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MINIMUM VERTEX DEGREE CONDITIONS FOR LOOSE

HAMILTON CYCLES IN 3-UNIFORM HYPERGRAPHS

ENNO BUSS, HIÊ. P HÀN, AND MATHIAS SCHACHT

Abstract. We investigate minimum vertex degree conditions for 3-uniform

hypergraphs which ensure the existence of loose Hamilton cycles. A loose
Hamilton cycle is a spanning cycle in which consecutive edges intersect in a

single vertex. We prove that every 3-uniform n-vertex (n even) hypergraph H
with minimum vertex degree δ1(H) ≥

(
7
16

+ o(1)
) (n

2

)
contains a loose Hamil-

ton cycle. This bound is asymptotically best possible.

1. Introduction

We consider k-uniform hypergraphs H, that are pairs H = (V,E) with vertex

sets V = V (H) and edge sets E = E(H) ⊆
(
V
k

)
, where

(
V
k

)
denotes the family of

all k-element subsets of the set V . We often identify a hypergraph H with its edge
set, i.e., H ⊆

(
V
k

)
, and for an edge {v1, . . . , vk} ∈ H we often suppress the enclosing

braces and write v1 . . . vk ∈ H instead.
Given a k-uniform hypergraph H = (V,E) and a set S ∈

(
V
s

)
let deg(S) denote

the number of edges of H containing the set S and let δs(H) be the minimum
s-degree of H, i.e., the minimum of deg(S) over all s-element sets S ⊆ V . For
s = 1 the corresponding minimum degree δ1(H) is referred to as minimum vertex
degree whereas for s = k − 1 we call the corresponding minimum degree δk−1(H)
the minimum collective degree of H.

We study sufficient minimum degree conditions which enforce the existence of
spanning, so-called Hamilton cycles. A k-uniform hypergraph C is called an `-cycle
if there is a cyclic ordering of the vertices of C such that every edge consists of
k consecutive vertices, every vertex is contained in an edge and two consecutive
edges (where the ordering of the edges is inherited by the ordering of the vertices)
intersect in exactly ` vertices. For ` = 1 we call the cycle loose whereas the cycle is
called tight if ` = k−1. Naturally, we say that a k-uniform, n-vertex hypergraph H
contains a Hamilton `-cycle if there is a subhypergraph of H which forms an `-cycle
and which covers all vertices of H. Note that a Hamilton `-cycle contains exactly
n/(k − `) edges, implying that the number of vertices of H must be divisible by
(k − `) which we indicate by n ∈ (k − `)N.

Minimum collective degree conditions which ensure the existence of tight Hamil-
ton cycles were first studied in [6] and in [13, 14]. In particular, in [13, 14] Rödl,
Ruciński, and Szemerédi found asymptotically sharp bounds for this problem.
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Theorem 1. For every k ≥ 3 and γ > 0 there exists an n0 such that every k-
uniform hypergraph H = (V,E) on |V | = n ≥ n0 vertices with δk−1(H) ≥ (1/2+γ)n
contains a tight Hamilton cycle. �

The corresponding question for loose cycles was first studied by Kühn and Os-
thus. In [10] they proved an asymptotically sharp bound on the minimum collective
degree which ensures the existence of loose Hamilton cycles in 3-uniform hyper-
graphs. This result was generalised to higher uniformity by the last two authors [4]
and independently by Keevash, Kühn, Osthus and Mycroft in [7].

Theorem 2. For all integers k ≥ 3 and every γ > 0 there exists an n0 such that
every k-uniform hypergraph H = (V,E) on |V | = n ≥ n0 vertices with n ∈ (k−1)N
and δk−1(H) ≥ ( 1

2(k−1) + γ)n contains a loose Hamilton cycle. �

Indeed, in [4] asymptotically sharp bounds for Hamilton `-cycles for all ` < k/2
were obtained. Later this result was generalised to all 0 < ` < k by Kühn, Mycroft,
and Osthus [9]. These results are asymptotically best possible for all k and 0 <
` < k. Hence, asymptotically, the problem of finding Hamilton `-cycles in uniform
hypergraphs with large minimum collective degree is solved.

The focus of this paper are conditions on the minimum vertex degree which
ensure the existence of Hamilton cycles. For δ1(H) very few results on spanning
subhypergraph are known (see e.g. [3, 11]).

In this paper we give an asymptotically sharp bound on the minimum vertex
degree in 3-uniform hypergraphs which enforces the existence of loose Hamilton
cycles.

Theorem 3 (Main result). For all γ > 0 there exists an n0 such that the following
holds. Suppose H is a 3-uniform hypergraph on n > n0 with n ∈ 2N and

δ1(H) >

(
7

16
+ γ

)(
n

2

)
.

Then H contains a loose Hamilton cycle.

In the proof we apply the so-called absorbing technique. In [13] Rödl, Ruciński,
and Szemerédi introduced this elegant approach to tackle minimum degree problems
for spanning graphs and hypergraph. It reduces the problem of finding a spanning
substructure to the problem of finding a nearly spanning substructure and it was
further refined and applied in [14, 12, 15, 4, 3, 9].

As mentioned above, Theorem 3 is best possible up to the error constant γ as
seen by the following construction from [10].

Fact 4. For every n ∈ 2N there exists a 3-uniform hypergraph H3 = (V,E) on
|V | = n vertices with δ1(H3) ≥ 7

16

(
n
2

)
− O(n), which does not contain a loose

Hamilton cycle.

Proof. Consider the following 3-uniform hypergraph H3 = (V,E). Let A∪̇B = V
be a partition of V with |A| = n

4 −1 and let E be the set of all triplets from V with

at least one vertex in A. Clearly, δ1(H3) =
(|A|

2

)
+ |A|(|B| − 1) = 7

16

(
n
2

)
− O(n).

Now consider an arbitrary cycle in H3. Note that every vertex, in particular every
vertex from A, is contained in at most two edges of this cycle. Moreover, every edge
of the cycle must intersect A. Consequently, the cycle contains at most 2|A| < n/2
edges and, hence, cannot be a Hamilton cycle. �
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We note that the constructionH3 in Fact 4 satisfies δ2(H3) ≥ n/4−1 and indeed,
the same construction proves that the minimum collective degree condition given
in Theorem 2 is asymptotically best possible for the case k = 3.

This leads to the following conjecture for minimum vertex degree conditions
enforcing loose Hamilton cycles in k-uniform hypergraphs. Let k ≥ 3 and let Hk =
(V,E) be the k-uniform, n-vertex hypergraph on V = A∪̇B with |A| = n

2(k−1) − 1.

Let E consists of all k-sets intersecting A in at least one vertex. Then Hk does
not contain a loose Hamilton cycle and we believe that any k-uniform, n-vertex
hypergraph H which has minimum vertex degree δ1(H) ≥ δ1(Hk) + o(n2) contains
a loose Hamilton cycle. Indeed, Theorem 3 verifies this for the case k = 3.

2. Proof of the main result

The proof of Theorem 3 will be given in Section 2.3. It uses several auxiliary
lemmas which we introduce in Section 2.2. We start with an outline of the proof.

2.1. Outline of the proof. We will build the loose Hamilton cycle by connecting
loose paths. Such a path (with distinguished ends) is defined similarly to the loose
cycle. Formally, a 3-uniform hypergraph P is an loose path if there is an ordering
(v1, . . . , vt) of its vertices such that every edge consists of three consecutive vertices
and two consecutive edges intersect in exactly one vertex. The elements v1 and vt
are called the ends of P.

The first lemma, the Absorbing Lemma (Lemma 7), asserts that every 3-uniform
hypergraphs H = (V,E) with sufficiently large minimum vertex degree contains a
so-called absorbing loose path P, which has the following property: For every set
U ⊂ V \ V (P) with |U | ∈ 2N and |U | ≤ βn (for some appropriate 0 < β < γ) there
exists an loose path Q with the same ends as P, which covers precisely the vertices
V (P) ∪ U .

