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1 Introduction

This paper is a continuation paper of [9] of the study of bounded distance
preserving mappings in the geometries of matrices. We recall that the classical
kinds of geometry of matrices studied by Hua and Wan [14] are: The geometry
of rectangular matrices, symmetric matrices, Hermitian matrices, and alternate
matrices. The matrices are also called the points of the geometry. Two matrices
x, y of the same kind are called adjacent if the rank of x−y equals one, except for
alternate matrices; two alternate matrices x, y are adjacent if rank(x − y) = 2.
The adjacency relation turns the point set of a matrix space into the set of
vertices of a graph. In the fundamental theorem of the geometry of matrices,
any bijection ϕ for which ϕ and ϕ−1 preserve adjacency, i.e., any isomorphism
between the related graphs, is determined. We refer to the book of Wan [14] for
a wealth of results and references.

In the space of rectangular matrices over a commutative field and the space
of Hermitian matrices over a commutative field with characteristic 6= 2, Ming-
Huat Lim and Joshua Juat-Huan Tan [10] characterize the isomorphisms as
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surjective mappings ϕ of the space which satisfy

d(x, y) ≤ k ⇔ d(xϕ, yϕ) ≤ k (1)

for some integer k ∈ {2, . . . , n − 1}, where n denotes the maximal rank of
matrices in the space. The main idea in their paper is to consider the set
S⊥k := {x ∈ P | d(x, y) ≤ k for all y ∈ S} for a nonempty subset S ⊂ P, where
P is the matrix space. They show that for any a 6= b ∈ P with d(a, b) ≤ k, the
following two equivalent properties hold:

{a, b}⊥k⊥k = {a, b} ⇔ 1 < d(a, b) ≤ k, (2)
∣

∣{a, b}⊥k⊥k

∣

∣ ≥ 3 ⇔ d(a, b) = 1. (3)

Recently, Ming-Huat Lim [11] also determine surjective mappings of the Grass-
mann space satisfying (1).

In the paper [9] we find out five elementary conditions. In any graph with
diameter more than two, which satisfies these five elementary conditions, the
equivalent properties (2) and (3) hold. Thus any bijection of the graph, which
satisfies (1) is an adjacency-isomorphism. We recall the five elementary condi-
tions:

Let G be a (finite or infinite) graph. The set of vertices of G will be denoted
by P. Two vertices x, y ∈ P are adjacent if {x, y} is an edge. The distance
between two vertices x, y ∈ P is written as d(x, y). Then x, y ∈ P are adjacent
if and only if d(x, y) = 1. If G is connected, the triangle inequality holds:

d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ P.

The diameter of G, denoted by diam(G), is the maximal distance between two
vertices in G. It may be infinite. We study graphs G satisfying the following
five conditions.

(A1) The graph G is connected.

(A2) For any vertices x, y ∈ P and any integer k with d(x, y) ≤ k ≤ diam(G)
there is a vertex z ∈ P with

d(x, z) = d(x, y) + d(y, z) = k.

(A3) For all vertices x, y, z ∈ P with d(x, y) = d(x, z)+d(z, y), there is a vertex
w ∈ P with

d(w, x) = d(y, z), d(w, y) = d(x, z), and d(w, z) = d(x, y).

(A4) For any 1 ≤ k ≤ diam(G) and any vertices x 6= y, z ∈ P with d(z, x) =
d(z, y) = k there is a vertex w ∈ P with

d(w, z) = 1, d(w, x) = k − 1, and d(w, y) ≥ k.
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Furthermore, for any vertices x, y, z ∈ P with d(x, y) = 3, d(z, x) = 2 and
d(z, y) = 2 there exists a vertex w ∈ P with

d(w, z) = 3, d(w, x) = 1, and d(w, y) ≤ 3.

(A5) For any vertices a, b ∈ P with d(a, b) = 1 there exists a vertex p ∈ P\{a, b}
satisfying

d(x, p) ≤ max{d(x, a), d(x, b)},

for any vertex x ∈ P.

These five conditions ensure that the properties (2) and (3) hold:

Lemma 1.1. [9, Lemma 2.3] Let G be a graph which satisfies the conditions
(A1)-(A5) and 2 < diam(G). Let 1 < k < diam(G) be an integer. Then for any
a 6= b ∈ P with 0 < d(a, b) ≤ k,

∣

∣{a, b}⊥k⊥k

∣

∣ ≥ 3 ⇔ d(a, b) = 1.

