

(−1)n
[
1−Ai j

n

]

q
En

i E jE
1−Ai j−n
i =

1−Ai j

∑
n=0

(−1)n
[
1−Ai j

n

]

q
Fn

i FjF
1−Ai j−n
i = 0. (4.1c)

Here,A is the Cartan matrix of̂g and we use the standardq-number notation

[
m
n

]

q
=

[m]q!

[n]q! [m−n]q!
, [n]q! = [n]q [n−1]q · · · [1]q , [n]q =

qn−q−n

q−q−1 . (4.2)

Equation (4.1c) is known as the Serre relations. This is supplemented by a coproduct∆ given

by

∆(Ei) = Ei ⊗Ki +1⊗Ei , ∆(Ki) = Ki ⊗Ki , (4.3a)

∆(Fi) = Fi ⊗1+K−1
i ⊗Fi , ∆

(
qD)= qD ⊗qD. (4.3b)

There is also a counit and antipode, though their explicit forms are not important for us, except

in noting that there exist Hopf subalgebrasB+ andB− generated by theEi, Ki , qD and theFi ,

Ki , qD, respectively. These are the analogs of Borel subalgebras and we will refer to them as

such. The subalgebrasN+ andN− generated by theEi and theFi , respectively, will be called

the nilpotent subalgebras. They are not Hopf subalgebras.

As in the classical case (q= 1) above, we will generally be interested in level 0 representa-

tions. Because of this, we will often denote a quantum affine algebra byUq
(
ĝ0
)
, understanding

that the linear combination of Cartan generators giving thelevel has been set to 0. As the level is

dual to the derivationD under the (extended) Killing form, it is therefore often also permissible

to ignoreD in our computations.

4.2 Universal R-matrices

The physical relevance of quantum affine algebras stems fromthe existence [D] of the so-called

universal R-matrixR. This is a formally invertible infinite sum of tensor products of algebra

elements

R = ∑
i

ai ⊗bi , ai ,bi ∈ Uq
(
ĝ
)
, (4.4)
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which must satisfy three properties:

R∆(x) = ∆op(x)R for all x∈ Uq
(
ĝ
)
, (4.5a)

(∆⊗ id)(R) = R13R23 and (id⊗∆)(R) = R13R12. (4.5b)

Here,∆op(x) denotes the “opposite” coproduct ofUq
(
ĝ
)
, formally defined as∆op(x)=σ(∆(x)),

where the permutationσ acts as

σ(x⊗y) = y⊗x. (4.6)

We have also used the standard shorthandR12= ∑i ai ⊗bi ⊗1, R13= ∑i ai ⊗1⊗bi andR23=

∑i 1⊗ai ⊗bi .

Quantum affine algebras have an abstract realisation in terms of a so-called quantum double

[D] which proves the existence of their universal R-matrices. This realisation moreover shows

that these R-matrices can be factored so as to isolate the contribution from the Cartan generators:

R = qt
R̄, t = ∑

i, j

(
Â−1)

i j Hi ⊗H j . (4.7)

Here, Â denotes the non-degenerate extension of the Cartan matrix to the entire Cartan sub-

algebra (includingD). This is achieved by identifying this matrix with that of the (appropri-

ately normalised) standard invariant bilinear form on the Cartan subalgebra. The so-called

reduced R-matrixR̄ is a formal linear combination of monomials of the formEI ⊗ FJ :=

Ei1 · · ·Eik ⊗Fj1 · · ·Fjℓ (I = {i1, . . . , ik}, J = { j1, . . . jℓ}).

It is worth noting [KT] thatR is already uniquely defined by (4.5a) and (4.7). In order to get

some idea why this is so, let us first note that puttingx = Ki into (4.5a) shows that each term

EI ⊗FJ in the expansion of the reduced R-matrix is constrained so that the affine weight ofEI

cancels that ofFJ. Second, puttingx= Fi into (4.5a) and using the relations

(
Fi ⊗K−1

i

)
qt = qt (Fi ⊗1) , (1⊗Fi)qt = qt (Ki ⊗Fi) , (4.8)

we find that (for the algebras and superalgebras we are interested in)

[
R̄,Fi ⊗1

]
= (Ki ⊗Fi) R̄− R̄

(
K−1

i ⊗Fi
)
. (4.9)

This relation can be solved recursively by expandingR̄ as a formal series in the monomials

EI ⊗FJ. In particular, it is easy to deduce that the expansion to first order is

R̄ = 1⊗1+
(
q−q−1)∑

i
(Ei ⊗Fi)+ . . . (4.10)
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We will use (4.9) repeatedly in Sections 6 and 7 when we discuss lattice regularisations.

We note that a second solution to the defining properties (4.5) is given by1

R
− = (σ (R))−1 . (4.11)

This alternative universal R-matrixR− is then of the form

R
− = R̄

−q−t , (4.12)

in which R̄− is a formal series in monomials of the formFI ⊗EJ. In order that the symmetry

between the two universal R-matrices is emphasised, we shall also use the notationR+ := R.

It easily follows from the defining properties (4.5) thatR+ andR− satisfy the abstract Yang-

Baxter equations

R
+
12R

+
13R

+
23= R

+
23R

+
13R

+
12, (4.13a)

R
+
12R

−
13R

−
23= R

−
23R

−
13R

+
12, (4.13b)

R
−
12R

+
13R

+
23= R

+
23R

+
13R

−
12, (4.13c)

R
−
12R

−
13R

−
23= R

−
23R

−
13R

−
12. (4.13d)

It is also useful to note thatR+ andR− may be related by an anti-automorphismζ given by

ζ (Ei) = Fi , ζ (Fi) = Ei , ζ (Hi) = Hi, ζ (D) = D, ζ (q) = q−1. (4.14)

This action can be continued to tensor products viaζ (x⊗y) = ζ (x)⊗ζ (y). In terms ofζ , we

can representR− as

R
− = ζ (R+). (4.15)

Indeed, applyingζ to the defining property (4.5a) shows thatR ′ := ζ (R+) likewise satisfies

(4.5a). Moreover,R ′ is clearly of the formR ′ = R̄ ′q−t , with R̄ ′ a formal series in monomials

of the formFi ⊗E j . As R− is uniquely determined by these two properties (4.5a) and (4.12),

we conclude thatR ′ = R−.

Applying appropriate representations of the Hopf algebrasB± andUq
(
ĝ
)

to (4.13) results

in more familiar forms of the Yang-Baxter equation. In particular, we will frequently be con-

structing representationsπa,λ (λ ∈ C) andπq so that we can applyπa,λ ⊗πa,µ ⊗πq to (4.13).

1We thank A. Bytsko for pointing this out.
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The resulting specialisation of (4.13a), for example, thentakes the form

R12(λ ,µ)L13(λ )L23(µ) = L23(µ)L13(λ )R12(λ ,µ) , (4.16)

when we set

R(λ ,µ) =
(
πa,λ ⊗πa,µ

)(
R

+
)

and L(λ ) =
(
πa,λ ⊗πq

)(
R

+
)
. (4.17)

Note that this requires thatπa,λ be a representation ofUq
(
ĝ
)
, whereasπq need only be a repre-

sentation of the Borel subalgebraB−.

4.3 Relation to the algebra of quantum monodromy matrices

Let us now formulate the conjectured relation between our models and the representation theory

of quantum affine (super)algebras on a somewhat abstract level. Recall that the key objects

used to establish the classical integrability of our modelswere the monodromy matricesMa(λ )
which can be defined for each choice of representationπa,λ of the relevant loop algebrâg0. We

conjecture that the quantization of the models produces operator-valued matricesMa(λ ) which

satisfy algebraic relations of the following general form

Rab(λ ,µ)
(
Ma(λ )⊗ I

)(
I⊗Mb(µ)

)
=
(
I⊗Mb(µ)

)(
Ma(λ )⊗ I

)
Rab(λ ,µ). (4.18)

In order to write the relation compactly, we considerMa(λ ) andMb(λ ) as endomorphisms of

corresponding representation spacesVa andVb, so that (4.18) may be read as a relation between

operator-valued endomorphisms ofVa⊗Vb. The entries of the matrixRab(λ ,µ) in (4.18) are

not operator-valued — they play the role of structure constants in these algebraic relations.

The main point here is that the so-called R-matrixRab(λ ,µ) : Va⊗Vb → Va⊗Vb is related

to the universal R-matrixR of the affine Lie (super)algebraUq
(
ĝ0
)

deformingĝ0 via

Rab(λ ,µ) :=
(
πa,λ ⊗πb,µ

)
(R). (4.19)

In the quantum case, the representationsπa,λ andπb,λ should therefore be deformations of the

representations defining the corresponding classical Lax matricesMa(λ ) andMb(λ ), respec-

tively.

In order to get the quantum counterparts of the integrals of motion, it is then natural to con-

sider traces of the monodromy matrices, taken over the auxiliary spacesVa:

Ta(λ ) := TrVa
(Ma(λ )). (4.20)
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The mutual commutativity, [
Ta(λ ),Tb(µ)

]
= 0, (4.21)

for all allowed values ofλ andµ, and all admissible choices of representationsπa,λ andπb,µ ,

then follows easily by taking the trace of (4.18) overVa⊗Vb. By varying the choice of rep-

resentationπa,λ , one may generate a large familyI of mutually commuting operators. We

expect that the HamiltoniansH of our models can be constructed from the elements ofI .

Proposing the existence of operator-valued matricesMa(λ ) which satisfy the relations (4.18)

may seem bold in a quantum field-theoretical context, because of the possibility that modifica-

tions to (4.18) will be required by renormalization. However, in the case of imaginaryb, there

exist [BLZ1, BLZ3] direct quantum field-theoretical constructions of monodromy matrices

Ma(λ ) satisfying (4.18), as we will shortly review. For real values ofb, there is strong evidence

for one of the most important consequences of the existence of theMa(λ ), namely the functional

relations satisfied by the eigenvalues of the transfer matricesTa(λ ) [ByTe1, T1, ByTe2].

4.4 Light-cone representation for integrable quantum fieldtheory

A somewhat unconventional picture for integrable quantum field theory models can be obtained

by taking the piecewise light-like saw-blade contourC1 from Section 3.1.1 as an initial-value

surface. For notational simplicity, let us begin with the case of the Sinh-Gordon model, the

generalization to the other (bosonic) affine Toda theories being straight-forward (we briefly

discuss thesl(3) case in Section 4.6).

4.4.1 Classical dynamics in the light-cone representation

In the light-cone picture for the classical dynamics, one takes the values of the fieldφ on the

two light-like segments ofC1,

φ+(2u) = φ(u,u) and φ−(2v) = φ(R
2 −v, R

2 +v), 06 u,v6 R
2 , (4.22)

as initial values for the time-evolution from whichφ(x, t) can be found for allx andt by solving

the equations of motion. The dynamics may still be represented in the Hamiltonian form by

using the Poisson structure

{φ+(u),φ+(u′)}= π
2

sgnR(u−u′), {φ−(v),φ−(v′)}= π
2

sgnR(v−v′) (4.23)

on the light-cone dataφ+ andφ− (brackets betweenφ+ andφ− are zero). The Hamiltonians

H+ andH− which generate the time evolution in the two light-like directions may be found
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by expanding the trace of the monodromy matrixM(λ ) around the singular pointsλ = ∞ and

λ = 0, respectively. One finds, for example, that

H− =

∫ R

0

dx−
4π

(
(∂−φ−)2− 1

b
∂ 2
−φ−

)
+µ

∫ R

0
dx+ 2cosh(2bφ+). (4.24)

Using the representation (3.18), it is easy to see that the interaction terms inH− are directly

related to the matrix elements ofV+(λ ;m). The equation of motion can now be represented in

the Hamiltonian form as

∂−(∂+φ) = {H−,∂+φ}=−4πbµ sinh(2bφ). (4.25)

The same equation of motion is found by exchanging the roles of φ+ andφ−, of course.

4.4.2 Quantization

The Poisson brackets (4.23) are those a massless free field. The quantization is therefore stan-

dard. Let us write the expansion ofφ±(x±) into Fourier modes in the form

φ±(x±) = q+
2π
R
px±+φ±

< (x±)+φ±
> (x±), (4.26)

where

φ±
< (x±) = ∑

n<0

i
n
a±n e−2π inx±/R, φ±

> (x±) = ∑
n>0

i
n
a±n e−2π inx±/R. (4.27)

The modesaε
n (ε =±), q andp are required to satisfy the canonical commutation relations

[
q,p
]
=

i
2
,

[
aε

m,a
ε ′
n

]
=

1
2

mδm+n,0δεε ′. (4.28)

Quantum analogs of the exponential functionse2αφ±
are then constructed by normal ordering:

: e2αφ±(x±) : := exp(2αφ±
< (x±))e2α(q+2πpx±/R)exp(2αφ±

> (x±)). (4.29)

The quantum HamiltoniansH+ andH− corresponding toH+ andH−, respectively, will similarly

be defined by normal ordering(∂±φ±)2 and cosh(2bφ±).