The Absorbing Lemma reduces the problem of finding a loose Hamilton cycle
to the simpler problem of finding an almost spanning loose cycle, which contains
the absorbing path P and covers at least (1 − β)n of the vertices. We approach
this simpler problem as follows. Let H′ be the induced subhypergraph H, which
we obtain after removing the vertices of the absorbing path P guaranteed by the
Absorbing Lemma. We remove from H′ a “small” set R of vertices, called reservoir
(see Lemma 6), which has the property that many loose paths can be connected to
one loose cycles by using the vertices of R only

Let H′′ be the remaining hypergraph after removing the vertices from R. We
will choose P and R small enough, so that δ1(H′′) ≥ ( 7

16 + o(1))|V (H′′)|. The
third auxiliary lemma, the Path-tiling Lemma (Lemma 10), asserts that all but
o(n) vertices of H′′ can be covered by a family of pairwise disjoint loose paths
and, moreover, the number of those paths will be constant (independent of n).
Consequently, we can connect those paths and P to form a loose cycle by using
exclusively vertices from R. This way we obtain a loose cycle in H, which covers
all but the o(n) left-over vertices from H′′ and some left-over vertices from R.
However, we will ensure that the number of those yet uncovered vertices will be
smaller than βn and, hence, we can appeal to the absorption property of P and
obtain a Hamilton cycle.

2.2. Auxiliary lemmas. In this section we introduce the technical lemmas needed
for the proof of the main theorem. The constants in some of them seem to be
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arbitrary. Indeed, the path-tiling lemma (Lemma 10) is the only one for which the
bound δ1(H) ≥

(
7
16 + o(1)

)
n is required. For the other lemmas we did not attempt

to optimise the constants.
We start with the connecting lemma which is used to connect several “short”

loose paths to a long one. Let H be a 3-uniform hypergraph and (ai, bi)i∈[k] a
system consisting of k mutually disjoint pairs of vertices. We say that a triple
system (xi, yi, zi)i∈[k] connects (ai, bi)i∈[k] if

•
∣∣⋃

i∈[k]{ai, bi, xi, yi, zi}
∣∣ = 5k, i.e. the pairs and triples are all disjoint,

• for all i ∈ [k] we have {ai, xi, yi}, {yi, zi, bi} ∈ H.

Suppose that a and b are ends of two different loose paths which do not contain
(x, y, z) then the connection (x, y, z) would join these two paths to one loose path.
The following lemma states that several paths can be connected, provided the
minimum vertex degree is sufficiently large.

Lemma 5 (Connecting lemma). For all γ > 0 there exists an n0 such that the
following holds. Suppose H is a 3-uniform hypergraph on n > n0 vertices which
satisfies δ1(H) ≥

(
1
4 + γ

) (
n
2

)
. Let k ≤ γn/12 and let (ai, bi)i∈[k] be a system

consisting of k mutually disjoint pairs of vertices. Then there is a system of triples
(xi, yi, zi)i∈[k] connecting (ai, bi)i∈[k].

Proof. Choose n0 = 12/γ and let H and the family (ai, bi)i∈[k] be as stated in the
lemma. We will find the triples (xi, yi, zi) to connect ai with bi, i ∈ [k] and it will
be clear from the construction that these triples are pairwise disjoint. Suppose,
for some j < k the triples (xi, yi, zi) with i < j are constructed so far and for
(a, b) = (aj , bj) we want to find a triple (x, y, z) to connect a and b.

Let U = V \
⋃
i∈[j−1]{ai, bi, xi, yi, zi} ∪ {a, b} and for a vertex v ∈ V let degU (v)

be the degree of v induced in U , i.e. the degree of v in H[U ]. Let NU (a, u) = {u′ ∈
U : uu′a ∈ H ∩

(
U
3

)
} and Ya = {u ∈ U : |NU (a, u)| ≥ 2}. Similarly, define NU (b, u)

and Yb. We first assume that |NU (a, u)| ≤ |U |/2 for all u ∈ U . Then we would
obtain(

1

4
+ γ

)(
n

2

)
−5k(n−1) ≤ degU (a) =

1

2

∑
v∈V ′

|Da(v)| ≤ 1

2

(
|Ya|
|U |
2

+ (|U | − |Ya|)
)

hence |Ya| > |U |/2, since k = γn/12. If there is a vertex z ∈ U such that
|NU (b, z)| > |U |/2 then Ya ∩ NU (b, z) is non-empty. Picking an element y ∈
Ya ∩ NU (b, z) and x ∈ NU (a, y) \ {z} we obtain the triple (x, y, z) connecting a
and b. Hence, we can assume that all u ∈ U satisfy |NU (b, u)| ≤ |U |/2 and re-
peating the calculation from above we obtain |Yb| > |U |/2. Now, we deduce that
Ya ∩ Yb is non-empty and an element y ∈ Ya ∩ Yb together with x ∈ NU (a, y) and
z ∈ NU (b, y) \ {x} again yields a connecting triple (x, y, z).

We can now assume that there are vertices u, v ∈ U such that |NU (a, u)| > |U |/2
and |NU (b, v)| > |U |/2. Otherwise, we can apply the argument from above, possibly
with the rôles of a and b changed, to obtain a connecting triple. To finish the
proof, observe that for the case u = v, picking any elements x ∈ NU (a, u) and
z ∈ NU (b, v) \ {x} yields a connecting triple. Lastly, for the case u 6= v, we know
that NU (a, u) ∩ NU (b, v) 6= ∅ and any element y ∈ NU (a, u) ∩ NU (b, v) together
with x = u and z = v yields a connecting triple. �
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When connecting several paths to a long one we want to make sure that the
vertices used for the connection all come from a small set, called reservoir, which
is disjoint to the paths. The existence of such a set is guaranteed by the following.

Lemma 6 (Reservoir lemma). For all 1/4 > γ > 0 there exists an n0 such that for
every 3-uniform hypergraph H on n > n0 vertices satisfying δ1(H) ≥

(
1
4 + γ

) (
n
2

)
there is a set R of size at most γn with the following property: For every system
(ai, bi)i∈[k] consisting of k ≤ γ3n/12 mutually disjoint pairs of vertices from V there
is a triple system connecting (ai, bi)i∈[k] which, moreover, contains vertices from R
only.

Proof. For given 1/4 > γ > 0 let n0 be sufficiently large. Let H be as stated in
the lemma and v ∈ V (H). Let L(v) be the auxiliary graph defined on the vertex
set V (H) \ {v}, having the edges e ∈ L if e ∪ {v} ∈ H. Note that L contains
degH(v) edges. We decompose the edge set of L into i0 ≤ 2n pairwise edge disjoint
matchings which we denote by M1, . . . ,Mi0 . Such a decomposition is easily seen
to exist by considering another auxiliary graph G on the vertex set E(L) in which
e, e′ ∈ E(L) are connected if and only if e and e′ have nonempty intersection. Since
the maximum degree of G is at most 2(n− 1) the graph G has a proper colouring
using i0 ≤ 2n colours.

We choose a vertex set Vp from V by including each vertex u ∈ V into Vp with

probability p = γ − γ3 independently. For every i let Xi = |Mi ∩
(
Vp

2

)
| denote

the number of edges e ∈ Mi contained in Vp. Then Xi is a binomially distributed
random variable with parameters |Mi| and p2. Using the following Chernoff bounds
for t > 0 (see e.g. [5], Theorem 2.1):

P [Bin(m, ζ) ≥ mζ + t] < e−t
2/(2ζm+t/3) (1)

P [Bin(m, ζ) ≤ mζ − t] < e−t
2/(2ζm) (2)

we see that with probability at most 2n−2 there exists an index i ∈ [n0] such
that Xi ≤ |Mi|p2 − (3n lnn)1/2. Hence, with probability (1− o(1)) the opposite is
satisfied for all vertices simultaneously. Since

∑
i∈[i0] |Mi| = degH(v) we obtain

degVp
(v) =

∑
i∈[i0]

Xi ≥ p2 degH(v)− 2n(3n lnn)1/2 for all v ∈ V. (3)

Moreover, using the Chernoff bounds (1) and (2) we see that

γ
n

2
≤ |Vp| ≤ pn+ (3n ln 20)1/2 ≤ γ − 2k (4)

with probability at least 9/10. Hence, with positive probability we obtain a set R
satisfying (3) and (4).

Let (ai, bi)i∈[k] be given and let S =
⋃
i∈[k]{ai, bi}. Then we have |R ∪ S| ≤ γn

and

degR∪S(v) ≥ degR(v) ≥
(

1

4
+ γ2

)(
γn

2

)
≥
(

1

4
+ γ2

)(
|R ∪ S|

2

)
for all v ∈ V . Thus, we can appeal to the Connecting Lemma (Lemma 5) to obtain
a triple system which connects (ai, bi)i∈[k] and which consists of vertices from R
only. �
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Next, we introduce the Absorbing Lemma which asserts the existence of a “short”
but powerful loose path P which can absorb any small set U ⊂ V \ V (P). In the

following note that
(

5
8

)2
< 7

16 .