We have the following theorem.

Theorem 1.1. [9, Theorem 2.1] Let G, G′ be two graphs with graph theoretical
distances d, d′, respectively, which satisfy the above properties (A1)–(A5) and
2 ≤ diam(G). Let 1 ≤ k < diam(G) be an integer. If ϕ : P → P ′ is a surjection
which satisfies

d(x, y) ≤ k ⇔ d′(xϕ, yϕ) ≤ k ∀x, y ∈ P.

Then ϕ is an isomorphism.

This result is applied in the paper [9] to the graphs arising on the spaces
of rectangular matrices, symmetric, Hermitian matrices under two restrictions,
alternate matrices, and Grassmann spaces.

In the following we study the conditions (A1)–(A5) for the projective spaces
of matrices, namely

• the projective space of symmetric matrices – a symplectic dual polar space,

• the projective space of Hermitian matrices – a unitary dual polar space,
and

• the projective space of alternate matrices – an orthogonal dual polar space.

The projective space of rectangular matrices (the Grassmann space) has been
studied in the paper [9].
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2 Polarity

In this section we shortly introduce the dual polar spaces which are of interest in
this article. The terminology of semi-bilinear form and its connection to duality
and polarity are described in Baer [1].
Let n ≥ 2 be an integer and let D be a division ring which possesses an involution
, i.e., an anti-automorphism of D whose square equals the identity map id of

D. Let F := {a ∈ D | a = a} be the set of all fixed elements of D under . Let
V be the left 2n-dimensional vector space D2n. Define a non-degenerate semi-
bilinear form (u, v) := uKvt, where u = (u1, . . . , u2n), v = (v1, . . . , v2n) ∈ V
and K is a 2n× 2n matrix with entries in D, which satisfies

• K ∈ GL2n(D). This implies the semi-bilinear form is non-degenerate, i.e.
(u, v) = 0, for all v ∈ V , then u = 0.

• K
t
= ǫK, where ǫ = 1 or −1. This implies the reflexivity: (u, v) = 0 if

and only if (v, u) = 0.

This semi-bilinear form induces a duality ⊥ on V , where the dual subspace of
U ≤ V is defined by U⊥ := {v ∈ V | (v, u) = 0 ∀u ∈ U}. We write v ⊥ u,
if (v, u) = 0. There is a dimension formula dimU + dimU⊥ = dimV , for any
subspace U of V . A subspace U of V is called totally isotropic if U ≤ U⊥. If
U = U⊥ then U is called self-dual. It is obvious that

U⊥⊥ = U (∗)

for all subspaces U . A duality on V with the property (∗) is also called a
polarity on V . The self-dual subspaces are just the totally isotropic subspaces
with dimension n.
For any subspaces U1 and U2 we have the following basic properties:

U1 < U2 ⇔ U⊥

2 < U⊥

1 (4)

(U1 + U2)
⊥ = U⊥

1 ∩ U⊥

2 (5)

(U1 ∩ U2)
⊥ = U⊥

1 + U⊥

2 (6)

If dimU1 = dimU2, then

U1 ∩ U⊥

2 = {0} ⇔ U2 ∩ U⊥

1 = {0} (7)

Proposition 2.1. (Cf. [5, chapter 2, section 3].) For any subspaces U,X of
V , which satisfy U < U⊥ and X = X⊥, then W := U + (U⊥ ∩X) is self-dual.
Moreover U +X = W +X and U⊥ ∩X = W ∩X.

Proposition 2.2. Let X,W be any self-dual subspaces of V , with dim(W+X) =
n + s, 0 ≤ s ≤ n. Then for any subspace U of W , W = U + (U⊥ ∩X) if, and
only if, dim(U +X) = n+ s.
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Proof. Let U be a subspace of W . Then U is totally isotropic and U+(U⊥∩X)
is self-dual. If W = U + (U⊥ ∩X), then from Proposition 2.1, dim(W +X) =
dim(U +X) = n+ s. Conversely, if dim(U +X) = n+ s = dim(W +X), then
U+X = W+X equivalently U⊥∩X = W ∩X < W . Hence U+(U⊥∩X) < W .
U + (U⊥ ∩ X) and W both are self-dual and n-dimensional, we have then
U + (U⊥ ∩X) = W

Proposition 2.3. Let X,Y, Z be n-dimensional subspaces in V , which satisfy
dim(X+Z)+dim(Z+Y ) = n+dim(X+Y ). Then using dimension arguments
we have X ∩ Y < Z < X + Y .

