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Abstract

A method is introduced for constructing lattice discreiizas of large classes of in-
tegrable quantum field theories. The method proceeds in temss The quantum
algebraic structure underlying the integrability of thedabis determined from the
algebra of the interaction terms in the light-cone repregem. The representation
theory of the relevant quantum algebra is then used to agigtre basic ingredients
of the quantum inverse scattering method, the lattice Lakioes and R-matrices.
This method is illustrated with four examples: The Sinh-@&or model, the affine
5[(3) Toda model, a model called the fermionii2|1) Toda theory, and thél = 2
supersymmetric Sine-Gordon model. These models are atekto sigma models in
various ways. Th&l = 2 supersymmetric Sine-Gordon model, in particular, dbseri
the Pohimeyer reduction of string theory AdS x %, and is dual to a supersymmet-
ric non-linear sigma model with a sausage-shaped targeéspa

1. Introduction

1.1 Motivation

There is a growing family of quantum field theories that areviin or expected to be integrable
at the quantum level. If this is the case, then one may leachrabout certain non-perturbative
phenomena in these quantum field theories. One gains, ioydart full control over interesting
topics such as non-perturbative dualities, giving deejgirisnto the nature and the relevance
of these in quantum field theory. A particularly striking exale is the conjectured duality
between théN = 4 super Yang-Mills theory and string theory &S in the limit where the
rank of the gauge group is large. There is considerable pgaléor the integrability of both
theories and for their equivalence as quantum theorie§AstR] for a review.
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However, a proof of the integrability of these theories latas remained elusive. More gen-
erally, despite a lot of important progress in the field oégrable models, there are only a few
guantum theories for which quantum integrability has bedlg éstablished. In most cases, one
needs to regularize ultraviolet divergences. Integrgtigi hard, if not impossible, to control in
this process unless the regularized theory is itself iatglgr One of the most successful reg-
ularization schemes uses integrable lattice regulaomatior which a certain supply of known
techniques is available.

Among the integrable lattice regularizations, the spiataimodels seem to be the most pop-
ular. A spin-chain is defined by choosing a collection of esgntations of a Lie algebra (or
some deformation thereof). These representations areagsociated with certain sites of a
given lattice. However, it is often not clear at the begimgniha given spin chain will corre-
spond to the quantum field theory that one is trying to regzdarThe proper definition of the
continuum limit may be intricate and important characterssof the theory may depend heavily
on how exactly this limit is taken.

Another class of lattice regularizations exists which appéo capture more of the features
of the quantum field theory that the lattice model is suppdseckgularize. We will call a
lattice-discretizatiomailor-madeif

¢ the local degrees of freedom of the lattice model are in tnedation to the field variables
of the corresponding continuum quantum field theory, and

e the quantum algebraic structure underlying the integitgbd the same in the continuum
models and the corresponding discretization.

Formulating these requirements more precisely is one dodious in this paper. The first of these
two features is, in particular, realized when the variabliethe lattice model can be identified
with averages of the continuum field variables over smaliomeg of space and/or time. The
second is naturally much more subtle. Another of our aims latwollows is to explain in
some detail how this can be precisely realized for a certamily of examples.

From a practical point of view, it seems to be preferable te astailor-made lattice-
discretization when possible. One then has very good reasexpect that the continuum limit
will be the quantum field theory which one is interested incah also facilitate the solution
of the theories considerably — important consequenceseoiintiegrable structure are already
under full control in the discretized version, and theseuess remain essentially unchanged
when the continuum limit is taken. This remark applies intipatar to the functional rela-
tions obeyed by the generating functions for the eigengahig¢he conserved quantities (such
functional relations are collectively known as T-, Q- orysgems).



1.2 Aims

To reiterate, our main aim in this paper is to present a metbod@onstructing tailor-made
lattice regularizations that appears to be applicable swgelclass of models. We illustrate this
method with several physically relevant examples. Veryghdy the method proceeds in two
steps:

e First, we identify the algebraic structure underlying thiegrability of the model in ques-
tion. This follows from the algebra generated by the chiedVls of the interaction terms.
The consideration of these chiral halves is physically wadtivated in the light-cone rep-
resentation, as we will explain in Sectidh 4. The relevagehbfaic structures for our
examples turn out to be quantum affine (super)algebras.

e The second step then consists of constructing the basidimgiblocks of the lattice regu-
larization from the representation theory of the algebs#iocture identified above. Prac-
tically, this means computing Lax matrices (A) on the lattice using our knowledge of
the relevant quantum affine (super)algebra. In doing this,arucial in our approach to
use a discrete light-cone representation for the two-dgiogal lattice. The monodromy
matrices may then be constructed in the form

M(A) = Ly (AL (A) -+~ Ly (AL (A). (1.1)

The Lax matrices & (1) represent parallel transport along the light-cone dioastiin a
two-dimensional discrete space-time. Our constructidhbeisimilar, but not equivalent,
to the previous constructions of this type described in [FRBR].

The four examples which we will consider in the following edween chosen for their phys-
ical interest and because they appear to be prototypicakisénse that they exhibit a certain
variety of different qualitative features. These models lie Sinh-Gordon model, ths(3)
affine Toda theory, a model that we call the fermiosti@|1) affine Toda theory, and thé = 2
supersymmetric generalization of the Sine-Gordon model.

The last two models are of particular interest. They seemetthk first models contain-
ing a mixture of fermions and bosons for which a lattice ragamhtion has been constructed.
Moreover, theN = 2 supersymmetric generalization of the Sine-Gordon mogigéars in the
Pohlmeyer-reduction of string theory &S x S [GT]. Proving that this theory is integrable
supports the hope that Pohlmeyer-reductions of stringrig@on anti-de Sitter spaces can be
consistently quantized.

We mention that all of the models under investigation shaeeimportant feature: The pres-
ence of a non-compact bosgnwith exponential interactiorsP?®, ¢ = +1, +2. This feature is
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shared by all non-linear sigma models with anti-de Sitteiceg as targets. As we will explain
in more detail, the presence of such exponential intenastwoduces subtle divergences in the
ultraviolet. The proper treatment of these divergencedyres non-perturbative counterterms
which dominate the deep-quantum behavior of the theoreslihg to interesting duality phe-
nomenall[T2]. In the case of té = 2 Sine-Gordon model, one finds a dual description in
terms of a non-linear sigma model with a sausage-shapeet t&g, HK]. This means that
the corresponding lattice model constructed in this pagpsimultaneously an integrable lattice
regularization for thé\ = 2 supersymmetric sausage sigma model.

1.3 Structure of this paper

The structure of this paper is as follows. Secfibn 2 firstodtrces the models of interest via
their Lagrangian descriptions and discusses some of tlasic beatures. In Sectidd 3, the
integrability of these models is discussed at the clastwal. Zero curvature representations
are given for the classical equations of motion, making thgsical integrability of these models
manifest.

Sectiori4 then reviews the known relations between quantfime algebras and the integra-
bility of the bosonic affine Toda theories. The algebra ofititeraction terms in the light-cone
representation plays a crucial role. The fact that one castoact representations of the nilpo-
tent subalgebras of certain quantum affine algebras frosetiméeraction terms leads, in certain
cases, to direct constructions of quantum monodromy neatric

Letting ourselves be guided by these examples, we contm8edtiori b with the identifica-
tion of the relevant quantum algebraic structures undaglyhe fermionics((2|1) affine Toda
theory and théN = 2 super Sine-Gordon model. It turns out that we have to cengjdantum
affine superalgebras in these cases.

In section 6, we reformulate the known lattice discret@atof the Sinh-Gordon model in
way that serves as a paradigm for the construction to be mexsdor the other models. We
commence Sectidd 7 by formulating a general recipe for tmstcoction of integrable lattice
discretizations that should be applicable to large clas$@stegrable quantum field theories.
This recipe is then illustrated by working out the basic dndy blocks (the Lax matrices) for
the remaining three models studied here. The article cdeslwith a brief outlook and two
appendices which discuss some technical points.

2. The models of interest

We will be interested in the following family of models whietne related in various ways, but
also exhibit a certain variety of different qualitative fieiees. These models are of affine Toda
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type or some generalization thereof. In the following, w# use the anticipated relations with
certain affine Lie (super)algebras as a classification tool.

2.1 Lagrangian formulations

Let us begin by listing the action functionals defining thedels of interest on the classical
level.

e The Sinh-Gordon modeThis model is classically defined by the action
S— /d2 = (0a01)?+ e 0y 2.1)
and is formally related to the Sine-Gordon model by settiagif.
e Thesl((3)affine Toda theoryThe action is

S= /d2 0a(pl) (0a(p2) + pe” b¢l2cosf(\/§b(p2)+ve2b¢’l) (2.2)

e The fermionia!(2|1) affine Toda theoryinteresting new features arise when we consider
models containing fermions. As one of the simplest exampleshall consider the model
defined classically by the action

/d2 ( 0g§01 +L,U+a L.U++L.U d{»wf L)U+Ll_l+w*l'l7*

— 2nub(Py QU + Yo )e P 4 8P ule 0% 47Tve2b¢’l) . (2.3)

The reason for calling this model the fermiori¢2|1) affine Toda theory will be explained
in Sectior 3.B.

e The N= 2 Super Sine-Gordon modeWe will also study a supersymmetric model, the
N = 2 super Sine-Gordon model. The action is

S= 5r | 2 (5(0am? + Q) + .0+ T 0.0 )
b [ &z (u(F, T e P2+, g R)e v (F,F %y, g e ) )

+ 47T/ d%z (u%e®? + vZe 2 —2uvcog2b@)). (2.4)

TheN = 2 supersymmetry can be made manifest using the superspataiton [KU].
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An important parameter in each of the models that we are derieg is the constart which
appears in the exponential interaction terms. By a reggalithe fields, one may factor it out in
front of the action, leading one to identifif with Planck’s constarfi as it controls the strength
of quantum fluctuations. The above action functionals mayetore be used as the starting
point for constructing a perturbative expansion in the pesi@rb. The method to be used is a
variant of the background field method in which one expandasrat a solution to the classical
equations of motion that follow from these functionals.

2.2 Descriptions as perturbed free field theories

Another way to approach the definition of these models is tmtjge the field theories whose
actionSy is obtained by setting = v = 0 in their respective action functionals. One then tries to
define the interaction terms as certain composite operatmstructed from the quantum fields
present in the theory defined By, leading to a prescription for the evaluation of the cotreta
functions as formal series in powersfandv. In the implementation of this procedure, one
typically encounters two types of difficulties:

e The treatment of ultraviolet divergences requires themaatization of both the composite
fields appearing in the interaction terms and the couplingtzmts.

e The dependence of the correlation functiongi@ndyv involves non-perturbative behavior
which depends sensitively on the choice of infrared reggaéion.

In this section, we shall briefly discuss the first of theseassfor the interesting regime cor-
responding td = i3, B € R. The problem of constructing the interaction terms turnistou
be fairly tame in this case in the sense that there exist flatmons of the models in which
standard free field normal ordering suffices. For real vatids which is the case of our main
interest, there arise additional subtleties in the ulbiatibehavior of the theories which will be
discussed in Sectidn 2.3.

The description as perturbed free field theories is abdglateight-forward for the actions
(2.1) and[(2.R). Defining the exponential functions of thilien, and ¢, by standard free field
normal ordering will be sufficient. The situation is more geln the remaining two cases.



2.2.1 The fermionisl(2|1) affine Toda theory as a perturbed free field theory

Instead of[(2.B), let us consider the action

_ _ R
— o [ @2 (30u0P+ 0w T 0w T
—2mub(g - + Yy )e b(pl+27TV92b(pl)7 (2.5)

which differs only by dropping the term proportionalfd. Settingu = v = 0 yields an action

S which describes a free bosonic fighgland a decoupled massless Thirring model. The terms
proportional tou andv are considered to be interactions coupling the bosonic ermdidnic
fields.

One should note, however, that the action](2.5) is not skitimo constructing the semiclas-
sical expansion in powers & In the limitb — 0, the products of the terms proportional to
e P generate the finite additional contribution@? [ d?z e 2% to the action. Indeed, let us
consider the following contribution at ordg?:

p2b? / PP2d’z, P () §(21) : € P22 g ()Y (2) e PR=22) 0 (2.6)

Directly takingb — 0 would produce a non-integrable singularityz; — z>| =2 from the fermion
operator product expansion

_ _2iede
Ve (@ (w) = —

(2.7)

We need to introduce a cut-affand split the integral into a contribution frojn — 7| < € and
the rest. For smalt, we get a good approximation for the contributions fr— z| < € by
using the operator product expansion:

4H b? —2bgi(2) / 2, . o
2] ey 0z 2.8
/ /w<e |w|2+b* g’ (28)

The term on the left has a finite limit fdr — O which ise-independent. It can be taken into
account by adding the ternm@® [ d?ze %% to (2.8). The resulting action is exactly (2.3).

In order to arrive at a description of this model as a pertiffbee field theory, it is useful to
apply the boson-fermion correspondence to the model deffipgd.5). This yields the action

S= /d2 < (Oan)? n(aa@)z—zljbeb"’lcos(\/E@)JrveZb"’l), (2.9)
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where the parametebsandk in (2.9) are related blg? = k — 2. The action[{Z]9) was the starting
point for the investigation of this model in [F1].

2.2.2 The N= 2 Sine-Gordon model as a perturbed free field theory

In the case of thé&l = 2 Sine-Gordon model with actioh (2.4), we may tefeto be defined
by the terms in the first line of (2.4), treating the terms ia second line as perturbations and
considering the terms in the third line 6f (2.4) as countemegenerated from the renormaliza-
tion of the perturbations in the limit— 0. Bosonizing the fermions in tH¢ = 2 Sine-Gordon
model, we obtain the action

S= %T/dzz ((dagol)2+ (Oa@2)*+ (0a<03)2>

—ub/dzzzcos(\@@,+bgoz)eb"’l — vb/dzzzcos(\fZ@,—b@)eb"’l. (2.10)

In this form, one easily recognizes the model as a special afihe so-called SS-model intro-
duced by FateevV [FF2].
2.3 The ultraviolet behavior of real exponential interactions

Turning to the case of our main interdst R, it is worth noting that the exponential interactions
now lead to rather subtle ultraviolet behavior. As an illason, let us consider the simple
example of Liouville theory:

2
S= / d—nz (0,070 + TUEP?). (2.11)

Consider those-th order terms in the perturbative expansion of this actbich contain
(—nﬁ”” / 2y, ... / A2y, OOT) . 20(un, ). (2.12)

By using the operator product expansion

b(2.2) G2bP(WW) |, _ \n— 407 ADP(WW)
72— wj %P0,

it is easy to see that there are singularities produced bgdhksible “clustering” of integration
variables. Ifm of the integration variables are close to coinciding, ong afectively represent
the product of then fieldse?2®(U1.0) . ... g20@(Um.Um) [yy e2Mbp(um.Um) |t follows that the integration
over un 1 encounters an effective singularity of the foray, — uml\_zmbz. As a function of
b?, one will therefore encounter poles in perturbative corapoihs wherb? is rational. Even if
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one excludes the rational valuesiffrom consideration, there will still be a small denominator
problem to surmount. For takingf irrational means that the summation ovewill produce
terms in whichnb? comes arbitrarily close to the values whére (2.12) has poles

It can be argued [T2] that the proper renormalization oféh&agularities necessitates dual
interactions which contain exponential operators propoal to et e At the moment, the
lattice regularization seems to be the most powerful apgréathe quantization of these theo-
ries as is illustrated by the results obtained for the Sild@n model and for Liouville theory
in [ByTel,[T1, ByTe2].