4.4.3 Conserved quantities

The quantum equation of motion for an observableO built from ∂+φ+(x+) can then be repre-

sented in the form

− i∂−O=
[
H−,O] = µ

[
Q+

0 +Q+
1 ,O

]
, (4.30)
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where the operators

Q+
i =

∫ R

0
dxVi(x), V0(x) = : e+2bφ+(x) : , V1(x) = : e−2bφ+(x) : , (4.31)

are called screening charges. We see that finding conserved quantities is reduced to a purely al-

gebraic problem:Find all operatorsO (built from∂+φ+(x+)) which commute with the screening

chargesQ+
0 , Q+

1 . Note that we require the commutativity ofO with bothQ+
0 andQ+

1 indepen-

dently. This is motivated by the fact that we could easily generalize the right hand side of (4.30)

to
[
µQ+

0 +νQ+
1 ,O

]
by a shift of the zero modeq.

This problem was studied in [FF1, FF2, FF3]. A key point underlying the approach used in

these references is the fact that the operatorsQ+
i , i = 0,1, satisfy the relations

(Q+
i )

3Q+
j − [3]q(Q

+
i )

2Q+
j Q

+
i +[3]qQ

+
i Q

+
j (Q

+
i )

2−Q+
j (Q

+
i )

3 = 0, (4.32)

with q= e−iπb2
. The validity of these relations was first shown in a related context in [BMP].

It can be checked by direct calculation — we detail the methodin Appendix A. The relations

(4.32) can be identified with the Serre-relations (4.1c) of the quantum affine algebraUq(ŝl(2)).

They imply that the operatorsQ+
i , i = 0,1, generate a representation of the nilpotent partN−

of Uq(ŝl(2)). Based on this observation, it is possible to prove that there exist infinitely many

local [FF1, FF2] and non-local [FF3] conserved operatorsO.

These results represent a first basic link between the integrability of the Sinh-Gordon quantum

field theory and quantum affine algebras. The main lesson thatwe wish to extract from this

example is that there is a direct relation between the algebra generated by the operatorsQ+
i ,

describing the perturbations in the light-cone representation, and the integrability of the theory.

The fact that the perturbing operatorsQ+
i generate a representation of the nilpotent subalgebra

of some quantum affine algebra implies the existence of infinitely many conserved quantities.

4.5 Quantization of the monodromy matrices

The connection between quantum affine algebras and integrability can be strengthened signifi-

cantly by considering the quantization of the monodromy matrices in the massless limits. Fol-

lowing [BLZ1, BLZ3] we shall, in the following, describe thequantization of the monodromy

matrices of the (m)KdV theory forb imaginary together with its link to the representation theory

of the quantum affine algebraUq(ŝl(2)).
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4.5.1 Quantization of (m)KdV theory

In the regime whereb= iβ , β ∈ R, it is straight-forward to construct the quantized counterpart

M+(λ+) of the monodromy matrixM+(λ+) as [BLZ1]

M+(λ+) = eπbpH
P exp

(∫ R

0
dx+ W+(x+)

)
, (4.33)

where

W+(x;λ ) = λ+

(
0 : e−2bφ+(x) :

: e2bφ+(x) : 0

)
. (4.34)

M+(λ ) is a priori defined as a formal power series inλ , whose coefficients are represented

by ordered integrals over products of normally-ordered exponential fields. These integrals con-

verge ifβ 2 < 1
2 and it can be shown [BLZ3] that the summation over powers ofλ is convergent

in this case.

It was shown in [BLZ3] that the commutation relations satisfied by the matrix elements of

M+(λ ) can be written as the exchange relations

R(λ/µ)
(
M+(λ )⊗ I

)(
I⊗M+(µ)

)
=
(
I⊗M+(µ)

)(
M+(λ )⊗ I

)
R(λ/µ), (4.35)

with matrixR(λ ) given by

R(λ ) =




q−1λ −qλ−1 0 0 0

0 λ −λ−1 q−1−q 0

0 q−1−q λ −λ−1 0

0 0 0 q−1λ −qλ−1



. (4.36)

The commutation relations (4.35) represent a natural quantization of the Poisson structure (3.7).

It follows immediately from (4.35) that the operatorsT+(λ ) := Tr
(
M+(λ )

)
commute for arbi-

trary values of the spectral parameter:

[
T+(λ ),T+(µ)

]
= 0 for all λ ,µ ∈ C. (4.37)

The family of operatorsT+(λ ) generates the algebra of quantum integrals of motion in the

quantized (m)KdV-theory.

The quantized counterpartM−(λ−) of the monodromy matrixM−(λ−) can likewise be con-

structed as

M−(λ−) = P exp

(∫ −R

0
dx− W−(x−)

)
eπbpH, (4.38)
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where

W−(x;λ ) =−λ−

(
0 : e+2bφ−(x) :

: e−2bφ−(x) : 0

)
. (4.39)

The quantum monodromy matrixM−(λ−) defines a second copy of the quantum (m)KdV-

theory which may be associated to the second chiral half of the massless free field.

4.5.2 Representation-theoretic interpretation of the monodromy matrices

A beautiful relationship between the quantization of (m)KdV theory and the representation the-

ory of the quantum affine algebraUq
(
ŝl(2)

)
was found in [BLZ3] and proven in [BHK]. It

asserts the equality ofM+(λ+) with the evaluation of the universal R-matrixR+ in certain rep-

resentationsπa,λ+
andπ+

q of the Borel subalgebrasB+ andB− of the quantum affine algebra

Uq
(
ŝl(2)0

)
. For the representationπa,λ+

, we may take the representation defined in (3.12),

which may be checked to define a representation ofUq(ŝl(2)0) for all values ofq. Forπ+
q , we

shall take

π+
q (H0) =−2ip/b, π+

q (F0) = τ−1
q Q+

0 , (4.40a)

π+
q (H1) = +2ip/b, π+

q (F1) = τ−1
q Q+

1 , (4.40b)

whereτq := q−q−1. It follows from (4.32) and straight-forward calculation that (4.40) indeed

defines a representation of the Borel subalgebraB− of Uq
(
ŝl(2)0

)
. The observation of [BLZ3]

can then be formulated as the assertion that the monodromy matrix defined in (4.33) is equal to

M+(λ+) = (πa,λ+
⊗π+

q )(R+), (4.41)

whereπa,λ+
andπ+

q are the representations defined in (3.12) and (4.40), respectively. In order

to prepare for the comparison with the case ofM−(λ−) we have included the proof of (4.41)

(following [BHK]) in Appendix B.

With very similar arguments (see Appendix B), one may show that

M−(λ−) = (πa,λ− ⊗π−
q )(R−), (4.42)

where the representationπ−
q of B+ is defined by

π−
q (H0) = +2ip/b, π−

q (E0) = τ−1
q

∫ −R

0
dx− : e+2bφ−(x−) : , (4.43a)

π−
q (H1) =−2ip/b, π−

q (E1) = τ−1
q

∫ −R

0
dx− : e−2bφ−(x−) : . (4.43b)
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It follows from (4.13b) and (4.42) thatM−(λ−) satisfies relations of the form (4.35) with the

same matrixR(λ ).

The proof of (4.42) described in Appendix B shows that the different orientations in the in-

tegrations appearing in the definitions (4.33) and (4.38) ofM+(λ+) andM−(λ−), respectively,

are precisely accounted for by replacingR+ in (4.41) byR− in (4.42). It seems quite remark-

able that the two chiralities of the massless free field are naturally related to the two universal

R-matrices discussed in Section 4.2. This will become even clearer in our discussion of the

lattice regularization below (Section 6.3).

4.6 sl(3) affine Toda theory

This story generalizes fairly easily to the affine Toda models of higher rank. As an example, let

us discuss the case of the affine Toda theory associated tosl(3). The integrable structure of the

massless limit is related to the Boussinesq equation.

4.6.1 Conserved quantities in the light-cone representation

The quantization of this theory in the light-cone representation can be performed along the same

lines as described above. We introduce chiral free fieldsφ±
1 andφ±

2 with mode expansions of the

same form as (4.26). The modes ofφ±
i are required to satisfy commutation relations obtained

from (4.26) by the obvious replacements. Out of theφ+
i , one may then construct the vertex

operators

V0(x) = : e2bφ+
1 (x) : ,

V1(x) = : e−b(φ+
1 (x)+

√
3φ+

2 (x)) : ,

V2(x) = : e−b(φ+
1 (x)−

√
3φ+

2 (x)) : .
(4.44)

From these vertex operators, let us define the screening charges

Q+
i =

∫ R

0
dxVi(x). (4.45)

Using once more the technique described in Appendix A, theseoperators may be checked to

satisfy the relations [BMP]

(Q+
i )

2Q+
j − [2]qQ

+
i Q

+
j Q

+
i +Q+

j (Q
+
i )

2 = 0 (i 6= j), (4.46)

again withq= e−iπb2
. As before, it now follows from the results of [FF1, FF2, FF3]that there

exist infinitely many local and non-local conserved quantities.
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4.6.2 Quantum Boussinesq theory

The quantization of this theory [BHK] leads to the monodromymatrix

M+(λ+) = eπb(H,P)
P exp

(
λ+

∫ R

0
dx(E1V1(x)+E2V2(x)+E0V0(x))

)
, (4.47)

where(H,P) = (p1+p2/
√

3)H1+(p1−p2/
√

3)H2, theVi were given in Equation (4.44) and

the Ei in Equation (3.34). Our aim is to relate this monodromy matrix to the representation

theory of a quantum affine algebra, as we did for quantum KdV theory in Section 4.5.2.

We define the following representation of the Borel subalgebraB− ⊂ Uq
(
ŝl(3)0

)
:

π+
q (H0) =−2ip1/b, π+

q (F0) = τ−1
q Q+

0 , (4.48a)

π+
q (H1) = i(p1+

√
3p2)/b, π+

q (F1) = τ−1
q Q+

1 , (4.48b)

π+
q (H2) = i(p1−

√
3p2)/b, π+

q (F2) = τ−1
q Q+

2 . (4.48c)

The arguments described in Section 4.5.2 can now be used to show that

M+(λ ) = (πa,λ ⊗π+
q )(R), (4.49)

with πa,λ andπq being the representations defined in (3.34) and (4.48), respectively.

It follows in particular, from the abstract Yang-Baxter relation (4.13) satisfied byR, that

the operator-valued matrixM+(λ ) satisfies Yang-Baxter type relations of the form (4.35) with

matrixR given by

R(λ ,µ) = (πa,λ ⊗πa,µ)(R), (4.50)

up to an irrelevant scalar factorf (λ ,µ). Explicitly, this R-matrix has the form

R(λ ,µ) =
3

∑
i, j=1

ρi j (λ ,µ)Eii ⊗E j j +
3

∑
i, j=1

σi j (λ ,µ)Ei j ⊗E ji , (4.51)

whereρi j andσi j are the(i, j)-th entries of the matrices

ρ =




λ 3q−1−µ3q λ 3−µ3 λ 3−µ3

λ 3−µ3 λ 3q−1−µ3q λ 3−µ3

λ 3−µ3 λ 3−µ3 λ 3q−µ3q−1


 , (4.52a)

σ =−λ µ
(
q−q−1)




0 µ λ
λ 0 µ
µ λ 0


 . (4.52b)
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As before, one may deduce the commutativity of the integralsof motion of the quantized

Boussinesq theory from the Yang-Baxter type relations (4.35). The modifications necessary

to constructM−(λ ) are clear. It also satisfies the relations (4.35) with the R-matrix (4.51).

5. Models related to quantum affine superalgebras

Let us now discuss the modifications to the formalism of Section 4 that are necessary to treat

the cases related to quantum affine superalgebras.

5.1 Quantum affine superalgebras

As we saw in Section 4.1, the defining relations (4.1) of a quantum affine algebra amount

to a q-deformation of the presentation of the corresponding affine Kac-Moody algebra in the

Chevalley basisEi , Fi , Ki = qHi , qD, including in particular, the Serre relations. The definition

of quantum affine superalgebras precisely mimics this deformation. However, the analogs of

the Serre relations for superalgebras are significantly more complicated than (and not nearly as

well understood as) their bosonic counterparts. Indeed, there still seems to be some controversy

over the completeness of superalgebra Serre relations [Z].One complicating factor is that the

Dynkin diagram of a superalgebra need not be unique, leadingto a finite number of different

presentations and (potentially) a finite number of different deformations. We refer to Yamane

[Y2, Y3] for these Serre relations and theirq-deformations — as they do not seem to admit an

obvious general form, we will only give them as needed. A second complication is that certain

Lie superalgebras require two derivations. We shall defer adiscussion of this point until its

consideration becomes necessary (Section 5.2.2).

Aside from the Serre relations, the defining relations and Hopf-algebraic structure of a quan-

tum affine superalgebraUq
(
ĝ
)

(assumed for simplicity to derive from a superalgebraĝ whose

real roots all have the same length) are very similar to theirbosonic counterparts. Indeed, the

only change at this level is that the commutator ofEi andFj is replaced by

EiFj − (−1)pi p j FjEi = δi j
Ki −K−1

i

q−q−1 , (5.1)

whereA is a Cartan matrix of the affine superalgebraĝ andpi = p(Ei) = p(Fi)∈ {0,1} denotes

the parity, even or odd (bosonic or fermionic), of the elements Ei andFi . The Cartan elements

Ki , qD are always even.