Lemma 2.1. Let X and Y be any self-dual subspaces of V with dim(X +Y ) =
n + s + t, where 1 ≤ s, 0 ≤ t, s + t ≤ n are integers. Then any self-dual
subspace W which satisfies dim(W +X) = n + s and dim(W + Y ) = n + t if,
and only if, there is an s-dimensional subspace U < Y , with U ∩X = {0}, and
W = U + (U⊥ ∩X)

Proof. Let W be a self-dual subspace which satisfies dim(W +X) = n+ s and
dim(W + Y ) = n+ t. Then by Proposition 2.3, we have X ∩ Y < W < X + Y .
Let U be an s-dimensional subspace U < Y , with U + (X ∩ Y ) = W ∩ Y . Then
U < W and U ∩X = {0}. This implies dim(U +X) = n + s = dim(W +X).
From Proposition 2.2 we have W = U + (U⊥ ∩X).
Conversely, let U < Y be an s-dimensional subspace with U ∩X = {0}. Then
U < Y = Y ⊥ < U⊥ is totally isotropic and W := U + (U⊥ ∩ X) is self-dual
with dim(W +X) = dim(U +X) = n + s, from Proposition 2.1. Furthermore
we have dim(W + Y ) = dim(U + (U⊥ ∩ X) + Y ) = dim((U⊥ ∩ X) + Y ) =
dim(U⊥∩X)+dimY −dim((U⊥∩X)∩Y ) = dim(W∩X)+dimY −dim(X∩Y ) =
(n− s) + n− (n− s− t) = n+ t.

Lemma 2.2. Let X, Y and Z be any self-dual subspaces of V with dim(X+Y ) =
n + s + t, dim(Z + X) = n + s and dim(Z + Y ) = n + t, where 1 ≤ s, 0 ≤ t,
s + t ≤ n are integers. Then there is a self-dual subspace W , which satisfies
dim(W +X) = n+ t, dim(W + Y ) = n+ s, and dim(W + Z) = n+ s+ t.

Proof. LetX, Y and Z be self-dual subspaces satisfy the hypotheses. Then from
the Lemma 2.1 there is an s-dimensional subspace U1 < Y with U1 ∩X = {0},
such that Z = U1 + (U⊥

1 ∩X). Since U⊥

1 ∩X = Z ∩X is (n− s)-dimensional,
there is an s-dimensional subspace U2 < X with U2 ∩ U⊥

1 = {0}, such that
X = U2 + (U⊥

1 ∩ X) = U2 + (Z ∩ X). Define W := U2 + (U⊥

2 ∩ Y ). Since
U2∩Y < U2∩U⊥

1 = {0}, we have by Lemma 2.1, that dim(W +X) = n+ t and
dim(W +Y ) = n+ s. Furthermore, from (7) we have U1 ∩W < U1 ∩U⊥

2 = {0}.
Together with U1 < Y , dimU1 = s and dimW ∩ Y = n− s, we have Y = U1 +
(W∩Y ). This impliesX+Y = (U2+(Z∩X))+(U1+(W∩Y )) < W+Z < X+Y .
Hence W + Z = X + Y and dim(W + Z) = dim(X + Y ) = n+ s+ t.

Remark: It was proved in [2, Theorem 2] for near polygons with quads (also
known as dense near polygons), that for any two points x, y with distance i, and
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any geodesic (x = x0, x1, . . . , xi = y), there is a geodesic (y = y0, y1, . . . , yi = x)
such that distance between xj and yj is i, for all 0 ≤ j ≤ i.

Consider a point-line geometry related to a fixed polarity ⊥ with self-dual
subspaces U = U⊥ as points and the sets of all self-dual subspaces which contain
a common (n − 1)-dimensional subspace as lines. Such point-line geometry is
a classical dual polar space [4]. Two self-dual subspaces are called adjacent,
if they are distinct and collinear, i.e., their intersection is (n − 1)-dimensional.
The adjacency relation turns the point set into the set of vertices of a graph, we
call it collinearity graph. In the following we will study three types of dual polar
spaces which are closely related to the geometries of matrices. Let In denote
the n× n identity matrix.

• K :=

(

0 In
−In 0

)

, = id, D = F is a commutative field.

The corresponding geometry is called the projective space of symmetric
matrices and is a symplectic dual polar space.

• K :=

(

0 In
−In 0

)

, 6= id, D is a division ring.

