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OBSTRUCTION THEORY FOR ALGEBRAS OVER AN OPERAD

ERIC HOFFBECK

Abstract. The goal of this paper is to set up an obstruction theory in the context
of algebras over an operad and in the framework of differential graded modules over a
field. Precisely, the problem we consider is the following: Suppose given two algebras
A and B over an operad P and an algebra morphism from H∗A to H∗B. Can we
realize this morphism as a morphism of P-algebras from A to B in the homotopy
category? Also, if the realization exists, is it unique in the homotopy category?

We identify obstruction cocycles for this problem, and notice that they live in the
first two groups of operadic Γ-cohomology.

In this paper we study a question of realizability of morphisms in a category of
algebras over an operad.

In general, a realization problem takes the following form. We fix a category C
equipped with a model structure (for instance: topological spaces, spectra, differential
graded algebras over an operad). We have a homology (or homotopy) functor H : C →
A with values in a purely algebraic category (for instance: graded modules, graded
algebras). The usual questions are the existence of a realization of an object a in
A by a c in C such that H(c) = a and the existence of a realization of a morphism
f : H(c1)→ H(c2) by a morphism φ : c1 → c2 such that H(φ) = f .

Generally, the obstructions to these existences can be interpreted as classes in some
(co)homology theory.

The most classical example goes back to Steenrod for C the category of topological
spaces and H = H∗

sing. A solution of this problem in the case of rational nilpotent

CW-complexes has been given by Halperin and Stasheff in [HS]. They apply rational
homotopy theory to reduce this topological realization problem to a realization problem
in the category of differential graded commutative algebras. The obstructions then live
in some Harrison cohomology groups. The obstruction theory of Blanc, Dwyer and
Goerss [BDG] for the realizability of Π-algebras by a space, the theories of Robinson
[Rob] and of Goerss and Hopkins [GH] for the realizability of an algebra by an E∞-
spectra are other fundamental examples of obstruction theory in homotopy theory.

We are here interested in the case C =
P
dgModK, the category of algebras over a

fixed operad P in the framework of differential graded modules (for short dg-modules)
over a field K. The functor H is the homology of the underlying dg-module of an
algebra over P. This homology inherits a H∗P-algebra structure. The target category
A consists of the graded H∗P-algebras. The realization problem has been studied by
Livernet [Liv, Section 3] in the setting of N-graded dg-modules and when the ground
field K has characteristic 0. The obstruction classes live in some cohomology groups
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of a natural cohomology theory associated to P, generalizing Harrison cohomology for
P = Com.

In this paper, we obtain an obstruction theory for the realization of morphisms in
the setting of Z-graded dg-modules and when the ground ring K is any field. We can
identify a sequence of obstructions lying in some cohomology groups. Precisely, the Γ-
cohomology of algebras over an operad (defined in [Hof], generalizing Robinson’s and
Whitehouse’s Γ-homology [RW]) appears in our construction and we get the following
theorems:

Theorem (Corollary 2.6). Let P be a connected graded operad and let P̃ be an operadic

cofibrant replacement of P. Let A and B be two algebras over P̃. Suppose given a
P-algebra morphism f : H∗A→ H∗B (where H∗A and H∗B have the structure induced
in homology).

The obstruction cocycles to the realizability of the morphism f lie in HΓ1
P
(H∗A,H∗B).

If HΓ1
P
(H∗A,H∗B)=0, then there automatically exists a morphism φ in the homotopy

category of P̃-algebras such that H∗φ = f .

Theorem (Corollary 3.5). Let P be a connected graded operad and let P̃ be an operadic

cofibrant replacement of P. Let A and B be two algebras over P̃. Suppose given a
P-algebra morphism f : H∗A → H∗B and two homotopy morphisms φ1, φ2 such that
H∗φ1 = H∗φ2 = f .

The obstruction cocycles to the uniqueness of the realizations in the homotopy cate-
gory lie in the group HΓ0

P(H∗A,H∗B). If HΓ0
P(H∗A,H∗B) = 0, then φ1 = φ2 in the

homotopy category of P̃-algebras.

To obtain these theorems, the method is first to reduce our study to the case where
the differentials of A and B are trivial. Then we use model category structures to make
explicit cofibrant replacements of the algebras A and B. The crucial point of the proof
is a natural filtration of the cooperad B(P⊠ E), which allows us to filter the cofibrant
replacements. We construct step by step a map inducing the realization and identify
the obstructions to this construction.

An important thing to notice in our theorems is that only the structures of P-algebras
on H∗A and H∗B appear. So we do not need to know the full structures on A and B,
but only a part of it.

There are some immediate corollaries to the previous theorems. First, one defines the
set of homotopy automorphisms haut

P̃
(A) := {φ : A

∼
→ A} for A a cofibrant P̃-algebra.

We can consider its connected components for the following homotopy relation
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φ0 ∼ φ1 ⇔

A
∼ φ0

%%KKKKKKKKKKKKK

∼
��

A⊗∆1
∃φt

// A.

A

∼ φ1

99sssssssssssss

∼

OO

where A⊗∆1 denotes the cylinder object of A.
Consider the map H∗(−) : π0(hautP̃(A)) → autP(H∗A). Our obstruction theory

implies the following results:

• If HΓ0
P
(H∗A,H∗A) = 0 then H∗(−) is injective.

• If HΓ1
P(H∗A,H∗A) = 0 then H∗(−) is surjective.

Moreover, for any P-algebra H, if HΓ1
P(H,H) = 0, the first theorem implies that all

P̃-algebras A such that H∗(A) = H are connected by weak equivalences.

In Section 1, we recall some results about operads, cooperads and operadic Γ-
homology. In Section 2, we identify the obstructions to the realization. In the last
section, we study the obstructions to the uniqueness up to homotopy of the realiza-
tions.

Convention. We work in the differential graded setting. We take as ground category
the category of differential Z-graded modules (for short dg-modules) over a fixed field
K.

All operads P will be assumed to be connected in the sense that P(0) = 0 and
P(1) = K.

1. Recollections

1.1. Model structures. We give references for the model structures of the categories
which are used in this paper. For general references on the subject, we refer the reader
to the survey of Dwyer and Spalinksi [DS] and the books of Hirschhorn [Hir] and Hovey
[Hov]. For model structures in the operadic context, we refer to the articles of Hinich
[Hin], of Berger and Moerdijk [BM1] and of Goerss and Hopkins [GH], and the book
of Fresse [F1].