It is convenient for a compact presentation of the Serre relations to introduce the following
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notation. Define the gradedq-commutator by

[x,y]q := xy− (−1)p(x)p(y)q yx, [x,y] := [x,y]1. (5.2)

Forq= 1, this is the usual graded commutator. From now on,[x,y] will denote the anticommu-

tator if bothx andy are fermionic.

The parity of the generators is particularly important whenconsidering the coproduct of a

quantum affine superalgebra. Let us first introduce the graded tensor product⊗s which satisfies

(x1⊗sx2)(y1⊗sy2) = (−1)p(x2)p(y1)(x1y1⊗sx2y2). (5.3)

The superalgebra coproduct is then simply (4.3) with⊗ replaced by⊗s. With a suitable counit

and antipode (which we will not need), the quantum affine superalgebraUq
(
ĝ
)

becomes a Hopf

superalgebra. As before, we have Hopf subalgebrasB+ andB− which are generated by the

Ei , Ki, qD and theFi , Ki, qD, respectively, and non-Hopf subalgebrasN+ andN− which are

generated by theEi andFi , respectively. We will again refer to these as Borel subalgebras and

nilpotent subalgebras, as appropriate.

Let us also generalize the notation∆op to superalgebras via

∆op = σ ◦∆, σ(x⊗sy) := (−1)p(x)p(y)y⊗sx. (5.4)

The universal R-matrixR+ of a quantum affine superalgebraUq
(
ĝ
)

is then defined as an in-

vertible element of the form∑i ai ⊗sbi , ai ∈ B+, bi ∈ B−, that satisfies the standard universal

R-matrix axioms (4.5) but with⊗ replaced by⊗s. The existence and uniqueness of the universal

R-matrix was shown for the quantum affine superalgebras of interest to us in [Y1]. As before,

this implies abstract Yang-Baxter equations identical to (4.13). Equations (4.7) and (4.9) are

also valid for these superalgebras (with⊗ replaced by⊗s). Equation (4.10) generalises, how-

ever, to

R̄
+ = 1⊗s1+

(
q−q−1)∑

i
(−1)pi (Ei ⊗sFi)+ . . . (5.5)

The alternative universal R-matrixR− is again defined as in (4.11). It may also be related to

R+ by an anti-automorphismζ which is defined as in (4.14), but with one small modification:

In order thatζ continues to define an anti-automorphism on tensor products, consistency with

(5.3) requires us to set

ζ (x⊗sy) = (−1)p(x)p(y)ζ (x)⊗sζ (y). (5.6)

With this modification,R− = ζ (R+) as before.
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5.2 N = 2 Super Sine-Gordon model

Our next aim will be to determine the algebraic structure underlying the integrability of the

N = 2 Sine-Gordon model. An interesting new feature arises whenwe try to follow the path

described in the previous section. There, we observed a linkbetween the generators of the

nilpotent parts of certain quantum affine algebras and the interaction terms in the light-cone

representation. In this case, we have two options to consider: According to our discussion in

Section 2, we could either take the interaction terms manifest in the classical action (2.3) or

those appearing in the representation as a perturbed free field (2.9). We will work with the

second of these options. We shall observe that these operators satisfy the Serre relations of the

affine superalgebraUq(ŝl(2|2)).

Based on this observation, one may try to define quantum monodromy matrices by evaluating

the universal R-matrix ofUq(ŝl(2|2)) in appropriate representations. In order to establish the

connection with theN = 2 Sine-Gordon model, we will then verify that the classical limit of

these monodromy matrices correctly reproduces the the integrable structure of the massless

limit of the N = 2 Sine-Gordon model. This turns out to be more involved than in the previous

cases.

5.2.1 Appearance of the quantum affine superalgebraUq(ŝl(2|2))

Following the path described in the previous section leads us to consider four screening charges,

constructed as

Q+
i (x) =

∫ R

0
dxVi(x), i = 0,1,2,3, (5.7)

with

V0(x) = ψ̄+(x) : e−b(φ+
1 (x)−iφ+

2 (x)) : ,

V2(x) = ψ̄+(x) : e+b(φ+
1 (x)−iφ+

2 (x)) : ,

V1(x) = ψ+(x) : e+b(φ+
1 (x)+iφ+

2 (x)) : ,

V3(x) = ψ+(x) : e−b(φ+
1 (x)+iφ+

2 (x)) : .
(5.8)

We find that these screening charges satisfy, in particular,the following relations:

(Q+
i )

2 = 0, Q+
i Q

+
i+2+Q+

i+2Q
+
i = 0, (5.9a)

Q+
i−1,i,i+1,i −Q+

i+1,i,i−1,i +[2]qQ
+
i,i−1,i+1,i −Q+

i,i+1,i,i−1+Q+
i,i−1,i,i+1 = 0. (5.9b)

Here,q= e−iπb2
, i ∈Z4, and we have used the shorthandQ+

i j ···k =Q+
i Q

+
j · · ·Q+

k . These relations

may be compared with the Serre relations of the quantum affinesuperalgebraUq(ŝl(2|2)) with

Dynkin diagram
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,

as listed in [Y3]. This list may be presented in the followingmanner:

F2
i = 0,

[
Fi ,Fi+2

]
= 0 for i = 0,1,2,3, (5.10a)

[[[
Fi+1,Fi

]
q+1,Fi−1

]
q−1,Fi

]
= 0 for i = 0,2, (5.10b)

[[[
Fi+1,Fi

]
q−1,Fi−1

]
q+1,Fi

]
= 0 for i = 1,3, (5.10c)

[
Fi+2,F

(m)
i

]
= 0 for i = 0,1,2,3 andm> 1. (5.10d)

Here,F (m)
i is defined recursively form≥ 0 by

F(0)
i = Fi , F(m)

i =





[[[[
F(m−1)

i ,Fi−1
]
q−1,Fi−2

]
q+1,Fi−3

]
,Fi
]

for i = 0,2,
[[[[

F(m−1)
i ,Fi−1

]
q+1,Fi−2

]
q−1,Fi−3

]
,Fi
]

for i = 1,3.
(5.11)

The relations (5.10a) are easily identified with (5.9a), while relations (5.9a) and (5.9b) ensure

that the definitionπ+
q (Fi) := τ−1

q Q+
i represents the relations (5.10b) and (5.10c). We have

furthermore verified that theQ+
i satisfy the sixth order relation (5.10d) withm= 1, but have to

leave the validity of the relations (5.10d) form> 1 as conjecture.

This gives us a representationπ+
q of the nilpotent subalgebraN− of Uq

(
ŝl(2|2)

)
. As usual,

we need to extend this to a representation of the Borel subalgebraB−. It is easily checked that

this may be accomplished by setting

π+
q (H0) =−i(p+1 − ip+2 )/b, π+

q (H1) = +i(p+1 + ip+2 )/b, (5.12a)

π+
q (H2) = +i(p+1 − ip+2 )/b, π+

q (H3) =−i(p+1 + ip+2 )/b. (5.12b)

One should remark that the quantum affine superalgebraUq
(
ŝl(2|2)

)
contains non-trivial

ideals by which one might wish to take quotients in order to define smaller quantum affine

superalgebras. For example,Uq
(
p̂sl(2|2)

)
may be obtained in this way. The Serre relations

of these quotients will then include those ofUq
(
ŝl(2|2)

)
. A more complicated example is

the algebra denoted byUq
((

A(1,1)(1)
)H )

in [Y2, Y3]. This may be obtained as a quotient

of a one-dimensional (non-central) extension ofUq
(
ŝl(2|2)

)
. Nevertheless, its Serre relations

include (properly) those ofUq
(
ŝl(2|2)

)
[Y3]. It seems then that the Serre relations alone cannot

distinguish these three quantum affine superalgebras.
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However, any representation ofUq
(
p̂sl(2|2)

)
is also a representation ofUq

(
ŝl(2|2)

)
in

which the generators may satisfy additional relations. Furthermore, one of representations we

want to use to construct Lax matrices is the representation defined in (3.53), which actually

defines a four-dimensional representationπa,λ of Uq
(
ŝl(2|2)

)
for all values ofq. It is easy to

check that thisπa,λ does not descend to a representation ofUq
(
p̂sl(2|2)

)
. For this reason, and

because we have no motivation to consider the extension required to defineUq
((

A(1,1)(1)
)H )

,

we will considerUq
(
ŝl(2|2)

)
rather than any of the alternatives in what follows.

5.2.2 Quantum monodromy matrices

Following our previous discussions, it is natural to consider M+(λ ) = (πa,λ ⊗s π+
q )(R) as a

candidate for the quantum monodromy matrix describing the integrable structure of the massless

limit of the N = 2 Sine-Gordon model.

A new feature of this quantum affine superalgebra is that there aretwo linearly independent

central elements, which we may take to beC0 = H0+H2 andC3 = H3+H1. In order to find

an explicit representation for the elementt which represents the Cartan part of the universal

R-matrix we therefore now need to introduce two derivations, which will be chosen asD0 and

D3 with the non-trivial commutation relations

[
Di,E j

]
= δi j E j ,

[
Di ,Fj

]
=−δi j Fj (i = 0,3). (5.13)

We remark thatD0 coincides with the “standard” derivationD. One may compute the element

t appearing in (4.7) by extending the Cartan matrix (invariant bilinear form) to include these

derivations or by simply requiring (4.8). The result is

t =−H1⊗sH2−H2⊗sH1+C0⊗sD0+C3⊗sD3+D0⊗sC0+D3⊗sC3. (5.14)

As before, the representationsπ that we are considering all satisfyπ(H0+H1+H2+H3) =

π(C0) + π(C3) = 0, so they are representations of the quantum loop algebraUq
(
ŝl(2|2)0

)
.

Because of this, we therefore only need to consider the combination D′ := D0 −D3 of the

derivations. The definitions ofπa,λ andπ+
q above therefore need to be supplemented by

πa,λ (D
′) =−1

2
(E11+E22+E33−E44) , π+

q (D′) =
1
2

ρ+− 1
b
p+2 , (5.15)

whereρ+ is the fermion number operator defined by[ρ+,ψ+] = ψ+, [ρ+, ψ̄+] =−ψ̄+.
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It is now easy to generalize the arguments of [BHK] to the caseat hand to show that

M+(λ+) = qρ+Z/2e−πb(p+H+p̄+H̄)/2
P exp

(
λ+

∫ R

0
dxW+(x)

)
, (5.16)

with the operator-valued Lax matrix

W+(x) =
3

∑
i=0

E+i Vi(x) (E+i := π+
q (Ei)). (5.17)

We use, as in Section 3.4.2, the notationH = H2−H0, H̄ = H1−H3, Z = H0+H2, and define

p+ = p+1 + ip+2 , p̄+ = p+1 − ip+2 . The counterpartM−(λ−) of this monodromy matrix may

be likewise computed by slightly varying the representation π+
q . Explicitly, we construct a

representationπ−
q of B+ by π−

q (Ei) = τ−1
q Qi and definingπ−

q (Hi) as in (5.12), but with a

relative sign (and exchanging all+ labels for− labels). WithR− = ζ (R+), the analysis now

proceeds identically.

It again follows from the Yang-Baxter relation (4.13) satisfied byR that the operator-valued

matrixM+(λ+) satisfies Yang-Baxter type relations of the form (4.35) withmatrix R replaced

by R(λ/µ) = (πa,λ ⊗s πa,µ)(R). This matrix may be calculated by analyzing the relations

following from (4.5a). It is found to be given by

R(λ ,µ) =
4

∑
i, j=1

ρi j (λ ,µ)Eii ⊗sE j j +
4

∑
i, j=1

σi j (λ ,µ)Ei j ⊗sE ji , (5.18)

up to an inessential scalar multiple, whereρi j andσi j are the(i, j)-th entries of the matrices

ρ =




λ 4q−1−µ4q λ 4−µ4 λ 4−µ4 λ 4−µ4

λ 4−µ4 λ 4q−1−µ4q λ 4−µ4 λ 4−µ4

λ 4−µ4 λ 4−µ4 λ 4q−µ4q−1 λ 4−µ4

λ 4−µ4 λ 4−µ4 λ 4−µ4 λ 4q−µ4q−1



, (5.19a)

σ =−λ µ
(
q−q−1)




0 +λ µ −µ2 −λ 2

+λ µ 0 −λ 2 −µ2

+λ 2 +µ2 0 −λ µ
+µ2 +λ 2 −λ µ 0



. (5.19b)

Note the relative signs inρ33, ρ44 and the last two columns ofσ . These correlate with the

(relative) fermionic nature of the third and fourth basis states in the representationsπa,λ .
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5.2.3 Classical limit

We will now compare the classical limit ofM+(λ+) with the monodromy matrixM+(λ+) that

would be obtained by adapting the discussion of the masslesslimit from Section 3.1.2 to this

case. This would lead to the consideration of the monodromy matrix

M+(λ+) = e−πb(pH+p̄H̄)/2
P exp

(∫ R

0
dx+ W+(x+)

)
, (5.20)

wherep= (ϕ+(R)−ϕ+(0))/πb andW+(x+) is given by the formula

W+(x+) = Z χ+χ̄++2m
(
E1χ+e2ϕ+

+E2χ̄+e2ϕ̄+
+E3χ+e−2ϕ+

+E0χ̄+e−2ϕ̄+)