The corresponding geometry is called the projective space of Hermitian
matrices and is a unitary dual polar space.

• K :=

(

0 In
In 0

)

, = id, D = F is a commutative field, ch(F) 6= 2.

The corresponding geometry is called the projective space of alternate ma-
trices and is an orthogonal dual polar space.

We would like to describe the relation between dual polar spaces and the
projective spaces of matrices. Let W be an n-dimensional subspace of V . A
matrix representation of W is an n× 2n matrix over D, whose row vectors form
a basis of W . A matrix representation is unique up to a left multiplication with
a nonsingular n × n matrix over D. We write a matrix representation of W in
the block form

(A | B) , (8)

where both A and B are n× n matrices. Then W is self-dual if and only if

(A | B)K
(

A | B
)t

= 0 (9)

if and only if

AB
t
= BA

t
, (10)

where K =

(

0 In
−In 0

)

, or

ABt = −BAt, (11)

where K =

(

0 In
In 0

)

, and = id.

The conditions (10),(11) are independent of the choice of the matrix repre-
sentation. For W self-dual we call (A | B) homogeneous coordinates of W . If
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rank A = n, then
(

In | A−1B
)

are also homogeneous coordinates of W , and
A−1B is an n×n symmetric matrix, Hermitian matrix, or alternate matrix, with
respect to K and . Conversely, for every n×n symmetric, Hermitian or alter-
nate matrix H, (In | H) are homogeneous coordinates of a self-dual subspace
respectively. The graph-theoretic distance between two self-dual subspaces
W1, W2 with homogeneous coordinates (A1 | B1), (A2 | B2) is d(W1,W2) =

rank
(

(A1 | B1) K
(

A2 | B2

)t )

= dim(W1+W2)−n, cf. [14, Proposition 5.44,
5.48, 6.43, 6.47]. Define PSn(F) to be the symplectic dual polar space as-

sociated to K =

(

0 In
−In 0

)

and = id. Let ∞ := (0 | In) ∈ PSn(F).

Define Dk(∞) := {W ∈ PSn(F) | d(W,∞) = k} for all k = 0, . . . , n. Then
Dn(∞) = {(In | S) ∈ PSn(F) | S ∈ Sn(F)}. Hence

• the symplectic dual polar space is also called projective space of n × n
symmetric matrices over F , [14], analogously,

• the unitary dual polar space with respect to K =

(

0 In
−In 0

)

and is

called projective space of n × n Hermitian matrices over D respective ,
denoted by PHn(D), and

• the orthogonal dual polar space with respect toK =

(

0 In
In 0

)

and = id

is called projective space of n × n alternate matrices over F , denoted by
PKn(F).

3 Projective geometry of Hermitian and sym-

metric matrices

In this section we will study the projective space of symmetric matrices and

Hermitian matrices together. Let K =

(

0 In
−In 0

)

. Let n ≥ 2 be an integer

and D an arbitrary division ring which possesses an involution . Denote the
centre of D by Z(D) and F := {a ∈ D | a = a}. We assume additionally

ch(D) 6= 2, when D is commutative and = id . (12)

Let V be the 2n-dimensional left vector space over D. The projective space
of Hermitian matrices PHn(D) with respect to D and K contains all self-dual
subspaces of V . They are n-dimensional subspaces W with homogeneous co-

ordinates (A | B) satisfying (A | B)K
(

A | B
)t

= 0. The projective space of
symmetric matrices is included as the case that D is commutative and is
the identity map. We call the self-dual subspaces of V points of the space
PHn(D). Two points are adjacent, if their intersection is (n − 1)-dimensional.
The adjacency on PHn(D) can be considered as the adjacency relation of
a graph with the set of vertices PHn(D). We denote the graph arising on
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PHn(D) as Γ(PHn(D)). It was proved in [14, Proposition 5.44, 5.48, 6.43,
6.47] and [6, Proposition 5.9.7, 5.9.10] that the distance between two points

W1, W2 satisfies d(W1,W2) = dim(W1 + W2) − n =rank(W1KW2
t
). The set

GU2n(D) := {T ∈ M2n(D) | TKT
t
= λK, λ ∈ (F ∩ Z(D)) \ {0}} together

with the matrix multiplication forms a group which is called the general unitary
group. It is a subgroup of the automorphism group of the graph Γ(PHn(D)). In
the case that D is commutative and = id, the general unitary group is called
general symplectic group GSp2n(F).

We have some well-known properties of GU2n(D).