Just recall the following standard definitions:

(1) The category of dg-modules is equipped with the model structure such that
a morphism is a fibration (resp. a weak equivalence) if it is an epimorphism
(resp. induces an isomorphism in homology).
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(2) The category of operads inherits a model structure where fibrations (resp. weak
equivalences) are fibrations (resp. weak equivalences) of the underlying dg-
modules.

(3) The category of algebras over a cofibrant operad inherits a model structure
where fibrations (resp. weak equivalences) are fibrations (resp. weak equiva-
lences) of the underlying dg-modules.

In all cases, cofibrations are given by the LLP with respect to acyclic fibrations.
We usually call Σ∗-module a collection of dg-modules {M(r)}r∈N where each M(r)

is equipped with an action of the r-th symmetric group Σr. The category of Σ∗-
modules also inherits a model structure such that fibrations (resp. weak equivalences)
are fibrations (resp. weak equivalences) of the underlying dg-modules. Every operad
has an underlying Σ∗-module and we say that an operad is Σ∗-cofibrant if the underlying
Σ∗-module is cofibrant. The category of algebras over a Σ∗-cofibrant operad can also
be equipped with a semi-model structure, but we will not need this refinement.

We will use a cofibrant replacement of operads given by the cobar-bar duality, which
can be found in the paper of Getzler and Jones [GJ] in characteristic 0, and the paper
of Berger and Moerdijk [BM2, Section 8.5] in our more general context. We denote by
B the bar construction of an operad, introduced in [GK], and by Bc the cobar construc-
tion, introduced in [GJ]. Recall that an element of the bar (or cobar) construction B(P)
can be seen as a tree labelled by elements of P. Thus the bar (and cobar) construction
is equipped with a weight, given by the number of vertices of the tree representing an
element. The operad E denotes the Barratt-Eccles operad, whose definition is recalled
later in Section 1.3, and ⊠ denotes the arity-wise tensor product of Σ∗-modules, i.e.
(P⊠ E)(r) = P(r)⊗ E(r) for all r ∈ N.

1.1.1. Fact ([BM2, Theorem 8.5.4]). Let P be an operad.
The operad Bc(B(P⊠ E)) is a cofibrant replacement of the operad P.

If Q is a cofibrant replacement of an operad P, working with algebras over Q is
equivalent to working with algebras over Bc(B(P⊠ E)). In this paper, we always pick
this particular cofibrant replacement.

1.2. Coalgebras over cooperads. Let D be a cooperad. In the following series of
propositions, we recall how the structure of Bc(D)-algebra on A can be explicitely
encoded in a quasi-cofree coalgebra D(A). We need precise formulas for our study.

These results have been first given in the preprint of Getzler and Jones [GJ]. But we
use them in the wider context of Z-graded modules and over a field of any characteristic,
and we refer to [F2] for the generalization in the latter setting.

Let D be a cooperad and A a dg-module.

We may represent an element γ ∈ D(n) by a corolla with n inputs

1
777

n
��
�

γ .

We consider the total coproduct and the quadratic coproduct of a cooperad structure,
which send the element γ to a composed element arranged on a tree.
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The total coproduct denoted by ν maps an element γ ∈ D to a sum of formal
composites of elements represented by

ν




1
777

n
��
�

γ


 =

∑

ν

i1,1
==

=
i1,s1

��
�

ir,1
==

=
ir,sr

��
�

γ′′1

OOOOOOOO γ′′r

qqqqqqq

γ′

where γ′, γ′′1 , . . . , γ
′′
r are elements of D and the entries form a multi-shuffle of {1, . . . , n}

(i.e. i1,1 < i2,1 < . . . < ir,1 and ik,1 < ik,2 < . . . < ik,sk for all 1 ≤ k ≤ r).
To avoid too many indices, we will write such a sum in the following form:

∑

ν

i∗
:::

i∗
��
�

i∗
:::

i∗
��
�

γ′′∗
KK

KK
KK

γ′′∗

tt
tt

tt

γ′

The quadratic coproduct of an element γ ∈ D is denoted by ν2(γ) and represented
by

ν2




1
777

n
��
�

γ


 =

∑

ν2

j1
::

:
jℓ

��
�

i1
88

8
γ′′

���
ik

rrrrrr

γ′

where γ′ and the γ′′ are elements of D and the {i1, . . . , ik}
∐
{j1, . . . , jℓ} run over

partitions of {1, . . . , n}.
Let A be a dg-module, where the differential is denoted by dA. Recall that D(A) is

the cofree connected coalgebra given by

D(A) =
⊕

(D(r)⊗A⊗r)Σr .

The element γ(a1, . . . , ar) ∈ D(A) is associated to the tensor γ ⊗ (a1, . . . , ar). We
represent an element in D(A) by a corolla with inputs indexed by elements of A.

1.2.1. Proposition ([GJ, Proposition 2.14], [F2, Proposition 4.1.3]). For a cofree coal-
gebra D(A), we have a bijective correspondance between D-coderivations ∂ : D(A) →
D(A) and homomorphisms α : D(A) → A. The homomorphism α associated to a
coderivation ∂ is given by the compositive with the canonical projection. Conversely,
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the coderivation ∂α associated to α is determined by

∂α




a1
<<

<
an

��
�

γ


 =

∑

i

±




a1
EE

EE
α(ai) an

yy
yy

γ


+

∑

ν2

±

a∗
==

=
α

[ ]
a∗

��
�

a∗

LLLLLL γ′′ a∗

rrrrrr

γ′

for every γ(a1, . . . , an) in D(A). The first term corresponds to α applied to ai ∈ A ⊂
D(A). For the second term, we use the quadratic coproduct ν2 and then apply α on the
upper corolla which represents an element in D(A).