Lemma 7 (Absorbing lemma). For all γ > 0 there exist β > 0 and n0 such that
the following holds. Let H be a 3-uniform hypergraph on n > n0 vertices which

satisfies δ1(H) ≥
(

5
8 + γ

)2 (n
2

)
. Then there is a loose path P with |V (P)| ≤ γ7n

such that for all subsets U ⊂ V \V (P) of size at most βn and |U | ∈ 2N there exists
a loose path Q ⊂ H with V (Q) = V (P) ∪ U and P and Q have exactly the same
ends.

The principle used in the proof of Lemma 7 goes back to Rödl, Ruciński, and
Szemerédi. They introduced the concept of “absorption”, which, roughly speaking,
stands for a local extension of a given structure, which preserves the global struc-
ture. In our context of loose cycle we say that a 7-tuple (v1, . . . , v7) absorbs the
two vertices x, y ∈ V if

• v1v2v3, v3v4v5, v5v6v7 ∈ H and
• v2xv4, v4yv6 ∈ H

are guaranteed. In particular, (v1, . . . , v7) and (v1, v3, v2, x, v4, y, v6, v5, v7) both
form loose paths which, moreover, have the same ends.

The proof of Lemma 7 relies on the following result which states that for each
pair of vertices there are many 7-tuples absorbing this pair, provided the minimum
vertex degree of H is sufficiently large.

Proposition 8. For all γ > 0 there exists an n0 such that the following holds.
Suppose H is a 3-uniform hypergraph on n > n0 vertices which satisfies δ1(H) ≥(

5
8 + γ

)2 (n
2

)
, then for every pair of vertices x, y ∈ V the number of 7-tuples absorb-

ing x and y is at least (γn)7/8.

Proof. For given γ > 0 we choose n0 = 168/γ7. First we show the following.

Claim 9. For every pair x, y ∈ V (H) of vertices there exists a set D = D(x, y) ⊂ V
of size |D| = γn such that one of the following holds:

• deg(x, d) ≥ γn and deg(y, d) ≥ 3
8n for all d ∈ D or

• deg(y, d) ≥ γn and deg(x, d) ≥ 3
8n for all d ∈ D.

Proof of Claim 9. By assuming the contrary there exists a pair x, y such that no
set D = D(x, y) fulfills Clam 9.

Let A(z) = {d ∈ V : deg(z, d) < γn} and let a = |A(x)|/n and b = |A(y)|/n.
Without loss of generality we assume that a ≤ b. Note that there are at most
(a+ γ)n vertices v ∈ V \A(y) satisfying deg(y, v) ≥ 3

8n. Hence, we obtain((
5

8

)2

+
9γ

8

)
n2 ≤ 2 deg(y) ≤ 3n2

8
(1− b) + (a+ γ)

(
5

8
− b
)
n2 + 2bγn2

≤ n2

8
(5a− 3b− 8ab) +

(3 + 8γ)n2

8
,

where in the last inequality we use the fact that b ≤ 3/8 which is a direct con-
sequence of the condition on δ1(H). Note that this upper bound on deg(y) as a
function of a and b is decreasing in b, thus, with 0 ≤ a ≤ b we derive that the max-
imum is obtained for a pair a = b. It is easily seen that this maximum is attained
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by a = 1
8 , for which we would obtain

deg(y) ≤

((
5

8

)2

+ γ

)
n2,

a contradiction. �

We continue the proof of Proposition 8. For a given pair x, y ∈ V we will select
the tuple v1, . . . , v7 such that the edges

• v1v2v3, v3v4v5, v5v6v7 ∈ H and
• v2xv4, v4yv6 ∈ H

are guaranteed. Note that (v1, . . . , v7) forms a loose path with the ends v1 and
v7 and (v1, v3, v2, x, v4, y, v6, v5, v7) also forms a loose path with the same ends,
showing that (v1, . . . , v7) is indeed an absorbing tuple for the pair a, b. Moreover,
we will show that there are at least γn/4 possibilities to select each of the vi, giving
rise to the number of absorbing tuples stated in the proposition.

First, we want to choose v4 and let D(x, y) be a set with the properties stated
in Claim 9. We choose v4 ∈ D(x, y) and without loss of generality assume that
|N(y, v4)| ≥ 3

8n for all the choices. We choose v2 ∈ N(x, v4) for which there are
γn choices. This gives rise to to hyperegde v2xv4 ∈ H. Applying Claim 9 to v2

and v4 we obtain a set D(v2, v4) with the properties stated in Claim 9 and we
choose v3 ∈ D(v2, v4). We choose v1 ∈ N(v2, v3) to obtain the edge v1v2v3 ∈ H.
Note that |N(v2, v3)| ≥ γn. Next, we choose v5 from N(v3, v4) which has size
|N(v3, v4)| ≥ γn. This gives rise to the edge v3v4v5 ∈ H. We choose v6 from
N(y, v4) with the additional property that deg(v5, v6) ≥ γn/2. Hence, we obtain
v4yv6 ∈ H and we claim that there are at least γn/2 such choices. Otherwise at
least (|N(y, v4)| − γn/2) vertices v ∈ V satisfy deg(v5, v) < γn/2, hence

deg(v5) <
3γ

16
n2 +

(
( 5

8 + γ
2 )n

2

)
< δ(H),

which is a contradiction. Lastly choose v7 ∈ N(v5, v6) we obtain the edge v5v6v7 ∈
H which complete the absorbing tuple (v1, . . . , v7).

The number of choices for v1, . . . , v7 is at least (γn)7/4 and there are at most(
7
2

)
n6 choices such that vi = vj for some i 6= j. Hence, we obtain at least (γn)7/8

absorbing 7-tuples for the pair x, y. �

With the Proposition 8 and the connecting lemma (Lemma 5) at hand the proof
of the absorbing lemma follows a scheme which can be found in [13, 4]. We choose
a family F of 7-tuples with probability p = γ7n−6/448. Then, it is easily shown
that with non-zero probability the family F satisfies

• |F| ≤ 3pn,
• for all pairs x, y ∈ V there are at least p × (γn)7/16 tuples in F which

absorbs x, y
• the number of intersecting 7-tuples in F is at most p× (γn)7/32

By deleting the intersecting 7-tuples and connecting the remaining 7-tuples we
obtain the desired absorbing path which can absorb p × (γn)7/32 = β pairs of
vertices, proving the lemma. To avoid unnecessary calculations we omit the details
here. �

The next lemma is the main obstacle when proving Theorem 3. It asserts that
the vertex set of a 3-uniform hypergraph H with minimum vertex degree δ1(H) ≥
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7
16 + o(1)

) (
n
2

)
can be almost perfectly covered by a constant number of vertex

disjoint loose paths.

Lemma 10 (Path-tiling lemma). For all γ > 0 and α > 0 there exist integers p and
n0 such that for n > n0 the following holds. Suppose H is a 3-uniform hypergraph
on n vertices with minimum vertex degree

δ1(H) ≥
(

7

16
+ γ

)(
n

2

)
.

Then there is a family of p disjoint loose paths in H which covers all but at most
αn vertices of H.

The proof of Lemma 10 uses the weak regularity lemma for hypergraphs and will
be given in Section 3.

2.3. Proof of the main theorem. In this section we give the proof of the main
result, Theorem 3. The proof is based on the three auxiliary lemmas introduced in
Section 2.2 and follows the outline given in Section 2.1.

Proof of Theorem 3. For given γ > 0 we apply the Absorbing Lemma (Lemma 7)
with γ/8 to obtain β > 0 and n7. Next we apply the Reservoir Lemma (Lemma 6)
for γ′ = min{β/3, γ/8} to obtain n6 which is n0 of Lemma 6. Finally, we apply the
Path-tiling Lemma (Lemma 10) with γ/2 and α = β/3 to obtain p and n10. For n0

of the theorem we choose n0 = max{n7, 2n6, 2n10, 24(p+ 1)(γ′)−3}.
Now let n ≥ n0, n ∈ 2N and let H = (V,E) be a 3-uniform hypergraph on n

vertices with

δ1(H) ≥
(

7

16
+ γ

)(
n

2

)
.

Let P0 ⊂ H be the absorbing path guaranteed by Lemma 7. Let a0 and b0 be the
ends of P0 and note that

|V (P0)| ≤ γ3
7n < γn/8 .