Proposition 3.1. (Cf. [14, Proposition 5.43, 6.42].) GU2n(D) acts transitively
on PHn(D).

Proposition 3.2. (Cf. [14, Proposition 5.47, 6.46].) The set of pairs of points
of PHn(D) with same distance forms an orbit under GU2n(D).

We denote by Eij the n × n matrix over D whose (i, j) entry equals 1,
whereas all other entries are 0. Hence from above Propositions any two points
at distance k, 0 ≤ k ≤ n, can be taken under GU2n(D) to X = (In | 0) and

Y =
(

In |
∑k

i=1 Eii

)

.

W.L.Chow proved in [5] the fundamental theorem of the projective space of
symmetric matrices PSn(F) (the symplectic dual polar space). We rewrite the
theorem of Chow in the homogeneous coordinates.

Theorem 3.1 (W.L. Chow, [5]). Let F , F ′ be arbitrary commutative fields
and n, n′ be integers, n, n′ ≥ 2. If there is a bijective map ϕ from PSn(F) to
PSn′(F ′) for which both the map ϕ and its inverse ϕ−1 preserve the adjacency,
then n = n′ and ϕ is of the form

(A | B) 7→ (A | B)
σ
T (13)

for all points in PSn(F) with homogeneous coordinates (A | B), where T ∈
GSp2n(F

′), and σ is an isomorphism between F and F ′.

The graph Γ(PHn(D)) satisfies the conditions (A1), (A2), (A3), and (A5)
mentioned in the introduction. This is clear, since PHn(D) is a thick dual polar
space. Thick means that every line in the space contains at least three points.
However, we shortly prove that these conditions hold for Γ(PHn(D)).

Lemma 3.1. The graph Γ(PHn(D)) with the restriction (12) satisfies the con-
ditions (A1)- (A5) mentioned in the introduction.

Proof. (A1): Γ(PHn(D)) is connected and the diameter of Γ(PHn(D)) is n.

(A2): Let X,Y ∈ PHn(D) be two points with distance d(X,Y ) = r. With-
out loss of generality assume that X = (In | 0) and Y = (In |

∑r

i=1 Eii).

For any integer k with r ≤ k ≤ n define Z :=
(

In |
∑k

i=1 Eii

)

. Then
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d(X,Z) = k = d(X,Y ) + d(Y, Z). So (A2) holds.

(A3): This is the Lemma 2.2.

(A4): Let X,Y, Z ∈ PHn(D) be vertices with X 6= Y and d(X,Z) =
d(Y, Z) =: k ≥ 1. In the case k = 1, let W := X. Now suppose k ≥ 2.

Case 1: k = n. Without loss of the generality, assume Z = (In | 0), Y =
(In | In), and X = (A | B). Since d(Z,X) = n, we have rankB = n, and we

may assume B = In, X = (A | In) where A = A
t
. The fact X 6= Y implies

A 6= In. The assumption (12) ensures that In −A is not alternate, and there is
a vector v ∈ Dn such that v(In −A)vt 6= 0. Obviously x := v (A | In) ∈ X \Z.
Let U := span(x). (U + Z) ∩ Y is the one-dimensional subspace {(µv, µv) |µ ∈
D} < D2n. Let W := U + (U⊥ ∩ Z), then W ∈ PHn(D), d(W,Z) = 1 and
d(W,X) = n− 1, by Lemma 2.1. Suppose d(W,Y ) = n− 1, then from Lemma
2.1 there is a vector y ∈ Y \ Z, such that W = span(y) + (span(y)⊥ ∩ Z) =
U + (U⊥ ∩ Z). Hence y ∈ (U + Z) ∩ Y , and there is some µ ∈ D \ {0} with

y = (µv, µv). We have (y, x) = yKxt = (µv)vt − (µv)vA
t
= µv(In − A)vt 6= 0,

hence y 6∈ U⊥, a contradiction to y ∈ W = U+(U⊥∩Z) < U⊥. So d(W,Y ) = n,
as required.

Case 2: 2 ≤ k < n.
Case 2.1: X+Z = Y +Z. Consider the quotient space (X+Z)/(X ∩Z) :=

{P ∈ PHn(D) | X ∩ Z < P < X + Z}. The quotient space (X + Z)/(X ∩ Z)
contains X,Y, Z and is isomorphic to PHk(D). The graph arising from (X +
Z)/(X ∩Z) contains all geodesics from any points P,Q ∈ (X+Z)/(X ∩Z) and
has diameter k. Similar to the case 1, we can find a point W ∈ (X+Z)/(X∩Z),
with d(W,Z) = 1, d(W,X) = k − 1, and d(W,Y ) = k.