1.2.2. Proposition ([F2, Proposition 4.1.4]). Let α : D(A) → A be a homomorphism
of degree -1 such that α|A = 0.

A D-coderivation of degree −1, ∂α : D(A) → D(A) so that (D(A), ∂α) defines a
differential graded quasi-cofree coalgebra if and only if the homomorphism α : D(A)→ A

satisfies the relation

(1) δ(α)




a1
<<

<
an

��
�

γ


+

∑

ν2

±α




a∗
==

=
α

[ ]
a∗

��
�

a∗

LLLLLL γ′′ a∗

rrrrrr

γ′




= 0

for every element γ(a1, . . . , an) in D(A), where δ(α) denotes dA ◦ α± α ◦ ∂α.

1.2.3. Proposition ([GJ, proposition 2.15], [F2, Proposition 4.1.5]). A Bc(D)-algebra
structure on a dg-module A is equivalent to a map α : D(A) → A which satisfies
Equation (1) and such that the restriction α|A vanishes.

When we are given an operad morphism Bc(D)→ Q, we have a functor which, to any
D-coalgebra C, associates a quasi-free Q-algebra RQ(C) = (Q(C), ∂) for some twisting
differential ∂ (cf. [GJ] or [F2, Section 4.2.1]).

We apply this construction to D = B(P⊠E), the morphism id : Bc(D)→ Bc(D) = P̃

and the coalgebra C = (D(A), ∂α) associated to a P̃-algebra A (the action is denoted
by α). We get the following result:

1.2.4. Proposition ([GJ, Theorem 2.19], [F2, Theorem 4.2.4]). Let A be an algebra

over P̃ and let α denote the action. Let D denote B(P ⊠ E). The augmentation ǫ :

R
P̃
(D(A), ∂α) = (P̃(D(A), ∂α), ∂)→ A defines a weak equivalence and (P̃(D(A), ∂α), ∂)

forms a cofibrant replacement of A in the category of P̃-algebras.

In this context, to study morphisms in the homotopy category of P̃-algebras, we just
have to study morphisms of quasi-cofree D-coalgebras. The following two propositions
show how to reduce our study to the corestrictions of such morphisms.

1.2.5. Proposition ([F2, Observation 4.1.7]). The homomorphisms φ : D(A) → D(B)
of degree 0 and commuting with coalgebra structures are in bijection with homomor-
phisms of dg-modules f : D(A) → B. The homomorphism f associated to φ is given
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by the composite of φ with the projection. Conversely, the homomorphism φ = φf
associated to f is determined by the formula

φf




a1
<<

<
an

��
�

γ


 =

∑

ν




a∗
==

=
f

[ ]
a∗

��
�

a∗
==

=
f

[ ]
a∗

��
�

γ′′∗
LLLLLL γ′′∗

ssssss

γ′




for every element γ(a1, . . . , an) in D(A). We use the total coproduct and we apply f to
all upper corrolas.

1.2.6. Proposition ([F2, Proposition 4.1.8]). The homomorphism of cofree coalgebras
φf : D(A) → D(B) associated to a homomorphism f : D(A) → B defines a morphism
between quasi-cofree coalgebras (D(A), ∂α) → (D(B), ∂β) if and only if we have the
identity

δ(f)




a1
<<

<
an

��
�

γ


−

∑

ν2

±f




a∗
==

=
α

[ ]
a∗

��
�

a∗

LLLLLL γ′′ a∗

rrrrrr

γ′




+
∑

ν

β




a∗
==

=
f

[ ]
a∗

��
�

a∗
==

=
f

[ ]
a∗

��
�

γ′′∗
LLLLLL γ′′∗

ssssss

γ′




= 0

for every element γ(a1, . . . , an) in D(A).

1.3. The Barratt-Eccles operad and its action on cochains. Recall that an E∞-
operad is a Σ∗-cofibrant replacement of the commutative operad.

The Barratt-Eccles operad E is an example of E∞-operad, defined by the normalized
chain complex E = N∗(EΣ•), where EΣn is the total space of the universal Σn-bundle
in simplicial spaces. The chain complex N∗(EΣn) is identified with the acyclic homo-
geneous bar construction of the symmetric group Σn, the module spanned in degree t
by the (t + 1)-tuples of permutations w = (w0, . . . , wt) together with the differential
δ such that δ(w) =

∑
i(−1)

i(w0, . . . , ŵi, . . . , wt). We consider the left action of the
symmetric group on this chain complex.

The composition product of E is obtained using the composition product of permu-
tations (which is just the insertion of a block). More precisely, for w = (w0, . . . , wm) ∈
E(r) and w′ = (w′

0, . . . , w
′
n) ∈ E(s), the composite w ◦i w

′ ∈ E(r + s− 1) is defined by

w ◦i w
′ =

∑

x∗,y∗

±(wx0 ◦i w
′
y0
, . . . , wxm+n ◦i w

′
ym+n

)

where the sum ranges over the monotonic paths from (0, 0) to (m,n) in N× N.
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The operad E acts on N∗(∆1), according to the paper by Berger and Fresse [BF]. We
denote this action by σ. For our purposes, we simply recall the action of the component
of degree 0 of E. We have the equality of dg-modules N∗(∆1) = K.0# ⊕K.1# ⊕K.01#

where 0#, 1# and 01# denote the dual of the basis of non-degenerate simplices. The
differential ∂N satisfies ∂N (01#) = 1# − 0# and ∂N (0#) = ∂N (1#) = 0. The r-th
component in degree 0 of E is actually Σr, and the identity of Σr acts on N∗(∆1) as
follows:

• id.(0#, . . . , 0#, 01#, 1#, . . . , 1#) = 01#

• id.(0#, . . . , 0#) = 0#

• id.(1#, . . . , 1#) = 1#

• id.(u1, . . . , ur) = 0 otherwise.

The equivariance gives the action of the other permutations of Σr. We will not need
the formula for the action of E in higher degrees.

1.4. The cylinder object of an algebra over an operad. Let Q be any cofibrant
operad, for instance Q = Bc(B(P⊠E)). Let B be a Q-algebra, with the structure given
by β. We recall in this section the results we need from [BF, Section 3.1].

The cylinder object of B in the category of Q-algebras is B ⊗N∗(∆1).
It is naturally endowed with the action β ⊗ σ of Q⊠ E:

(q ⊗ π)(b1 ⊗ u1, . . . , br ⊗ ur) = q(b1, . . . , br)⊗ π(u1, . . . , ur)

for q ∈ Q, π ∈ E, (b1, . . . , br) ∈ B
r, (u1, . . . , ur) ∈ N

∗(∆1)r. Fixing an operadic section
ρ : Q→ Q⊠E of the augmentation Q⊠E→ Q, we can see B⊗N∗(∆1) as a Q-algebra.
In Section 3.2, we will fix an explicit map ρ.