2.4 Description as perturbed conformal field theories

It is important to note that all of the models above share atierst feature: They have interac-
tion terms proportional tef?®, ¢ = +1,4+2, that become strong whem — +oo. If however,
one setsy = 0 in the above actions, one obtains models in which all icteyas vanish for
(@ — o. This is closely related to the appearance of conformakiamae in they = 0 models.
The following table summarizes the resulting models an tieral algebras.

Massive model Limit v=20 Chiral symmetry
s[(2) affine Toda Liouville theory Virasoro algebra
s[(3) affine Toda conformal Toda theory W; algebra
s[(2|1) affine Toda Sine-Liouville theory Parafermion algebra
N = 2 super Sine Gordon N = 2 Liouville theory | N = 2 superconformal algebra

All of these conformal field theories are non-rational. Tleg keatures, including the spectrum
and the three-point functions, are known in the cases ofiliileLtheory, Sine-Liouville theory
andN = 2 Liouville theory.

3. Classical integrability

3.1 The Sinh-Gordon model

The classical Sinh-Gordon model is a dynamical system wklegeees of freedom are de-
scribed by a fieldp(x,t) defined on(x,t) € S x R (assuming periodic boundary conditions
@(x+Rt) = @(x,t)). The dynamics of this model may be described in the Hamatoformal-
ism in terms ofp(x,t) andlM(x,t) = d@(x,t), the Poisson brackets being

(M(xt), p(X,t)} = 2m3(x— X). (3.1)
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The time-evolution of an arbitrary observaldé) is then given as

ﬁtO(t) - {H,O(t)}, (3.2)

with the HamiltoniarH being defined as

_ /R dx + (k)? + 8 cost{2bg)] . (3.3)

It is well known that the equation of motion for the Sinh-Goandnodel can be represented
as the zero curvature condition

[ —Ut(x,t;1),0¢—Ux(x,t;A)] =0, (3.4)

where the matricedy(x,t; A ) andU;(x,t; A ) are given by

bdp/2 m(Ae P9 A ~letbe
Uty =( - paerz N s
mAe™?+A~*e™?) —bédi /2
box/2 m(Ae PP — A ~letbe
Ur(xtA) = +bX@/1b ( AN (3.5b)
m(AetP? — A~ "e "% —boxp/2

and wherenis related to the coupling constamtby nm? = mbu. The constand € C is known
as the spectral parameter.

The classical integrability of the Sinh-Gordon model fallofrom the existence of suffi-
ciently many conserved quantities. These conserved digandire generated from the trace of
the monodromy matrix of the connectidn— Ux(X,t; A ):

R
T(A) =tr(M(Q)), M(A):@exp</ dex(x,t;)\)). (3.6)
0
The Poisson brackets for the elements of the marix ) can be written in the form

{MA)IM(u)} = [RA /1), M(A) M (1)), (3.7)
whereR(A) is the matrix

)\+)\*1H®H+ 2 (
A—A-1 2 A—A-1

R(A) = EQF+FQE) (3.8)
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E:<° 1), H:<l 0), F:<° 0). 9)
00 0 -1 10

The mutual Poisson commutativifyT (A), T (i) } = 0 follows easily from[(3.17).

with

3.1.1 Light-cone representation

Another useful representation of the zero curvature camd{8.4) is obtained by passing to the
light-cone coordinates. =t 4+ x and the corresponding derivativés = %(dt + ). The zero
curvature conditior (314) can now be written as

[0 —U4(A),0-—U_(A)] =0, (3.10)

where the matriceld. = %(Ut +Uy) andU_ = % (Ut —Uy) are given by

Us(A) = +t—2)Hd+(p+ mE1e 2% + mEgeP?, (3.11a)
U_(A) = —t—Z)Hd_(p—mFle_b‘p—mFoeb‘p. (3.11b)

Here, we have used the notatibn= AE, Eg = AF, F1 = A ~1F, Fy = A ~1E which is motivated
by the relationship to the affine Lie algeb?[QZ) (this will be important for us later). Recall that
the affine Lie aIgebraT[(Z) has Chevalley generatdes, H, F, i =0, 1. It is easy to see that the
identifications

T (Ei) = Ei, ma(F) =Fi, T (H1) = =155 (Ho) = H, (3.12)

define a representation af(Z) in which the central elemefity + Hj is represented by zero.

The zero curvature condition (3.4) implies that

M(A) = gzexp(/ORdx Ux(x,t;)\)) = (@exp(éds%Ua()\)) , (3.13)

for any contour#’ that can be deformed intép = {(x,t) : 0 < x < R}, preserving the start and
end points. We may, in particular, choose the “saw-bladetaar %y = U{}':l%lj U%, » where
%ki are the light-like segments

¢ = {(KA+ut+u) : 0<u<A/2},

G ={(KA+Vvt+A—-V) 1 A/2<V<A} (A:=R/N). (3.14)
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G G
(= G
This allows us to rewritd1(A) as
M(A) =Ly(A)L5(A) Ly (A)L] (A), (3.15)

where
L;(A):zﬁexp<é+dx+u+()\)), Lk(A)::@exp<[gdLU(A)). (3.16)

This representation of the monodromy maitvixA ) will be a particularly useful starting point
for the quantization.

3.1.2 Massless limit

The Sinh-Gordon model is well known to be related to (m)Ktd¥dry. This can be seen as
follows. The massless limih — O turns the Sinh-Gordon equation into the equation for the
massless free field, whose general solution is

P(X,t) = @ (1) + - (x-). (3.17)

Interesting integrable structures can be preserved in @Eskess limit if the limitm — 0 is
combined with the limifl\ — o or A — 0, keepingA, = mA or A_ = mA ~1 fixed, respectively.

In order to discuss the limm— 0,A — o with A, = mA fixed, for example, it will be useful
to consider the saw-blade contagly with N = 1 which leads to the factorization

M(A;m) = N_(A;m)NL(A;m). (3.18)

In the limit under consideration, we see that(A; m) becomes a simple diagonal matrix while
N.(A;m) — N4 (A4), say, does not. The main point to observe is that

T (Ay) =Tr(N (A1) (3.19)

is a functional ofg, (x;) from which one may obtain the conserved quantities of the(i¥)
hierarchy in the asymptotic expansion for large

In order to explain this statement in more detail, let us fiestrite T, (A1) in a way that
makes manifest that it is a functional of the left-movingtpar(x;.) only. To this aim, let us
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use the gauge transformation
0 =W, (xy) =g H(x.1)(d — Uy (Ap))a(x ), (3.20)
with matrixg(x,t) chosen ag(x,t) := (@ (X:)=@-(x))/2 The matrixW, (x, ) is found to be
W, (X)) = Ay (e PP E 4 @200 (%)) (3.21)

It will furthermore be convenient to considir, (A, ) := (g(0,0))"IN, (A;)g(0,0). It is then
easy to show tha¥l; (A ) can be represented in terms of the Lax connedfipifA ;) as

ML (1) = & pexp( “dx, W) ). (3.22)

wherep; = (¢ (R) — @.(0))/2m. It now remains to observe that the Hamiltonian functions
H of the (m)KdV theory are obtained from the asymptotic exjpamsf log(T, (A, )) as

%Tlog(ﬂ()ur)) ~AL+ Z anrT)\i‘Z”, for AL — oo, (3.23)
=1

The ¢, are normalization constants whose precise forms will nohéeded in the follow-
ing. With a proper choice of the, we find, for example, thaH; = fORdx+U(x+) and

Hy =[5 dx; (U(xy))2, where
2 1
Ulx) = (0:01(x4))" = £ 050 (x1). (3.24)
Let us also note that the Poisson brackets following friod)(fr ¢, are

{00, 0:(0)}, = Zsgm(u-v), (3.25)

where sgg(u) is the sign function foju| < R/2, continued to all reall via sgrg(u+ R) =
sgrk(u) + 1. The Hamiltonian functionsl” will then generate the (m)KdV-flow#/, via

O Wi (8,15, ) = {HA Wi (t7,t5, . ) ) (3.26)
where one should identify, andt;".

In the limitm— 0, A — 0 with A_ = mA ~1 fixed, a similar development leads to

M_(A_) = 9exp<— /oRd)L W(x)) emp-H (3.27)
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with W_(x_) = A_ (e *-)E + & 22¢-0)F) andp_ = (@_(0) — ¢_(—R))/2m. The matrix
M_(A_) defines the integrable structure of the right-moving gafix_) in a way that is analo-
gous to what was described above. Note that

2n(ps —p-) = 9. (R + ¢ (-R) — ¢.(0)— ¢_(0) = p(R0) ~9(0,0)=0,  (3.28)

hencep,. =p_=p.

3.2 Classicalkl(3) affine Toda theory
The classical equations of motion of thig3)-Toda theory are

—0,0_q = 2mve®® — 2mue? cosiv/3bg), (3.29a)
—0,0_@ = 2mu+/3e PP sinh(v/3bgy, ). (3.29b)

In order to formulate the zero curvature representatiorhefdquations, let us introduce the
Chevalley generatork;j, Hi, F, i = 0,1,2, of the affine Lie aIgebraA[(3). They satisfy in
particular the relations

[Hi,Ej] =AjE;,  [Hi,Fj] =-AjF,  [E,F]=ajH, (3.30)

whereA is the Cartan matrix

2 -1 -1
A=|-1 2 -1]. (3.31)
-1 -1 2

Letg?[(?;)o be the loop algebra defined by setting the central eletdgatH, + H, to zero. We
may then define the foIIowin§(3)o-valued fields:

b
U =+ (Mo (@t H@) +Ho (- L)

+ m(Ele*b(qDﬁ\/@@)/Z 4 Ee M @e—V3m)/2 EoeP?), (3.323)
b
2 (1) =5 (Mo (a+ L0) +Hd (- )
— m(Fpe POV3R)/2 L | eb-V3R)/2 | prebtny (3.32b)

The zero curvature condition

[0y — U (A),0-—%-(A)] =0 (3.33)



15

reproduces[(3.29) ifi = v = m?/2mb. In order to get the corresponding Lax matrices, note
that we could use any representatiorgt(ﬂ)o. Of particular interest are the two fundamental
representations realized @%. These may be defined by

1.2 (Eo) = AEay, T 2 (Ho) = Ezz—En, a (Fo) = A 'Eag, (3.34a)
T (BE1) = AEs2, T2 (H1) = E1n — E2o, T (F1) = A 1Bz, (3.34b)
T (E2) = A Bz, T, 2 (Hz2) = B2 — Es3, o (F2) = A "B (3.34c)

and

1, 5 (Eo) = —AEay, 10, 5 (Ho) = Es3— Eus, 1,5 (Fo) = —A e, (3.35a)
1,2 (E1) = +AEzs, 1L, 5 (H1) = B2 — Egg, 1,5 (F1) = +A'Eap, (3.35h)
1, 5 (E2) = +AE12, 1, 5 (H2) = E11 — Eo, 1, (F2) = +A ey, (3.35c)

respectively, wher&;; denotes the matrix with 1 in th@, j)-th entry and zero everywhere else.
The resulting Lax matrices differ only by the permutatiorsofne matrix elements and some
signs. We will, however, find interesting differences bedwéhe lattice versions of these Lax
matrices when we consider discretizations in Sedtioh 7.2.

3.3 The fermionicsl(2|1) affine Toda theory

Turning our attention to the theory defined classically by dlstion [(2.B), we observe an inter-
esting feature: The presence of fermions necessitateglepason of Lie superalgebras for the
formulation of a zero curvature condition. Let us consider affine Lie superalgebﬂﬁ(2|1)
with Cartan matrix

0 -1 +1
A=|-1 2 -1]. (3.36)
+1 -1 0

This superalgebra has Chevalley generatgisH;, F, i = 0,1,2, with Eg, E», Fyp and R,
fermionic, all other generators being bosonic. They satisparticular the relations

[Hi,Ej] =AjEj,  [Hi,F]=-AjF,  EF—(-1)PPIFE =§jHj, (3.37)

in which p; € {0,1} denotes the parity d& andF. The loop aIgebraA[(2|1)0 is again defined
by settingHo+H; +Ho = 0.

We now introduce a real bosonic figpdand two complex fermionic fieldg,., x— (depending
on bothx, andx_). These fermions anticommute among themselves and alsomute with
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the fermionic generators eAf(2|1). With these, we construct

U+ (A) = —(H10:¢ —2(Ho—Ha) X+ X+ )

+m(E1€” + 26, e ¢ +2Egx e ?) + e 2P {Ey, B}, (3.38a)
U-(A) =+ (H10-¢ —2(Ho—H2)x-X_)
—m(Fe? +2Rx_e ¢ +2Rx_e?) +mPe (R, Fo}. (3.38b)

The zero curvature conditioh (3133) then yields the systbegyoations

0=0.0_¢+ %e‘w — e ) —mP(x x- + X X-)e (3.39a)
0=0,(x-e?)+(0:9p+2x, X, )x € ?—nPx,e ¥, (3.39b)
0=0_(x;& ")+ (0-¢+2x_X_)x e ?+mPx e 3. (3.39¢)

These equations are equivalent to those following frion) @1@e we identify
p=2b"1p, 2mbv=n?, 2nub=n?, P =2v2b lx.. (3.40)

We take the fact that the equations of motion follow from a-&lgebraically defined Lax pair,
similar to the ones used in the purely bosonic affine Todartegoas a justification for calling
this theory the fermionic affine Toda theory associated wiitg|1).

The fundamental representationstAb(fZ\l)o is defined on the vector superspa&&! with two
bosonic basis vectong, v, and one fermionic basis vectas. With respect to this basis, the
elementary matriceS;3, E»3, E31 andEs;, are fermionic (parity-reversing), whereas the rest of
the E;j are bosonic. The fundamental representationfi@|1), is then

Th.a (Eo) = AE23, T x (Ho) = Ex2+Ess, T (Fo) = +A " 'Eap, (3.41a)
o) (BE1) = AEs, T (H1) = E11— Epo, ) (F) = +A 1Bz, (3.41b)
o) (BE2) = ABay, T, (H2) = —E11— Egs, My (F2) = —A 'Eaa. (3.41c)

The second fundamental representation may be obtainedtfisnoy exchangingp and J,,
J=E,H,F. We may use the representation (3.41) to get conserveditjesiitom traces of
the path-ordered integrals of the Lax matdx:= 1, , (%, — %-).
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3.4 TheN = 2 Sine-Gordon model

3.4.1 Supersymmetry and equations of motion

In order to write the equations of motion in a manifestly sggmmetric way, let us intro-
duce the complex superfiefd(x,x_; 6, 6_), which depends upon the additional Grassmann
variablesf., 0_, together with the super-derivatives

0 0 0 0

7+ =g T 26

With these definitions, we will write the classical equatiasf motion for theN = 2 Sine-
Gordon model in the form

P_2,®=nPsinh(20),  Z_2,® = nPsinh(20), (3.43)
where® denotes the complex conjugate superfield. Written out ms$esf component fields,
P=¢+0,x:. +0_x_+0a0,0_, DP=@F+0,x.+0_X_+0a6,6_, (3.44)

one finds the equations

0, 0_¢ = 2n? (2x, X_ sinh(2¢) — acosh29)), 9, x_ = —2nPx, cosh2§), (3.45a)
a = m?sinh(29), 0_x, = +2nPx_cosh2§). (3.45b)

It is straight-forward to verify that these equations araieglent to the equations of motion of
theN = 2 Sine-Gordon theory if one identifies the respective fiefls a

p=20"19,  Yr=2v2'xs, nm’=2mby, (3.46)
whereg is the complex combinatiog + i ¢,.