Case 2.2: X + Z 6= Y + Z. Choose a one-dimensional subspace U <
X \ (Y + Z). Define W := U + (U⊥ ∩ Z), then W ∈ PHn(D), d(W,Z) = 1
and d(W,X) = k − 1. Since U 6< (Y + Z), W is not a subspace of Y + Z.
Hence d(W,Y ) 6= k − 1 by Proposition 2.3. From the triangle inequality
k − 1 = d(Y, Z)− d(W,Z) ≤ d(W,Y ) we have k ≤ d(W,Y ).

For the second part of (A4), let X,Y, Z ∈ PHn(D) with d(Z,X) = 2 =
d(Z, Y ) and d(X,Y ) = 3. Then there is a one-dimensional subspace U1 with
U1 < Y and U1 ∩ (X + Z) = {0}. Define W := U1 + (U⊥

1 ∩ X). Then from
Lemma 2.1, d(W,X) = 1 and d(W,Y ) = 2. Since U1 ∩ (X + Z) = {0}, we
have U⊥

1 + (X ∩ Z) = V and dim(U⊥

1 ∩ (X ∩ Z)) = n − 3. There is a one-
dimensional subspace U2 < X ∩Z with U2∩U⊥

1 = {0}, X = U2+(U⊥

1 ∩X) and
Z = U2+(U⊥

1 ∩Z). W+Z = U1+(U⊥

1 ∩X)+Z = U1+(U⊥

1 ∩X)+U2+(U⊥

1 ∩Z) =
U1 +X + Z has dimension n+ 3. Hence d(W,Z) = 3.

(A5): LetA,B ∈ PHn(D) be two adjacent points. Without loss of generality
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assume that A = (In | 0) and B = (In | E11). Then

P :=

(

n
∑

i=2

Eii | E11

)

has the required property in (A5).

From Lemma 3.1 and Theorem 1.1 we obtain:

Theorem 3.2. Let F ,F ′ be fields with characteristic not equal to two. Let
n, n′ be integers ≥ 2 and 1 ≤ k < min{n, n′}. If ϕ : PSn(F) 7→ PSn′(F ′) is a
surjective mapping which satisfies

d(X,Y ) ≤ k ⇔ d(Xϕ, Y ϕ) ≤ k

for all X,Y ∈ PSn(F), then ϕ is bijective. Both ϕ and ϕ−1 preserve adjacency
of subspaces. Moreover F and F ′ are isomorphic, n = n′, and ϕ is of the form
(13).

Theorem 3.3. Let D,D′ be division rings with involutions , ′, both are not
identity. Let n, n′ be integers ≥ 2 and 1 ≤ k < min{n, n′}. If ϕ : PHn(D) 7→
PHn′(D′) is a surjective mapping which satisfies

d(X,Y ) ≤ k ⇔ d(Xϕ, Y ϕ) ≤ k

for all X,Y ∈ PHn(D), then ϕ is bijective, n = n′ and both ϕ and ϕ−1 preserve
adjacency.

The fundamental theorem of the projective geometry of Hermitian matrices
describes the mapping ϕ in the Theorem 3.3 explicitly1.

4 Projective Geometry of alternate matrices

Let n ≥ 2 be an integer and let F be an arbitrary commutative field with char-
acteristic not equal to two. Let V = F2n be the 2n-dimensional vector space

over F equipped with a bilinear form (x, y) = xSyt, where S :=

(

0 In
In 0

)

,

In is the n × n identity matrix. This bilinear form induces an orthogonal dual
polar space. Analogously to the unitary dual polar space, there is a close con-
nection between the orthogonal dual polar space and the space of alternate
n × n matrices Kn(F) (cf. [14, chapter 4.4]). We call the orthogonal dual po-
lar space projective space of n × n alternate matrices over F and denote it by
PKn(F). The self-dual subspaces are called the points of PKn(F). They are
n-dimensional subspaces W with homogeneous coordinates (A | B) satisfying
(A | B)S(A | B)

t
= 0. Two points are adjacent, if their intersection is (n− 1)-

dimensional. The adjacency on PKn(F) can be considered as the adjacency

1However this seems to be known only under some additional assumptions on the division
ring D, see e.g. [6, 7, 14].
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relation of a graph with the set of vertices PKn(F). We denote the graph
arising from PKn(F) as Γ(PKn(F)). It was proved in [14, Propositions 4.22,
4.26] that the graph-theoretic distance between two points W1, W2 satisfies
d(W1,W2) = dim(W1 +W2)− n = rank(W1 SW2

t).
The set O2n(F) := {T ∈ M2n(F) | TST t = S} together with the matrix

multiplication forms a group. It is a subgroup of the automorphism group of
the graph Γ(PKn(F)).