1.5. Operadic Γ-cohomology. In [Hof], we have defined a generalization of Robin-
son’s and Whitehouse’s Γ-homology. We recall the definition here in the context of this
paper.

Let A and B be P-algebras and f : A → B a morphism of P-algebras. The Γ-
(co)homology of A with coefficients in B is defined by H∗(Der

P̃
(Ã, B)) where P̃ is a

Σ∗-cofibrant replacement of P and Ã a cofibrant replacement of A as P̃-algebras. In this
definition, the derivations are the P̃-derivations relatively to the morphism ψ ◦f , where
ψ denotes the morphism Ã

∼
→ A. An easy way to understand this definition is the

following: the Γ-cohomology of a P-algebra A is the usual André-Quillen cohomology
of A seen as an algebra over a Σ∗-cofibrant replacement of P.

2. Realizations of morphisms

Suppose given

• an operad P with the canonical operadic cofibrant replacement P̃ = Bc(B(P⊠

E)),

• two algebras, A and B, over P̃,
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• a P-algebra morphism f0 : H∗A→ H∗B (where H∗A and H∗B have the struc-
ture induced in homology).

We want to understand the obstruction to the existence of a morphism φ : A → B in
the homotopy category of P̃-algebras such that H∗φ = f0.

2.1. Outline of the study. We will proceed in the following way:
We first show in Section 2.2 that we can restrict our study to the case where the

differentials of A and B are trivial, and we give some results concerning the structures
induced in homology. We consider the cooperad D = B(P ⊠ E), and the explicit
cofibrant replacements of A and B from Proposition 1.2.4. In Section 2.4, we want to
construct a D-coalgebra map φf : (D(A), ∂α) → (D(B), ∂β) extending f0 (it will lead
to the expected morphism in the homotopy category). We introduce a filtration on
D(A), to proceed by induction. We notice that the obstruction to the construction of
φf lies in a certain cohomology group which can be identified with the first group of
Γ-cohomology of H∗A with coefficients in H∗B. If φf can be constructed, then (as the

construction R
P̃
is functorial, see Section 1.2.4) we obtain P̃φf := R

P̃
(φf ) which fits a

diagram

(P̃(D(A), ∂α), ∂)
P̃φf //

∼
��

(P̃(D(B), ∂α), ∂)

∼
��

A B

.

and thus we obtain a morphism from A to B in the homotopy category of P̃-algebras.

2.2. Restriction of the hypotheses. We show here that we can reduce our study to
the case where the differentials of A and B are trivial.

First, recall the following result concerning the transfer of structures:

2.2.1. Fact. Let f : A
∼
→ B be a weak equivalence of dg-modules. Suppose that B has

an action of a cofibrant operad Q.
Then A inherits the structure of a Q-algebra such that

(1) A
∼
← ·

∼
→ B where the morphisms are weak equivalences of Q-algebras,

(2) H∗(A
∼
← ·

∼
→ B) = H∗f .

This result in the A∞ context was already in Kadeishvili’s work [Kad]. In our
context, we refer to the result stated by Fresse [F4, Theorem A]. The second assertion
is not made explicit in the theorem but follows immediately from the proof.

Let H = H∗A be the homology of a Q-algebra A. The graded module H can be seen
as a dg-module with a trivial differential, weakly equivalent to A as dg-modules. We
fix a splitting A∗ = Z∗A⊕B

′
∗−1A, where Z∗A denote the cycles of A (and where B′

∗−1A

is isomorphic to the boundaries B∗−1A). This yields a map A → Z∗A, which induces
a map A → H by composition with the projection Z∗A → H. As we are working
over a field, we can fix a section of dg-modules sA : H∗A → Z∗A of the projection
Z∗A։ H∗A, and thus a map H

∼
→ A.

The fact 2.2.1 implies that H inherits a structure of a Q-algebra such that H
∼
← ·

∼
→

A, where the morphisms are weak equivalences of Q-algebras. This action of Q on H
induces in homology an action of H∗Q on H = H∗H.
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On the other hand, as H is the homology of the Q-algebra A, it inherits the structure
of an algebra over H∗Q.

2.2.2. Lemma. The two actions of H∗Q on H defined above coincide.

Proof. The zig-zag of Q-algebras H
∼
← ·

∼
→ A induces in homology the zig-zag of H∗Q-

algebras H
≃
← H∗(·)

≃
→ H∗A. By the second point of the Fact 2.2.1, H (with the first

action) and H∗A (with the second action) are equal as H∗Q-algebras. �

Let B be another Q-algebra and K = H∗B its homology. Let H̃ and K̃ be cofibrant
replacements of H and K in the category of Q-algebras. We use the following identities

HomHoQ−alg(A,B) = HomHoQ−alg(H,K) = [H̃, K̃]Q−alg

where the notation [−,−] refers to the homotopy classes, to restrict our study to the
case of trivial differentials.

Let α denote the action of the operad Q on the dg-module A. We now make explicit
the action α1 of H∗Q on H∗A.

Let Z∗Q denote the cycles of Q. As before, we can consider a section of the homology
sQ : H∗Q→ Z∗Q.

2.3. Observation. The action α1 can be determined by the commutativity of the fol-
lowing diagram:

H∗Q(r)⊗H∗A
⊗r α1 //

sQ⊗(sA)⊗r

��

H∗A

Z∗Q(r)⊗ Z∗A
⊗r α //

��

Z∗A

OO

��

Q(r)⊗A⊗r α // A.

,

where the dotted map is the restriction. The image of this restriction is included in the
cycles of A.

We now consider the case where A is an algebra over Q = P̃ := Bc(B(P⊠E)), where
P is a graded operad. We use the particular section P →֒ Bc(B(P ⊠ E)) given by the
composite of the inclusion P→ P⊠ E (sending p ∈ P(r) to p⊗ idΣr ), with the obvious
inclusions P⊠E to B(P⊠E) and B(P⊠E)→ Bc(B(P⊠E)). The above paragraphs give
an action of P on H∗A. If δA = 0, then we identify A and H∗A, and thus we obtain
the action α1 of P on A.