Moreover, the path P0 has the absorption property, i.e., for all U ⊂ V \V (P0) with
|U | ≤ βn and |U | ∈ 2N

∃ a loose path Q ⊂ H s.t. V (Q) = V (P0) ∪ U and Q has the ends a0 and b0 . (5)

Let V ′ = (V \ V (P0)) ∪ {a0, b0} and let H′ = H[V ′] = (V ′, E(H) ∩
(
V ′

3

)
) be the

induced subhypergraph of H on V ′. Note that δ1(H′) ≥ ( 7
16 + 3

4γ)
(
n
2

)
.

Due to Lemma 6 we can choose a set R ⊂ V ′ of size at most γ′|V ′| ≤ γ′n such
that for every systemconsisting of at most (γ′)3|V ′|/12 mutually disjoint pairs of
vertices from V can be connected using vertices from R only.

Set V ′′ = V \ (V (P0) ∪ R) and let H′′ = H[V ′′] be the induced subhypergraph
of H on V ′′. Clearly,

δ(H′′) ≥
(

7

16
+
γ

2

)(
n

2

)
Consequently, Lemma 10 applied toH′′ (with γ10 and α) yields a loose path tiling of
H′′ which covers all but at most α|V ′′| ≤ αn vertices from V ′′ and which consists of
at most p paths. We denote the set of the uncovered vertices in V ′′ by T . Further,
let P1,P2 . . . ,Pq with q ≤ p denote the paths of the tiling. By applying the reservoir
lemma appropriately we connect the loose paths P0,P1, . . . ,Pq to one loose cycle
C ⊂ H.
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Let U = V \ V (C) be the set of vertices not covered by the cycle C. Since
U ⊆ R ∪ T we have |U | ≤ (α + γ6)n ≤ βn. Moreover, since C is a loose cycle and
n ∈ 2N we have |U | ∈ 2N. Thus, using the absorption property of P0 (see (5)) we
can replace the subpath P0 in C by a path Q (since P0 and Q have the same ends)
and since V (Q) = V (P0)∪U the resulting cycle is a loose Hamilton cycle of H. �

3. Proof of the Path-tiling Lemma

In this section we give the proof of the Path-tiling Lemma, Lemma 10. The
Lemma 10 will be derived from the following lemma. Let M be the 3-uniform
hypergraph defined on the vertex set [8] with the edges 123, 345, 456, 678 ∈M. We
will show that the condition δ1(H) ≥

(
7
16 + o(1)

) (
n
2

)
will ensure an almost perfect

M-tiling of H.

Lemma 11. For all γ > 0 and α > 0 there exists n0 such that the following holds.
Suppose H is a 3-uniform hypergraph on n > n0 vertices with minimum vertex
degree

δ1(H) ≥
(

7

16
+ γ

)(
n

2

)
.

Then there is an M-tiling of H which covers all but at most αn vertices of H.

The proof of Lemma 11 requires the regularity lemma which we introduce in
Section 3.1. Sections 3.2 and 3.3 are devoted to the proof of Lemma 11 and finally,
in Section 3.4, we deduce Lemma 10 from Lemma 11 by again making use of the
regularity lemma.

3.1. The weak regularity lemma and the cluster hypergraph. In this section
we introduce the so-called weak hypergraph regularity lemma, a straightforward
extension of Szemerédi’s regularity lemma for graphs [17]. Since we only apply the
lemma to 3-uniform hypergraphs we will restrict the introduction to this case.

Let H = (V,E) be a 3-uniform hypergraph and let A1, A2, A3 be mutually dis-
joint non-empty subsets of V . We define e(A1, A2, A3) to be the number of edges
with one vertex in each Ai, i ∈ [3], and the density of H with respect to (A1, A2, A3)
as

d(A1, A2, A3) =
eH(A1, A2, A3)

|A1||A2||A3|
.

We say the triple (V1, V2, V3) of mutually disjoint subsets V1, V2, V3 ⊆ V is (ε, d)-
regular, for constants ε > 0 and d ≥ 0, if

|d(A1, A2, A3)− d| ≤ ε

for all triple of subsets Ai ⊂ Vi, i ∈ [3], satisfying |Ai| ≥ ε|Vi|. We say (V1, V2, V3) is
ε-regular if it is (ε, d)-regular for some d ≥ 0. It is immediate from the definition
that an (ε, d)-regular triple (V1, V2, V3) is (ε′, d)-regular for all ε′ > ε and if V ′i ⊂ Vi
has size |V ′i | ≥ c|Vi|, then (V ′1 , V

′
2 , V

′
3) is (ε/c, d)-regular.

Next we show that regular triples can be almost perfectly covered by copies of
M provided the sizes of the partition classes obey certain restriction. First note
that M is a subhypergraph of a tight path. The latter is defined similarly as loose
paths, i.e. there is an ordering (v1, . . . , vt) of the vertices such that every edge
consists of three consecutive vertices and two consecutive edges intersect in exactly
two vertices.
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Proposition 12. Suppose H is a 3-uniform hypergraph on m vertices with at least
dm3 edges. Then there is a tight path in H which covers at least 2(dm+1) vertices.
In particular, if H is 3-partite with the partition classes V1, V2, V3 and 2dm > 7
then for each i ∈ [3] there is a copy of M in H which intersects Vi in exactly two
vertices and the other partition classes in three vertices.

Proof. Let H′ ⊂ H be the largest subhypergraph such that degH′(u, v) ≥ 2dm
or deg(u, v) = 0 for all pairs of vertices u, v ∈ V . Note that H′ is not empty
since otherwise H would contain at most

(
m
2

)
× 2dm < dm3 edges. Hence we can

pick a maximal non-empty tight path (v1, v2, . . . , vt) in H′. Since the pair v1, v2

is contained in an edge in H′ it is contained in 2dm edges and since the path was
chosen to be maximal all these vertices must lie in the path. Hence, the chosen
tight path contains at least 2(dm+ 1) vertices. This completes the first part of the
proof.

For the second part, note that there is only one way to embed a tight path into
a 3-partite 3-uniform hypergraph once the two starting vertices are known. Since
M is a subhypergraph of the tight path on eight vertices we obtain the second part
of the statement by possibly deleting up to two starting vertices. �

Proposition 13. Suppose the triple (V1, V2, V3) is (ε, d)-regular with d ≥ 2ε and
suppose the sizes of the partition classes satisfy

m = |V1| ≥ |V2| ≥ |V3| with 5|V1| ≤ 3(|V2|+ |V3|) (6)

and 2ε2m > 7. Then there is an M-tiling of (V1, V2, V3) leaving at most 3εm
vertices uncovered.

Proof. Note that if we take a copy of M intersecting Vi, i ∈ [3] in exactly two
vertices then this copy intersects the other partition classes in exactly three vertices.

We define

ti = (1− ε)1

8
(3|Vj |+ 3|Vk| − 5|Vi|) where i, j, k ∈ [3] are distinct.

Due to our assumption all ti are non-negative and we choose ti copies of M inter-
secting Vi in exactly two vertices. This would leave |Vi| − (2ti + 3tj + 3tk) = ε|Vi|
vertices in Vi uncovered, hence at most 3εm in total.

To complete the proof we exhibit a copy of M in all three possible types in
the remaining hypergraph, hence showing that the choices of the copies above are
indeed possible. To this end, from the remaining vertices of each partition class Vi
take a subset Ui, i ∈ [3] of size ε|Vi|. Due to the regularity of the triple (V1, V2, V3)
we have e(U1, U2, U3) ≥ (d− ε)(εm)3. Hence, by Proposition 12 there is a copy of
M (of each type) in (U1, U2, U3). �

The connection of regular partitions and dense hypergraphs is established by
regularity lemmas. The version introduced here is a straightforward generalisation
of the original regularity lemma to hypergraphs (see, e.g., [1, 2, 16]).

Theorem 14. For all t0 ≥ 0 and ε > 0, there exist T0 = T0(t0, ε) and n0 = n0(t0, ε)
so that for every 3-uniform hypergraph H = (V,E) on n ≥ n0 vertices, there exists
a partition V = V0∪̇V1∪̇ . . . ∪̇Vt such that

(i ) t0 ≤ t ≤ T0,
(ii ) |V1| = |V2| = · · · = |Vt| and |V0| ≤ εn,
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(iii ) for all but at most ε
(
t
3

)
sets {i1, . . . , i3} ∈

(
[t]
3

)
, the triple (Vi1 , Vi2 , Vi3) is

ε-regular. �

A partition as given in Theorem 14 is called an (ε, t)-regular partition of H.
For an (ε, t)-regular partition of H and d ≥ 0 we refer to Q = (Vi)i∈[t] as the family
of clusters (note that the exceptional vertex set V0 is excluded) and define the

cluster hypergraph K = K(ε, d,Q) with vertex set [t] and {i1, i2, i3} ∈
(

[t]
3

)
being

an edge if and only if (Vi1 , Vi2 , Vi3) is ε-regular and d(Vi1 , Vi2 , Vi3) ≥ d.
In the following we show that the cluster hypergraph almost inherits the mini-

mum vertex degree of the original hypergraph. The proof which we give for com-
pleteness is standard and can be found e.g. in [8] for the case of graphs.