3.4.2 The super-Lax representation

In order to construct a zero curvature representation feretjuation of motion (3.43) of the
N = 2 Sine-Gordon model, let us consider the affine Lie supelnaaﬁa(2|2) with Cartan matrix

0 +1 0 -1
1 0 -1 0

A | T , (3.47)
0 -1 0 +1

-1 0 +1 O
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This superalgebra has fermionic Chevalley generdqrk;, i = 0,1, 2, 3, and bosonic genera-
torsH; of the Cartan subalgebra, satisfying the relations {3.3/8) will again restrict attention
to the loop algebraA[(2|2)0 defined by settingdo + H1 + H> + H3 = 0. With these definitions,
let us consider the super-zero curvature condition [InKaKa?2]

DL N+ DL (A)—{ L), Z-(A)} =0, (3.48)

where
LA = —% (HZ, D+ HP, D) + 2=, + m(Ee® + E26% — Ese ® —Eoe ®),  (3.49a)
L (A) = +% (HZ ®+HZ &) —Z= —m(F1e® + R6e® —Fse® — e ®).  (3.49b)

Here, we have used the notatibh:= Hy — Ho, H := Hy — Hz and Z := Hg + H,. The zero
curvature condition[(3.48) implies, on top of the equatiofsnotion (3.438), the additional
equation

9 =, — 9.=_ = mP(cosh2d) — cosh2D)). (3.50)

This does not constrain ttie. uniquely. Rather, it means that there is some freedom tosghoo
the = to solve [3.50) without constrainirg any further than[(3.43) does. For later purposes,
we note that the equation for the coefficiéntof 6+ in = is

0,8 +0_& =4 (X, X cosh{2¢) — X1 X_ cosh(29)) =, (X1 X+) +0-(X-X_), (3.51)
where we have also usdd (3.45). It follows that setting
Er = XX+ (3.52)
is a particularly natural choice, consistent with the emumest of motion [(3.4B3).

In order to get the corresponding super-Lax matrices, ong forinstance, evaluate the Lax
matricesZ’. in the fundamental representatiog, OfsA[(Z\Z)o which may be defined by

(Eo) = AEa, 142 (Ho) = +E11+ Eaa, ) (Fo) = +A B, (3.53a)
(E1) (H1) = —E11— Ezs, ) (F) = -2 'Eay, (3.53b)
(E2) = AEsy, 1,2 (Ho2) = +E22+ Egs, ) (F2) = +A 1Bz, (3.53c)
(Ea) (Hg) = —E22— Egy, M) (F3) = —A " 1Es, (3.53d)

There is of course another fundamental representationy®utill restrict our attention to this
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one in what follows.

3.4.3 Ordinary Lax representation

The zero curvature condition (3148) implies a zero cuneatamdition of the usual forni (3.83),

where
() = 2P0 - (200))?, (3.54)

given the expansiots (A ) = i(o) (A)+ Gioiﬂi(l) (A)+... Indeed,[(3.48) guarantees the exis-
tence of solutions to the equations

(24— L ANWA) =0, (Z_— L (A)WA)=0. (3.55)

Expanding inf., one easily finds froni{3.55) that the lowest compongtii (1) of the super-
field W(A) satisfies the equations

@~ 2 M)WOR) =0, (0 -2 (A)¥O) =0, (3.56)

with the 77 (A ) defined in[(3.54). The Lax matrices are explicitly given by

U (A) = —%(H 019 +HO, §)+Zxi X+

+2m(Eyx, €’ + Eox. € +Egx, e ?+ Eo)@e*‘f)

—mP({Ey,Ep}e? % — {E, Egle? ¢ + (B Eole 9% — {Ey E }e? %), (3.57a)
U_(N) = +%(H0+¢ +HILP)—ZX_X_

—2m(Fyx_e? + Fox_e? +Fax_e ? +Fox_e ?)

— P ({Fp, Fo}e? 0 — (Fy Fle? ? + {Fa,Fole % — (Fo,Fi}e?9).  (3.57b)

Here, we have used the choi€e (3.52) to fix the coefficien& dhen, one finds that all of the
equations which follow fron(3]4) an@ (3157) are implied bg equations of motion (3.45).

4. Quantum affine algebras and integrable quantum field theaes

We have seen that affine Lie (super)algebraic structuresrliadhe classical integrability of
the models of interest. It therefore seems natural to expatthe quantization of these models
will lead to some deformation of these structures. In ordedéntify the precise form of this
deformation, we are going to argue that the algebraic stradtehind the integrability becomes
visible through the algebra generated by the interactiongen the light-cone representation
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of the dynamics. In order to explain this more preciselygribat the light-cone representation
of the classical dynamics admits a fairly direct quant@ain which the interaction terms of
the equations of motion are realized as operafpr$ =0, ...,r, on suitable Fock spaces. The
key observation to be made is that these operators geneegiesgentation of the nilpotent part
A_ of some quantum affine (super)algebra. The existence oftalfirmany local and non-
local conserved quantities can then be deduced from thisifeaugh purely algebraic methods
[EE1,[FE2] FEB]. This gives highly non-trivial evidence toe claim that the quantum affine
(super)algebra behind the integrability is one whose tépopart is4_.

This discussion is sharpened considerably by the obsen/LZ3,[BHK] that the quantum
monodromy matrices of the corresponding massless modelisnminaryb can bedirectly
obtained from one of the most basic objects associated wiimtym affine (super)algebras,
the so-called universal R-matrix, in a way to be describddvhe In the following section,
we shall review and slightly generalize what is known abbese connections for the models
of interest. Based on this discussion, we will try to formelanore precisely the proposed
connection between quantum affine (super)algebras andtdgrability of our models.

Relations between integrable quantum field theories andtgoaaffine algebras have also
been found in[[BL1, BL?]. These works are concerned with tbe-local conserved charges
related to the appearance of solitonic excitations in tfiaite-volume scattering theory. This
does not seem to lzbrectlyrelated to the connections discussed in our paper. One nsa&y\oh)
in particular, that the approach of [BL1, BL2] was generdizo the N=2 Sine-Gordon model
in [KUY], and it was found by these authors that the quantuim@flgebra associated with the
non-local conserved charges%(;[(Z)) in this case, while we will argue below that it is the
quantum affine superalgeb%(sA[(2|2)) which is relevant in our context. Despite the apparent
differences, it seems clear, however, that such appeaaficpiantum affine algebras must be
related on a deeper level. A better understanding of th&iosl, in connection to integrable
guantum field theories, seems highly desirable.

4.1 Quantum affine algebras

Let g be the (untwisted) affine Kac-Moody algebra associatedasiimple Lie algebrg. We
let r denote the rank of and assume, for simplicity, that all the real rootgydfave the same
length (this is the only case that will concern us). The quamaffine algebra/ (ﬁ) may then
be defined[[J, D] as the Hopf algebra generated by the eleridthe unit),E;, F, K = g™
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(i=0,1,...,r),andgP, subject to the following relations:
71

-q- T
q°Ei = g*°EiqP, KiK; = KjKi, °Ki = KiqP, q°F = q %°FdP°, (4.1b)

KiEj=gVEKi, KF=q™FK, EF- F,E._dJ (4.1a)

1-A; , A
ZOJ (-1)" [1_nA”] EME;E-N TN = Z)J {1 A‘J] FRFA =0, (4.1c)
n= q

Here,Ais the Cartan matrix of and we use the standagehumber notation

(4.2)

m [m]g!
I e L A R A

Equation [(4.1lc) is known as the Serre relations. This is leuppnted by a coprodudt given
by

A(E)=E®K+1®E, A(Ki) =K ®K;, (4.3a)
AF)=Fel+K1oR, A(P) = ed”. (4.3b)

There is also a counit and antipode, though their explicin®are not important for us, except
in noting that there exist Hopf subalgebr#s. and %_ generated by thE;, K;, q° and theF;,
Ki, g°, respectively. These are the analogs of Borel subalgelnchsve will refer to them as
such. The subalgebrag’, and.#_ generated by thg; and theF;, respectively, will be called
the nilpotent subalgebras. They are not Hopf subalgebras.

As in the classical casg & 1) above, we will generally be interested in level O représen
tions. Because of this, we will often denote a quantum affigetaa by7 (ﬁo), understanding
that the linear combination of Cartan generators givinddtiel has been set to 0. As the level is
dual to the derivatio® under the (extended) Killing form, it is therefore oftenatgermissible
to ignoreD in our computations.

4.2 Universal R-matrices

The physical relevance of quantum affine algebras stemstfieraxistence [D] of the so-called
universal R-matrixZ. This is a formally invertible infinite sum of tensor prodsicif algebra
elements
L@:Zai@)bi, ai,bie%q(ﬁ), (4.4)
|
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which must satisfy three properties:

X0 (X)=0P(x) 2  forallx e %(g), (4.5a)
(A@ Id) (95) = H13%>3 and (Id ®A) (95) = H13%12. (4.5b)

Here AP (x) denotes the “opposite” coproduct®f,(g), formally defined ad°P(x) = g (A(x)),
where the permutatioa acts as
O(XQY) =yRX. (4.6)

We have also used the standard shorth#hsgl= yia ® b ® 1, Z13=5;a ® 1@ b and %23 =
Di loa®b.
Quantum affine algebras have an abstract realisation irstefra so-called quantum double

[D] which proves the existence of their universal R-masic€his realisation moreover shows
that these R-matrices can be factored so as to isolate th@xdion from the Cartan generators:

#=d%, t=3 (A", HaH, (4.7)
1)

Here, A denotes the non-degenerate extension of the Cartan mattihetentire Cartan sub-
algebra (includind). This is achieved by identifying this matrix with that ofetlfappropri-
ately normalised) standard invariant bilinear form on theat@n subalgebra. The so-called
reduced R-matrixZ is a formal linear combination of monomials of the foftp @ F; =
Ei, - Ei,®@Fj - Fj, (| = {i1,-.,ik}, I={j1, .- je})-

It is worth noting [KT] thatZ is already uniquely defined bl (4]5a) abd {4.7). In order to ge
some idea why this is so, let us first note that putting K; into (4.54) shows that each term
E| ® F3 in the expansion of the reduced R-matrix is constrained abtkie affine weight oE,
cancels that oF ;. Second, putting = F; into (4.5&) and using the relations

(FekYd=dFel), (QeR)d=dKaoR), (4.8)
we find that (for the algebras and superalgebras we are séera)
(2. Fol) =(KoR) Z-% (K 1oR). (4.9)

This relation can be solved recursively by expandﬂi?gas a formal series in the monomials
E| ® F;. In particular, it is easy to deduce that the expansion todinder is

9?:1®1+(q—q’1)2(Ei®F.)+... (4.10)
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We will use [4.9) repeatedly in Sectidns 6 and 7 when we dgslaisce regularisations.
We note that a second solution to the defining propeifie$ i@ diven b@
% = (0(%))* (4.11)
This alternative universal R-matri®~ is then of the form
R =R q, (4.12)

in which %~ is a formal series in monomials of the foff ® Ej. In order that the symmetry
between the two universal R-matrices is emphasised, weabkaluse the notatio#* := %.

It easily follows from the defining properties (4.5) that™ and.% ~ satisfy the abstract Yang-
Baxter equations

Ko R (53 = Rps 13 %1 (4.13a)
R R15 %3 = Rz 13%15 (4.13b)
Ry R 3R 53 = Ry K137 15, (4.13c)
R R 13K 03 = Ko 13 %15 (4.13d)

It is also useful to note tha®™ and%~ may be related by an anti-automorphigrgiven by
{(E)=FR, {(F)=E, {(H)=H, ({(D)=D, @=q' (4.14)

This action can be continued to tensor productsiia® y) = {(x) ® {(y). In terms of{, we

can represen¥— as
R~ =L(#T). (4.15)

Indeed, applying] to the defining property (4.5a) shows that := {(#*) likewise satisfies
(4.54). Moreover#' is clearly of the formz’ = @q*‘, with %’ a formal series in monomials
of the formF; ® Ej. As %~ is uniquely determined by these two propertles (4.5a) arBj4
we conclude tha#’ = 2.

Applying appropriate representations of the Hopf algeb#asand %4(g) to (4.13) results
in more familiar forms of the Yang-Baxter equation. In pautar, we will frequently be con-
structing representatiorg, , (A € C) and g so that we can applyg ) ® s, ® T4 to (4.13).

We thank A. Bytsko for pointing this out.
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The resulting specialisation df (4.13a), for example, ttedees the form

Ri2(A, 1) L1z (A) Las(p) = Laz(p) L13(A) Ri2(A, 1), (4.16)

when we set

RAU) = (Mar@my) (Z7) and L) =(mem) (271). (4.17)

Note that this requires that, , be a representation & (ﬁ) whereast need only be a repre-
sentation of the Borel subalgebta .

4.3 Relation to the algebra of quantum monodromy matrices

Let us now formulate the conjectured relation between outetwand the representation theory
of quantum affine (super)algebras on a somewhat abstragt |I®ecall that the key objects
used to establish the classical integrability of our modedse the monodromy matricééa(A)
which can be defined for each choice of representatjgnof the relevant loop algebi@. We
conjecture that the quantization of the models producesatgrevalued matricedl;(A ) which
satisfy algebraic relations of the following general form

Ran(A, 1) (Ma(A) @1) (1@ Mp(p)) = (1@ Mp(1)) (Ma(A) @ 1) Ran(A, 1) (4.18)

In order to write the relation compactly, we considés(A ) andMp(A) as endomorphisms of
corresponding representation spaggand ¥, so that[(4.18) may be read as a relation between
operator-valued endomorphismsf® 7. The entries of the matriRap(A, 1) in (4.18) are

not operator-valued — they play the role of structure cantstan these algebraic relations.

The main point here is that the so-called R-maRix(A, U): 7a® % — Ya® ¥ is related
to the universal R-matri% of the affine Lie (super)algebrég(go) deforminggo via

Rap(A, 1) := (T ) @ Ty ) (Z). (4.19)

In the quantum case, the representatiopg and7g, , should therefore be deformations of the
representations defining the corresponding classical LatxicesM4(A) and My (A ), respec-
tively.

In order to get the quantum counterparts of the integralsaifan, it is then natural to con-
sider traces of the monodromy matrices, taken over theiankgpaces5:

Ta(A) :=Try (Ma(A)). (4.20)
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The mutual commutativity,

for all allowed values ofA andy, and all admissible choices of representatiops and 1,
then follows easily by taking the trace ¢f (4118) ovEy® ¥4. By varying the choice of rep-
resentationg, ,, one may generate a large famil§ of mutually commuting operators. We
expect that the Hamiltoniark$ of our models can be constructed from the elementg of

Proposing the existence of operator-valued matilidgs\ ) which satisfy the relation§ (4.1.8)
may seem bold in a quantum field-theoretical context, bexatithe possibility that modifica-
tions to [4.18) will be required by renormalization. Howgve the case of imaginary, there
exist [BLZ1,[BLZ3] direct quantum field-theoretical consttions of monodromy matrices
Ma(A) satisfying [4.1B), as we will shortly review. For real vedue b, there is strong evidence
for one of the mostimportant consequences of the existeribe M, (A ), namely the functional
relations satisfied by the eigenvalues of the transfer oetfiz(A ) [ByTel,[T1,/ByTe2].

4.4 Light-cone representation for integrable quantum fieldtheory

A somewhat unconventional picture for integrable quantetd theory models can be obtained
by taking the piecewise light-like saw-blade contéfjrfrom Sectior 3.1]1 as an initial-value
surface. For notational simplicity, let us begin with theseaf the Sinh-Gordon model, the
generalization to the other (bosonic) affine Toda theor@ad straight-forward (we briefly
discuss thel(3) case in Section 4.6).