2.4. Construction of the morphism of coalgebras. We can now study our prob-
lem. We are given

• a differential graded operad P such that δP=0,
• two algebras, A and B, over P̃ = Bc(B(P⊠E)), with actions denoted by α and
β, with trivial differentials,
• a P-algebra morphism f0 : (H∗A,α1)→ (H∗B, β1).
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In this section, we do not distinguish between A (resp. B) and H∗A (resp. H∗B) as
they are equal as dg-modules. We specify the structure (α or α1, β or β1) when we

consider them as algebras over P̃ or P.
We want to define a morphism φf of D-coalgebras from (D(A), ∂α) to (D(B), ∂β)

such that the first component for a certain graduation is f0. Recall from Section
2.1 that such a morphism φf will induce a morphism from A to B in the homotopy
category. The morphism φf : (D(A), ∂α) → (D(B), ∂β) will be the morphism induced
by f : D(A)→ B, as defined in Proposition 1.2.5.

We use the graduation of D = B(P⊠ E) given by the sum of the bar weight and the
degree in E. This graduation of D induces a splitting D(A) =

⊕
d D[d](A) (we do not

take into account any degree of A or weight in A). The quadratic coproduct ν2 on D

sends γ ∈ D[d+1] to composites

∗
==

= ∗
��
�

∗
66

6 γ′′

��
�

∗

ssssss

γ′

such that γ′ ∈ D[p], γ
′′ ∈ D[q] and p+ q = d+ 1.

We want to construct the map f by induction on the degree. We notice that in
degree zero, D[0](A) is reduced to A and thus we define f[0] = f0 (remember we want
φf to realize f0).

The morphism φf must fit the following commutative diagram:

D(A)
φf //

∂α+∂D
��

D(B)

∂β+∂D
��

β

��7
77

77
77

77
77

77
77

7

D(A)
φf //

f
**UUUUUUUUUUUUUUUUUUUUUUU D(B)

proj
JJ

J

$$JJ
JJ

J

B.

The triangle on the right obviously commutes. The commutativity of the triangle on
the left defines f , the restriction of φf at the target. The commutativity of the exterior
diagram is equivalent to the commutativity of the inner square.

The commutativity of this diagram is equivalent to the equation:

(2) f ◦ (∂D + ∂α) = β ◦ φf .

We now suppose that f is defined for degrees smaller than d and we consider an
element γ(a1, . . . , an) where γ lies in D[d+1]. For this element, Equation (2) is equivalent
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to

f




a1
BB

B
an

{{
{

∂Dγ


+

∑

ν2

d∑

k=1

f




a∗
==

=
α

[ ]
a∗

��
�

a∗

LLLLLLL γ′′[k] a∗

rrrrrrr

γ′




=
∑

ν

d+1∑

k=1

β




a∗
==

=
f

[ ]
a∗

��
�

a∗
==

=
f

[ ]
a∗

��
�

γ′′∗
LLLLLL γ′′∗

rrrrrr

γ′[k]




where γ′[k] and γ
′′
[k] denote elements in D[k].

Specifying the degrees of f and taking the terms for k = 1 out of the sums, we get:

f[d]




a1
BB

B
an

{{
{

∂Dγ


+

∑

ν2

f[d]




a∗
==

=
α0

[ ]
a∗

��
�

a∗

LLLLLLL γ′′[1] a∗

rrrrrrr

γ′




+
∑

ν2

d∑

k=2

f[d+1−k]




a∗
==

=
α

[ ]
a∗

��
�

a∗

LLLLLLL γ′′[k] a∗

rrrrrrr

γ′




= β1




a∗
==

=
f[d]

[ ]
a∗

��
�

f0a∗

LLLLLL
γ′′[d] f0a∗

rrrrrr

γ′[1]




+
∑

ν

d+1∑

k=2

β




a∗
==

=
f

[ ]
a∗

��
�

a∗
==

=
f

[ ]
a∗

��
�

γ′′∗
LLLLLL γ′′∗

rrrrrr

γ′[k]



.

The last sum of the left hand side and the last sum of the right hand side involve f
in degrees smaller than d, while the three other terms involve f only in degree exactly
d. The second and fourth terms involve respectively α0 and β0, as only the restricted
structure matters for elements in degree 0.
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Thus we write the above equation in the following form:

f[d]




a1
BB

B
an

{{
{

∂Dγ


+

∑

ν2

f[d]




a∗
==

=
α0

[ ]
a∗

��
�

a∗

LLLLLLL γ′′[1] a∗

rrrrrrr

γ′




−
∑

ν

β1




a∗
==

=
f[d]

[ ]
a∗

��
�

f0a∗

LLLLLL
γ′′[d] f0a∗

rrrrrr

γ′[1]




= −
∑

ν2

d∑

k=2

f[d+1−k]




a∗
==

=
α

[ ]
a∗

��
�

a∗

LLLLLLL γ′′[k] a∗

rrrrrrr

γ′




+
∑

ν

d+1∑

k=2

β




a∗
==

=
f

[ ]
a∗

��
�

a∗
==

=
f

[ ]
a∗

��
�

γ′′∗
LLLLLL γ′′∗

rrrrrr

γ′[k]




with f in degree d grouped in the left hand side and f in degrees smaller than d grouped
in the right hand side.

According to our induction hypothesis, the right hand side is known. The left hand
side can be identified with ∂(f[d](γ)) where ∂ is the differential in Der

P̃
(P̃(D(A), ∂α1), (B, β1))

and γ ∈ D is identified with 1
P̃
◦ γ ∈ P̃D. Note that these derivations take into account

only the restricted structures α1 and β1, and not the full structures α and β.
We have proved

2.5. Theorem. If the cohomology group H1Der
P̃
(P̃(D(A), ∂α1), (B, β1)) is equal to 0,

we can construct a map f[d] (i.e. continue our induction), and hence a map φf an-
swering the initial problem.