−m2({E1,E2}e2(ϕ++ϕ̄+)−{E2,E3}e2(ϕ̄+−ϕ+)

+{E3,E0}e−2(ϕ++ϕ̄+)−{E0,E1}e2(ϕ+−ϕ̄+)
)
. (5.21)

To see howM+(x+) may be obtained fromM+(x+), observe that the terms in the second line of

(5.21) are produced in the limitb→ 0 from the short-distance behavior of the higher order terms

in the expansion of (5.16). In order to see this in more detail, let us recall the relations (3.46)

between the respective variables. The terms inλ+W+(x+) are easily identified with the terms

of orderm in the expression (5.21) forW+(x+) if λ+ is chosen appropriately. When taking the

limit b → 0, one encounters a subtlety similar to that discussed in Section 2.2. To elaborate,

let us consider the term proportional to{E1,E2} at orderλ 2
+, for example. It is given by the

integral

− (2m)2
∫

x1>x2

dx1dx2 χ+(x1) : e2ϕ+(x1) : χ̄+(x2) : e2ϕ̄+(x2) : , (5.22)

where the minus sign is due to the fact that theEi anticommute with the fermionic fields. The

contribution from the region|x1− x2| < ε may be approximated with the help of the operator

product expansion2

ψ+(x)ψ̄+(y)∼
−2

x−y− i0
+ . . . . (5.23)

This allows us to represent the term in (5.22) to leading order as

(2m)2
∫

dx
∫ ε

0
dy

b2

8
2

y1+b2 : e2(ϕ+(x)+ϕ̄+(x)) : =−m2

εb2

∫
dx : e2(ϕ+(x)+ϕ̄+(x)) : . (5.24)

We see that the result has a finite limit forb → 0. The resulting contact terms from higher

orders in the expansion can all be taken into account by adding to the Lax connection the term

−m2{E1,E2} : e2(ϕ++ϕ̄+) : . In a similar way one finds the other terms in the second line of

2The variablesx, y appearing in (5.23) are related to the variables previouslyused in (2.7) by the usual map
from the complex plane to the cylinder, that isz= eix etc..
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(5.21).

In order to see where the term containing the central elementZ comes from, let us note that

the operator product expansion (5.23) implies that

{ψ+(x), ψ̄+(y)}=−4π iδ (x−y), (5.25)

which implies that the fermion number operatorρ+ can be represented as

ρ+ =
i

4π

∫ R

0
dx : ψ+(x)ψ̄+(x) : =

2i
πb2

∫ R

0
dx : χ+(x)χ̄+(x) : . (5.26)

It follows that the term containingρ+ in (5.16) reproduces the contribution proportional toZ

in (5.21). AsZ is represented by the identity matrix, the termZχ+χ̄+ will give a contribution

to M+(λ ) that can be factored out like the corresponding factor in (5.16). This concludes our

check that the classical limit ofM+(λ+) reproduces the monodromy matrix of the classical

masslessN = 2 Sine-Gordon model.

5.3 Fermionicsl(2|1) affine Toda theory

To round off the picture, we shall conclude by listing the relevant results for the remaining case

corresponding to the fermionicsl(2|1) affine Toda theory. The results in this subsection are

related to those obtained in [BaTs] by bosonization of the fermions.

5.3.1 Appearance of the quantum affine superalgebraUq(ŝl(2|1))

Let us define

Q+
i =

∫ R

0
dxVi(x), i = 0,1,2, (5.27)

with

V1(x) = : e2bφ+
1 (x) : ,

V0(x) = ψ̄+(x) : e−bφ+
1 (x) : ,

V2(x) = ψ+(x) : e−bφ+
1 (x) : .

(5.28)

With the technique described in Appendix A, one may then check that the screening charges

Q+
i , i = 0,1,2, satisfy the following relations (withq= e−iπb2

):

(Q+
0 )

2 = (Q+
2 )

2 = 0, (5.29a)

Q+
i (Q

+
1 )

2− [2]qQ
+
1 Q

+
i Q

+
1 +(Q+

1 )
2Q+

i = 0 (i = 0,2), (5.29b)

Q+
10202+[2]q

(
Q+

21020+Q+
02120+Q+

02012

)
+Q+

20201

= Q+
12020+[2]q

(
Q+

01202+Q+
20102+Q+

20210

)
+Q+

02021. (5.29c)
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In this last relation, we have again made use of the convenient shorthandQ+
i j ···k =Q+

i Q
+
j · · ·Q+

k .

The relations (5.29) can be identified as the Serre relationsof the quantum affine superalgebra

Uq(ŝl(2|1)), given in [Y2] in the form

F2
0 = F2

2 = 0, (5.30a)
[[

F0,F1
]
q−1,F1

]
q =

[
F1,
[
F1,F2

]
q−1

]
q = 0, (5.30b)

[
F0,
[
F2,
[
F0,
[
F2,F1

]
q−1

]]]
q =

[
F2,
[
F0,
[
F2,
[
F0,F1

]
q−1

]]]
q. (5.30c)

It follows that settingπ+
q (Fi) = τ−1

q Q+
i defines a representation of the nilpotent subalgebraN−

of Uq
(
ŝl(2|1)

)
. We conclude thatUq

(
ŝl(2|1)

)
is the quantum algebraic structure underlying

the integrability of the fermionicsl(2|1) affine Toda model.

5.3.2 Quantum monodromy matrices

The representationπ+
q is extended to a representation of the Borel subalgebraB− by setting

π+
q (H1) =−2ip1/b,

π+
q (H0) = ip1/b−ρ+/2,

π+
q (H2) = ip1/b+ρ+/2,

(5.31)

whereρ+ is the fermion number operator defined in the previous subsection. We may define,

as before,M+(λ ) = (πa,λ ⊗s π+
q )(R), whereπa,λ is given in Equation (3.41). This operator-

valued matrix may again be shown to possess a representationas a path-ordered exponential of

the form (4.33) with

W+(x;λ ) = E1V1(x)+E2V2(x)+E0V0(x), (5.32)

whereEi := πa,λ (Ei). We conclude by computing the R-matrix ofUq
(
ŝl(2|1)

)
in the tensor

product of the representationsπa,λ and πa,µ . Appealing once again to Equation (4.5a), the

result is proportional to

R(λ ,µ) =
3

∑
i, j=1

ρi j (λ ,µ)Eii ⊗sE j j +
3

∑
i, j=1

σi j (λ ,µ)Ei j ⊗sE ji , (5.33)
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whereρi j andσi j are the(i, j)-th entries of the matrices

ρ =




λ 3q−1−µ3q λ 3−µ3 λ 3−µ3

λ 3−µ3 λ 3q−1−µ3q λ 3−µ3

λ 3−µ3 λ 3−µ3 λ 3q−µ3q−1


 , (5.34a)

σ =−λ µ
(
q−q−1)




0 +µ −λ
+λ 0 −µ
+µ +λ 0


 . (5.34b)

The entryρ33 again reflects the (relatively) fermionic nature of the third basis state in the eval-

uation representationπa,λ (note also the signs in the third column ofσ ).

6. Lattice light-cone approach to the Sinh-Gordon model

The difficulties with real exponential interactions described in Subsection 2.3 have another con-

sequence of importance for us. The constructions describedin the previous section do not

immediately generalize. A careful regularization of the generating functionsTa(λ ) of the con-

served quantities is needed and the only regularization that is known to work at present is the

lattice regularization. In this section, we will first review the known lattice-regularization of the

Sinh-Gordon model. It will then be reformulated in a way thatprepares for the generalization

to the other models of our interest. The reformulation that we will use is a lattice version of

the light-cone representation discussed previously in theclassical case. It is similar, but not

equivalent to the lattice light-cone formulations introduced in [FV1, BBR]. We will discuss the

precise relation between our formalism and theirs in Section 6.5.

6.1 Lattice Sinh-Gordon model

For the case of the Sinh-Gordon model, it has been known for a long time how to construct a

tailor-made lattice regularization [FST, IK, S]. To motivate this construction, one can introduce

a minimal distance (ultraviolet cutoff)∆. It is then natural to formulate a regularized version of

the theory in terms of averages of the basic field variablesφ(x, t) andΠ(x, t) := ∂tφ(x, t) over

intervals of length∆. We therefore introduce

φn =
1
∆

∫ (n+1)∆

n∆
dxφ(x), Πn =

1
4π

∫ (n+1)∆

n∆
dxΠ(x). (6.1)

These operators will satisfy the commutation relations

[
φn,Πm

]
=

i
2

δn,m. (6.2)
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We are looking for a matrixLn(λ ) such that:

(i) The Lax matrixUx(x, t;λ ) is recovered in the continuum limit∆ → 0 as

Ln(λ ) = I +∆Ux(n∆, t;λ )+O(∆2). (6.3)

(ii) The elements of the lattice Lax matrixLn(λ ) satisfy the commutation relations

R(λ/µ)(Ln(λ )⊗1)(1⊗Ln(µ)) = (1⊗Ln(µ))(Ln(λ )⊗1)R(λ/µ), (6.4)

with matrixR being obtained from the universal R-matrix ofUq(ŝl(2)) via (4.50).

The relations (6.4) imply similar relations for the elements of the monodromy matrix

Ma(λ ) = LN(λ )LN−1(λ ) · · ·L1(λ ), (6.5)

which can be seen as the most natural quantization of the Poisson bracket relations (3.7).

A suitable choice forLn(λ ) is known [FST, IK, S]. It can be written as

LSG
n (λ ) =

(
un+m2∆2vnunvn m∆(λvn+λ−1v−1

n )

m∆(λv−1
n +λ−1vn) u−1

n +m2∆2v−1
n u−1

n v−1
n

)
, (6.6)

where we have used the operatorsun = e2πbΠn andvn = e−bφn which satisfy the relations

unvm = q−δnmvmun, q= e−iπb2
. (6.7)

It is elementary to check that this choice forLn(λ ) satisfies both requirements (i) and (ii) above.

It therefore defines a suitable integrable lattice regularization of the Sinh-Gordon model.

6.2 KdV-theory on the lattice

In the following, we want to explain the representation-theoretic origin of the Lax matrix (6.6)

on the one hand, and how all this is related to the light-cone representation for the model on the

other. In order to do this, we begin by discussing the massless limits of the model for which we

have previously observed a particularly simple relation between the integrable structure and the

universal R-matrix ofUq
(
ŝl(2)

)
. This will turn out to have a very simple discretized version

which was studied in [G, V1, V2].

The procedure of Section 3.1, which gave us the integrable structure of the massless limit of

the Sinh-Gordon model, can now be also be applied to the lattice Sinh-Gordon model. Taking
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the limitsm→ 0, λ → ∞ with µ+ := λm∆ fixed, orm→ 0, λ → 0 with µ− := λ/m∆ fixed,

yields the Lax matrices [G, V1]

L+
n (µ+) :=

(
un µ+vn

µ+v
−1
n u−1

n

)
, L−

n (µ−) :=

(
un µ−1

− v−1
n

µ−1
− vn u−1

n

)
, (6.8)

respectively. These matrices define interesting quantizedlattice versions of (m)KdV theory.

Remembering the discussion in Section 3.1, one would like tointerpret the degrees of free-

dom of the integrable lattice model defined by the Lax matricesL+
n (λ ) as a discretization of the

left-moving partφ+(x+) of the massless free fieldφ(x, t). This raises an apparent problem as

L+
n (λ ) contains the same degrees of freedom per lattice site asLSG

n (λ ) did. In order to see how

this puzzle is resolved, let us consider the family of operators

T+(λ ) := Tr
(
L+

N(λ )L
+
N−1(λ ) · · ·L+

1 (λ )
)
. (6.9)

The main observation to be made [V1] is that the operatorsT+(λ ) depend on the variablesun,

vn, n= 1, . . . ,N, only through the combinations

w+
n =

(
unvnun+1v

−1
n+1

)1/2
= eb(Πn+1+Πn+2(φn+1−φn))/4, (6.10)

which can be seen as lattice analogs of the field variableseb(∂t+∂x)φ(x,t) (the indexn is of course

definedmodulo N). This can be verified by using the operator-valued gauge transformation

L̃+
n (µ) := g−1

n+1

(
un µ+vn

µ+v
−1
n u−1

n

)
gn =

(
q−1/4w+

n µ+w
+
n

µ+q1/2(w+
n )

−1 q−1/4(w+
n )

−1

)
, (6.11)

where

gn :=

(
u
−1/2
n v

1/2
n 0

0 v
−1/2
n u

1/2
n

)
. (6.12)

One may also introduce the operators

w−
n =

(
unv

−1
n un+1vn+1

)1/2
= eb(Πn+1+Πn−2(φn+1−φn))/4, (6.13)

which are lattice analogs of the field variableseb(∂t−∂x)φ(x,t). We have the following commuta-

tion relations:

w+
n w

−
m = w−

mw
+
n , w±

n w
±
m =





q±(n−m)/2w±
mw

±
n if |n−m|= 1,

w±
mw

±
n otherwise.