4.4.1 Classical dynamics in the light-cone representation

In the light-cone picture for the classical dynamics, orkes$athe values of the fielg on the
two light-like segments o#7,

e (2u)=g@(u,u) and ¢ (2v)=@F-v3+v), O<uv<§, (4.22)

as initial values for the time-evolution from whigix, t) can be found for atk andt by solving
the equations of motion. The dynamics may still be represkm the Hamiltonian form by
using the Poisson structure

[0 (W), 0 ()} = Jsgm(u—t),  {¢" (V.9 (V)} = 5SOR(v—V)  (4.23)

on the light-cone datg™ and ¢~ (brackets betweep' and¢~ are zero). The Hamiltonians
H, andH_ which generate the time evolution in the two light-like diiens may be found
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by expanding the trace of the monodromy matvixA ) around the singular points = « and
A =0, respectively. One finds, for example, that

. Rdx_ _\2 1 2 R +
H__/O E((a_(p - 5020 )—1—;1/0 dx; 2cosh{2be™). (4.24)

Using the representatioh (3]18), it is easy to see that tieeaiction terms irH_ are directly
related to the matrix elements gf (A;m). The equation of motion can now be represented in
the Hamiltonian form as

0_(0+9) ={H_,0, ¢} = —4mnbu sinh(2bg). (4.25)

The same equation of motion is found by exchanging the rdlgs and¢—, of course.

4.4.2 Quantization

The Poisson brackets (4]123) are those a massless free fleddquBintization is therefore stan-
dard. Let us write the expansion @f (x..) into Fourier modes in the form

21
@ (Xe) =q+ RPxt 0= (Xa) + @ (Xe), (4.26)
where . .
+ _ |+ —2minx /R + _ I+ —2minx+ /R
Q= (X)) =Y —ape =R s (Xe) =) —ap€ . (4.27)

The modes} (¢ = +), g andp are required to satisfy the canonical commutation relation

[ / 1
[qv p] = év [aﬁ‘lv aﬁ } - émérn+n,05£e’- (428)

Quantum analogs of the exponential functief®”" are then constructed by normal ordering:
L 2AP %) exp(2a F (X)) €22 (@H2PXE/R) ey 20 g (x4 ). (4.29)

The quantum Hamiltoniart$, andH_ corresponding tél;. andH_, respectively, will similarly
be defined by normal orderir{@, ¢*)? and cosk2bg™).

4.4.3 Conserved quantities

The quantum equation of motion for an observablbuilt from 9, @™ (x;.) can then be repre-
sented in the form
—i0_0=[H_,0] = u[Q{ + Q7. 0], (4.30)
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where the operators
R
Q" :/ dxVi(x),  Vo() = 1" vy(x) = e (4.31)
0

are called screening charges. We see that finding consenaetities is reduced to a purely al-
gebraic problemFind all operatorsO (built fromd; ¢ (x;.)) which commute with the screening
chargesQ], Qi . Note that we require the commutativity ©fwith bothQJ andQ; indepen-
dently. This is motivated by the fact that we could easilyayatize the right hand side ¢f (4130)
to [uQg +vQ7,0] by a shift of the zero mode:

This problem was studied in [FF1, EF2, FF3]. A key point uhdeg the approach used in
these references is the fact that the opera@grsi = 0, 1, satisfy the relations

(Q)°Qf — [814(QN*Qf Q" +[81,QQ (QN)* - Qf (Q)* =0, (4.32)

with q = e ™ The validity of these relations was first shown in a relatedtext in [BMP].
It can be checked by direct calculation — we detail the meihodippendix(A. The relations
(4.32) can be identified with the Serre-relatidns (4.1chefquantum affine algeb@fq(;[(Z)).
They imply that the operato®;", i = 0,1, generate a representation of the nilpotent p#irt
of %q(;[(Z)). Based on this observation, it is possible to prove thaetlegrst infinitely many
local [FE1, FE2] and non-locél [FF3] conserved operatars

These results represent a first basic link between the adtédy of the Sinh-Gordon quantum
field theory and quantum affine algebras. The main lessormtbatish to extract from this
example is that there is a direct relation between the adggbnerated by the operatds,
describing the perturbations in the light-cone represemaand the integrability of the theory.
The fact that the perturbing operat®s generate a representation of the nilpotent subalgebra
of some quantum affine algebra implies the existence of tefynmany conserved quantities.

4.5 Quantization of the monodromy matrices

The connection between quantum affine algebras and iniéyrabn be strengthened signifi-
cantly by considering the quantization of the monodromyrio@s in the massless limits. Fol-
lowing [BLZ1), BLZ3] we shall, in the following, describe tlguantization of the monodromy
matrices of the (m)KdV theory fdrimaginary together with its link to the representation tiyeo
of the quantum affine algeb@q(gl(Z)).
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4.5.1 Quantization of (m)KdV theory

In the regime wheré =i, B € R, it is straight-forward to construct the quantized coupdet
M (A;) of the monodromy matrid, (A, ) as [BLZ1]

R
M (A,) = e"bp“gzexp( [ vv+<X+>) , (4.33)
0
where
0 : @200 (%) -
W+(X,A) - )\+ : e2b(P+(X) : O . (434)

ML (A) is a priori defined as a formal power seriesAn whose coefficients are represented
by ordered integrals over products of normally-orderecbexemtial fields. These integrals con-
verge if 8% < % and it can be shown [BLZ3] that the summation over powers Bfconvergent

in this case.

It was shown in[[BLZ3] that the commutation relations satidfby the matrix elements of
M, (A) can be written as the exchange relations

R /1) (Mo (V) 1) (19M (1) = (18 M (1) (M) © RO /W), (4.35)

with matrix R(A) given by

q A —grt 0 0 0
0 A=At gl—qg 0
R(A) = . 3 (4.36)
0 qg-——qgq A-A 0
0 0 0 qiA—grt

The commutation relations (4.135) represent a natural Ggatitn of the Poisson structufe (B.7).
It follows immediately from[(4.35) that the operatdrs (A) := Tr(M+()\ )) commute for arbi-
trary values of the spectral parameter:

[T+(A),T(u)] =0  forallA,ueC. (4.37)
The family of operatorsl (A) generates the algebra of quantum integrals of motion in the

guantized (m)KdV-theory.

The quantized counterpavt_(A_) of the monodromy matrit_(A_) can likewise be con-
structed as R
M_(A_) = @exp(/ dx._ W(x)) eooH. (4.38)
0
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where

- at2b@_(x) -
0 € ' ) . (4.39)

W-(xA)=—A- < o200 (4) 0

The quantum monodromy matriM_(A_) defines a second copy of the quantum (m)KdV-
theory which may be associated to the second chiral halfeofrtassless free field.

4.5.2 Representation-theoretic interpretation of the odyomy matrices

A beautiful relationship between the quantization of (mytieory and the representation the-
ory of the quantum affine algeb%(;[(Z)) was found in[[BLZ3] and proven in_[BHK]. It
asserts the equality &, (A, ) with the evaluation of the universal R-maté&* in certain rep-
resentationst, ,, andn({ of the Borel subalgebra®, and%_ of the quantum affine algebra
%(;[(2)0). For the representatiory, ,,, we may take the representation definedlin (3.12),
which may be checked to define a representatiowyts((2)o) for all values ofg. For g, we
shall take

14 (Ho) = —2ip/b, 4 (Fo) = 14 'Q¢ (4.40a)
Ty (H1) = +2ip/b, g (F) =14'Q7, (4.40b)

wheretq :=q—q 2. It follows from (4.32) and straight-forward calculatidmet (£.40) indeed
defines a representation of the Borel subalgeBraof 7% (;[ (2)o)- The observation of [BLZ3]
can then be formulated as the assertion that the monodrormxrdefined in [4.3B) is equal to

Mo (As) = (Tap, @ TG )(Z ), (4.41)

whererg, ), andrg are the representations defined[in (8.12) and {4.40), régelyc In order
to prepare for the comparison with the casevbf(A_) we have included the proof df (4141)
(following [BHK]) in Appendix[Bl.

With very similar arguments (see Appendik B), one may shat th

M_o(A-) = (Tap. @) (Z7), (4.42)

where the representatioy of %, is defined by

g (Ho) = +2ip/b, g (Eo) = T4 " /0 T ere (o) : (4.43a)

TG (H1) = —2ip/b, 1 (E1) = Tq_l/O_Rd)L g 200 (%) (4.43b)
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It follows from (4.13b) and[(4.42) thd#l _(A_) satisfies relations of the forrh (4135) with the
same matriR(A ).

The proof of [4.4R) described in Appendix B shows that théed#nt orientations in the in-
tegrations appearing in the definitions (4.33) dnd (4.38)10fA;) andM_(A_), respectively,
are precisely accounted for by replaciay in (4.41) by%~ in (4.42). It seems quite remark-
able that the two chiralities of the massless free field ateraly related to the two universal
R-matrices discussed in Sectionl4.2. This will become eVearer in our discussion of the
lattice regularization below (Sectidn 6.3).

4.6 sl (3) affine Toda theory

This story generalizes fairly easily to the affine Toda medaéhigher rank. As an example, let
us discuss the case of the affine Toda theory associaté@3p The integrable structure of the
massless limit is related to the Boussinesq equation.

4.6.1 Conserved quantities in the light-cone represeniati

The quantization of this theory in the light-cone repreatah can be performed along the same
lines as described above. We introduce chiral free figjdandg;- with mode expansions of the
same form ad (4.26). The modesap‘f are required to satisfy commutation relations obtained
from (4.26) by the obvious replacements. Out of tie one may then construct the vertex

operators
Vi(x) = : e 2@ 0+vV3e () .

Vo(x) = : €% () 0, ’ 4.44
o(%) Vo) = © & PO 00-V3E ) (4.44)
From these vertex operators, let us define the screeningehar
R
Q= / dxVi(x). (4.45)
0

Using once more the technique described in Appehdix A, tlogseators may be checked to
satisfy the relations [BMP]

(QN)?Qf —[2,Q"Q/Qf +Q (@N)?=0 (i #]), (4.46)

again withq = i Ag before, it now follows from the results of [FF1, FIF2, FH34t there
exist infinitely many local and non-local conserved quatit
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4.6.2 Quantum Boussinesq theory

The quantization of this theory [BHK] leads to the monodrammgtrix
R
My (Ay) = e®HP) gexp <A+ / dx (E1V1(X) +E2Va(X) + EoVo(x))) , (4.47)
0

where(H,P) = (p1 + p2/v/3)H1 + (p1 — p2/v/3)H>, theV; were given in Equatiori{4.44) and
the E; in Equation [(3.34). Our aim is to relate this monodromy nxatioi the representation
theory of a quantum affine algebra, as we did for guantum Kdétyin Sectioh 4.5]12.

We define the following representation of the Borel subalgeh_ C % (;[(3)0):

1 (Ho) = —2ip1/b, 4 (Fo) = 74 Q¢ (4.48a)
g (H1) =i(p1+v/3p2) /b, g (F) = 151Q7 (4.48b)
g (H2) =i(p1— v/3p2) /b, m (F2) =14 Q3. (4.48c)

The arguments described in Section 4.5.2 can now be usedwotbht

Mi(A) = (T @ 1 ) (%), (4.49)

with 13, ), and g being the representations definedlin (8.34) and (4.48)entisply.

It follows in particular, from the abstract Yang-Baxteratbn [4.1B) satisfied by7, that
the operator-valued matriM_ (A ) satisfies Yang-Baxter type relations of the fofm (4.35) with
matrix R given by

RA, 1) = (Thp @ T ) (%), (4.50)
up to an irrelevant scalar factdfA , ). Explicitly, this R-matrix has the form
3 3
RA.u) =5 pj(A,mEi@Ejj+ Y 0ij(A, 1)Ej @ Ej, (4.51)
i,]=1 i,]=1
wherep;; andaij are the(i, j)-th entries of the matrices
)\3q—1_“3q AS_H3 AS_H3
p=| A—p® Aqt-plq A3 |, (4.52a)
)\3_“3 )\3_“3 )\Sq_lJSqfl

0O u A
o=-Au(g-gH[r o ul. (4.52b)
g A0
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As before, one may deduce the commutativity of the integoélsotion of the quantized
Boussinesq theory from the Yang-Baxter type relationsg¥.3rhe modifications necessary
to constructM _(A) are clear. It also satisfies the relations (#.35) with the &rix (4.51).

5. Models related to quantum affine superalgebras

Let us now discuss the modifications to the formalism of ®a¢ that are necessary to treat
the cases related to quantum affine superalgebras.

5.1 Quantum affine superalgebras

As we saw in Section 4.1, the defining relatiohs {(4.1) of a tumanaffine algebra amount
to ag-deformation of the presentation of the corresponding @fiac-Moody algebra in the
Chevalley basig;, F, Ki = g, g°, including in particular, the Serre relations. The defaniti
of quantum affine superalgebras precisely mimics this dedtion. However, the analogs of
the Serre relations for superalgebras are significantlyernomplicated than (and not nearly as
well understood as) their bosonic counterparts. Indeedetstill seems to be some controversy
over the completeness of superalgebra Serre relationgJ@$ complicating factor is that the
Dynkin diagram of a superalgebra need not be unique, leadiagfinite number of different
presentations and (potentially) a finite number of différ@@formations. We refer to Yamane
[Y2] [Y3] for these Serre relations and thgxudeformations — as they do not seem to admit an
obvious general form, we will only give them as needed. A sdammplication is that certain
Lie superalgebras require two derivations. We shall defdisaussion of this point until its
consideration becomes necessary (Sectionl5.2.2).

Aside from the Serre relations, the defining relations angftdgebraic structure of a quan-
tum affine superalgebréy (ﬁ) (assumed for simplicity to derive from a superalgeprahose
real roots all have the same length) are very similar to thesonic counterparts. Indeed, the
only change at this level is that the commutatoEp&ndF; is replaced by

- Ki— Kt
EF— (-DPPIRE =& —, (5.1)
q—q
whereA is a Cartan matrix of the affine superalgebr@ndp; = p(E;) = p(F) € {0,1} denotes
the parity, even or odd (bosonic or fermionic), of the eleta& andF. The Cartan elements
Ki, g° are always even.

It is convenient for a compact presentation of the Serrdiogla to introduce the following
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notation. Define the gradedcommutator by

X, Ylq:=xy— (—1)PPPYqyx  [xy] =[x Y1 (5.2)

Forg= 1, this is the usual graded commutator. From now[xry] will denote the anticommu-
tator if bothx andy are fermionic.

The parity of the generators is particularly important witensidering the coproduct of a
guantum affine superalgebra. Let us first introduce the grégtesor producks which satisfies

(X1 ®sX2) (Y1 @sY2) = (—1) PPV (x1y7 @5 %0y5). (5.3)

The superalgebra coproduct is then simplyl(4.3) witheplaced byxs. With a suitable counit
and antipode (which we will not need), the quantum affine salgebraz, (ﬁ) becomes a Hopf
superalgebra. As before, we have Hopf subalgebfasand %_ which are generated by the
Ei, Ki, g° and theF;, K;, qP, respectively, and non-Hopf subalgebra$ and.4_ which are
generated by thg; andF;, respectively. We will again refer to these as Borel suldaige and
nilpotent subalgebras, as appropriate.