We now relate this cohomology group with one group of Γ-homology:

2.6.Corollary. The obstruction to the realizability of morphisms lies in HΓ1
P
(H∗A,H∗B).
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Proof. The P̃-algebra P̃(D(A), ∂α1) is nothing but a cofibrant replacement of (A,α1)

(cf. Proposition 1.2.4), so the cohomology H∗Der
P̃
(P̃(D(A), ∂α1), (B, β0)) is the Γ-

cohomology of the P̃-algebra A with coefficients in B, for the actions α1 and β1. This
cohomology is actually HΓ∗

P
(H∗A,H∗B), cf. Section 1.5. �

2.7. Remarks.

• The d-th obstruction lies in H1Der
P̃
(P̃(D[d](A), ∂α1), (B, β1)). Thus the total

obstruction lies in
⊕

dH
1 Der

P̃
(P̃(D[d](A), ∂α1), (B, β1)).

Note that
⊕

dH
1 Der

P̃
(P̃(D[d](A), ∂α1), (B, β1)) is included in HΓ1

P
(H∗A,H∗B)

but has no reason to be equal.
• It is possible to work over a ring K instead of a field, but some additional
assumptions are then necessary. We need to assume that relevant dg-modules
over K are projective and that we have sections of the maps: H∗A → A and
H∗B → B.

3. Realization of homotopies

In this section, we consider the problem of uniqueness of realizations in the homotopy
category. We are given

• a graded operad P with the canonical operadic cofibrant replacement P̃ =
Bc(B(P⊠ E));

• two algebras over P̃, (A,α) and (B, β),
• two morphisms f0, f1 : D(A) → B realizing the same P-algebra morphism
ψ : H∗A→ H∗B.

The morphisms f0 and f1 induce morphisms P̃φf0 and P̃φf1 from P̃D(A) to P̃D(B),

and thus two morphisms of P̃-algebras from A to B in the homotopy category. The
question we want to study in this section is: what is the obstruction to the equality
of these morphisms in the homotopy category? We show that the obstruction lies in a
group of Γ-cohomology.

3.1. Outline of the study. We restrict our study to the case where the differentials
of A and B are trivial. We consider the cooperad D defined by B(P ⊠ E). We also

consider the cylinder object B ⊗ N∗(∆1) of B in the category of P̃-algebras, whose
action is denoted (β ⊗ σ) ◦ ρ, cf. Section 1.4. For this matter, we define an explicit

section ρ : P̃→ P̃⊠ E in Section 3.2.
In Section 3.3, we want to construct a D-coalgebra map φf : (D(A), ∂α) → (D(B ⊗

N∗(∆1)), ∂(β⊗σ)◦ρ) giving a homotopy between φf0 and φf1 . Its restriction f must fit
into the following commutative diagram:
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B

i0��
D(A)

f0
66lllllllllllll f //

f1
((RRRRRRRRRRRRR B ⊗N∗(∆1)

B .

i1

OO

As in the previous section, we will construct φf by induction, and see the obstruction

to the construction. Such a map φf induces a homotopy between the morphisms P̃φf0

and P̃φf1 and thus their equality in the homotopy category. Our study is very similar

to the previous one, except we have to consider the cylinder object B⊗N∗(∆1) instead
of B itself.

3.2. Explicitation of a section. We define in this section an explicit operadic section
ρ : P̃→ P̃⊠ E.

Recall from [BM2] that the cobar-bar construction Bc(B(−)) can be identified with
the cubical W-construction W�(−). Markl and Shnider [MS] have constructed a di-

agonal on the W -construction: a map W�(Q)
∆Q
−−→ W�(Q) ⊠W�(Q) for any operad

Q.
On the other hand, we easily observe that for any operads P and Q, we can identify

Bc(B(P⊠ Q)) and Bc(B(P))⊠Bc(B(Q)).
Combining these two facts, we can consider the composite :

Bc(B(P⊠ E)) = Bc(B(P))⊠Bc(B(E))
id⊠∆E→ Bc(B(P))⊠Bc(B(E))⊠Bc(B(E))

= Bc(B(P⊠ E))⊠Bc(B(E))
id⊠aug
→ Bc(B(P⊠ E))⊠ E

where aug denotes the augmentation Bc(B(E))→ E.

We denote this composite by ρ : P̃→ P̃⊠ E.

3.3. Construction of the morphism of coalgebras. Suppose A and B are algebras
over P̃. The same argument as in Section 2.2 allows us to suppose their differentials
are trivial. We use the same graduation as in Section 2.4.

The morphism φf must fit the following commutative diagram:
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D(A)
φf //

∂α+∂D

��

D(B ⊗N∗(∆1))

∂N+∂(β⊗σ)◦ρ+∂D

��
(β⊗σ)◦ρ+proj◦∂N

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

B

D(A)
φf //

f01⊗01#

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX D(B ⊗N∗(∆1))

proj
PPP

PPP

((PPPPPP

B ⊗ 01#.

The triangle on the right obviously commutes. The commutativity of the triangle
on the left defines f01, the restriction of f at the target in the component of 01#. The
commutativity of the exterior diagram is equivalent to the commutativity of the inner
square.

The commutativity of this diagram is equivalent to the equation:

(3) (f01 ⊗ 01#) ◦ (∂D + ∂α) = (β ⊗ σ) ◦ ρ ◦ φf + (f1 − f0)⊗ 01#.

We want to construct the map f01 by induction on the degree. We notice that in
degree zero, D[0](A) is reduced to A and that f1[0] − f

0
[0] = ψ − ψ = 0. Thus we define

f01[0] = 0.

We now suppose by induction that f01 is defined for degrees smaller than d and we
consider an element γ(a1, . . . , an) where γ lies in D[d+1]. For this element, Equation (3)
is equivalent to

(f01 ⊗ 01#)




a1
BB

B
an

{{
{

∂Dγ


+

∑

ν2

d∑

k=1

(f01 ⊗ 01#)




a∗
==

=
α

[ ]
a∗

��
�

a∗

LLLLLLL γ′′[k] a∗

rrrrrrr

γ′




=
∑

ν

ǫ∗∈{0,1,01}

d+1∑

k=1

(β ⊗ σ) ◦ ρ




77
7 a∗

f ǫ1

[ ]
⊗ǫ#1��

� 77
7 a∗

f ǫr

[ ]
⊗ǫ#r��

�

γ′′∗

NNNNNNN γ′′∗

ppppppp

γ′[k]




+((f1 − f0)⊗ 01#)




a1
<<

<
an

��
�

γ




where γ′[k] and γ
′′
[k] denote elements in D[k].
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The main difficulty in this equation (and the main difference with the study in
Section 2.4) comes from the term

∑

ν

d+1∑

k=1

(β ⊗ σ) ◦ ρ




77
7 a∗

f ǫ1

[ ]
⊗ǫ#1��

� 77
7 a∗

f ǫr

[ ]
⊗ǫ#r��

�

γ′′∗
HH

HH
H γ′′∗

vv
vv

v

γ′[k]



.