In the following we give some well-known properties of O2n(F).

Proposition 4.1. (See e.g. [14, Proposition 4.21].) O2n(F) acts transitively
on PKn(F).

Proposition 4.2. (See e.g. [14, Proposition 4.25].) The set of pairs of points
of PKn(F) with same distance forms an orbit under O2n(F).

Let X, Y be two points in PKn(F) with distance r. Then they can be
transformed under O2n(F) to (In | 0) and

(
∑n

i=r+1 Eii |
∑r

i=1 Eii

)

.

The graph Γ(PKn(F)) satisfies the conditions (A1), (A2) and (A3), analo-
gous to Γ(PHn(D)), however it does not satisfies the conditions (A4) and (A5),
because Γ(PKn(F)) is a bipartite graph. The space PKn(F) can be divided
into two disjoint components, PKn(F)+and PKn(F)−. For any two points X
and Y in PKn(F), they are in the same component if, and only if, they are at
even distance.

5 The irreducible space PKn(F)+ of the Projec-

tive Geometry of alternate matrices

In this section we will consider the irreducible part of the space PKn(F). Denote
O+

2n(F) := {T ∈ M2n(F) | TST t = S, detT = 1}, it is a subgroup of O2n(F).
Define

PKn(F)+ := {W ∈ PKn(F) | rankWS (In | 0)
t
is even}

= {(A | B) ∈ PKn(F) | rankB is even},

PKn(F)− := {W ∈ PKn(F) | rankWS (In | 0)
t
is odd}

= {(A | B) ∈ PKn(F) | rankB is odd}.

Then PKn(F)+ contains all points with coordinates W = (In | B), where B
is an n × n alternate matrix. The distance between two points W1, W2 ∈
PKn(F)+ ⊂ PKn(F) is always even. Define the new distance on PKn(F)+ by
d+(W1,W2) := 1

2 (dim(W1 + W2) − n) = 1
2 rankW1 SW t

2 . We call two points
W1, W2 ∈ PKn(F)+ adjacent if, and only if, d+(W1,W2) = 1. The graph
arising on PKn(F)+ is connected with diameter [n2 ]. We denote the graph with
Γ(PKn(F)+). The distance d+ of PKn(F)+ is the same as the graph-theoretic
distance. The graph Γ(PKn(F)+) satisfies the conditions (A1), (A2) and (A3).
In the next we are going to prove, when n is even, that Γ(PKn(F)+) also satisfies
the conditions (A4) and (A5).
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Lemma 5.1. Let n ≥ 4 be an even integer. Γ(PKn(F)+) satisfies the condition
(A4).

Proof. LetX,Y, Z ∈ PKn(F)+ be points withX 6= Y and d+(X,Z) = d+(Y, Z) =:
k ≥ 1. In the case k = 1, let W := X. Now suppose k ≥ 2.

Case 1: k = n
2 . Without loss of generality, assume Z = (In | 0), Y =

(In | K), and X = (X1 | X2), where K := (E12 − E21) + (E34 − E43) + . . . +
(E(n−1)n − En(n−1)). Since d+(Z,X) = n

2 , we have rankX2 = n, and we may
assumeX2 = In,X = (X1 | In) whereX1 = −Xt

1. Since ch(F) 6= 2 andX 6= Y ,
X1+K 6= 0, there are linear independent vectors v1, v2 ∈ Fn such that v1(X1+
K)vt2 6= 0. Obviously xi := vi (X1 | In) ∈ X \ Z, and U := span(x1, x2) is a
two-dimensional subspace in X. (U +Z)∩ Y is the two-dimensional sub vector
space {(−(µ1v1+µ2v2)K, (µ1v1+µ2v2)) |µi ∈ F}. Let W := U+(U⊥∩Z), then
by Lemma 2.1, W ∈ PKn(F)+, d+(W,Z) = 1 and d+(W,X) = n

2 − 1. Suppose
d+(W,Y ) = n

2 −1, then there is a vector y ∈ Y \Z, such that y ∈ W ∩Y . Hence
y ∈ (U + Z) ∩ Y , and there are some µi ∈ F , i = 1, 2 with (µ1, µ2) 6= (0, 0) and
y = (−(µ1v1+µ2v2)K, (µ1v1+µ2v2)). Without loss of generality, assume µ1 6= 0.
We have (−(µ1v1 + µ2v2)K, (µ1v1 + µ2v2))S (v2X1, v2)

t = µ1v1(X +K)vt2 6= 0,
so y 6∈ U⊥, a contradiction to y ∈ W = U + (U⊥ ∩ Z) < U⊥.