Proposition 15. For all γ > d > ε > 0 and all t0 there exist T0 and n0 such that
the following holds. Suppose H is a 3-uniform hypergraph on n > n0 vertices which
has vertex minimum degree δ1(H) ≥

(
7
16 + γ

) (
n
2

)
. Then there exists an (ε, t)-regular

partition Q with t0 < t < T0 such that the cluster hypergraph K = K(ε, d,Q) has
minimum vertex degree δ1(K) ≥

(
7
16 + γ − ε− d

) (
t
2

)
.

Proof. Let γ > d > ε and t0 be given. We apply the regularity lemma with
ε′ = ε2/144 and t′0 = max{2t0, 10/ε} to obtain T ′0 and n′0. We set T0 = T ′0 and
n0 = n′0. Let H be a 3-uniform hypergraph on n > n0 vertices which satisfies
δ(H) ≥ (7/16 + γ)

(
n
2

)
. By applying the regularity lemma we obtain an (ε′, t′)-

regular partition V ′0 ∪̇V1∪̇ . . . ∪̇Vt′ of V and let m = |V1| = (1 − ε′)n/t′ denote the
size of the partition classes.

Let I = {i ∈ [t′] : Vi is contained in more than ε
(
t′

2

)
/8 non ε′-regular triples}

and observe that |I| < 8ε′t′/ε due to the property (iii) of Theorem 14. Set V0 =
V ′0 ∪

⋃
i∈I Vi and let J = [t′]\I and t = |J |. We now claim that V0 and Q = (Vj)j∈J

is the desired partition. Indeed, we have T0 > t′ ≥ t > t′(1 − 8ε′/ε) ≥ t0 and
|V0| < ε′n+ 8ε′n/ε ≤ εn/16. The property (iii) follows directly from Theorem 14.
For a contradiction, assume now that degK(Vj) < ( 7

16 + γ − ε − d)
(
t
2

)
for some

j ∈ J . Let xj denote the number of edges which intersect Vj in exactly one vertex
and each other Vi, i ∈ J , in at most one vertex. Then, the assumption yields

xj ≤ |Vj |
[(

7

16
+ γ − ε− d

)(
t

2

)
m2 +

ε

8

(
t′

2

)
m2 +

ε

16
n2 + d

(
t

2

)
m2

]
≤ |Vj |

n2

2

(
7

16
+ γ − ε

2

)
On the other hand, from the minimum degree of H we obtain

xj ≥ |Vj |
(

7

16
+ γ

)(
n

2

)
− 2

(
|Vj |
2

)
n− 3

(
|Vj |
3

)
≥ |Vj |

(
n

2

)(
7

16
+ γ − 4

t′

)
a contradiction. �

3.2. Fractional hom(M)-tiling. To obtain a largeM-tiling in the hypergraph H,
we consider weighted homomorphisms from M into the cluster hypergraph K. To
this purpose, we define the following.

Definition 16. A function h : V (L)×E(L)→ [0, 1] is called a fractional hom(M)-
tiling of L if
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(1) h(v, e) 6= 0⇒ v ∈ e,
(2) h(v) =

∑
e∈E(L) h(v, e) ≤ 1,

(3) for each e ∈ E(L) there exists a labeling e = uvw such that

h(u, e) = h(v, e) ≥ h(w, e) ≥ 2

3
h(u, e)

By hmin we denote the smallest non-zero value of h(v, e) (and we set hmin = ∞ if
h ≡ 0) and the sum over all values is the weight w(h) of h

w(h) =
∑

(v,e)∈V (L)×E(L)

h(v, e) .

The allowed values of h are based on the homomorphisms from M to a single
edge, hence the term hom(M)-tiling. Given one such homomorphism, assign each
vertex in the image the number of vertices from M mapped to it. In fact, for any
such homomorphism the preimage of one vertex has size two, while the preimages
of the other two vertices has size three. Consequently, for any family of homomor-
phisms of M into a single edge the smallest and the largest class of preimages can
differ by a factor of 2/3 at most and this observation is the reason for condition (3)
in Definition 16. We also note the following.

Fact 17. There is a fractional hom(M)-tiling h of the hypergraph M which has
hmin ≥ 1/3 and weight w(h) = 8.

Proof. Let x1, x2, w1, y1, y2, w2, z1, and z2 be the vertices of M and let x1x2w1,
w1y1y2, y1y2w2, and w2z1z2 be the edges ofM. We shall make use of two different
distributions of vertex weights per edge. In fact, on the edges x1x2w1 and w2z1z2

we assign the vertex weights (1, 1, 2/3), where the weight 2/3 is assigned to w1

and w2. The vertex weights for edges w1y1y2 and y1y2w2 are (1/2, 1/2, 1/3), where
w1 and w2 get the weight 1/3. It is easy to see that those vertex weights give rise
to a hom(M)-tiling h on M with hmin = 1/3 and w(h) = 8. �

The notion hom(M)-tiling is also motivated by the following proposition which
shows that such a fractional hom(M)-tiling in a cluster hypergraph can be “con-
verted” to an integer M-tiling in the original hypergraph.

Proposition 18. Let Q be a (ε, t)-regular partition of a 3-uniform, n-vertex hy-
pergraph H with n > 21ε−2 and suppose K = K(ε, 6ε,Q) is a cluster hypergraph.
Furthermore, let h : V (K) × E(K) → [0, 1] be a fractional hom(M)-tiling of K
with hmin ≥ 1/3. Then there exists an M-tiling of H which covers all but at most
(w(h)− 27tε)|V1| vertices.

Proof. We restrict our consideration to the subhypergraph K′ ⊂ K consisting of
the hyperedges with positive weight, i.e. e = abc ∈ K with h(a), h(b), h(c) ≥ hmin.
For each a ∈ V (K′) let Va be the corresponding partition class in Q. Due to the
property (2) of Definition 16 we can subdivide Va (arbitrarily) into a collection of
pairwise disjoint sets (Uea)a∈e∈K of size |Uea | = h(a, e)|Va|. Note that every edge
e = abc ∈ K corresponds to the (ε, 6ε)-regular triplet (Va, Vb, Vc). Hence we obtain
from the definition of regularity and hmin ≥ 1/3 that the triplet (Uea , U

e
b , U

e
c ) is

(3ε, 6ε)-regular. From the property (3) Definition 16 and Proposition 13 we obtain
anM-tiling of (Uea , U

e
b , U

e
c ) incorporating at least

(
h(a, e)+h(b, e)+h(c, e)−9ε

)
|Va|
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vertices. Applying this to all hyperedges of K′ we obtain anM-tiling incorporating
at least [ ∑

abc=e∈K′

h(a, e) + h(b, e) + h(c, e)− 9ε

]
|Va| ≥

[
w(h)− 9|K′|ε

]
|Va|

vertices. Noting that |K′| ≤ 3t because of hmin ≥ 1/3 we obtain the proposition. �

Owing to Proposition 18, we are given a tight connection between fractional
hom(M)-tilings of the cluster hypergraph K andM-tilings inH. A vertex i ∈ V (K)
corresponds to a class of vertices Vi in the regular partition of H. The total vertex
weight h(i) will translate to the proportion of vertices of Vi which can be covered
by the corresponding M-tilings in H. Consequently, w(h) then translates to the
proportion of vertices covered by the corresponding M-tiling in H. Therefore, we
attempt to find a fractional hom(M)-tiling with weight greater than the number
of vertices previously covered in K.

The following lemma (Lemma 19), which is the main tool for the proof of
Lemma 11, follows the idea discussed above. In the proof of Lemma 11 we will con-
sider a maximal M-tiling in the cluster hypergraph K of the given hypergraph H.
Owing to the minimum degree condition of H and Proposition 15, a typical vertex

in the cluster hypergraph K will be contained in at least (7/16+o(1))
(|V (K)|

2

)
hyper-

edges of K. Later we will show that a typical vertex u of K which is not covered by
the maximalM-tiling of K, should have the property that (7/16+o(1)) ·64 > 28 of
the edges incident to u intersect some pair of copies of M from the M-tiling of K.
In Lemma 19 we study this situation. This lemma will come in handy in the proof
of Lemma 11, where it is used to show that one can cover a higher proportion of
the vertices of H than the proportion of vertices covered by the largest M-tiling
in K.