Let us also generalize the notatiaAfP to superalgebras via
AP =gol, T(x®sYy) := (—1)PWPVy @ex. (5.4)

The universal R-matrix#Z* of a quantum affine superalgeb%(ﬁ) Is then defined as an in-
vertible element of the forny; a; ®shi, a € A, bj € %_, that satisfies the standard universal
R-matrix axioms[(4.5) but witky replaced byws. The existence and uniqueness of the universal
R-matrix was shown for the quantum affine superalgebrastefest to us in[[Y1]. As before,
this implies abstract Yang-Baxter equations identical&d3). Equationd (417) and (4.9) are
also valid for these superalgebras (withreplaced byrs). Equation[(4.10) generalises, how-
ever, to

#"=10s1+(a-a7) Y (1) (B @sF) +... (5.5)

|
The alternative universal R-matri®~ is again defined as ih_(4.11). It may also be related to
2" by an anti-automorphis@ which is defined as in(4.14), but with one small modification:
In order that{ continues to define an anti-automorphism on tensor prodceissistency with

(5.3) requires us to set
{(x®sy) = (~1)PHPVIZ (x) @5 (y). (5.6)

With this modificationZ~ = {(#*) as before.
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5.2 N = 2 Super Sine-Gordon model

Our next aim will be to determine the algebraic structureantyihg the integrability of the
N = 2 Sine-Gordon model. An interesting new feature arises wietry to follow the path
described in the previous section. There, we observed abktween the generators of the
nilpotent parts of certain quantum affine algebras and ttexantion terms in the light-cone
representation. In this case, we have two options to consftecording to our discussion in
Section 2, we could either take the interaction terms manifethe classical actioh_(2.3) or
those appearing in the representation as a perturbed fitde(Zi€). We will work with the
second of these options. We shall observe that these opesatiisfy the Serre relations of the
affine superalgebr@q(;[(2|2)).

Based on this observation, one may try to define quantum mrongdmatrices by evaluating
the universal R-matrix oﬂ?/q(;[(Z\Z)) in appropriate representations. In order to establish the
connection with theN = 2 Sine-Gordon model, we will then verify that the classidalit of
these monodromy matrices correctly reproduces the thgraidée structure of the massless
limit of the N = 2 Sine-Gordon model. This turns out to be more involved tinahé previous
cases.

5.2.1 Appearance of the quantum affine superalg%@[(zp))

Following the path described in the previous section leads aonsider four screening charges,
constructed as

QF(x) = /ORdei x), i=0123 (5.7)
with
VolX) = 7, () : D& X85 . vy () = g, (x) : D@ (OHE () .
Va(X) = @y (X) 1 €@ 0@ 00) v x) = g, (x) e 2@ 0 HE () - 8)

We find that these screening charges satisfy, in partidiarfollowing relations:

(Q)2=0, Q'Q,+Q Q" =0, (5.9a)
Qiiini — Qi aiioni H g Qi _vipni — Uiyriiot T Qg1 =0 (5.9b)

Here,q=e ™", i € Z,, and we have used the shortha@d |, = Q" Q} - Q). These relations
may be compared with the Serre relations of the quantum aa‘ﬁperalgebrﬁ/q(;[(Z\Z)) with
Dynkin diagram
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as listed in[[Y3]. This list may be presented in the followmgnner:

F2=0, [Fi,Fii2] =0 fori=0,1,2,3, (5.10a)
[[[Fir1, Rl qin Fiet]q 1,Fi] =0 fori = 0,2, (5.10b)
[[[Fir1,R]q 1, Fi-t] i1, Fi] =0 fori = 1,3, (5.10c)

[Fi2,F™] =0 fori=0,1,2,3andm> 1. (5.10d)

Here,Fi(m) is defined recursively fam > 0 by

{ [[[[R™ "R algsF 2l g Fg,R] fori=0.2, 510

[[R™ Y R a]gu.Fo2]q . Fog],R] fori=13.

The relations[(5.10a) are easily identified with_(5.9a), l&/h¢lations[(5.9a) and (5.0b) ensure
that the definitionrg (Fi) := Tq_lQiJr represents the relations_(5.10b) afd (5.10c). We have
furthermore verified that th@;" satisfy the sixth order relatiof (5.10d) with= 1, but have to
leave the validity of the relations (5.10d) for> 1 as conjecture.

This gives us a representatimg of the nilpotent subalgebral” of % (;[(2\2)). As usual,
we need to extend this to a representation of the Borel sabedgs_. It is easily checked that
this may be accomplished by setting

15 (Ho) = —i(py —ip3)/b, 14 (H1) = +i(pf +ip3)/b, (5.12a)
g (H2) = +i(pf —ip3)/b, 1 (Ha) = —i(pf +ipg)/b. (5.12b)

One should remark that the quantum affine superalg@lav(aA[(2|2)) contains non-trivial
ideals by which one might wish to take quotients in order tbngesmaller quantum affine
superalgebras. For examplgy (1?5\[(2|2)) may be obtained in this way. The Serre relations
of these quotients will then include those %(;[(2\2)). A more complicated example is
the algebra denoted b%((A(l, 1)(1))%) in [Y2, [Y3]. This may be obtained as a quotient
of a one-dimensional (non-central) extensior%f(g?[(Z\Z)). Nevertheless, its Serre relations
include (properly) those o (;[ (212)) [Y3]. It seems then that the Serre relations alone cannot
distinguish these three quantum affine superalgebras.
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However, any representation é}'q(@[(zp)) is also a representation d¥q(sl(2/2)) in
which the generators may satisfy additional relationstH@rmore, one of representations we
want to use to construct Lax matrices is the representadinetl in (3.58), which actually
defines a four-dimensional representatign, of % (5/1\[(2|2)) for all values ofg. It is easy to
check that thisg, , does not descend to a representatioﬁ/@nfﬁs\[(2|2)). For this reason, and
because we have no motivation to consider the extensioireetto defineZ ((A(1,1)Y)7),
we will consider? (E[(2|2)) rather than any of the alternatives in what follows.

5.2.2 Quantum monodromy matrices

Following our previous discussions, it is natural to coesidl, (A) = (T, ) ®sTg )(#) as a
candidate for the quantum monodromy matrix describingritegrable structure of the massless
limit of the N = 2 Sine-Gordon model.

A new feature of this quantum affine superalgebra is thattheztwo linearly independent
central elements, which we may take to@ge= Hp + Ho, andCs = H3 + H1. In order to find
an explicit representation for the eleménwhich represents the Cartan part of the universal
R-matrix we therefore now need to introduce two derivatjovisich will be chosen aBg and
D3 with the non-trivial commutation relations

[Di,Ej] :djEj, [Di,Fj] :—dej (i=0,3). (5.13)

We remark thaDg coincides with the “standard” derivatidh One may compute the element
t appearing in[(4]7) by extending the Cartan matrix (invdrkilinear form) to include these
derivations or by simply requiring_(4.8). The resultis

t = —H; ®sH2 — Ha ®sH1 4+ Co ®s Do + C3 ®s D3 + Do ®sCo + D3 ®sCs. (5.14)

As before, the representatiomdhat we are considering all satisfy{Hp + H1 +Hz +Hz) =
m(Co) + m(Cg) = 0, so they are representations of the quantum loop aIg@Q(aA[(2|2)O).
Because of this, we therefore only need to consider the auatibn D’ := Do — D3 of the
derivations. The definitions ot , andrq above therefore need to be supplemented by

1

1 1
(D) = —5 (E11+Ep2+E33—Eaa), g (D) = §p+—t—)p§, (5.15)

wherep, is the fermion number operator defined{py, Y. ] = ¢, (o4, Ps] = — .
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It is now easy to generalize the arguments of [BHK] to the @dend to show that

_—— R
M. (As) :qP+Z/2e"b<P*H+P*“>/2,@exp(/\+ / de+(x)), (5.16)
0

with the operator-valued Lax matrix

3
W, (x) = _Z_}EﬁVi(X) (B =y (E0)). (5.17)

=
We use, as in Sectidn 3.4.2, the notatiba- H, — Hp, H= H1 —Hs, Z = Hg + Hp, and define
pt =p{ +ips, p" =ps —ips. The counterparM_(A_) of this monodromy matrix may
be likewise computed by slightly varying the representaﬂiq. Explicitly, we construct a
representatiorrg; of %, by 1, (Ei) = ralQi and definingrg, (Hi) as in [5.12), but with a
relative sign (and exchanging afl labels for— labels). With#Z~ = {(#*), the analysis now
proceeds identically.

It again follows from the Yang-Baxter relation (4]113) shéd by % that the operator-valued
matrix M, (A;) satisfies Yang-Baxter type relations of the fofm (4.35) waitatrix R replaced

by R(A/u) = (T ) ®sTay)(#£). This matrix may be calculated by analyzing the relations
following from (4.54). It is found to be given by

4 4
RA 1) =% pij(A, Ei @sEjj+ > aij(A, w)Eij @sEji, (5.18)
i,]=1 i,]=1
up to an inessential scalar multiple, whergando;; are the(i, j)-th entries of the matrices
A4q_1—l-14q )\4_IJ4 A4_IJ4 A4_u4
A4_u4 )\4qfl_u4q A4_IJ4 A4_u4

p= , (5.19a)
)\4_“4 )\4_“4 )\4q_u4qfl )\4_“4
A4_u4 )\4_IJ4 A4_IJ4 A4q—l-14q_1
0 +Au —p? —A?
A 0 A2 —p?
o=-Ap(g—q?) AR H (5.19b)

+A%2 4p? 0 —Apu
+u? +A%2 —Ap 0

Note the relative signs ips3, psa and the last two columns af. These correlate with the
(relative) fermionic nature of the third and fourth basetes in the representationg, .
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5.2.3 Classical limit

We will now compare the classical limit &fi, (A ) with the monodromy matrid. (A ) that
would be obtained by adapting the discussion of the maskheisrom Section[3.1.P to this
case. This would lead to the consideration of the monodromtyir

- R
My (A1) :e—"b<p“+ﬂ*>/2@exp( / dx. vv+<X+>), (5.20)
0
wherep = (¢+(R) — ¢ (0))/mb andW, (x. ) is given by the formula

WL (X4) = Z X4 X+ + Zm(ElX+ez¢+ FEX, €9 +Egx e + Eo)ae’z‘ﬁ)
— P ({Eq, Ep}20 10 _{E, E5}e2@ - 97)
+{Eg Eote 20 H0) (g B30T 0Y). (5.21)

To see howM_ (X ) may be obtained frorvl_. (x, ), observe that the terms in the second line of
(5.21) are produced in the lintit— 0 from the short-distance behavior of the higher order terms
in the expansion of (5.16). In order to see this in more dettilus recall the relations (3.46)
between the respective variables. The term&,ilV, (x;.) are easily identified with the terms
of ordermin the expression (5.21) fa, (x,) if A, is chosen appropriately. When taking the
limit b — 0, one encounters a subtlety similar to that discussed itidbe2.2. To elaborate,
let us consider the term proportional {&,,E>} at order)\:’;, for example. It is given by the
integral

— (2m)2/ dxqdxo X4 (xq) 1 €287 0 2 X7 (x0) 1 2P 02 - (5.22)

X1>Xo

where the minus sign is due to the fact that Bhp@nticommute with the fermionic fields. The
contribution from the regioffix; — xp| < € may be approximated with the help of the operator
product expansi

_ -2
P (X)W (y) ~ X—y—i0 + (5.23)
This allows us to represent the term([in (5.22) to leading oade
£ b 2 5 m? 5
(2m)?2 / dx /O Ay g i T T / dx : @@ ) (504

We see that the result has a finite limit for— 0. The resulting contact terms from higher
orders in the expansion can all be taken into account by gddithe Lax connection the term
—mZ{E1, Es}: @ +87) - In a similar way one finds the other terms in the second line o

2The variables, y appearing in[(5.23) are related to the variables previoustd in [Z) by the usual map
from the complex plane to the cylinder, thatis- €* etc..



39
©.21).

In order to see where the term containing the central ele@enines from, let us note that
the operator product expansi@n (5.23) implies that

{Uy (%), P (y)} = —4mid(x—y), (5.25)

which implies that the fermion number operapor can be represented as

i R P R
pr=gm [ X U 0B 0 = 5 [l (X (0 (5.26)

It follows that the term containing, in (5.16) reproduces the contribution proportionalZto
in (5.21). AsZ is represented by the identity matrix, the term, x, will give a contribution

to M, (A) that can be factored out like the corresponding factor ih@p. This concludes our
check that the classical limit d¥1, (A) reproduces the monodromy matrix of the classical
massles®l = 2 Sine-Gordon model.

5.3 Fermionicsl(2|1) affine Toda theory

To round off the picture, we shall conclude by listing theevant results for the remaining case
corresponding to the fermionid(2|1) affine Toda theory. The results in this subsection are
related to those obtained in [BaTs] by bosonization of tmnfens.

5.3.1 Appearance of the quantum affine superalg%@[(zu))

Let us define R
Qf = [Cdxvin, =012 (5.27)
0
with .,
Vo(X) = @i (x) : e PE X

Vi(X) = ;@A™
19 Va(x) = gy (x) 1 €280 -

(5.28)

With the technique described in Appendix A, one may then khbkat the screening charges
Q,i=0,1,2, satisfy the following relations (with = e~™"):

(Q§)*=(Q3)*=0, (5.29a)
QT Q)2 - [2,QFQFQF +(QN)%QF =0 (1=0,2), (5.29b)

Q102021 2] (R1020+ Qo120 Q02012 + Q20201
= Q12020 [2g Q1202+ Qo102+ Q20210 + Qoz001  (5:29¢)
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In this last relation, we have again made use of the convEsnIitmthandQﬁmk = QﬁQi+ QL
The relations[(5.29) can be identified as the Serre relabbtise quantum affine superalgebra
%q(sA[(2|1)), givenin [Y2] in the form

Fé=F;=0, (5.30a)
[[Fo: Fu] g1 Fi] = [Fu, [Fu Fo g 1] = 0, (5.30b)
[FO’ [FZ’ [FO’ [FZ? F1:| q*l]]}q = [F27 [F07 [F27 [F07 Fl] q—l]:|:|q- (530C)

It follows that setting@(ﬁ) = T(]|*1Qi+ defines a representation of the nilpotent subalgebira
of %y (sA[(Z|1)). We conclude tha# (;[(2|1)) is the quantum algebraic structure underlying
the integrability of the fermionisl(2|1) affine Toda model.

5.3.2 Quantum monodromy matrices

The representatiory; is extended to a representation of the Borel subalgebray setting

1 (Ho) =ip1/b—p. /2,

5.31
g (Hz) =ip1/b+p+/2, &3

Tq(Hl) = —2ip1/b,

wherep_ is the fermion number operator defined in the previous stiosecWe may define,
as beforeM  (A) = (M) ®s na*)(%), wherert,  is given in Equation[(3.41). This operator-
valued matrix may again be shown to possess a represengatepath-ordered exponential of
the form [4.3B) with

W (% A) = E2Va(X) + EaVa(X) + EoVo(X), (5.32)

whereE; := 1, , (Ej). We conclude by computing the R-matrix %(EI(ZH)) in the tensor
product of the representationg ) and g, ;. Appealing once again to Equatidn (4.5a), the
result is proportional to

3 3
RA 1) =5 pj(A, WEi @sEjj+ Yy 0ij(A, u)Eij ®sEji, (5.33)
i,]=1 i,]=1
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wherep;; andgj are the(i, j)-th entries of the matrices

)\3q*1—u3q )\3_“3 )\3_“3
p=| A3—p® ASqt-piq A3 |, (5.34a)
)\3_”3 )\S—u3 )\Sq—u:”q*l
0 +u -—A
o=-Ap(a—-gH|[+r o —pul. (5.34b)
+u +A 0

The entryps3 again reflects the (relatively) fermionic nature of thedHiasis state in the eval-
uation representatiorg, , (note also the signs in the third columnay.