If γ′ is an element of D[k], k ≥ 2, then the maps f01 appearing in this term are
applied to elements γ′′[ℓ] with ℓ ≤ d−k. Thus these terms are already known, according

to the induction hypothesis.
If γ′ = p ⊗ π is an element of D[1], we first notice that ρ(p ⊗ π) = (p ⊗ π) ⊗ π for

p⊗ π ∈ P⊠ E ⊂ P̃. Then we can rewrite the term for k = 1 as

β




77
7 a∗

f ǫ1

[ ]
��
� 77

7 a∗
f ǫr

[ ]
��
�

γ′′∗
MMMMM γ′′∗

qqqqq

p⊗ π



⊗ σ(π, ǫ#1 , . . . , ǫ

#
r )

with p in P and π in E0. Exactly one of the ǫ# has to be 01# so that this term ends
up in B⊗ 01# (cf. the description of the action of E0 on N∗(∆1) in Section 1.3). Thus
there is only one map f01 involved. If this map f01 is applied to an element γ′′[ℓ] with

ℓ ≤ d− 1, the term is known. If this map f01 is applied to an element γ′′[ℓ] with ℓ = d,

we know that all other γ′′ must be in degree 0, and thus the f ǫ applied to these γ′′ are
just ψ.

Thus we rewrite Equation (3) as

(f01 ⊗ 01#)




a1
BB

B
an

{{
{

∂Dγ


+

∑

ν2

(f01[d] ⊗ 01#)




a∗
==

=
α

[ ]
a∗

��
�

a∗

LLLLLLL γ′′[1] a∗

rrrrrrr

γ′




−
∑

ν

ǫ∗∈{0,1}

(β ⊗ σ) ◦ ρ




77
7 a∗

ψ

[ ]
⊗ǫ#1��

� ::
: a∗

f01[d]

[ ]
⊗01#��

� 77
7 a∗

ψ

[ ]
⊗ǫ#r��

�

γ′′∗

UUUUUUUUUUUUUUU γ′′∗ γ′′∗

iiiiiiiiiiiiiii

γ′[1]



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=
∑

ν

ǫ∗∈{0,1}

d−1∑

ℓ=0

(β ⊗ σ) ◦ ρ




77
7 a∗

f ǫ1

[ ]
⊗ǫ#1��

� ::
: a∗

f01[ℓ]

[ ]
⊗01#��

� 77
7 a∗

f ǫr

[ ]
⊗ǫ#r��

�

γ′′∗

UUUUUUUUUUUUUUU γ′′∗ γ′′∗

iiiiiiiiiiiiiii

γ′[1]




+
∑

ν

ǫ∗∈{0,1,01}

d+1∑

k=2

(β ⊗ σ) ◦ ρ




77
7 a∗

f ǫ1

[ ]
⊗ǫ#1��

� 77
7 a∗

f ǫr

[ ]
⊗ǫ#r��

�

γ′′∗

NNNNNNN γ′′∗

ppppppp

γ′[k]




−
∑

ν2

d∑

k=2

(f01[d+1−k]⊗01
#)




a∗
==

=
α

[ ]
a∗

��
�

a∗

LLLLLLL γ′′[k] a∗

rrrrrrr

γ′



+((f1−f0)⊗01#)




a1
<<

<
an

��
�

γ


 .

The last sum of the left hand side can be simplified. Actually, for a given γ′[1] = p⊗π,

we have

(β ⊗ σ) ◦ ρ




77
7 a∗

ψ

[ ]
⊗ǫ#1��

� ::
: a∗

f01[d]

[ ]
⊗01#��

� 77
7 a∗

ψ

[ ]
⊗ǫ#r��

�

γ′′∗

UUUUUUUUUUUUUUU γ′′∗ γ′′∗

iiiiiiiiiiiiiii

γ′[1]




= β




77
7 a∗

ψ

[ ]
��
� AA

AA
a∗

f01[d]

[ ]
}}
}} 77

7 a∗
ψ

[ ]
��
�

γ′′∗
VVVVVVVVVVVV γ′′∗ γ′′∗

hhhhhhhhhhhh

p⊗ π



⊗ σ(π, ǫ#1 , . . . , 01

#, . . . , ǫ#r )

= β1




77
7 a∗

ψ

[ ]
��
� 77

7 a∗
f01[d]

[ ]
��
� 77

7 a∗
ψ

[ ]
��
�

γ′′∗

UUUUUUUUUUUUU γ′′∗ γ′′∗

iiiiiiiiiiiii

p



⊗ σ(π, ǫ#1 , . . . , 01

#, . . . , ǫ#r ).
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Only one choice of ǫ’s will give a non-zero term: the one where after composition
with the permutation π, the sequence is (0#, . . . , 0#, 01#, 1#, . . . , 1#), according to the
action of E0 on N∗(∆1).

Thus we finally get

(f01 ⊗ 01#)




a1
BB

B
an

{{
{

∂Dγ


+

∑

ν2

(f01[d] ⊗ 01#)




a∗
==

=
α1

[ ]
a∗

��
�

a∗

LLLLLLL γ′′[0] a∗

rrrrrrr

γ′




−
∑

ν

β1




77
7 a∗

ψ

[ ]
��
� ??