Let L29 be the following set of hypergraphs. Every L ∈ L29 consists of two
(vertex disjoint) copies of M, say M1 and M2, and L contains two additional
vertices u and v and all edges incident to u or v contain precisely one vertex from
V (M1) and one vertex from V (M2). Moreover, L satisfies the following properties

• for every a ∈ V (M1) and b ∈ V (M2) we have uab ∈ E(L) iff vab ∈ E(L)
• deg(u) = deg(v) ≥ 29

Lemma 19. For every L ∈ L29 there exists a fractional hom(M)-tiling h with
hmin ≥ 1/3 and w(h) ≥ 16 + 1

3 .

Proof. For the proof we fix the following labeling of the vertices of the two dis-
joint copies of M. Let V (M1) = {x1, x2, w1, y1, y2, w2, z1, z2} be the vertices and
x1x2w1, w1y1y2, y1y2w2, w2z1z2 be the edges of the first copy of M. Analogously,
let V (M2) = {x′1, x′2, w′1, y′1, y′2, w′2, z′1, z′2} be the vertices and x′1x

′
2w
′
1, w′1y

′
1y
′
2,

y′1y
′
2w
′
2, w′2z

′
1z
′
2 be the edges of the other copy of M (see Figure 1.a). Moreover,

we denote by X = {x1, x2}, Y = {y1, y2}, and Z = {z1, z2} and, let X ′, Y ′, and Z ′

be defined analogously for M2.
The proof of Lemma 19 proceeds in two steps. First, we show that in any possible

counterexample L, the edges incident to u and v which do not contain any vertex
from {w1, w2, w

′
1, w

′
2} form a subgraph of K2,3,3 (see Claim 20). In the second step

we show that every edge contained in this subgraph of K2,3,3 forbids too many
other edges incident to u and v, which will yield a contradiction to the condition
deg(u) = deg(v) ≥ 29 of L (see Claim 21).
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Figure 1. Labels and case: a1b1, a2b2 ∈ L2 with {b1, b2} ∈ {X ′, Y ′, Z ′}

x1

x2

w1

y1

y2

w2

z1

z2

x′
1

x′
2

w′
1

y′
1

y′
2

w′
2

z′1

z′2

X

Y

Z

X ′

Y ′

Z′

1.a: Vertex labels of M1 and M2 in L

a1

a2

b1

b2

u

v

1.b: All edges are (a1)-edges

We introduce the following notation to simplify later arguments. For a given
L ∈ L29 with M1 and M2 being the two copies of M, let L be set of those pairs
(a, b) ∈ V (M1)× V (M2) such that uab ∈ E(L). We split L into L1∪̇L2 according
to

(a, b) ∈

{
L1, if a ∈ {w1, w2} or b ∈ {w′1, w′2},
L2, otherwise.

It will be convenient to view L1 and L2 as bipartite graphs with vertex classes
V (M1) and V (M2).

Claim 20. For all L ∈ L29 without fractional hom(M)-tiling with hmin ≥ 1/3 and
w(h) ≥ 16 + 1/3, we have L2 ⊆ K3,3, where each of the sets X, Y , Z and X ′, Y ′,
Z ′ contains precisely one of the vertices of the K3,3.

In the proofs of Claim 20 and Claim 21 we will consider fractional hom(M)-
tilings h which use vertex weights of special types. In fact, for an edge e = a1a2a3,
the weights h(a1, e), h(a2, e), and h(a3, e) will be of the following forms

(a1) h(a1, e) = h(a2, e) = h(a3, e) = 1
(a2) h(a1, e) = h(a2, e) = h(a3, e) = 1

2

(a3) h(a1, e) = h(a2, e) = h(a3, e) = 1
3

(b1) h(a1, e) = h(a2, e) = 1 and h(a3, e) = 2
3

(b2) h(a1, e) = h(a2, e) = 1
2 and h(a3, e) = 1

3

(b3) h(a1, e) = h(a2, e) = 2
3 and h(a3, e) = 1

2

An edge that satisfies (a1) is called an (a1)-edge, etc. Note that all these types
satisfy condition (3) of Definition 16.

Proof. Observe that for any A ∈ {X,Y, Z}, the hypergraph M1 − A contains two
disjoint edges. Similarly, for every B ∈ {X ′, Y ′, Z ′}, M2 −B contains two disjoint
edges.
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First we exclude the case that there is a matching {a1b1, a2b2} of size two in L2

between some A ∈ {X,Y, Z} and some B ∈ {X ′, Y ′, Z ′}. In fact, in this case we can
construct a fractional hom(M)-tiling h as follows: Choose two edges ua1b1, va2b2.
Using these and the four disjoint edges in (M1 − A)∪̇(M2 − B), we obtain six
disjoint edges (see Figure 1.b). Letting all these six edges be (a1)-edges, we obtain
a fractional hom(M)-tiling h with hmin = 1 and w(h) = 18.

Figure 2. Case: ab1, ab2 ∈ L2 with {b1, b2} ∈ {X ′, Y ′, Z ′}

1

1

1

1

11

1

1

1

1

1

2
3

1
3

1
3

1
3

1
2

2
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2
3

1
2

2
3

2
3

2.a: (a1)-edges w1y1y2, w2z1z2, and
w′

2z
′
1z

′
2, (b3)-edges ax′

1u and ax′
2v, (b1)-

edge w′
1y

′
1y

′
2, and (a3)-edge x′

1x
′
2w1.

1

1

1

1

11

1

1

1

1

1
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1
3

1
3

1
3

1
2

2
3

2
3

1
2

2
3

2
3

2.b: (a1)-edges w1y1y2, w2z1z2, and
w′

2z
′
1z

′
2, (b3)-edges ay′

1u and ay′
2v, (b1)-

edge x′
1x

′
2w

′
1, and (a3)-edge w′

1y
′
1y

′
2.

Next, we show that each vertex a ∈ A ∈ {X,Y, Z} has at most one neighbour
in each B ∈ {X ′, Y ′, Z ′}. Assuming the contrary, let a ∈ A ∈ {X,Y, Z} and
{b1, b2} = B ∈ {X ′, Y ′, Z ′}, such that ab1, ab2 ∈ L2. For symmetry reasons,
we only need to consider the case B = X ′ and B = Y ′. The case B = Z ′ is
symmetric to B = X ′. In those cases, we choose h as shown in Figure 2.a (B = X ′)
and Figure 2.b (B = Y ′) and in either case we find a fractional hom(M)-tiling h
satisfying hmin = 1/3 and w(h) = 16 + 1/3. Note that the cases A = Y and A = Z
are identical, since M1 −A always contains two disjoint edges.

To show that L2 is indeed contained in a K3,3, it remains to verify that every
a1b1, a2b2 with {a1, a2} = A ∈ {X,Y, Z} and b1 ∈ B1 ∈ {X ′, Y ′, Z ′}, b2 ∈ B2 ∈
{X ′, Y ′, Z ′} \ B1 guarantees the existence of a fractional hom(M)-tiling h with
hmin ≥ 1/3 and w(h) ≥ 16 + 1/3. Again owing to the symmetry, the only cases
we need to consider are B1 = X ′, B2 = Y ′ (see Figure 3.a) and B1 = X ′, B2 = Z ′

(see Figure 3.b). In fact, the fractional hom(M)-tilings h given in Figure 3.a and
Figure 3.b satisfy hmin ≥ 1/3 and w(h) = 17. Again the cases A = Y and A = Z
are identical. This concludes the proof of Claim 20.

�

Owing to Claim 20, we may assume without loss of generality that x1, y1, z1

and x′1, y′1, z′1 are the vertices which span all edges of L2.
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Figure 3. Case: a1b1, a2b2 ∈ L2 with {b1, b2} 6∈ {X ′, Y ′, Z ′}
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3.a: (a1)-edges w1y1y2, w2z1z2, and
w′

2z
′
1z

′
2, (b1)-edges a1x

′
1u and a2y

′
1v, and

(b2)-edges x′
1x

′
2w

′
1 and w′

1y
′
1y

′
2.
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3.b: (a1)-edges w1y1y2 and w2z1z2, (b1)-
edges a1x

′
1u and a2z

′
1v, (b2)-edges x

′
1x

′
2w

′
1

and w′
2z

′
1z

′
2, and (a2)-edges w′

1y
′
1y

′
2 and

y′
1y

′
2w

′
2.