6. Lattice light-cone approach to the Sinh-Gordon model

The difficulties with real exponential interactions debed in Subsectidn 2.3 have another con-
sequence of importance for us. The constructions desciibéloe previous section do not
immediately generalize. A careful regularization of thegmting functiong 5(A) of the con-
served quantities is needed and the only regularizatianghanown to work at present is the
lattice regularization. In this section, we will first rewie¢he known lattice-regularization of the
Sinh-Gordon model. It will then be reformulated in a way tphegpares for the generalization
to the other models of our interest. The reformulation thatwill use is a lattice version of
the light-cone representation discussed previously incthssical case. It is similar, but not
equivalent to the lattice light-cone formulations intredd in [FV1]BBR]. We will discuss the
precise relation between our formalism and theirs in Se@@i§.

6.1 Lattice Sinh-Gordon model

For the case of the Sinh-Gordon model, it has been known fong time how to construct a
tailor-made lattice regularization [FST,!IK|, S]. To motigdhis construction, one can introduce
a minimal distance (ultraviolet cutoff). It is then natural to formulate a regularized version of
the theory in terms of averages of the basic field variabplest) andl(x,t) := g @(x,t) over
intervals of lengtiA. We therefore introduce

1 (n+1)Ad 1 (n+1)Ad
%:Z/m XQ(x), nn:E_[/nA XT(x). (6.1)

These operators will satisfy the commutation relations

[@h,Nm] = %5n,m- (6.2)
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We are looking for a matrik,(A) such that:

(i) The Lax matrixUy(x,t;A) is recovered in the continuum limk — 0 as

Ln(A) =1 +AUx(RAE;A) + 0(02?). (6.3)

(i) The elements of the lattice Lax matrix(A ) satisfy the commutation relations

R(A/)(Lh(A) @ D)(1@Ln(p)) = (1@ Ly(1)) (La(A) @ R(A /1), (6.4)
with matrix R being obtained from the universal R-matrix%(sA[(Z)) via (4.50).

The relations[(6]4) imply similar relations for the elenseaf the monodromy matrix
Ma(A) = Ln(A)Ln-1(A) - L1(A), (6.5)

which can be seen as the most natural quantization of thedtolwacket relations (3.7).

A suitable choice fotn(A) is known [EST 1K/ S]. It can be written as

(6.6)

LS5(A) = Un + MPA%vpunvn mA(Av, +A~1vi 1)
n mMAAVL T+ A1) unt+mPA%y tus vt )

where we have used the operatoxs= 2™ andv, = e P% which satisfy the relations
_ i 2
UnVm = q 6anmUn, q =e i . (67)

It is elementary to check that this choice fgf(A ) satisfies both requirements (i) and (ii) above.
It therefore defines a suitable integrable lattice regudaion of the Sinh-Gordon model.

6.2 KdV-theory on the lattice

In the following, we want to explain the representationettetic origin of the Lax matrix(616)
on the one hand, and how all this is related to the light-cepeasentation for the model on the
other. In order to do this, we begin by discussing the maséiaéts of the model for which we
have previously observed a particularly simple relatiomveen the integrable structure and the
universal R-matrix of#4 (5?[(2)). This will turn out to have a very simple discretized version
which was studied irn [G, V1, V2].

The procedure of Sectign 3.1, which gave us the integrahletsire of the massless limit of
the Sinh-Gordon model, can now be also be applied to thedaBinh-Gordon model. Taking
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the limitsm — 0, A — oo with ;. := AmA fixed, orm — 0, A — 0 with p_ := A /mA fixed,
yields the Lax matrices [G, V1]

u \Y u v

o= " M) Leo=( % BT @8
H4Vn ™ Up H

respectively. These matrices define interesting quantatde versions of (m)KdV theory.

Remembering the discussion in Section 3.1, one would likaterpret the degrees of free-
dom of the integrable lattice model defined by the Lax masri¢gA ) as a discretization of the
left-moving part@, (x,) of the massless free fielg(x,t). This raises an apparent problem as
L (A) contains the same degrees of freedom per lattice sité€%4 ) did. In order to see how
this puzzle is resolved, let us consider the family of opmsat

THA) :=Tr(LyA)LE_1(A) - LT (A)). (6.9)

The main observation to be made [V1] is that the operafdr& ) depend on the variables,
vn, N=1,...,N, only through the combinations

Wi, = (UpVntin vy ty) 72 = P e 2ena—an)) /4 (6.10)

which can be seen as lattice analogs of the field variablés %9 (the indexn is of course
definedmodulo N. This can be verified by using the operator-valued gaugetoamation

~1/4,+ +
v - H+Vn q Wn H+Wn
iy =g On = _ 1 (6.11)
" T et uet )T a2 w) T g YA )

where 12 12
a un ' “vn 0

One may also introduce the operators

Wp = (unVrTlunJernJrl) Y2 = eb(nn+l+nn—2(%+1—¢h))/47 (6.13)

which are lattice analogs of the field variabB—%)¢Xt) We have the following commuta-
tion relations:

(6.14)

+,,£

L . =M 2wEwE if In—m| =1,
WWhp otherwise.
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It follows that all operators;,;,n=1,...,N, commute withT (A ). Similarly, one may see that
THA) :=Tr(Ly (AL _1(A)---LT (1)), (6.15)

commutes with the operatong!, n=1,...,N. This shows how the Lax matricés (A) de-
scribe two decoupled integrable structures for the latiseretization of a free field correspond-
ing to two decoupled lattice KdV theories associated with Bnd right-movers, respectively.

6.3 Representation-theoretic origin of the massless Lax ntrax

Our first concern is to discuss how the Lax matritg€gA) are embedded into the general
representation-theoretic scheme described in the prewections. This is rather simple. Let
us considet.t(A). Itis easy to check that

k07n = an(Ko) = u;z, fO,n = Tlatn(Fo) = Tqilun+1val, (6.16a)
kin = Tn(K1) = ug?, fin 1= Tn(F1) = Tq Tup v (6.16b)

with 1 =q— q !, defines a representatiogfn of the Borel subalgebrag_ of %4 (5AI (2)0) (the
Serre relations follow trivially from the fact thdg andf; commute). We mention that this
representation is a close relative of those referred tp@stillator representations in [BLZ3].

We are going to show that there exists a functioA ) such that the following equality holds:

Li(A) = f(A) (T ®rqn)(%). (6.17)

Here, the representatiomg , and nafn are defined in[(3.12) an@ (6/16), respectively. Indeed,
thanks to the simplicity of the representatians, and rqn we will only need to use generic
properties ofZ to establish[(6.17).

It is useful to keep in mind the factorizatidn (4.7) of thewersal R-matrixZ into a Cartan
partqt = q(M1®H1)/2 and the reduced R-matri®. First note that in the representatiog, , the
non-trivial monomials in the operatoks .= 11, ) (E;) are of the form

(EoE1)" = EoEx, (E1Eo)" = E1Eo, (EoE1)"Eo = Eq, (E1E0)"E1 =E1, (6.18)

which represent a basis in the space of two-by-two matridéext, recall that for each term
E| ® Fj appearing in the expansion of the reduced R-mattjthe affine weight (with respect
to theK;) of the monomiaE, must cancel that df;. As the monomial basis elemerntg), (E,)
have weights taking values i1, qz,q—z} and asfonf1n = f1.nfon is @ multiple of the identity,
the corresponding monomiatg ,(F;) may be taken from the s¢tl, fon,f1n}. It follows from
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these observations that the reduced R-matrix has the form
— alA b(A)f
(Top © T L) (2) = (C (A) bA) 1’”) : (6.19)

wherea(A), b(A), c(A) andd(A) are proportional to the identity operator i, (they may
also possess an implicitdependence). We can compaté, ¢ andd by evaluating[(4.9) in the
representation, , ® 15, both forFy andF;. This yields constraints whose solutions are

aA)=d(A) and bA)=c(A)=A(g—qg HaA). (6.20)

Our claim [6.17) now follows easily upon premultiplying thetCartan part

1/2
+ )y (H1®h1,n)/2: kl,/n 0 6.21
(né,)\ ®n&17n)(q> q 0 k_1/2 . ( . )
1,n

In order to understand the representation-theoreticrooglL,, (A ), we introduce the repre-
sentationvg , of . which is defined by

Tn(Ko) = ui?, Ton(Eo) = Tq vy fut (6.22a)
Tn(K1) = up? Mon(E1) = Tq vt tup . (6.22b)

Repeating the above analysis now, we obtain

Ln (A) = 9(A) (T ) @ ) (Z7), (6.23)

whereg(A) is some scalar function. It now follows from the abstract ¢d@axter equation
(4.13b) thatL(A) andL; (A) both satisfy an RLL-relation of the forni (6.4) with tlsame
R-matrixR(A ) as that which appears in the relation satisfied g ).

6.4 Recombining left-and right-movers

We have seen that the two simple Lax matritggA) for the lattice (m)KdV theory can be
obtained from the Lax matrik:¢(A ) of the lattice Sinh-Gordon model by a limiting procedure.
It is easy to see that by taking classical continuum limit&pfA ) andL, (A), similar to the
limit taken in (€.3), one recovers the classical light-cbhag matricedJ . (A) andU_ (A ) defined
in (3.11), respectively.

Recall the representation of the monodromy matrix in termthe saw-blade contougy
of Equation[(3.15). This naturally suggests an alternajweroach to the discretization of the
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model: Use averages of the fielgig N, over the light-like segmenﬁﬁf as basic variables. Out
of these, construct the quadruple of operatrs: €™, vé = e "% ¢ =+ with commutation
relationsuévé = q~%m3e/vE LE | If we now redefine

ut v u= ~1(,-)-1
L (Kt) = <u+(vr:T)‘1 (I:i)L), Ly (p-) = (ui‘vg “‘(ui_)”_)l ) (6.24)

then a natural discrete version of the saw-blade represemt.15) forM(A) may be con-
structed as
MA)=NA) AR, LA) =Ly (o) (), (6.25)

wherep, = AmA andu_ = A/mA. It follows from the RLL-type relationd (6.4), satisfied by
Ly (uy) andLy (p-), that the monodromy matrix# (A ) satisfies RLL-type relations with the
same R-matrix ak; (i), Ly, (U-), and henc&36(A).

What may be confusing is the apparent doubling of the numbdegrees of freedom as-
signed to a lattice site with label We are are therefore going to show that the lattice diszaeti
tion defined byl[(6.25) with Lax matrices (6]24) is physicaljuivalent to the one introduced in
Sectiorf 6.11.

6.4.1 An ultralocal representation

To this purpose, it is useful to note tHat (. ) andL,, (u_) can be factorized as

+ Uy 1 [TIAY
2o wt \wawt 1) 209

oo 1 et w) Y (e O
L”(“_)_<uilwa A )(0 (UE)*)’ (6.26b)

wherew; = (uf)~1v{ andwy = v (u7)~L. It follows that the Lax matrix

B 1 ptg Y wy) Y funud 0 1 Hyw
Z”(A)_<u:1wn— 1 )( 0 <uaum‘1> <u+q<wn+>—1 ! ) 20

only depends upon the operatows, w;, andU, := u,ui. Note thatw, andw, commute as
they act on different tensor factors. The combinatigr{w;" )~ also commutes with/, and is
therefore central in the algebra generatedviy w, andUy,. It follows that we may consider

a representation in whiok (w) =1 is represented by a scalar multiple of the identity. Taking
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this multiple to beq~* and definingvy, := (Unwn+)_1 then gives

(6.28)

Z(A) = Un + 4 1= VaUn Vi U+Vr?1+ll:1vn
" HWa 4+ Ve Upt eV tup vt

This Lax matrix is equivalent to that defined in_(6.6) when aleetu, andp_ as in [6.25).

6.4.2 A non-ultralocal representation

Another way to identify the variables that the monodromynwavZ (A ) depends upon is to use
a gauge transformation similar to that usedin (6.11). Sipadly, with

+\—1/2 Vn+ 1/2 0

ot — ((un) o( ) (V+)1/2(u+>1/2> , (6.29a)
—\=1/2,—\~1/2 0

o = <(un) 0( n) (V)l/z(u>1/2) , (6.29b)

we can write.Z (A) in the form

A (A) = gf g ()L (k) - By (o)L (o) (9]) 7 (6.30)
Here,
- o t+ u q1/4t+
CH(u,) = bt - n ) 6.31a
n (U+) (gn) n (H+)0n <u+q1/4(tn+)—1 q,l/z(trﬂ—l ( )
. T t u—tg Y4,
L) =(gh) ")gn = 4 1. (6.31b)
" (Gnea) T ()0 = | syt qurzy)
and thet are given by
ty = ()2 )2 ) PRty = (i) P (g )Y () Y (ve) T2 (6.32)

In this form, it is manifest that# (A ) depends on the correct number of local degrees of free-
dom. The price to pay is that we now have non-vanishing coratimut relations between the
operators associated to neighboring sites (non-ultratgra
~1/2

o ql/2 ot —F
tn+1tn :q/t t thth =Q

nteg, tt, . (6.33)
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We mention that the variabldés:)? have the virtue that they make the form of the (discrete)
time evolution equations particularly nice [FV2].

6.5 Comparison to other approaches

The constructiori(6.25) a#,(A ) is inspired by similar constructions in [FM1, BBR], but ifs
in detail. In [FV1,[BBR], the authors proposed a Lax matﬂ%g()\) which, in our notation,
would be obtained by replacing the mattix (u-) in (6.24) by

Un 1y
Lo(p):= (Il_l n H-"Vn ) . (6.34)

(va) ™t (ug)™?

Reducing to the physical degrees of freedom as describeedtio®[6.4.11, one would obtain a
Lax matrixLn(A) that is equivalent to the Lax matrlx*? (A ) defining a non-compact version
of the XXZ-model [ByTel]. This Lax matrit*4(A) is related toL;%(A) by multiplication
with g1 and a simple equivalence transformation in quantum spaee[By/Tel] for details).
This relationship implies the physical equivalence of the approaches when the numbeér
of lattice sites iseven while the lattice models are physically inequivalent ie tase obdd

N (seel[NT, Appendix D] for a detailed discussion of this pamthe closely related case of
the lattice Sine-Gordon model). It is of course quite pdsdihat the inequivalence of the two
approaches for odd disappears in the continuum limit.

A detailed study of the spectrum of these models and of thaiticuum limits has so far
been carried out only for the lattice Sinh-Gordon model @efiby the Lax matrixX;°(A) on
lattices with oddN [ByTel,[T1]. This is due to the fact observed in [ByTel] tHattcase is
the most convenient one for the analysis of the spectrumeofdblpective lattice models. The
results obtained in [ByTel, T1, ByTe2] demonstrate thatapproach is indeed suitable for
defining the Sinh-Gordon continuum quantum field theory kyngthe continuum limit of the
lattice Sinh-Gordon model discussed in this paper.

For us, the main advantage of the Lax mat#i(A ) defined in[(6.25) will be that it will turn
out to have a very natural generalization to the other modslg/e are now going to explain.