(6.14)
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It follows that all operatorsw−
n , n= 1, . . . ,N, commute withT+(λ ). Similarly, one may see that

T+(λ ) := Tr
(
L+

N(λ )L
+
N−1(λ ) · · ·L+

1 (λ )
)
, (6.15)

commutes with the operatorsw+
n , n = 1, . . . ,N. This shows how the Lax matricesL±

n (λ ) de-

scribe two decoupled integrable structures for the latticediscretization of a free field correspond-

ing to two decoupled lattice KdV theories associated with left- and right-movers, respectively.

6.3 Representation-theoretic origin of the massless Lax matrix

Our first concern is to discuss how the Lax matricesL±
n (λ ) are embedded into the general

representation-theoretic scheme described in the previous sections. This is rather simple. Let

us considerL+
n (λ ). It is easy to check that

k0,n := π+
q,n(K0) = u−2

n , f0,n := π+
q,n(F0) = τ−1

q u+1
n v−1

n , (6.16a)

k1,n := π+
q,n(K1) = u+2

n , f1,n := π+
q,n(F1) = τ−1

q u−1
n v+1

n , (6.16b)

with τq = q−q−1, defines a representationπ+
q,n of the Borel subalgebraB− of Uq

(
ŝl(2)0

)
(the

Serre relations follow trivially from the fact thatf0 and f1 commute). We mention that this

representation is a close relative of those referred to asq-oscillator representations in [BLZ3].

We are going to show that there exists a functionf (λ ) such that the following equality holds:

L+
n (λ ) = f (λ )

(
πa,λ ⊗π+

q,n

)
(R). (6.17)

Here, the representationsπa,λ andπ+
q,n are defined in (3.12) and (6.16), respectively. Indeed,

thanks to the simplicity of the representationsπa,λ andπ+
q,n, we will only need to use generic

properties ofR to establish (6.17).

It is useful to keep in mind the factorization (4.7) of the universal R-matrixR into a Cartan

partqt = q(H1⊗H1)/2 and the reduced R-matrix̄R. First note that in the representationπa,λ , the

non-trivial monomials in the operatorsEi := πa,λ (Ei) are of the form

(E0E1)
n = E0E1, (E1E0)

n = E1E0, (E0E1)
nE0 = E0, (E1E0)

nE1 = E1, (6.18)

which represent a basis in the space of two-by-two matrices.Next, recall that for each term

EI ⊗FJ appearing in the expansion of the reduced R-matrixR̄, the affine weight (with respect

to theKi) of the monomialEI must cancel that ofFJ. As the monomial basis elementsπa,λ (EI )

have weights taking values in{1,q2,q−2} and asf0,nf1,n = f1,nf0,n is a multiple of the identity,

the corresponding monomialsπ+
q,n(FJ) may be taken from the set{1, f0,n, f1,n}. It follows from
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these observations that the reduced R-matrix has the form

(
πa,λ ⊗π+

q,n

)
(R̄) =

(
a(λ ) b(λ )f1,n

c(λ )f0,n d(λ )

)
, (6.19)

wherea(λ ), b(λ ), c(λ ) andd(λ ) are proportional to the identity operator inπ+
q,n (they may

also possess an implicitq-dependence). We can computea, b, c andd by evaluating (4.9) in the

representationπa,λ ⊗π+
q,n, both forF0 andF1. This yields constraints whose solutions are

a(λ ) = d(λ ) and b(λ ) = c(λ ) = λ (q−q−1)a(λ ). (6.20)

Our claim (6.17) now follows easily upon premultiplying by the Cartan part

(
πa,λ ⊗π+

q,n

)
(qt) = q(H1⊗h1,n)/2 =

(
k

1/2
1,n 0

0 k
−1/2
1,n

)
. (6.21)

In order to understand the representation-theoretic origin of L−
n (λ ), we introduce the repre-

sentationπ−
q,n of B+ which is defined by

π−
q,n(K0) = u+2

n , π−
q,n(E0) = τ−1

q v−1
n u+1

n , (6.22a)

π−
q,n(K1) = u−2

n π−
q,n(E1) = τ−1

q v+1
n u−1

n . (6.22b)

Repeating the above analysis now, we obtain

L−
n (λ ) = g(λ )(πa,λ ⊗π−

q,n)(R
−), (6.23)

whereg(λ ) is some scalar function. It now follows from the abstract Yang-Baxter equation

(4.13b) thatL+
n (λ ) andL−

n (λ ) both satisfy an RLL-relation of the form (6.4) with thesame

R-matrixR(λ ) as that which appears in the relation satisfied byLSG
n (λ ).

6.4 Recombining left-and right-movers

We have seen that the two simple Lax matricesL±
n (λ ) for the lattice (m)KdV theory can be

obtained from the Lax matrixLSG
n (λ ) of the lattice Sinh-Gordon model by a limiting procedure.

It is easy to see that by taking classical continuum limits ofL+
n (λ ) andL−

n (λ ), similar to the

limit taken in (6.3), one recovers the classical light-coneLax matricesU+(λ ) andU−(λ ) defined

in (3.11), respectively.

Recall the representation of the monodromy matrix in terms of the saw-blade contourCN

of Equation (3.15). This naturally suggests an alternativeapproach to the discretization of the
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model: Use averages of the fieldsφn, Πn over the light-like segmentsC±
k as basic variables. Out

of these, construct the quadruple of operatorsuε
n = e2πbpn, vε

n = e−bφn, ε =±, with commutation

relationsuε
nv

ε ′
m = q−δnmδεε ′vε ′

mu
ε
n. If we now redefine

L+
n (µ+) :=

(
u+n µ+v

+
n

µ+(v
+
n )

−1 (u+n )
−1

)
, L−

n (µ−) :=

(
u−n µ−1

− (v−n )
−1

µ−1
− v−n (u−n )

−1

)
, (6.24)

then a natural discrete version of the saw-blade representation (3.15) forM(λ ) may be con-

structed as

M (λ ) = LN(λ ) · · ·L1(λ ), Ln(λ ) := L−
n (µ−)L+

n (µ+), (6.25)

whereµ+ = ∆mλ andµ− = λ/m∆. It follows from the RLL-type relations (6.4), satisfied by

L+
n (µ+) andL−

n (µ−), that the monodromy matrixM (λ ) satisfies RLL-type relations with the

same R-matrix asL+
n (µ+), L−

n (µ−), and henceLSG
n (λ ).

What may be confusing is the apparent doubling of the number of degrees of freedom as-

signed to a lattice site with labeln. We are are therefore going to show that the lattice discretiza-

tion defined by (6.25) with Lax matrices (6.24) is physicallyequivalent to the one introduced in

Section 6.1.

6.4.1 An ultralocal representation

To this purpose, it is useful to note thatL+
n (µ+) andL−

n (µ−) can be factorized as

L+
n (µ+) =

(
u+n 0

0 (u+n )
−1

)(
1 µ+w

+
n

µ+q(w+
n )

−1 1

)
, (6.26a)

L−
n (µ−) =

(
1 µ−1

− q−1(w−
n )

−1

µ−1
− w−

n 1

)(
u−n 0

0 (u−n )
−1

)
, (6.26b)

wherew+
n = (u+n )

−1v+n andw−
n = v−n (u

−
n )

−1. It follows that the Lax matrix

Ln(λ ) =

(
1 µ−1

− q−1(w−
n )

−1

µ−1
− w−

n 1

)(
u−n u

+
n 0

0 (u−n u
+
n )

−1

)(
1 µ+w

+
n

µ+q(w+
n )

−1 1

)
(6.27)

only depends upon the operatorsw+
n , w−

n andUn := u−n u
+
n . Note thatw+

n andw−
n commute as

they act on different tensor factors. The combinationw−
n (w

+
n )

−1 also commutes withUn and is

therefore central in the algebra generated byw+
n , w−

n andUn. It follows that we may consider

a representation in whichw−
n (w

+
n )

−1 is represented by a scalar multiple of the identity. Taking
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this multiple to beq−1 and definingVn := (Unw
+
n )

−1 then gives

Ln(λ ) =

(
Un+µ+µ−1

− VnUnVn µ+V
−1
n +µ−1

− Vn

µ−1
− V−1

n +µ+Vn U−1
n +µ+µ−1

− V−1
n U−1

n V−1
n

)
. (6.28)

This Lax matrix is equivalent to that defined in (6.6) when we takeµ+ andµ− as in (6.25).

6.4.2 A non-ultralocal representation

Another way to identify the variables that the monodromy matrix M (λ ) depends upon is to use

a gauge transformation similar to that used in (6.11). Specifically, with

g+n =

(
(u+n )

−1/2
(v+n )

1/2 0

0 (v+n )
−1/2

(u+n )
1/2

)
, (6.29a)

g−n =

(
(u−n )

−1/2
(v−n )

−1/2 0

0 (v−n )
1/2

(u−n )
1/2

)
, (6.29b)

we can writeM (λ ) in the form

M (λ ) = g+1 L̃−
N(µ−)L̃+

N(µ+) · · · L̃−
1 (µ−)L̃+

1 (µ+)(g
+
1 )

−1. (6.30)

Here,

L̃+
n (µ+) =

(
g−n
)−1

L+
n (µ+)g

+
n =

(
t+n µ+q1/4t+n

µ+q1/4(t+n )
−1 q−1/2(t+n )

−1

)
, (6.31a)

L̃−
n (µ−) =

(
g+n+1

)−1
L−

n (µ̄−)g−n =

(
t−n µ−1

− q−1/4t−n
µ−1
− q−1/4 (t−n )

−1 q1/2(t−n )
−1

)
, (6.31b)

and thet±n are given by

t+n = (v−n )
1/2(u−n )

1/2(u+n )
1/2(v+n )

1/2, t−n = (v+n+1)
−1/2(u+n+1)

1/2(u−n )
1/2(v−n )

−1/2. (6.32)

In this form, it is manifest thatM (λ ) depends on the correct number of local degrees of free-

dom. The price to pay is that we now have non-vanishing commutation relations between the

operators associated to neighboring sites (non-ultralocality):

t+n+1t
−
n = q1/2t−n t

+
n+1, t−n t

+
n = q−1/2t+n t

−
n . (6.33)
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We mention that the variables(t±n )
2 have the virtue that they make the form of the (discrete)

time evolution equations particularly nice [FV2].

6.5 Comparison to other approaches

The construction (6.25) ofLn(λ ) is inspired by similar constructions in [FV1, BBR], but differs

in detail. In [FV1, BBR], the authors proposed a Lax matrix̃Ln(λ ) which, in our notation,

would be obtained by replacing the matrixL−
n (µ−) in (6.24) by

L̃−
n (µ−) :=

(
u−n µ−1

− v−n
µ−1
− (v−n )

−1 (u−n )
−1

)
. (6.34)

Reducing to the physical degrees of freedom as described in Section 6.4.1, one would obtain a

Lax matrix L̃n(λ ) that is equivalent to the Lax matrixLXXZ
n (λ ) defining a non-compact version

of the XXZ-model [ByTe1]. This Lax matrixLXXZ
n (λ ) is related toLSG

n (λ ) by multiplication

with σ1 and a simple equivalence transformation in quantum space (see [ByTe1] for details).

This relationship implies the physical equivalence of the two approaches when the numberN

of lattice sites iseven, while the lattice models are physically inequivalent in the case ofodd

N (see [NT, Appendix D] for a detailed discussion of this pointin the closely related case of

the lattice Sine-Gordon model). It is of course quite possible that the inequivalence of the two

approaches for oddN disappears in the continuum limit.

A detailed study of the spectrum of these models and of their continuum limits has so far

been carried out only for the lattice Sinh-Gordon model defined by the Lax matrixLSG
n (λ ) on

lattices with oddN [ByTe1, T1]. This is due to the fact observed in [ByTe1] that this case is

the most convenient one for the analysis of the spectrum of the respective lattice models. The

results obtained in [ByTe1, T1, ByTe2] demonstrate that ourapproach is indeed suitable for

defining the Sinh-Gordon continuum quantum field theory by taking the continuum limit of the

lattice Sinh-Gordon model discussed in this paper.

For us, the main advantage of the Lax matrixLn(λ ) defined in (6.25) will be that it will turn

out to have a very natural generalization to the other models, as we are now going to explain.

7. Generalization to the other models

In tailor-made lattice regularizations, we want to preserve as much of the structure of the quan-

tum field theories as possible. This will include the algebraic relations (4.18) that the elements

of a quantum monodromy matrix are supposed to satisfy. The discussion of the lattice Sinh-

Gordon model suggests a natural way to realize this feature automatically, as we will now

discuss.
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7.1 The general scheme

In the case of a lattice model withN sites, one hasH =H1⊗H2⊗ . . .⊗HN. We will construct

the monodromy matrixMa(λ ) of the lattice model as a product of local Lax matrices

M (λ ) = LN(λ )LN−1(λ ) · · ·L1(λ ), (7.1)

which are themselves constructed from the universal R-matrix in the following way:

Ln(λ ) = L−
n (µ−)L+

n (µ+), L±
n (µ±) := (πa,µ± ⊗π±

q,n)(R
±). (7.2)

Here,µ+ = λm∆, µ− = λ/m∆, and theπ±
q,n are representations of the Borel subalgebrasB∓

onH ±
n such thatHn = H +

n ⊗H −
n . It follows from (4.13a) and (4.13b) that bothL−

n (µ−) and

L+
n (µ+) satisfy

R(λ ,µ)
(
L±

n (λ )⊗ I
)(

I⊗L±
n (µ)

)
=
(
I⊗L±

n (µ)
)(

L±
n (λ )⊗ I

)
R(λ ,µ), (7.3)

with the same matrix

R(λ ,µ) :=
(
πa,λ ⊗πa,µ

)
(R). (7.4)

The monodromy matrix constructed in (7.1) therefore satisfies (4.18), as desired.