Claim 21. For all L ∈ L29 without fractional hom(M)-tiling with hmin ≥ 1/3 and
w(h) ≥ 16 + 1

3 we have |L1|+ |L2| ≤ 28.

Since |L1| + |L2| ≥ 29 for every L ∈ L29, Claim 21 yields Lemma 19 and it is
only left to prove Claim 21. �

Proof of Claim 21. Set

F =
{

(a′, b′) ∈ V (M1)× V (M2) : either a′ ∈ {w1, w2} or b′ ∈ {w′1, w′2}
}

and note that L1 ⊆ F . For every edge ab ∈ L2, we consider the set F(a, b) ⊆ F of
those edges f ∈ F , whose appearance (i.e., f ∈ L1) would allow us to construct a
fractional hom(M)-tilings h with hmin ≥ 1/3 and w(h) ≥ 16 + 1/3.

First we consider the case y1y
′
1. As shown in Figure 4.a the appearance of

w1y
′
2 ∈ L2 would give rise to a fractional hom(M)-tilings h with hmin ≥ 1/3 and

w(h) = 16.5. Consequently, we have

w1y
′
2 ∈ F(y1, y

′
1).

For the case x1x
′
1 ∈ L2, Figure 4.b, shows that x2w

′
1 ∈ F(x1, x

′
1) and by sym-

metry, it follows that

{x2w
′
1, w1x

′
2} ⊆ F(x1, x

′
1) .

By applying appropriate automorphisms to M1 and M2 we immediately obtain
information on F(x1, z

′
1), F(z1, x

′
1), and F(z1, z

′
1). Indeed one can show

{x2w
′
2, w1z

′
2} ⊆ F(x1, z

′
1) , {w2x

′
2, z2w

′
1} ⊆ F(z1, x

′
1) , {z2w

′
2, w2z

′
2} ⊆ F(z1, z

′
1) .

Next we consider y1x
′
1. In this case Figure 5.a shows that y2w

′
1 ∈ F(y1, x

′
1).

Moreover, as shown in Figure 5.b we also have w1x
′
2 ∈ F(y1, x

′
1) and, consequently,
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Figure 4. F(y1, y
′
1) and F(x1, x

′
1)
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4.a: (a1)-edge w′
2z

′
1z

′
2, (a2)-edge y1y

′
1u,

(b1)-edges x1x2w1, w1z1z2, and x′
1x

′
2w

′
1,

and (b2)-edges w1y
′
2v, y1y2w2, and

w′
1y

′
1y

′
2.
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4.b: (a1)-edges x1x
′
1u, w1y1y2, and

w2z1z2, (b1)-edges x2w
′
1v and w′

2z
′
1z

′
2, and

(b2)-edges w′
1y

′
1y

′
2 and y′

1y
′
2w

′
2.

we obtain

{y2w
′
1, w1x

′
2} ⊆ F(y1, x

′
1) .

Again applying appropriate automorphisms toM1 andM2 we immediately obtain
information on F(x1, y

′
1), F(z1, y

′
1), and F(y1, z

′
1). Indeed one can show

{w1y
′
2, x2w

′
1} ⊆ F(x1, y

′
1) , {w2y

′
2, z2w

′
2} ⊆ F(z1, y

′
1) , {y2w

′
2, w2z

′
2} ⊆ F(y1, z

′
1) .

Finally, we define an injection f : L2 → F ⊇ L1 such that f(a, b) ∈ F(a, b) for
every pair ab ∈ L2, which concludes the proof of Claim 21.

Recall that due to Claim 20 we have L2 ⊆ {x1, y1, z1}×{x′1, y′1, z′1} and it follows
from the discussion above that we can fix f as follows

f(x1, x
′
1) = w1x

′
2 , f(z1, z

′
1) = z2w

′
2 , f(x1, z

′
1) = x2w

′
2 ,

f(z1, x
′
1) = w2x

′
2 , f(y1, y

′
1) = w1y

′
2 , f(x1, y

′
1) = x2w

′
1 ,

f(y1, x
′
1) = y2w

′
1 , f(y1, z

′
1) = w2z

′
2 , f(z1, y

′
1) = w2y

′
2 .

�

3.3. Proof of the M-tiling Lemma. Let H be a 3-uniform hypergraph on n
vertices. We say H has a β-deficient M-tiling if there exists a family of pairwise
disjoint copies of M in H leaving at most βn vertices uncovered.

Proposition 22. For all 1/2 > d > 0 and all β, δ > 0 the following holds. Suppose
there exists an n0 such that every 3-uniform hypergraph H on n > n0 vertices
with minimum vertex degree δ1(H) ≥ d

(
n
2

)
has a β-deficient M-tiling. Then every

3-uniform hypergraph H′ on n′ > n0 vertices with δ1(H′) ≥ (d − δ)
(
n′

2

)
has a

(β + 25
√
δ)-deficient M-tiling.
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Figure 5. F(y1x
′
1)
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5.a: (a1)-edges y2x1u, x1x2w1, and
w2z1z2, (b1)-edges y1w

′
1v and w′

2z
′
1z

′
2, and

(b2)-edges w′
1y

′
1y

′
2 and y′

1y
′
2w

′
2.
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5.b: (a1)-edge w′
2z

′
1z

′
2, (a2)-edge y1x

′
1u,

(b1)-edges x1x2w1, w1z1z2, and w′
1y

′
1y

′
2,

and (b2)-edges w1x
′
2v, y1y2w2, and

x′
1x

′
2w

′
1.

Proof. Given a 3-uniform hypergraph H′ on n′ > n0 vertices with δ1(H′) ≥ (d −
δ)
(
n′

2

)
. By adding a set A of 3

√
δn′ new vertices to H′ and adding all triplets to

H′ which intersect A we obtain a new hyperpgraph H on n = n′ + |A| vertices
which satisfies δ1(H) ≥ d

(
n
2

)
. Consequently, H has a β-deficient M-tiling and by

removing the M-copies intersecting A, we obtain a (β + 25
√
δ)-deficient M-tiling

of H′. �

Proof of Lemma 11. Let γ > 0 be given and we assume for a contradiction that
there is an α > 0 such that for all n′0 there is a 3-uniform hypergraph H on n > n′0
vertices which satisfies δ1(H) ≥ ( 7

16 + γ)
(
n
2

)
but which does not contain an α-

deficient M-tiling. Let α0 be the supremum of all such α and note that α0 is
bounded away from one due to Proposition 12.

We choose ε = (γα0/2
100)2. Then, by definition of α0, there is an n0 such that

all 3-uniform hypergraphs H on n > n0 vertices satisfying δ1(H) ≥ ( 7
16 + γ)n have

an (α0 + ε)-deficientM-tiling. Hence, by Proposition 22 all 3-uniform hypergraphs
H on n > n0 vertices satisfying δ1(H) ≥ ( 7

16 + γ − ε)
(
n
2

)
have an (α0 + ε+ 25

√
ε)-

deficientM-tiling. We will show that there exists an n1 (to be chosen) such that all
3-uniform hypergraphs H on n > n1 vertices satisfying δ1(H) ≥ ( 7

16 + γ)
(
n
2

)
have

an (α0 − ε)-deficient M-tiling, contradicting the definition of α0.
To this end, we apply Proposition 15 with the constants γ, ε/12, d = ε/2 and

t15 = max{n0, (ε/12)−3} to obtain an n15 and T15. Let n1 ≥ max{n15, n0} be
sufficiently large and let H be an arbitrary 3-uniform hypergraph on n > n1 vertices
which satisfies δ1(H) ≥ ( 7

16 + γ)
(
n
2

)
but which does not contain an α0-deficient

M-tiling. We apply Proposition 15 to H with the constants chosen above and
obtain a cluster hypergraph K = K(ε/12, ε/2,Q) on t > t15 vertices which satisfies
δ1(K) ≥ ( 7

16 + γ − ε)
(
t
2

)
. Taking M to be the largest M-tiling in K we know by
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the definition of α0 and by Proposition 22 that M is an α1-deficientM-tiling of K,
for some α1 ≤ α0 + 26

√
ε. Further, let X consist of the vertices in K not covered

by M and note that

|X| ≥ α0t

2
. (7)

Otherwise M is an (α0/2)-deficient M-tiling of K and, therefore, a combined ap-
plication of Fact 17 and Proposition 18 with the chosen ε yields the existence of an
(α0 − ε)-deficient M-tiling in H, contradicting the choice of H.