7. Generalization to the other models

In tailor-made lattice regularizations, we want to preseas much of the structure of the quan-
tum field theories as possible. This will include the algabralations [(4.1B) that the elements
of a quantum monodromy matrix are supposed to satisfy. Tésudsion of the lattice Sinh-
Gordon model suggests a natural way to realize this featut@natically, as we will now
discuss.
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7.1 The general scheme

In the case of a lattice model witthsites, one has? = 74 ® 75 ®...Q 7. We will construct
the monodromy matrix#,(A ) of the lattice model as a product of local Lax matrices

MA) =NA)Ln-a(A) - ZA(A), (7.1)
which are themselves constructed from the universal Rixnatthe following way:

LA =Ly (uoly (ke), Ly (He) = (Te, ® Tgp) (27). (7.2)

Here,u;. = AmA, u— = A/mA, and ther@fn are representations of the Borel subalgeb#as
onJ#* such thav#, = 7, @ £, . It follows from (4.13&) and(4.13b) that bolty (1) and

Li () satisfy
RO (LEQ) ) (1915 (1) = (1oL (W) (LEQ) @ DRALL),  (7.3)

with the same matrix
RA, 1) i= (Top ®@ Tapu) (2). (7.4)

The monodromy matrix constructed [n([7.1) therefore sasf.18), as desired.

When applying this construction to the remaining modelstiveeefore need to:

() Find representationﬂafn andrg,, of the relevant Borel subalgebraé_ and %.., respec-
tively, such that the Lax matricas andL,, defined in[(Z.2) reproduce correctly the cor-
responding classical Lax matrices in the classical contimiimit.

(i) Make sure that the physical degrees of freedom of thteckatnodel, defined initially with
an auxiliary doubling of the lattice degrees of freedom, iackeed in one-to-one corre-
spondence with discretized versions of the field variables.

We are now going to apply this strategy to the remaining nmedeinterest.

7.2 The Boussinesq model on the lattice

We begin by applying the general scheme described in Sdgiibto thesl(3) affine Toda the-
ory. Let us begin by explaining how to find the Lax matiik(A ) associated to the left-moving
degrees of freedom in the massless limit. It was previougjyed that the relevant algebraic
structure is the quantum affine algehﬁa(;[(?,)). The main task is then to find suitable repre-
sentationsg, ;, and g, with which to construct the Lax matrix! (u) as (e, ® ,) (%).



50

To begin with, we shall consider the case in whigy, is the representation defined in
(3.34). In order to motivate our choice fmqn, it will be useful to make some observations
on the generic structure of Lax matrices representing aeusél R-matrix%. First, recall
the factorization[(4]7) ofZ into a partq' containing only Cartan generators and a reduced R-
matrixﬁ?, the latter being a formal sum of monomials in the generdpfs1l and1® F. The
factort = %Zi Hi ® H; yields a diagonal matrix undem, ; ® na*n With H; := 1, (Hi) and
hin = T (Hi), we may write

(T @ 1, (of) = g2 Mi¥Min/3 = diag(uy n, uzn, uon), (7.5)
where
-1/3, —2/3 2/3,1/3 -1/3,1/3 )
ton =k kot P un=KGE, van=k kg, (kn=q).  (7.6)

In order to calculate the factdrg, , ® 15,,)(#), we will again use the intertwining property
(4.5a) ofZ in the form of Equation(419). But as our choicermf,, is such tha€; := 1, ;,(E;)
is proportional tqu, the first order expansioh (4]10) already gives the reptatea of #Z as

0 f17n 0
L (1) == (M @m)(#) =id+u(@—a ) [ 0 0 fn|+oW?), (7.7)
fon O O

with fi  := rQn(H).

This should be compared with the form of the classical LaxringB.32) to whichL/ (u)
should reduce in a classical continuum limit analogoud {8)(6 The comparison suggests
that the operators; , should be constructed from exponential functions of theaye&sp; n of
15 (X) = A @(x,0) over light-like segment®;,", while thef; , should be proportional to operators
vi n Which represent discrete versions of the exponential fonstone finds in the off-diagonal
elements of((3.32). A more detailed comparison suggestsvhtake

Uop =€~ "b(Pl.n—Pz.n/\@)7 Von = et20d1n (7.8a)
Upn = " PPLrp20/V3) Vi = e PlaLntv3azn) (7.8b)
g = & 20P20/V3, Vo = e Platn—v3azn) (7.8¢)

We note that we do not have to takg strictly equal tov; . It is possible to multiply; , by
combinations of the; , which would disappear in the continuum limit singe, = ¢'(A). From
the point of view of the representation theory, such a maatibe will not change the affine
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weight of thef », but is, in this case, necessary for satisfying the Setedivas of% (;[(3)).
It is easy to check that defining
fin:= Tﬁlu-*lvhn (7.9)

’ q 1,Nn

allows us to achieve all the requirements above. Indeedl|av¥s that

finfirin = Afiyinfin, (7.10)

in which the first indices take values #x. The Serre relations are now trivial to check.

Terms of higher order in the expansion (7.7) can be strdyfwtardly calculated by evaluat-
ing Equation[(4.9) in the representatimgy, ® 7,. It is useful to organize the calculation as an
expansion in powers gi. In the case at hand, we easily find that the terms propoitiona’
vanish due to the relationis (7]10). In this way, remembeiongultiply by (7.5), we arrive at
the Lax matrix

Uin Hvin 0
La()=£() [ O  uzn Hvan |, (7.11)
Hvon O uo,n
where/ (u) is an unimportant scalar function.

It is also interesting to repeat this computation using #peesentationt, , given in Equa-

tion (3.35) (but thesamerqn). The resulting Lax matrix may be expressed in the form

-1 2.—1
u07n Huanvan H V07n
+/ _ 2.-1 -1
Ly ()= | —nu Von Usn Huonvin | - (7.12)
2,—1 -1
—Huznvon —HVy, Upn

We observe additional off-diagonal terms in this case. No&t these are perfectly consistent
with the expected classical continuum limit,j@&= ¢'(A?) is then of sub-leading order.

7.3 Thesl(3) affine Toda theory on the lattice

Inspired by the example of the Sinh-Gordon model, we will noak for a monodromy matrix

A (A) for the latticesl (3) affine Toda theory of the formi.(7.1). We have already deteechin
the local Lax matrix_;'. To determind.,;, we must repeat the analysis of Secfion 7.2 with the
representatiomqn of %_ replaced by a representatiag), of Z. . Itis easy to see that sending
Hi to —H; andF; to E; achieves this, giving; , := 1 ,(Ki) ande; , 1= 15, ,(Ei) as

)Y

ugp = (kyp )2/3 ) kg3 A

o U=k - g = (k) k) YR, (7.138)

€in=Tq Vin(uin) (7.13b)

kin

)
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We mention that we have commuted the operators in the expnefes thee; ,, dropping theg-
factor thereby obtained, for computational conveniendéxiAg similar labels to the operators
in L7, we now have two local Lax matrices:

+ +
Un  H+Vip 0

Ly (My) = 0 uzn u+vzn ; (7.14a)
H+V8:n 0 Ua:n
— -1 —
u1,n 0 H- VO,n
Ly (b) = | vy, gy, 0 : (7.14b)
0 u:lvin Uon

To be clear, the operatorf;,fn and vifn are constructed as in_(7.8), but with the substitutions
pi — pﬁn andqgj — qﬁn fori=1,2,e =4, n=1...,N (the local position and momentum
modes are now taken to satisfpﬁn,qum} = 2—]i5nmdj5g£/). We remark that one can check
(7.14Db) by applying the anti-automorphigfrto (7.144), while simultaneously considering the
slight differences betweerg , and g .

The key observation to make now is that (A ) actually depends upon onlyN4+ 2 alge-
braically independent combinations of thil 8ariablespf,, andqf,. This is an easy conse-
guence of the following observations:

First, the operators which appear in the matrix elements hef product.£,(A) =
Ly (M- )L7 (14) can all be expressed in terms of the six operatpfs= kfnkfn, Yin= e;ifr{i
andzn = enji(fnfi)*l, wherei = 1,2. The operators; , andy; , commute with thezj , but
z1n does not commute witkp b Using this observation, one can show directly that thelatge
2, generated by the , yi n andzj n has no non-trivial central elements. This is an important
difference as compared with the case previously discuss8ddtion 6.4]1.

Note, on the other hand, that the algebra generated by thecrakments of the individual
factorsL,, (u—) andL;} (u+) contains a non-commutative subalgef¥awhich is generated by

1 -1

N1 =3 (K nfon) (ezn(kingon) ™) 5 Na="Flokdn(fon) H(etnkan(egn) ™) - (7.15)

It can be checked th&8, commutes with the algebrd,. We conclude that the monodromy
matrix does not depend on any function of the elemenf8,pfThis means thai# (A ) depends
only on @\ combinations formed out of the!\Boperatorspﬁn andqﬁn.

We may repeat this argument for the proqui;l(m)Lg(u,), i=1,...,N—1, of Lax ma-
trices associated td — 1 neighboring sites. It allows us to find anothéN2- 1) combinations
of the basic variables that the monodromy matvis(A ) does not depend upon. We conclude
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that.# (A ) depends on onlyM+ 2 independent variables.
Another way to explicitly identify a minimal set of operasofrom which all elements of
(M) can be constructed goes as follows: Insert the identityérfahm (gf) ~1gé to the right

of each factorL(A) in (Z1). We will choose the; andg,, to be the respective diagonal
matrices with elements

2 2 1 1 S O N A |
H(ugn) 3 (vip) ¥ (ugp) "3 (va) S (ugp) "3 (vin) S (ug) TS (vap) S
H(ugp) T3 (vig) S (ugn) S(vzp) T3 1, AN (ug )8 (vy ) T3 (up) S (vpp) S 1, (7:16)
: (uIn)+§ (VIn)ig(UZn)Jrg(V;:n)ig : (uin)+§(vin)+§(uz7n)+§(Vin)+§
This induces a gauge transformatigi(A) — L&(u) of the form
Lo (y) = 0 q3F,  aPutg, | (7.17a)
q+1/3ﬂ+tan 0 q—l/stan
Lo(po) = [ a3t g3, 0 , (7.17b)
0 qYucl,, gy,

1
Wheretffn = (gn)i

represented as

ui'n (81 )i tin = (g;r)ii_lui‘yn (gn )ii- The monodromy matrix# (A ) is then

A A) =gl ()T (k) - Dy (oD () ) 7 (7.18)
In this form, it is manifest that# (1) depends only upon theMvariablestf, i = 1,2, n =
1,...,N, € = +, together with the twq(g; )., i = 1,2. As in Sectiori 6.412, the price to pay

for making manifest the correct number of local degrees @édom is the presence of non-
ultralocal commutation relations: We cannot guaranteé thaand tf:m will commute with
each other unlegs —m| > 1.

7.4 Fermionicsl(2|1) affine Toda theory on the lattice

To discretize the fermionic fieldg. (), g1 (X) in a way that is compatible with our previous
fermion conventions, we introduce a set of operatgfsyg, € = +, satisfying the algebra

{4’574’5‘:} :Ov {4’57475‘11} :_sianm6££/7 {wrfvwﬁ;} =0. (719)
Defining pf := i [YS, Y5, we then have

[957 wr%’] - 5nm5££"~l’rfa [prfa 'ﬁr%/] - _5nm555"ﬁrf- (7-20)
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Finally, letpé, q§ be operators which satisfy

/ / 1 /
[pﬁm pim] =0, [pi&:naq‘im} = Edj OnmOee/, [qﬁmqim} =0. (7.21)

The operatorspg, Y will represent the discretized fermionic fielgs (x), ¢&(x), while g,
p;, will representgf and its conjugate momentum, respectively, at the lattitersi Out of
these operators, let us construct the following represientaf the Borel subalgebr&_ of
U(s1(212)):

Tgn(Ho) =ipg /b—py /2, fin = Tn(Fo) = —Tq *e ™ ir P /2, (7.22a)
Tgn(H1) = —2ipy /b, fi o= Tgn(F) = +14 " g P (7.22b)
Tyn(H2) =ipg /b+p /2. = Tg(R) = —1g e ™My q P /2, (7.22c)

As usual,1q = q— q~Ll. The signs in the above expressions for fliehave been chosen to
ensure consistency with the classical Lax matrix (3.38ag Serre relation§ (5.80) follow from
the observation that

[fO n’ fZ_L._n} gl ™ [fZ_L._m fZJJ gl 0, (723)
along with some manipulation of the left hand sidelof (5130@ note for later use that
(5 nfonlq = —1d Y2 22 g hn (7.24)
recalling that this is @-anticommutator by the conventions of Secfiod 5.1.

The corresponding Lax matrix is again defined gy, ) = (7o, ®s ) (#27) with 14,
as in [3.41). We will sketch the derivation (up to the usuale@vant scalar multiplier) of

L (1) = £ L3 (K, (7.25)

where
ly =qfn/? (e_”bpn+ E11+ €™ Epp+ qp“+/2|533> (7.26)

and

Eﬁ(u+) =id+py (E12e2bqn+qun+/2 + Eggefbqﬁ L,l_lﬁr + E31e*bqﬁ l,Uﬁ) qu”+/2
+ip2 gty tEpe P g P, (7.27)

Here as beforek;; denotes the & 3 matrix with 1 in positior(i, j) and O elsewhere. For clarity,
we will defer this analysis to the end of the section.
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Similar Lax matrices (with the roles of quantum and auxyligpaces exchanged) have been
presented without proof in [BaTs].

A similar analysis computes;, (u_) = L (u_)¢; from the representation

Tan(Ho) = —ipn /b+ Py /2, egpi=Tgn(Eo) = +1q e ™ g P /2, (7.284a)
Tgn(H1) = 2ipy, /b, &1 = Tgn(E1) = +14 7€ g Pn | (7.28b)
Tan(H2) = —ipn /b=y /2, e i=Tgn(Eo) = —Tg e ™ng P /2y, (7.28¢)

The signs in they, have been chosen for consistency with the classical Laxixn@i38h).
One can check that these signs do not affect the validityeBtrre relation$ (5.80). It is easy
to see now that, may be obtained from by merely changing the- labels to— labels:

by = Clp"i/2 (e—nbpg E11+€™Pn Epy+ qp5/2E33> . (7.29)

The story is somewhat more subtle tﬁr because of the signs associated with certain fermions
(for example inrg . ). The resultis

Ly (p) =id—p-tq /2 (E21e2bqr? q P /2 4 Egpe ™ i, + Epze ™ wr:)
+Hip—2q Y21 e P g P (7.30)

As before, this can be checked using the anti-automorpisamembering that its action on
graded tensor products is given in (5.6). The full Lax masifinally constructed as/,(A) =
L, (u—)Li (), as before. By repeating the discussion in Sectionsl6. 478 it is easy to
check that the resulting lattice model has the correct nummbe@egrees of freedom per site.

It is interesting to observe that the continuum lihit> O would suppress the terms in the
second line of (7.27): These terms would be of or@éa?) in the limit, sinceu, = ¢(4). In
this way, one recover§ (5.32). One may, however, combinértiieA — 0 with the classical
limit b — 0in such a way that;u? = &'(A). Assuming that = b? andp, =AMy, itis easy
to see that this combination of the classical and the contmlimits allows us to recover the
classical Lax matrix[(3.38a). What we observe here is direstalogous to the phenomenon
discussed in Sectidn 2.2.1 — the term in the second line_@fjorresponds to the contact
term produced in the classical limit.

The expression fok,} can be derived as follows: First, note that= (1%, ®s Tlafn)(qt) is
obtained by substituting= Ho ®sHz + H, ®sHo. To evaluatd (1) = (Teu, ®sTn) (Z7),
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we consider((419) in this representation. Substituting
= Z)Eab@)s I?a,ba Tl-6.7u+(Fi) = (—1)é’2 IJJ:lE—i,—i—l, T’é,m(Ki) = qu"cEcc (7.31)
a, C
and extractind=g, from each term, we arrive at

(-1 Pi(1-4as) & —i—1la—i—(~1)%28 L i 1p=
Ly (_1) pi (6a,3+5o,3) qm'afijrnfa,b _ q*m.b Ea,bfifn . (7.32)

Here, the indices, b,i are taken inZs, though we conventionally take b € {1,2,3}, i €
{0,1,2}. Them 4 are the diagonal entries of the matricgs,, (Hi), somp = (0,1,1), m =
(1,-1,0), mp = (—1,0,—1). This represents 27 equations in 9 unknowns (though they are
far from being independent) and can be used to recursivétylede the coefficients of the
expansiorf&b =Sl _(k) u+ in powers ofp, .