When applying this construction to the remaining models, wetherefore need to:

(i) Find representationsπ+
q,n andπ−

q,n of the relevant Borel subalgebrasB− andB+, respec-

tively, such that the Lax matricesL+
n andL−

n defined in (7.2) reproduce correctly the cor-

responding classical Lax matrices in the classical continuum limit.

(ii) Make sure that the physical degrees of freedom of the lattice model, defined initially with

an auxiliary doubling of the lattice degrees of freedom, areindeed in one-to-one corre-

spondence with discretized versions of the field variables.

We are now going to apply this strategy to the remaining models of interest.

7.2 The Boussinesq model on the lattice

We begin by applying the general scheme described in Section7.1 to thesl(3) affine Toda the-

ory. Let us begin by explaining how to find the Lax matrixL+
n (λ ) associated to the left-moving

degrees of freedom in the massless limit. It was previously argued that the relevant algebraic

structure is the quantum affine algebraUq(ŝl(3)). The main task is then to find suitable repre-

sentationsπa,µ andπ+
q,n with which to construct the Lax matrixL+

n (µ) as(πa,µ ⊗π+
q,n)(R).
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To begin with, we shall consider the case in whichπa,µ is the representation defined in

(3.34). In order to motivate our choice forπ+
q,n, it will be useful to make some observations

on the generic structure of Lax matrices representing a universal R-matrixR. First, recall

the factorization (4.7) ofR into a partqt containing only Cartan generators and a reduced R-

matrix R̄, the latter being a formal sum of monomials in the generatorsEi ⊗1 and1⊗Fi . The

factor t = 1
3 ∑i Hi ⊗Hi yields a diagonal matrix underπa,µ ⊗ π+

q,n. With Hi := πa,µ(Hi) and

hi,n := π+
q,n(Hi), we may write

(
πa,µ ⊗π+

q,n

)(
qt)= q∑i Hi⊗hi,n/3 = diag(u1,n,u2,n,u0,n), (7.5)

where

u0,n = k
−1/3
1,n k

−2/3
2,n u1,n = k

2/3
1,n k

1/3
2,n , u2,n = k

−1/3
1,n k

1/3
2,n , (ki,n = qhi,n). (7.6)

In order to calculate the factor(πa,µ ⊗ π+
q,n)(R̄), we will again use the intertwining property

(4.5a) ofR in the form of Equation (4.9). But as our choice ofπa,µ is such thatEi := πa,µ(Ei)

is proportional toµ, the first order expansion (4.10) already gives the representative ofR̄ as

L̄+
n (µ) := (πa,λ ⊗π+

q,n)(R̄) = id+µ(q−q−1)




0 f1,n 0

0 0 f2,n

f0,n 0 0


+O(µ2), (7.7)

with fi,n := π+
q,n(Fi).

This should be compared with the form of the classical Lax matrix (3.32) to whichL+
n (µ)

should reduce in a classical continuum limit analogous to (6.3). The comparison suggests

that the operatorsui,n should be constructed from exponential functions of the averagespi,n of

πi(x) = ∂tφi(x,0) over light-like segmentsC+
n , while thefi,n should be proportional to operators

vi,n which represent discrete versions of the exponential functions one finds in the off-diagonal

elements of (3.32). A more detailed comparison suggests that we take

u0,n = e−πb(p1,n−p2,n/
√

3), v0,n = e+2bq1,n (7.8a)

u1,n = e+πb(p1,n+p2,n/
√

3), v1,n = e−b(q1,n+
√

3q2,n), (7.8b)

u2,n = e−2πbp2,n/
√

3, v2,n = e−b(q1,n−
√

3q2,n). (7.8c)

We note that we do not have to takefi,n strictly equal tovi,n. It is possible to multiplyvi,n by

combinations of theui,n which would disappear in the continuum limit sincepi,n =O(∆). From

the point of view of the representation theory, such a modification will not change the affine
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weight of thefi,n, but is, in this case, necessary for satisfying the Serre-relations ofUq
(
ŝl(3)

)
.

It is easy to check that defining

fi,n := τ−1
q u−1

i,n vi,n (7.9)

allows us to achieve all the requirements above. Indeed, it follows that

fi,nfi+1,n = q fi+1,nfi,n, (7.10)

in which the first indices take values inZ3. The Serre relations are now trivial to check.

Terms of higher order in the expansion (7.7) can be straight-forwardly calculated by evaluat-

ing Equation (4.9) in the representationπa,µ ⊗π+
q,n. It is useful to organize the calculation as an

expansion in powers ofµ. In the case at hand, we easily find that the terms proportional to µ2

vanish due to the relations (7.10). In this way, rememberingto multiply by (7.5), we arrive at

the Lax matrix

L+
n (µ) = ℓ(µ)




u1,n µv1,n 0

0 u2,n µv2,n

µv0,n 0 u0,n


 , (7.11)

whereℓ(µ) is an unimportant scalar function.

It is also interesting to repeat this computation using the representationπ ′
a,λ given in Equa-

tion (3.35) (but thesameπ+
q,n). The resulting Lax matrix may be expressed in the form

L+
n
′(µ) =




u−1
0,n µu1,nv2,n µ2v−1

0,n

−µ2v−1
2,n u−1

2,n µu0,nv1,n

−µu2,nv0,n −µ2v−1
1,n u−1

1,n


 . (7.12)

We observe additional off-diagonal terms in this case. Notethat these are perfectly consistent

with the expected classical continuum limit, asµ2 = O(∆2) is then of sub-leading order.

7.3 Thesl(3) affine Toda theory on the lattice

Inspired by the example of the Sinh-Gordon model, we will nowlook for a monodromy matrix

M (λ ) for the latticesl(3) affine Toda theory of the form (7.1). We have already determined

the local Lax matrixL+
n . To determineL−

n , we must repeat the analysis of Section 7.2 with the

representationπ+
q,n of B− replaced by a representationπ−

q,n of B+. It is easy to see that sending

Hi to −Hi andFi to Ei achieves this, givingk−i,n := π−
q,n(Ki) ande−i,n := π−

q,n(Ei) as

u−0,n = (k−1,n)
1/3(k−2,n)

2/3, u−1,n = (k−1,n)
−2/3(k−2,n)

−1/3, u−2,n = (k−1,n)
1/3(k−2,n)

−1/3, (7.13a)

e−i,n = τ−1
q v−i,n(u

−
i,n)

−1. (7.13b)
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We mention that we have commuted the operators in the expression for theei,n, dropping theq-

factor thereby obtained, for computational convenience. Affixing similar labels to the operators

in L+
n , we now have two local Lax matrices:

L+
n (µ+) =




u+1,n µ+v
+
1,n 0

0 u+2,n µ+v
+
2,n

µ+v
+
0,n 0 u+0,n


 , (7.14a)

L−
n (µ−) =




u−1,n 0 µ−1
− v−0,n

µ−1
− v−1,n u−2,n 0

0 µ−1
− v−2,n u−0,n


 . (7.14b)

To be clear, the operatorsuε
i,n and vε

i,n are constructed as in (7.8), but with the substitutions

pi → pε
i,n andqi → qε

i,n for i = 1,2, ε = ±, n = 1, . . . ,N (the local position and momentum

modes are now taken to satisfy
[
pε

i,n,q
ε ′
j ,m

]
= 1

2i δnmδi j δεε ′). We remark that one can check

(7.14b) by applying the anti-automorphismζ to (7.14a), while simultaneously considering the

slight differences betweenπ+
q,n andπ−

q,n.

The key observation to make now is thatM (λ ) actually depends upon only 4N+2 alge-

braically independent combinations of the 8N variablespε
i,n andqε

i,n. This is an easy conse-

quence of the following observations:

First, the operators which appear in the matrix elements of the product Ln(λ ) =

L−
n (µ−)L+

n (µ+) can all be expressed in terms of the six operatorsxi,n = k−i,nk
+
i,n, yi,n = e−n,i f

+
n,i

and zi,n = e−n,i(f
+
n,i)

−1, wherei = 1,2. The operatorsxi,n andyi,n commute with thez j ,n, but

z1,n does not commute withz2,n. Using this observation, one can show directly that the algebra

An generated by thexi,n, yi,n andzi,n has no non-trivial central elements. This is an important

difference as compared with the case previously discussed in Section 6.4.1.

Note, on the other hand, that the algebra generated by the matrix elements of the individual

factorsL−
n (µ−) andL+

n (µ+) contains a non-commutative subalgebraBn which is generated by

η1 = f+2,n(k
+
1,nf

+
0,n)

−1(e−2,n(k−1,ne−0,n)−1)−1
, η2 = f+1,nk

+
2,n(f

+
0,n)

−1(e−1,nk−2,n(e−0,n)−1)−1
. (7.15)

It can be checked thatBn commutes with the algebraAn. We conclude that the monodromy

matrix does not depend on any function of the elements ofBn. This means thatM (λ ) depends

only on 6N combinations formed out of the 8N operatorspε
i,n andqε

i,n.

We may repeat this argument for the productsL+
n+1(µ+)L−

n (µ−), i = 1, . . . ,N−1, of Lax ma-

trices associated toN−1 neighboring sites. It allows us to find another 2(N−1) combinations

of the basic variables that the monodromy matrixM (λ ) does not depend upon. We conclude
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thatM (λ ) depends on only 4N+2 independent variables.

Another way to explicitly identify a minimal set of operators from which all elements of

M (λ ) can be constructed goes as follows: Insert the identity in the form(gε
n)

−1gε
n to the right

of each factorLε
n(λ ) in (7.1). We will choose theg+n and g−n to be the respective diagonal

matrices with elements

: (u+1,n)
− 2

3(v+1,n)
+ 2

3(u+2,n)
− 1

3 (v+2,n)
+ 1

3 : ,

: (u+1,n)
+ 1

3(v+1,n)
− 1

3(u+2,n)
− 1

3 (v+2,n)
+ 1

3 : ,

: (u+1,n)
+ 1

3 (v+1,n)
− 1

3(u+2,n)
+ 2

3(v+2,n)
− 2

3 :

and

: (u−1,n)
− 1

3(v−1,n)
− 2

3(u−2,n)
+ 1

3(v−2,n)
− 1

3 : ,

: (u−1,n)
− 1

3(v−1,n)
+ 1

3(u−2,n)
− 2

3(v−2,n)
− 1

3 : ,

: (u−1,n)
+ 2

3(v−1,n)
+ 1

3(u−2,n)
+ 1

3(v−2,n)
+ 2

3 : .

(7.16)

This induces a gauge transformationLε
n(λ )→ L̃ε

n(µ) of the form

L̃+
n (µ+) =




q−1/3t+1,n q+1/3µ+t
+
1,n 0

0 q−1/3t+2,n q+1/3µ+t
+
2,n

q+1/3µ+t
+
0,n 0 q−1/3t+0,n


 , (7.17a)

L̃−
n (µ−) =




q+1/3t−1,n 0 q−1/3µ−1
− t−0,n

q−1/3µ−1
− t−1,n q+1/3t−2,n 0

0 q−1/3µ−1
− t−2,n q+1/3t−0,n


 , (7.17b)

wheret+i,n := (g−n )
−1
ii u+i,n(g

+
n )ii , t

−
i,n := (g+n )

−1
ii u−i,n(g

−
n )ii . The monodromy matrixM (λ ) is then

represented as

M (λ ) = g+1 L̃−
N(µ−)L̃+

N(µ+) . . . L̃−
1 (µ−)L̃+

1 (µ+)(g
+
1 )

−1. (7.18)

In this form, it is manifest thatM (λ ) depends only upon the 4N variablestεi,n, i = 1,2, n =

1, . . . ,N, ε = ±, together with the two
(
g+1
)

ii , i = 1,2. As in Section 6.4.2, the price to pay

for making manifest the correct number of local degrees of freedom is the presence of non-

ultralocal commutation relations: We cannot guarantee that tεi,n and tε
′

j ,m will commute with

each other unless|n−m|> 1.