For a pair MiMj ∈
(
M
2

)
we say the edge e ∈ K is ij-crossing if |e ∩ V (Mi)| =

|e ∩ V (Mj)| = 1.

Claim 23. Let C be the set of all triples xij such that x ∈ X, MiMj ∈
(
M
2

)
and

there are at least 29 ij-crossing edges containing x. Then we have |C| ≥ γ
(
t
2

)
|X|/72.

Proof. Let A be the set of those hyperedges in K which are completely contained
in X and let B be the set of all the edges with exactly two vertices in X. Then it
is sufficient to show that

|A| ≤ 7

16

(
|X|
3

)
and |B| ≤ 7

2

(
|X|
2

)
|M |. (8)

Indeed, assuming (8) and |C| ≤ γ
(
t
2

)
|X|/72 we obtain the following contradiction∑

x∈X
deg(x) ≤ 3|A|+ 2|B|+ 28

(
|X|
(
|M |

2

)
− |C|

)
+ 64|C|+

(
8

2

)
|M ||X|

≤ |X|
[

7

16

(
|X|
2

)
+

7

2
|X||M |+ 28

(
|M |

2

)
+

36

72
γ

(
t

2

)
+

(
8

2

)
|M |

]
≤ |X|

[(
7

16
+
γ

2

)(
t

2

)
+

(
8

2

)
|M |

]
< |X|δ1(K)

where in the third inequality we used
(
t
2

)
=
(|X|

2

)
+ 8|X||M |+

(
8|M |

2

)
.

Note that the first part of (8) trivially holds since in the opposite case, using
the first part of Proposition 12 we obtain a tight path in X of length at least
eight. However, this path contains a copy ofM as a subhypergraph which yields a
contradiction to the maximality of M .

To complete the proof let us assume |B| > 7
2

(|X|
2

)
|M | from which we deduce

that there is an M′ ∈ M such that V (M′) intersects at least 7
2

(|X|
2

)
edges from

B. From V (M′) we remove the vertices which are contained in less than 10|X|
edges from B. Note that there are at least four vertices left and that there are

still at least (3 + ε)
(|X|

2

)
edges from B left which intersect these vertices. Hence,

by a simple averaging argument we derive that there are two disjoint pairs x1x2,
x3x4 ∈

(
X
2

)
and four vertices v1, . . . , v4 from V (M′) such that x1x2v1, x1x2v2 ∈ K

and x3x4v3, x3x4v4 ∈ K. For each vi we can find another edge from B containing
vi keeping them all mutually disjoint and also disjoint from {x1, x2} and {x3, x4}.
This is possible since each vi is contained in more than 10|X| edges from B. This,
however, yields two copies of M which contradicts the fact that M was a largest
possible M-tiling. �

The set X will be used to show that there is an L ∈ L29 such that K contains
many copies of L.
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Claim 24. There is an element L ∈ L29 and a family L of vertex disjoint copies
of L in the cluster hypergraph K(ε/12, ε/2,Q) such that |L | ≥ γα0t/2

75.

Proof. We consider the 3-uniform hypergraph C (as given from Claim 23) on the
vertex set X ∪M . Note that for fixed ij a vertex x is contained in at most 64
ij-crossing edges, thus there are at most 264 different hypergraphs with the prop-
erty that x is contained in at least 29 edges which are ij-crossing. We colour each
edge xij by one of this 264 colours, according to how the corresponding hyper-
graph induced on Mi,Mj and x looks like. On the one hand, we observe that a
monochromatic tight path consisting of the two edges xij, x′ij ∈ C corresponds to
a copy of L. On the other hand, Claim 23 implies that there is a colour such that
at least

|C|
264
≥
γ
(
t
2

)
|X|

72 · 264

(7)

≥ α0γt
3

273

edges in C are coloured by it. Hence, by Proposition 12 there is a tight path with
α0γt/2

72 vertices using edges of this colour only. Note that in this tight path every
three consecutive vertices contain one vertex from X and the other two vertices are
from M . Thus, this path gives rise to at least α0γt/2

75 pairwise vertex disjoint
tight paths on four vertices such that the ends are vertices from X. �

For any Li ∈ L we know from Lemma 19 that there is a fractional hom(M)-
tiling hi of Li with himin ≥ 1/3 and weight w(hi) ≥ 16 + 1/3. Furthermore, for
every Mj ∈ M which is not contained in any Li ∈ L we know from Fact 17
that there is a fractional hom(M)-tiling of hj of Mj with hjmin ≥ 1/3 and weight
w(hj) = 8. Hence, the union of all these fractional hom(M)-tiling gives rise to a
fractional hom(M)-tiling h of K with hmin ≥ 1/3 and weight

w(h) ≥
(

16 +
1

3

)
|L |+ 8(|M | − 2|L |) = 8|M |+ |L |

3
.

By applying Proposition 18 to the fractional hom(M)-tiling h we obtain an
M-tiling of H which covers at least(

w(h)− 3tε
) (

1− ε

12

) n
t
≥
(

8|M |+ |L |
3
− 3tε

)(
1− ε

12

) n
t

vertices of H. (Recall, that the vertex classes V1, . . . , Vt from the regular partition
Q had the same size, which was at least (1− ε/12)n/t.)

Since M was an (α0+26
√
ε)-deficientM-tiling of K the tiling we obtained above

is an (α0 − ε)-deficient M-tiling of H due to the choice of ε. This, however, is a
contradiction to the fact that H does not permit an (α0−ε)-deficientM-tiling. �

3.4. Proof of the path-tiling lemma. In this section we prove Lemma 10. The
proof will use the following proposition which has been proven in [4] (see Lemma 20)
in an even more general form, hence we omit the proof here.

Proposition 25. For all d and β > 0 there exist ε > 0, integers p and m0 such that
for all m > m0 the following holds. Suppose V = (V1, V2, V3) is an (ε, d)-regular
triple with |Vi| = 3m for i = 1, 2 and |V3| = 2m. Then there there is a loose path
tiling of V which consists of at most p pairwise vertex disjoint paths and which
covers all but at most βm vertices of V.

With this result at hand one can easily derive the path-tiling lemma (Lemma 10)
from the M-tiling lemma (Lemma 11).
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Proof of Lemma 10. Given γ > 0 and α > 0 we first apply Proposition 25 with
d = γ/3 and β = α/4 to obtain ε′ > 0, p′, and m0. Next, we apply Lemma 11
with γ/2 and α/2 to obtain n11. Then we apply Proposition 15 with γ, d and
ε = 1

3 min{d/2, ε′, α/8} from above and t0 = n11 to obtain T0 and n15. Lastly we
set n0 = max{n15, 2T0m0} and p = p′T0.

Given a 3-uniform hypergraph H on n > n0 vertices which satisfies δ1(H) ≥(
7
16 + γ

) (
n
2

)
. By applying Proposition 15 with the constants chosen above we

obtain an (ε, t)-regular partition Q. Furthermore, we know that the corresponding
cluster hypergraph K = K(ε, d,Q) satisfies δ1(K) ≥ (7/16 + γ/2)

(
t
2

)
. Hence, by

Lemma 11 we know that there is anM-tiling M of K which covers all but at most
αt/2 vertices of K. Note that the corresponding vertex classes in H contain all at
most αn/2 + |V0| vertices.

We want to apply Proposition 25 to each copy M′ ∈M of M. To this end, let
{1, . . . , 8} denote the vertex set of such an copyM′ and let 123, 345, 456, 678 denote
the edges of M′. Further, for each a ∈ V (M′) let Va denote the corresponding
partition class in H. We split Vi, i = 3, 4, 5, 6, into two disjoint sets V 1

i and V 2
i

of sizes |V 1
i | = 2|Vi|/3 and |V 2

i | = |Vi|/3 for i = 3, 6 and |V 1
i | = |V 2

i | = |Vi|/2 for
i = 4, 5. Then the tuples (V1, V2, V

1
3 ), (V8, V7, V

1
6 ) and (V 2

3 , V
1
4 , V

1
5 ), (V 2

4 , V
2
5 , V

2
6 )

all satisfy the condition of Proposition 25, hence, there is a path tiling of these
tuples consisting of at most 4p′ paths which covers all but at most 12βn/t vertices
of V1, . . . , V8.

Since M contains at most t/8 elements we obtain a path tiling which consists
of at most 4p′t/8 ≤ p′T0/2 = p paths which covers all but at most 12βn/t × t/8
vertices. Hence, the total number of vertices in H not covered by the path tiling is
at most 3βn/2 + αn/2 + |V0| ≤ αn which completes the proof. �
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