We commence the recursion by using the expansion (S.Bioﬂ'his giveslji(f}) = g and

[I(l]) = (-1 14T & j—1. More explicitly, the non- zerﬁ( ) are

1 1

E(Z,% = _qua:nv Ij:(L% = +qu1 n’ Eé% = _qu;:n' (7.33)
Substituting these results into the second order recursiations and noting that weight con-
siderations and the propertiesmf,,, force I:I(ZJ) [ da p+1, We obtain

E(l?% = [farnvffn}q 1 E(S?% = —1q [fImon] gl E(Z?% = [f;mfarn] (7-34)

At this point, we can significantly simplify our calculati®by using the properties of the repre-
sentationrg .. Indeed, the coefficient giy” in f+ was chosen so as to simplify (7134) as much

as possible. Because of thE(if3 andL _(2) > actuallyvanishand [Z.24) gives
I:(zzi = +iqY/21g te2am g, (7.35)

The third order recursion now glvel%3 = 2% = _(3) Moreover, the fourth order equations

with a=b = —i + 1 show that[,(%% commutes Wlth eaclﬁfn. Ifg% likewise commutes with

each Cartan representative (it has no affine weight), herecenay set it to a scalar multi-

ple of the identity: L _;(f% =10®)id. The above analysis immediately generalises, resulting

L) — I(3")_(r) wherer = 0,1, 2. The formula[{Z.27) fot, (u. ) follows easily from these

considerations (after dropping the tensor product symbols
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7.5 TheN = 2 Super Sine-Gordon model on the lattice

Let Y&, Y&, pt (with € = +) be matrices as in Section¥.4. These again represent tretis-
tion in the fermionic sector. As the super Sine-Gordon mbdslbosonic fieldgf withi=1,2,
we letpf,, qf , be operators which satisfy

/ 1
[pﬁmqim} = Zdj OnmOge- (7.36)

From these, we introduce the following operators:

hin=—i(pn—ip3,)/b, fin = —Tq v P92 gt g P /2, (7.37a)
hin=+i(pin+ir3n)/b, iy = —Tq b Ptz gt e /2, (7.37b)
hyn=+i(Pin—iP3n)/b, 5 = —Tq b Pz gt P /2, (7.37¢)
hgn=—i(P1n+iP2n)/b, i = — Ty e otz gt e /2, (7.37d)

This we will supplement witid;,” = o —pJ,/b. Itis not hard to check that setting,(Hi) :=

hﬁn, gn(F) == fifn andrg (D) := d/, " defines a representation of the Borel subalgeBraof

Uy (;[(2|2)). The Serre relation§ (5.1l0a) are obvious and the rest fallowediately from the

observation that the coefficient pf in thef." has been tuned to guarantee that

[ i finl g fitanl g1 =0 fori = 0,2, (7.38a)
[ 1 fi]q 1 fianl e =0 fori = 1,3. (7.38b)

As before, we shall define the Lax matrix by (1) = (Ta . ®sTg,)(Z7), whererg, ;. was
given in Equation[(3.83). It again factors as

Ly (k) = 6L (1), (7.39)
where (up to the usual irrelevant scalar multiple)
G = P12 (PinEyy + & PinEpy + & PinEgy - dPinEy) (7.40)
and

Ly () = id+py <E13§Un+ebqﬁ + Egolfy €% + Epauy &0 + E41‘I_/n+efba”+) q /2 (7.41)

—ip? ququpn+ [qfl/z (ElzequIn n E21e—2bqfn> _ g2 (E4362ibq;n n E34efZibq£n>} _
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Here, we have used the shorthapid= q;, +iqz . af = a7, —idz

To computel, (1-) = L (u-)¢;, we define a representation &, by 1, (Ei) =
Tl&n(Hi) = hi_,n and Tlan(D') d/~, where

i,n’

hon=+i(PLn—1P2n)/b, = 15 te P i2n P 2 (7.42a)

hin=—i(PLntipzn)/b, e;n = —Tq_le+b(ql-,n+'q2.,n)q_9n 2y (7.42b)

hyn=—1(P1Ln—1P2n)/b, eon = + 15 te P92l g 2 (7.42c)

— . _ . _ _ —b — I e

hgn=+i(prn+ipzn)/b, e5n=—Tq € (10Hi%0) g Pn /2yt (7.42d)
andd;,” = —%pn‘ +pyn/b. We then sety, (U-) = (Ta . ®sTgn)(# ) as usual. Explicitly, we
obtain

= on /2 (&P2Ey e gyt e By € Pe0Ey ) (7.43)

and

L-(u) =id—p~tq P /Z(Eglwn P 4 Epsi, €0 + Egplfyy € 2 + Eqalli —bqn> (7.44)
TPt g (Epn€™ 0 + Erge 2 ) — 72 (Eay€™20 1 Ege 2|

The full Lax matrix is again constructed &,(p—) = L, (u—)L{ (u3) and one may check that
the resulting lattice model has the correct number of degoédreedom per site. Taking the
classical continuum limit in the manner discussed in Se¢fid, we recover the classical Lax
matrices.

The calculations leading to these results are very simiahtse of the previous section.
In particular, the computation cbﬁ YabEab®s Lab is again based on convertirlg_(#.9) into
recursion relations for the coefﬁmentslq;b = Zk bu+ This time,L _éb = Oqp Yields

1 2 (3
EEL% - _quarn’ E(Z,% =+1q [fo nfa n]q 1 LS% = TQH‘CO n:f3 n]q 1, n} qb (7.45a)
E(l) — _T.fF 2) — 1 [f+ £+ ] Ij(s) —1 Hf+ £+ ] ] (7.45b)
137 41w 4,3_ al'i,n>'on] g+l 2.3 all™,n Ton q+1’3nq1’ .
()= ~tafin L=+t fings  Lop=Tal[fnfinlq s fanlqss  (7:450)
327 42w 172 — thal2m g 42 all'2n gt g+l .
1 2 3
I:(Z‘)l - _qu;m 3,4)1 = —1q [fS n7f2 n] qtls I:(lz)l = Tqu3 n7f2 n] gL f] n}q 1 (7.45d)

By Equation[(7.3B), the third order coefficients vanish drarest of the derivation proceeds in
an identical fashion to that of Sectibn17.4.
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8. Outlook

These examples illustrate our proposed scheme for theraotish of integrable lattice regu-
larizations. We expect that this scheme can be applied ¢ge lelasses of integrable quantum
field theories. The key ingredients are the light-cone rsgmtation and the realization that the
lattice Lax matriced ;[ (A) andL, (A), which describe parallel transport in the light-cone di-
rections, can be obtained from the universal R-matri#gesand %~ of certain quantum affine
(super)algebras by evaluating them in suitable represensa

What we have described here should of course be seen as yhe stestep towards the solu-
tion of the models in question. However, the relations weetdiscussed with the representation
theory of quantum affine (super)algebras will determineribet steps to a large extent. The
reader may in particular note that we have not yet defined@aeates analog of the dynamical
evolution law. However, within the framework of the quantinverse scattering method, there
are standard recipes for defining lattice Hamiltonians ftbenso-called fundamental R-matrix
R(A) which can be obtained from the universal R-matrix by chosirggsame representation
in auxiliary and quantum spaces. A variant of this constoucturns out to work for the class
of lattice models discussed in our paper. An object reptatie fundamental R-matrix can be
obtained from the universal R-matrix by choosing a certafimite-dimensional representation
in auxiliary space instead of the finite-dimensional repngationsrg, , used in this paper. The
monodromy matrices defined from these analogs of the funaiain@-matrices turn out to be
related to the Baxter Q-operators. They may furthermoredael @io construct natural lattice
Hamiltonians and discrete time-evolution operators. [Rerdase of the lattice Sinh-Gordon
model, we recover the generator of the discrete time ewiwdf [FV2] in this way, which was
obtained from the Q-operator of the lattice Sinh-Gordon ehad [ByTeZ]. We shall defer a
proper discussion of these topics to a forthcoming pubtoat
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Appendices

A. The Algebra of Screening Operators

The aim of this appendix is to briefly describe how to identifg quantum symmetry algebra
generated by the variossreening chargewhich we have constructed for our sigma models.
This follows from a variant of the standard treatment foresecing charges in the free field
description of conformal field theories (see [GR'*AS, Ch4]l1or example) and a simple al-
gorithm described in [BLZ3, App. A]. We outline the methodéas it is fundamental to our
constructions.

LetV; (x) denote a vertex operator for some collection of free bosbhne standard derivation
of the quantum symmetry generated by a given set of screepiagators

Qi = /dei (x) (A.1)

results in an action of operatofis ki on the vector space of screened vertex operatoing. isf
such a screened vertex operator, one identifiesth left-multiplication ofV by Q; andk; with
multiplication by thebraiding factorof V; (w) andV. The natural generalisation of this action
to tensor products of screened vertex operators gives daptéormulae:

Af)=fiel+k t@f,  Ak)=k®k. (A-2)

With the conventions of Sectidn 4.4.2, the braiding facforghek;-action may be determined
from the formula for a single boson:

g0 ;- gBO) . = gimaB/2 . Baly) . - 0¥ (X > V). (A.3)
Elementary computation then gives
kifj = O{_jlfj ki, (A.4)

whereqw j is the factor obtained from braiding (z) with Vj (w).

If we can identify the braiding factors as
@,j =, (A.5)

whereA is the Cartan matrix of some Lie algelrathen [A.4) suggests that tfieandk; define
a representation of the Borel subalgelfa of % (g) To prove this, it only remains to check
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the appropriate Serre relations. Before discussing metfardhis, let us first remark that we
have also found instances in which the braiding factors taeéorm

w,j=(-1)PPigh, (A.6)

in which Ais the Cartan matrix of a Lie superalgelrandp; € {0, 1} denotes the parity of the
corresponding simple root. This signals that we shouldaegab by the graded tensor product
®s of Sectior 5,11 in Equation_(Al.2). Repeating the above déamanow corrects the braiding
factors by a sign. The upshot is that Equation [A.6) revertsguation[(A.b), consistent with a
representation of the Borel subalgeta of the superalgebré, (g)

To verify the Serre relations in either case, we rewrite adidpicts ofn screening charges
Qi,,---,Qi, in terms of a fixed basis and then search for linear relatiebwden them. We may
then choose the basis elements for the vector space of gsosjenned by thQi,) - - Quyiy)
(o a permutation) to be defined by

Spizeein= | [+ [ dadbe -0 Vi () Vig O2) Vi 00). (A7)

X1>X2>++->Xn

That these elements really do constitute a basis is a siropkeguence of the braiding relations
(A.3).
As always, an example best illustrates the method. When2 andw j = i with A =

(f% ;g) the Cartan matrix of[(Z), we can express the product@f andQ in terms ofJ »
andlJ, 1 as follows:

QQ2= / dxedxe V1 (X1) V2 (X2) + / dxidxe V1 (X1) V2 (%2)

X1>X2 X1<X2
= J172 + // dx dx V1 (Xz) Vo (X]_) = J172 + q2 // dx dx Vo (X]_) V1 (Xz)
Xo<X1 X1>X2
=J12+ P21 (A.8)

The third equality uses the braiding relatiofs (A.3). Samyl, we can derive thaQ,Qq, =
Jo1+ q2J1 2. Basic linear algebra therefore allows us to conclude tragénericg, Q1Q2 and
Q2Q1 are not linearly reIateB This calculation therefore finds no Serre relations invggvi
these products of screening charges.

Of course, we can search for Serre relations involving gpheducts and for higher. The

3We use the term “generic” to mean thiashould not be a root of unity. In this case, we only reqafte 1,
but other similar computations end up excluding other robtmity.
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number of basis elements can be as larga!aso this quickly becomes tedious. However,
each calculation reduces to an exercise involving only pgations and linear algebra, hence
is easy to implement in a computer algebra package. Witr\, we were able to quickly
find all Serre relations witin < 7 for the quantum symmetries of the models considered here,
and determine which were algebraically independent. We hayproof that the relations found
are exhaustive (they should not be in at least one casehéysuffice to identify the quantum
symmetry as a quantum affine (super)algebra.

B. Quantum monodromy matrices from universal R-matrix

In this appendix, we present a proof of the assertions|(4nAd)4.4?2) following the arguments
in [BHK]. This assertion exhibits the monodromy matrix oétuantum Sinh-Gordon model
(with imaginaryb) as the universal R-matrix c# (E[(Z)) in a suitably chosen representation
THA® nar . We refer to Section 4.5.2 for further context.

To begin, it will be useful to consider

Py = (T @id)(Z7), (B.1)

which may be considered as a kind of universal monodromyimaﬁ’; can then be expressed
as a formal series@;A(F.) of matrices whose entries are monoinials formed out ofRhe
Rewriting the basic propertyid @A) (2 ") = %#{3%7, in terms of Z* and applyingr, ) ®
id®id leads to the non-trivial identity

‘@;A (Xi1+Xi2) = 5”; (Xi,z)y; (Xi1), (B.2)

whereX; 1, X; » are the generatod§ 1 := F®1andX; 2 := Ki_1® F. As the identity[(B.R) holds
in the sense of formal power series, it implies that

Py (Xig+Xi2) = 20, (Xi2) 20, (Xi1) (B.3)

will hold for any set of operatorX; 1, X » that satisfy the same relations ¥g;, X 2, namely
the Serre relation§ (4.82) and
Xi 2Xj.1 = Y X 1 2. (B.4)

The main idea is to compare the factorizatibn (B.3) with thetdrization of the path-ordered
exponential appearing in the definitidn (4.33):

3”exp</oRde+(x)> = @exp(/dexWWx)) 9exp<Ayde+(x)) : (B.5)
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In order to do this, let us consider the “partial” screenihgrges

1 y 1 R
Xi,lz W/O dXVi(X), Xi72: W/y dXVi(X)7 (BG)

which appear in the expansion of the factors on the right tsaahel of [B.5). It follows easily
from the braid relationd (Al3) that the operatatg, X; » satisfy the relations (Bl4). The Serre
relations[(4.1lc) are verified by means of the technique destin Appendix_A.

Considering the limiyy — 0, whereX; 1 ~ &(y), and using[(4.10), we observe that
_ y
P (Xi2) = |d+/0 dXW*(xA) + O(y2). (B.7)

As the identities[(B.I3) and(B.7) together uniquely chaggze the path-ordered exponential,
this allows us to conclude that

R
Pi, = @exp(/o dxvv+(x;/\>) , (B.8)

from which (4.41) follows easily.

We may similarly consider”,_, = (T4, ) ® id)(ﬁ*). Rewriting (id @A) (Z ™) = #13% 1
now leads to the identity

Poa(i+Yiz) =2, (Yi2) 7, (M), (B.9)
wherey; 1, Y; » are the generatol$ 1 := Ei ® K andY; » := 1® Ej. As before, it follows that
Py (Yia+Yiz) = 2, (Yi2) 7, (Yia) (B.10)
will hold for any set of operator¥; 1, Y » that satisfy the relations
Yi72Yj71 = q_A”ijlYLz. (B.11)

We note that the difference in the signs of the exponent ibthiling phases appearing in_(B.4)
and [B.11) is precisely accounted for by the different daéons of the integration contours that
appear in the definitions &fl . (A;) andM_(A_), respectively.
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