7.4 Fermionicsl(2|1) affine Toda theory on the lattice

To discretize the fermionic fieldsψ±(x), ψ̄±(x) in a way that is compatible with our previous

fermion conventions, we introduce a set of operatorsψε
n , ψ̄ε

n , ε =±, satisfying the algebra

{
ψε

n ,ψ
ε ′
m

}
= 0,

{
ψε

n , ψ̄
ε ′
m

}
=−ε iδnmδεε ′ ,

{
ψε

n ,ψ
ε ′
m

}
= 0. (7.19)

Definingρε
n := ε i

[
ψε

n , ψ̄ε
n

]
, we then have

[
ρε

n ,ψ
ε ′
m

]
= δnmδεε ′ψε

n ,
[
ρε

n , ψ̄
ε ′
m

]
=−δnmδεε ′ψ̄ε

n . (7.20)
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Finally, letpε
n, qε

n be operators which satisfy

[
pε

i,n,p
ε ′
j ,m

]
= 0,

[
pε

i,n,q
ε ′
j ,m

]
=

1
2i

δi j δnmδεε ′,
[
qε

i,n,q
ε ′
j ,m

]
= 0. (7.21)

The operatorsψε
n , ψ̄ε

n will represent the discretized fermionic fieldsψε(x), ψ̄ε(x), while qε
n,

pε
n will representφ ε

1 and its conjugate momentum, respectively, at the lattice site n. Out of

these operators, let us construct the following representation of the Borel subalgebraB− of

Uq
(
ŝl(2|1)

)
:

π+
q,n(H0) = ip+n /b−ρ+

n /2, f+0,n := π+
q,n(F0) =−τ−1

q e−bq+n ψ̄+
n q−ρ+

n /2, (7.22a)

π+
q,n(H1) =−2ip+n /b, f+1,n := π+

q,n(F1) = +τ−1
q e+2bq+n q−ρ+

n , (7.22b)

π+
q,n(H2) = ip+n /b+ρ+

n /2, f+2,n := π+
q,n(F2) =−τ−1

q e−bq+n ψ+
n q−ρ+

n /2. (7.22c)

As usual,τq = q− q−1. The signs in the above expressions for thef+i,n have been chosen to

ensure consistency with the classical Lax matrix (3.38a). The Serre relations (5.30) follow from

the observation that [
f+0,n, f

+
1,n

]
q−1 =

[
f+1,n, f

+
2,n

]
q−1 = 0, (7.23)

along with some manipulation of the left hand side of (5.30c). We note for later use that

[
f+2,n, f

+
0,n

]
q =−iq1/2τ−2

q e−2bq+n q−ρ+
n , (7.24)

recalling that this is aq-anticommutator by the conventions of Section 5.1.

The corresponding Lax matrix is again defined asL+
n (µ+) = (πa,µ+ ⊗sπ+

q,n)(R
+) with πa,µ+

as in (3.41). We will sketch the derivation (up to the usual irrelevant scalar multiplier) of

L+
n (µ+) = ℓ+n L̄+

n (µ+), (7.25)

where

ℓ+n = qρ+
n /2
(

e−πbp+n E11+eπbp+n E22+qρ+
n /2E33

)
(7.26)

and

L̄+
n (µ+) = id+µ+

(
E12e

2bq+n q−ρ+
n /2+E23e

−bq+n ψ̄+
n +E31e

−bq+n ψ+
n

)
q−ρ+

n /2

+ iµ2
+q1/2τ−1

q E21e
−2bq+n q−ρ+

n . (7.27)

Here as before,Ei j denotes the 3×3 matrix with 1 in position(i, j) and 0 elsewhere. For clarity,

we will defer this analysis to the end of the section.
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Similar Lax matrices (with the roles of quantum and auxiliary spaces exchanged) have been

presented without proof in [BaTs].

A similar analysis computesL−
n (µ−) = L̄−

n (µ−)ℓ−n from the representation

π−
q,n(H0) =−ip−n /b+ρ−

n /2, e−0,n := π−
q,n(E0) = +τ−1

q e−bq−n q−ρ−
n /2ψ̄−

n , (7.28a)

π−
q,n(H1) = 2ip−n /b, e−1,n := π−

q,n(E1) = +τ−1
q e2bq−n q−ρ−

n , (7.28b)

π−
q,n(H2) =−ip−n /b−ρ−

n /2, e−2,n := π−
q,n(E2) =−τ−1

q e−bq−n q−ρ−
n /2ψ−

n . (7.28c)

The signs in thee−i,n have been chosen for consistency with the classical Lax matrix (3.38b).

One can check that these signs do not affect the validity of the Serre relations (5.30). It is easy

to see now thatℓ−n may be obtained fromℓ+n by merely changing the+ labels to− labels:

ℓ−n = qρ−
n /2
(

e−πbp−n E11+eπbp−n E22+qρ−
n /2E33

)
. (7.29)

The story is somewhat more subtle forL̄−
n because of the signs associated with certain fermions

(for example inπa,µ±). The result is

L̄−
n (µ−) = id−µ−1

− q−ρ−
n /2
(

E21e
2bq−n q−ρ−

n /2+E32e
−bq−n ψ̄−

n +E13e
−bq−n ψ−

n

)

+iµ−2
− q−1/2τ−1

q E12e
−2bq−n q−ρ−

n . (7.30)

As before, this can be checked using the anti-automorphismζ , remembering that its action on

graded tensor products is given in (5.6). The full Lax matrixis finally constructed asLn(λ ) =
L−

n (µ−)L+
n (µ+), as before. By repeating the discussion in Sections 6.4.1 and 7.3, it is easy to

check that the resulting lattice model has the correct number of degrees of freedom per site.

It is interesting to observe that the continuum limit∆ → 0 would suppress the terms in the

second line of (7.27): These terms would be of orderO(∆2) in the limit, sinceµ+ = O(∆). In

this way, one recovers (5.32). One may, however, combine thelimit ∆ → 0 with the classical

limit b→ 0 in such a way thatτ−1
q µ2

+ = O(∆). Assuming that∆ = b2 andµ+ = ∆λ+, it is easy

to see that this combination of the classical and the continuum limits allows us to recover the

classical Lax matrix (3.38a). What we observe here is directly analogous to the phenomenon

discussed in Section 2.2.1 — the term in the second line of (7.27) corresponds to the contact

term produced in the classical limit.

The expression forL+
n can be derived as follows: First, note thatℓ+n = (πa,µ+ ⊗s π+

q,n)(q
t) is

obtained by substitutingt = H0⊗sH2+H2⊗sH0. To evaluatēL+
n (µ+) = (πa,µ+ ⊗sπ+

q,n)(R̄
+),
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we consider (4.9) in this representation. Substituting

L̄+
n = ∑

a,b

Eab⊗s L̄a,b, πa,µ+(Fi) = (−1)δi,2 µ−1
+ E−i,−i−1, πa,µ+(Ki) = ∑

c
qmi,cEcc (7.31)

and extractingEab from each term, we arrive at

(−1)pi(1−δa,3) δb,−i−1L̄a,−i − (−1)δi,2 δa,−i L̄−i−1,b =

µ+

[
(−1)pi(δa,3+δb,3)qmi,af+i,nL̄a,b−q−mi,bL̄a,bf

+
i,n

]
. (7.32)

Here, the indicesa,b, i are taken inZ3, though we conventionally takea,b ∈ {1,2,3}, i ∈
{0,1,2}. Themi,a are the diagonal entries of the matricesπa,µ+(Hi), som0 = (0,1,1), m1 =

(1,−1,0), m2 = (−1,0,−1). This represents 27 equations in 9 unknowns (though they are

far from being independent) and can be used to recursively calculate the coefficients of the

expansion̄La,b = ∑∞
k=0 L̄(k)

a,bµk
+ in powers ofµ+.

We commence the recursion by using the expansion (5.5) ofR̄. This givesL̄(0)
i, j = δi j and

L̄(1)
i, j = (−1)p− j τqf

+
− j ,nδi, j−1. More explicitly, the non-zerōL(1)

i, j are

L̄(1)
2,3 =−τqf

+
0,n, L̄(1)

1,2 =+τqf
+
1,n, L̄(1)

3,1 =−τqf
+
2,n. (7.33)

Substituting these results into the second order recursionrelations and noting that weight con-

siderations and the properties ofπa,µ+ force L̄(2)
i, j ∝ δa,b+1, we obtain

L̄(2)
1,3 =−τq

[
f+0,n, f

+
1,n

]
q−1, L̄(2)

3,2 =−τq
[
f+1,n, f

+
2,n

]
q−1, L̄(2)

2,1 =−τq
[
f+2,n, f

+
0,n

]
q. (7.34)

At this point, we can significantly simplify our calculations by using the properties of the repre-

sentationπ+
q,n. Indeed, the coefficient ofρ+

n in f+1,n was chosen so as to simplify (7.34) as much

as possible. Because of this,L̄(2)
1,3 andL̄(2)

3,2 actuallyvanishand (7.24) gives

L̄(2)
2,1 =+iq1/2τ−1

q e−2bq+n q−ρ+
n . (7.35)

The third order recursion now gives̄L(3)
1,1 = L̄(3)

2,2 = L̄(3)
3,3. Moreover, the fourth order equations

with a = b = −i + 1 show thatL̄(3)
a,a commutes with eachf+i,n. L̄(3)

a,a likewise commutes with

each Cartan representative (it has no affine weight), hence we may set it to a scalar multi-

ple of the identity: L̄(3)
a,a = l (3) id. The above analysis immediately generalises, resultingin

L̄(3k+r)
a,b = l (3k)L̄(r)

a,b, wherer = 0,1,2. The formula (7.27) for̄L+(µ+) follows easily from these

considerations (after dropping the tensor product symbols).
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7.5 TheN = 2 Super Sine-Gordon model on the lattice

Let ψε
n , ψ̄ε

n , ρε
n (with ε =±) be matrices as in Section 7.4. These again represent the discretisa-

tion in the fermionic sector. As the super Sine-Gordon modelhas bosonic fieldsφ ε
i with i = 1,2,

we letpε
i,n, qε

i,n be operators which satisfy

[
pε

i,n,q
ε ′
j ,m

]
=

1
2i

δi j δnmδεε ′. (7.36)

From these, we introduce the following operators:

h+0,n =−i(p+1,n− ip+2,n)/b, f+0,n =−τ−1
q e−b(q+1,n−iq+2,n)ψ̄+

n q−ρ+
n /2, (7.37a)

h+1,n =+i(p+1,n+ ip+2,n)/b, f+1,n =−τ−1
q e+b(q+1,n+iq+2,n)ψ+

n q−ρ+
n /2, (7.37b)

h+2,n =+i(p+1,n− ip+2,n)/b, f+2,n =−τ−1
q e+b(q+1,n−iq+2,n)ψ̄+

n q−ρ+
n /2, (7.37c)

h+3,n =−i(p+1,n+ ip+2,n)/b, f+3,n =−τ−1
q e−b(q+1,n+iq+2,n)ψ+

n q−ρ+
n /2. (7.37d)

This we will supplement withd′n
+= 1

2ρ+
n −p+2,n/b. It is not hard to check that settingπ+

q,n(Hi) :=

h+i,n, π+
q,n(Fi) := f+i,n andπ+

q,n(D
′) := d′n

+ defines a representation of the Borel subalgebraB− of

Uq
(
ŝl(2|2)

)
. The Serre relations (5.10a) are obvious and the rest followimmediately from the

observation that the coefficient ofρ+
n in thef+i,n has been tuned to guarantee that

[[
f+i+1,n, f

+
i,n

]
q+1, f

+
i−1,n

]
q−1 = 0 for i = 0,2, (7.38a)

[[
f+i+1,n, f

+
i,n

]
q−1, f

+
i−1,n

]
q+1 = 0 for i = 1,3. (7.38b)

As before, we shall define the Lax matrix byL+
n (µ+) = (πa,µ+ ⊗sπ+

q,n)(R
+), whereπa,µ+ was

given in Equation (3.53). It again factors as

L+
n (µ+) = ℓ+n L̄+

n (µ+), (7.39)

where (up to the usual irrelevant scalar multiple)

ℓ+n = qρ+
n /2
(

eπbp+1,nE11+e−πbp+1,nE22+e−iπbp+2,nE33+eiπbp+2,nE44

)
(7.40)

and

L̄+
n (µ+) = id+µ+

(
E13ψ+

n ebq+n +E32ψ̄+
n ebq̄+n +E24ψ+

n e−bq+n +E41ψ̄+
n e−bq̄+n

)
q−ρ+

n /2 (7.41)

− iµ2
+τ−1

q q−ρ+
n

[
q−1/2

(
E12e

2bq+1,n +E21e
−2bq+1,n

)
−q1/2

(
E43e

2ibq+2,n +E34e
−2ibq+2,n

)]
.
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Here, we have used the shorthandq+n = q+1,n+ iq+2,n, q̄+n = q+1,n− iq+2,n.