Case 2: 2 ≤ k < n
2 .

Case 2.1: X + Z = Y + Z. The quotient space X + Z/X ∩ Z = {P ∈
PKn(F)+, X ∩ Z < P < X + Z} is isomorphic to PK2k(F)+ and has diameter
k. Similar to case 1, there is a point W ∈ X + Z/X ∩ Z with the required
properties.

Case 2.2: X + Z 6= Y + Z. There is some two-dimensional subspace U in
X with U ∩ (Y + Z) = {0}. Define W := U + (U⊥ ∩ Z), then W ∈ PKn(F)+,
d+(W,Z) = 1 and d+(W,X) = k − 1. Since U < W and U is not a subspace
of Y + Z, we have W is not a subspace of Y + Z. Hence d+(W,Y ) 6= k − 1 by
Proposition 2.3.

For the second part of (A4), let X,Y, Z ∈ PKn(F)+ with d+(Z,X) = 2 =
d+(Z, Y ) and d+(X,Y ) = 3. Since dim(X+Y ) = n+6, and dim(X+Z) = n+4,
there is a two-dimensional subspace U1 with U1 < Y and U1 ∩ (X + Z) = {0}.
Define W := U1 + (U⊥

1 ∩ X). Then from Lemma 2.1, d+(W,X) = 1 and
d+(W,Y ) = 2. Since U1 ∩ (X + Z) = {0}, we have U⊥

1 + (X ∩ Z) = V and
dim(U⊥

1 ∩ (X ∩ Z)) = n− 6. There is a two-dimensional subspace U2 < X ∩ Z
with U2 ∩ U⊥

1 = {0}, X = U2 + (U⊥

1 ∩X) and Z = U2 + (U⊥

1 ∩ Z). W + Z =
U1 + (U⊥

1 ∩ X) + Z = U1 + (U⊥

1 ∩ X) + U2 + (U⊥

1 ∩ Z) = U1 + X + Z has
dimension n+ 6, hence d+(W,Z) = 3.

Lemma 5.2. Γ(PKn(F)+) satisfies the condition (A5).

Proof. Without loss of generality, we may assume A = (In | 0) and B =
(In | E12 − E21). Let P = (

∑n

i=3 Eii | E11 + E22) ∈ PKn(F)+. For any
W = (X | Y ) ∈ PKn(F)+, we have rankWSP t = rank(x1, x2, y3, . . . , yn),
rankWSAt = rankY , and rankWSBt = rank(x2 + y1,−x1 + y2, y3, . . . , yn),
where xi, yj denote the column vectors of the matrices X and Y . Since
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rankWSP t, rankWSAt and rankWSBt are all even, if rankWSAt < rankWSP t,
then span(y1, y2) < span(y3, . . . , yn) and span(x1, x2) ∩ span(y3, . . . , yn) =
{0}. This implies that rankWSBt = rank(x2 + y1,−x1 + y2, y3, . . . , yn) =
rank(x1, x2, y3, . . . , yn) = rankWSP t. Hence d+(W,P ) = 1

2 rankWSP t ≤
max{ 1

2 rankWSAt, 1
2 rankWSBt} = max{d+(W,A), d+(W,B)}

Theorem 5.1. Let F ,F ′ be fields with characteristic not equal to two. Let
n, n′ ≥ 2 be even integers and 1 ≤ k < min{n

2 ,
n′

2 }. If ϕ : PKn(F)+ 7→
PKn′(F ′)+ is a surjective mapping which satisfies

d+(X,Y ) ≤ k ⇔ d+(Xϕ, Y ϕ) ≤ k

for all X,Y ∈ PKn(F)+, then ϕ is bijective. Both ϕ and ϕ−1 preserve adjacency
of subspaces. Moreover F and F ′ are isomorphic, and n = n′.
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