? a∗
f01[d]

[ ]
��

� 77
7 a∗

ψ

[ ]
��
�

γ′′∗

TTTTTTTTTTTT γ′′∗ γ′′∗

jjjjjjjjjjjj

γ′[0]|P



⊗ 01#

=
∑

ν

ǫ3∈{0,1}

d−1∑

ℓ=0

(β0 ⊗ σ) ◦ ρ




77
7 a∗

f ǫ1

[ ]
⊗ǫ#1��

� ::
: a∗

f01[ℓ]

[ ]
⊗01#��

� 77
7 a∗

f ǫr

[ ]
⊗ǫ#r��

�

γ′′∗

UUUUUUUUUUUUUUU γ′′∗ γ′′∗

iiiiiiiiiiiiiii

γ′[1]




+
∑

ν

ǫ∗∈{0,1,01}

d+1∑

k=1

(β ⊗ σ) ◦ ρ




77
7 a∗

f ǫ1

[ ]
⊗ǫ#1��

� 77
7 a∗

f ǫr

[ ]
⊗ǫ#r��

�

γ′′∗

NNNNNNN γ′′∗

ppppppp

γ′[k]




−
∑

ν2

d∑

k=2

(f01[d+1−k]⊗01#)




a∗
==

=
α

[ ]
a∗

��
�

a∗

LLLLLLL γ′′[k] a∗

rrrrrrr

γ′




+((f1−f0)⊗01#)




a1
<<

<
an

��
�

γ




where γ′[1]|P denotes the component in P of γ′[1] ∈ P⊠ E.

All the terms in the right hand side are already known. The left hand side can be
identified with ∂(f01[d](γ) ⊗ 01#) where ∂ is the differential in Der

P̃
(P̃(D(A), ∂α1), (B ⊗

01#, β1)). Note that these derivations take into account only the restricted structures
α1 and β1, and not the full structures α and β.
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We have proved

3.4. Theorem. If the cohomology group H1Der
P̃
(P̃(D(A), ∂α1), (B⊗ 01#, β1)) is equal

to 0, we can construct a map f01[d] (i.e. continue our induction), and hence a map φf
answering the initial problem.

We now relate this cohomology group with one group of Γ-cohomology:

3.5. Corollary. The obstruction to the existence of a homotopy of two realizations of
a morphism lies in HΓ0

P
(H∗A,H∗B).

Proof. The proof is almost the same as the proof of Theorem 2.6. The only difference is
that working with B⊗01# instead of B creates a shift in the degree of the cohomology
group. �

Remarks similar to the ones in Section 2.7 for the realization of morphisms can also
be stated for the uniqueness of the realizations.

Acknowledgements

I would like to thank David Chataur and Benoit Fresse for many useful discussions
on the matter of this article. I am also grateful to Muriel Livernet and Birgit Richter
for their careful reading and their remarks.

References

[BF] C. Berger, B. Fresse, Combinatorial operad actions on cochains, Math.Proc. Camb. Phil. Soc 137
(2004), 135-174.

[BM1] C. Berger, I. Moerdijk, Axiomatic homotopy theory for operads, Comment. Math. Helv. 78

(2003), 805-831.
[BM2] C. Berger, I. Moerdijk, The Boardman-Vogt resolution of operads in monoidal model categories,
Topology 45 (2006), 807-849.

[BDG] D. Blanc, W. Dwyer, P. Goerss, The realization space of a Π-algebra: a moduli problem in

algebraic topology, Topology 43 (2004), 857-892.
[DS] W. Dwyer, J. Spalinski, Homotopy theories and model categories, in Handbook of Algebraic
Topology, Elsevier, 1995, 73-126.

[F1] B. Fresse, Modules over operads and functors, Lecture Notes in Mathematics 1967, Springer
Verlag, 2009.

[F2] B. Fresse, Operadic cobar constructions, cylinder objects and homotopy morphisms of algebras
over operads, in ”Alpine perspectives on algebraic topology (Arolla, 2008)”, Contemp. Math. 504,
Amer. Math. Soc. (2009), 125-189.

[F3] B. Fresse, Koszul duality of operads and homology of partition posets, in ”Homotopy theory and
its applications (Evanston, 2002)”, Contemp. Math. 346 (2004), 115-215.

[F4] B. Fresse, Props in model categories and homotopy invariance of structures, Georgian Math. J.
17 (2010), 79-160.

[GJ] E. Getzler, J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces,
hep-th/9403055 (1994).

[GK] V. Ginzburg, M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1995), 203-272.
[GH] P. Goerss, M. Hopkins, Moduli spaces of commutative ring spectra, in “Structured ring spectra”
London Math. Soc. Lecture Note Ser. 315 (2004), 151-200.



OBSTRUCTION THEORY FOR ALGEBRAS OVER AN OPERAD 21

[Hin] V. Hinich, Homological algebra of homotopy algebras, Comm. Algebra 25 (1997), no. 10, 3291-
3323.

[Hir] P. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs,
99, 2003.

[Hof] E. Hoffbeck, Gamma-homology of algebras over an operad, Algebraic & Geometric Topology 10

(2010), 1781-1806.
[Hov] M. Hovey, Model categories, Mathematical Surveys and Monographs, 63, 1999.
[HS] S. Halperin, J. Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979), 233-279.
[Kad] T. Kadeishvili, On the homology theory of fibre spaces, in “International Topology Conference
(Moscow State Univ., Moscow, 1979)”, Uspekhi Mat. Nauk 35 (1980), 183-188.

[Liv] M. Livernet, On a plus-construction for algebras over an operad, K-theory 18 (1999), 317-337.
[MS] M. Markl, S. Shnider Associahedra, cellular W -construction and products of A∞-algebras, Trans.
Amer. Math. Soc. 358 (2006), 2353–2372 (electronic).

[Rob] A. Robinson, Gamma homology, Lie representations and E∞ multiplications, Invent. Math. 152
(2003), 331-348.

[RW] A. Robinson, S. Whitehouse, Operads and Γ-homology of commutative rings, Math. Proc. Cam-
bridge Philos. Soc. 132 (2002), 197-234.

Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Ger-

many

E-mail address: Eric.Hoffbeck@math.uni-hamburg.de


	Convention
	1. Recollections
	1.1. Model structures
	1.2. Coalgebras over cooperads
	1.3. The Barratt-Eccles operad and its action on cochains
	1.4. The cylinder object of an algebra over an operad
	1.5. Operadic -cohomology

	2. Realizations of morphisms
	2.1. Outline of the study
	2.2. Restriction of the hypotheses
	2.4. Construction of the morphism of coalgebras
	2.7. Remarks.

	3. Realization of homotopies
	3.1. Outline of the study
	3.2. Explicitation of a section
	3.3. Construction of the morphism of coalgebras

	Acknowledgements
	References