To computeL−
n (µ−) = L̄−

n (µ−)ℓ−n , we define a representation ofB+ by π−
q,n(Ei) := e−i,n,

π−
q,n(Hi) := h−i,n andπ−

q,n(D
′) := d′n

−, where

h−0,n =+i(p−1,n− ip−2,n)/b, e−0,n =+τ−1
q e−b(q−1,n−iq−2,n)q−ρ−

n /2ψ̄−
n , (7.42a)

h−1,n =−i(p−1,n+ ip−2,n)/b, e−1,n =−τ−1
q e+b(q−1,n+iq−2,n)q−ρ−

n /2ψ−
n , (7.42b)

h−2,n =−i(p−1,n− ip−2,n)/b, e−2,n =+τ−1
q e+b(q−1,n−iq−2,n)q−ρ−

n /2ψ̄−
n , (7.42c)

h−3,n =+i(p−1,n+ ip−2,n)/b, e−3,n =−τ−1
q e−b(q−1,n+iq−2,n)q−ρ−

n /2ψ+
n (7.42d)

andd′n
− =−1

2ρ−
n +p−2,n/b. We then setL−

n (µ−) = (πa,µ− ⊗sπ−
q,n)(R

−) as usual. Explicitly, we

obtain

ℓ−n = qρ−
n /2
(

eπbp−1,nE11+e−πbp−1,nE22+e−iπbp−2,nE33+eiπbp−2,nE44

)
(7.43)

and

L̄−
n (µ−) = id−µ−1

− q−ρ−
n /2
(

E31ψ−
n ebq−n +E23ψ̄−

n ebq̄−n +E42ψ−
n e−bq−n +E14ψ̄−

n e−bq̄−n
)

(7.44)

−iµ−2
− τ−1

q q−ρ−
n

[
q1/2

(
E21e

2bq−1,n +E12e
−2bq−1,n

)
−q−1/2

(
E34e

2ibq−2,n +E43e
−2ibq−2,n

)]
.

The full Lax matrix is again constructed asLn(µ−) = L−
n (µ−)L+

n (µ+) and one may check that

the resulting lattice model has the correct number of degrees of freedom per site. Taking the

classical continuum limit in the manner discussed in Section 7.4, we recover the classical Lax

matrices.

The calculations leading to these results are very similar to those of the previous section.

In particular, the computation of̄L+
n = ∑a,bEab⊗s L̄a,b is again based on converting (4.9) into

recursion relations for the coefficients ofL̄a,b = ∑k L̄(k)
a,bµk

+. This time,L̄(0)
a,b = δab yields

L̄(1)
4,1 =−τqf

+
0,n, L̄(2)

2,1 =+τq
[
f+0,n, f

+
3,n

]
q−1, L̄(3)

3,1 = τq
[[
f+0,n, f

+
3,n

]
q−1, f

+
2,n

]
q+1, (7.45a)

L̄(1)
1,3 =−τqf

+
1,n, L̄(2)

4,3 =−τq
[
f+1,n, f

+
0,n

]
q+1, L̄(3)

2,3 = τq
[[
f+1,n, f

+
0,n

]
q+1, f

+
3,n

]
q−1, (7.45b)

L̄(1)
3,2 =−τqf

+
2,n, L̄(2)

1,2 =+τq
[
f+2,n, f

+
1,n

]
q−1, L̄(3)

4,2 = τq
[[
f+2,n, f

+
1,n

]
q−1, f

+
0,n

]
q+1, (7.45c)

L̄(1)
2,4 =−τqf

+
3,n, L̄(2)

3,4 =−τq
[
f+3,n, f

+
2,n

]
q+1, L̄(3)

1,4 = τq
[[
f+3,n, f

+
2,n

]
q+1, f

+
1,n

]
q−1. (7.45d)

By Equation (7.38), the third order coefficients vanish and the rest of the derivation proceeds in

an identical fashion to that of Section 7.4.



59

8. Outlook

These examples illustrate our proposed scheme for the construction of integrable lattice regu-

larizations. We expect that this scheme can be applied to large classes of integrable quantum

field theories. The key ingredients are the light-cone representation and the realization that the

lattice Lax matricesL+
n (λ ) andL−

n (λ ), which describe parallel transport in the light-cone di-

rections, can be obtained from the universal R-matricesR+ andR− of certain quantum affine

(super)algebras by evaluating them in suitable representations.

What we have described here should of course be seen as the very first step towards the solu-

tion of the models in question. However, the relations we have discussed with the representation

theory of quantum affine (super)algebras will determine thenext steps to a large extent. The

reader may in particular note that we have not yet defined a discrete analog of the dynamical

evolution law. However, within the framework of the quantuminverse scattering method, there

are standard recipes for defining lattice Hamiltonians fromthe so-called fundamental R-matrix

R(λ ) which can be obtained from the universal R-matrix by chosingthe same representation

in auxiliary and quantum spaces. A variant of this construction turns out to work for the class

of lattice models discussed in our paper. An object replacing the fundamental R-matrix can be

obtained from the universal R-matrix by choosing a certain infinite-dimensional representation

in auxiliary space instead of the finite-dimensional representationsπa,λ used in this paper. The

monodromy matrices defined from these analogs of the fundamental R-matrices turn out to be

related to the Baxter Q-operators. They may furthermore be used to construct natural lattice

Hamiltonians and discrete time-evolution operators. For the case of the lattice Sinh-Gordon

model, we recover the generator of the discrete time evolution of [FV2] in this way, which was

obtained from the Q-operator of the lattice Sinh-Gordon model in [ByTe2]. We shall defer a

proper discussion of these topics to a forthcoming publication.
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Appendices

A. The Algebra of Screening Operators

The aim of this appendix is to briefly describe how to identifythe quantum symmetry algebra

generated by the variousscreening chargeswhich we have constructed for our sigma models.

This follows from a variant of the standard treatment for screening charges in the free field

description of conformal field theories (see [GR-AS, Ch. 11.4] for example) and a simple al-

gorithm described in [BLZ3, App. A]. We outline the method here as it is fundamental to our

constructions.

LetVi (x) denote a vertex operator for some collection of free bosons.The standard derivation

of the quantum symmetry generated by a given set of screeningoperators

Qi =
∫

dxVi (x) (A.1)

results in an action of operatorsfi , ki on the vector space of screened vertex operators. IfV is

such a screened vertex operator, one identifiesfi with left-multiplication ofV by Qi andki with

multiplication by thebraiding factorof Vi (w) andV. The natural generalisation of this action

to tensor products of screened vertex operators gives coproduct formulae:

∆(fi) = fi ⊗1+k−1
i ⊗ fi , ∆(ki) = ki ⊗ki . (A.2)

With the conventions of Section 4.4.2, the braiding factorsfor theki-action may be determined

from the formula for a single boson:

: eαφ(x) : : eβφ(y) : = e−iπαβ/2 : eβφ(y) : : eαφ(x) : (x> y). (A.3)

Elementary computation then gives

kif j = ω−1
i, j f jki , (A.4)

whereωi, j is the factor obtained from braidingVi (z) with V j (w).

If we can identify the braiding factors as

ωi, j = qAi j , (A.5)

whereA is the Cartan matrix of some Lie algebrag, then (A.4) suggests that thefi andki define

a representation of the Borel subalgebraB− of Uq
(
g
)
. To prove this, it only remains to check
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the appropriate Serre relations. Before discussing methods for this, let us first remark that we

have also found instances in which the braiding factors havethe form

ωi, j = (−1)pi p j qAi j , (A.6)

in whichA is the Cartan matrix of a Lie superalgebrag andpi ∈ {0,1} denotes the parity of the

corresponding simple root. This signals that we should replace⊗ by the graded tensor product

⊗s of Section 5.1 in Equation (A.2). Repeating the above derivation now corrects the braiding

factors by a sign. The upshot is that Equation (A.6) reverts to Equation (A.5), consistent with a

representation of the Borel subalgebraB− of the superalgebraUq
(
g
)
.

To verify the Serre relations in either case, we rewrite all products ofn screening charges

Qi1, . . . ,Qin in terms of a fixed basis and then search for linear relations between them. We may

then choose the basis elements for the vector space of products spanned by theQσ(i1) · · ·Qσ(in)

(σ a permutation) to be defined by

J j1, j2,..., jn =

∫ ∫
· · ·
∫

x1>x2>···>xn

dx1dx2 · · ·dxn V j1 (x1)V j2 (x2) · · ·V jn (xn) . (A.7)

That these elements really do constitute a basis is a simple consequence of the braiding relations

(A.3).

As always, an example best illustrates the method. Whenn = 2 andωi, j = qAi j with A =(
+2 −2
−2 +2

)
, the Cartan matrix of̂sl(2), we can express the product ofQ1 andQ2 in terms ofJ1,2

andJ2,1 as follows:

Q1Q2 =

∫∫

x1>x2

dx1dx2 V1(x1)V2(x2)+

∫∫

x1<x2

dx1dx2 V1(x1)V2(x2)

= J1,2+

∫∫

x2<x1

dx1dx2 V1(x2)V2 (x1) = J1,2+q2
∫∫

x1>x2

dx1dx2 V2(x1)V1(x2)

= J1,2+q2J2,1. (A.8)

The third equality uses the braiding relations (A.3). Similarly, we can derive thatQ2Q1 =

J2,1+q2J1,2. Basic linear algebra therefore allows us to conclude that for genericq, Q1Q2 and

Q2Q1 are not linearly related.3 This calculation therefore finds no Serre relations involving

these products of screening charges.

Of course, we can search for Serre relations involving otherproducts and for highern. The

3We use the term “generic” to mean thatq should not be a root of unity. In this case, we only requireq4 6= 1,
but other similar computations end up excluding other rootsof unity.
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number of basis elements can be as large asn!, so this quickly becomes tedious. However,

each calculation reduces to an exercise involving only permutations and linear algebra, hence

is easy to implement in a computer algebra package. With MAPLE, we were able to quickly

find all Serre relations withn6 7 for the quantum symmetries of the models considered here,

and determine which were algebraically independent. We have no proof that the relations found

are exhaustive (they should not be in at least one case), but they suffice to identify the quantum

symmetry as a quantum affine (super)algebra.

B. Quantum monodromy matrices from universal R-matrix

In this appendix, we present a proof of the assertions (4.41)and (4.42) following the arguments

in [BHK]. This assertion exhibits the monodromy matrix of the quantum Sinh-Gordon model

(with imaginaryb) as the universal R-matrix ofUq
(
ŝl(2)

)
in a suitably chosen representation

πa,λ ⊗π+
q . We refer to Section 4.5.2 for further context.

To begin, it will be useful to consider

P
+
a,λ := (πa,λ ⊗ id)(R̄+), (B.1)

which may be considered as a kind of universal monodromy matrix. P
+
a,λ can then be expressed

as a formal seriesP+
a,λ (Fi) of matrices whose entries are monomials formed out of theFi .

Rewriting the basic property(id⊗∆)(R+) = R
+
13R

+
12 in terms ofR̄+ and applyingπa,λ ⊗

id⊗ id leads to the non-trivial identity

P
+
a,λ
(
Xi,1+Xi,2

)
= P

+
a,λ (Xi,2)P

+
a,λ (Xi,1), (B.2)

whereXi,1, Xi,2 are the generatorsXi,1 := Fi ⊗1 andXi,2 :=K−1
i ⊗Fi . As the identity (B.2) holds

in the sense of formal power series, it implies that

P
+
a,λ
(
Xi,1+Xi,2

)
= P

+
a,λ (Xi,2)P

+
a,λ (Xi,1) (B.3)

will hold for any set of operatorsXi,1, Xi,2 that satisfy the same relations asXi,1, Xi,2, namely

the Serre relations (4.32) and

Xi,2X j ,1 = qAi jX j ,1Xi,2. (B.4)

The main idea is to compare the factorization (B.3) with the factorization of the path-ordered

exponential appearing in the definition (4.33):

P exp

(∫ R

0
dxW+(x)

)
= P exp

(∫ R

y
dxW+(x)

)
P exp

(∫ y

0
dxW+(x)

)
. (B.5)
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In order to do this, let us consider the “partial” screening charges

Xi,1 =
1

q−q−1

∫ y

0
dxVi(x), Xi,2 =

1
q−q−1

∫ R

y
dxVi(x), (B.6)

which appear in the expansion of the factors on the right handside of (B.5). It follows easily

from the braid relations (A.3) that the operatorsXi,1, Xi,2 satisfy the relations (B.4). The Serre

relations (4.1c) are verified by means of the technique described in Appendix A.

Considering the limity→ 0, whereXi,1 ∼ O(y), and using (4.10), we observe that

P
+
a,λ (Xi,1) = id+

∫ y

0
dxW+(x;λ )+O(y2). (B.7)

As the identities (B.3) and (B.7) together uniquely characterize the path-ordered exponential,

this allows us to conclude that

P
+
a,λ = P exp

(∫ R

0
dxW+(x;λ )

)
, (B.8)

from which (4.41) follows easily.

We may similarly considerP−
a,λ := (πa,λ ⊗ id)(R̄−). Rewriting (id⊗∆)(R−) = R

−
13R

−
12

now leads to the identity

P
−
a,λ
(
Yi,1+Yi,2

)
= P

−
a,λ (Yi,2)P

−
a,λ (Yi,1), (B.9)

whereYi,1, Yi,2 are the generatorsYi,1 := Ei ⊗Ki andYi,2 := 1⊗Ei . As before, it follows that

P
−
a,λ
(
Yi,1+Yi,2

)
= P

−
a,λ (Yi,2)P

−
a,λ (Yi,1) (B.10)

will hold for any set of operatorsYi,1, Yi,2 that satisfy the relations

Yi,2Y j ,1 = q−Ai jY j ,1Yi,2. (B.11)

We note that the difference in the signs of the exponent in thebraiding phases appearing in (B.4)

and (B.11) is precisely accounted for by the different orientations of the integration contours that

appear in the definitions ofM+(λ+) andM−(λ−), respectively.
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