EXCEPTIONAL HOLONOMY BASED ON THE HITCHIN FLOW ON COMPLEX LINE BUNDLES

FRANK REIDEGELD

Abstract

An $S U(3)$ - or $S U(1,2)$-structure on a 6 -dimensional manifold N_{6} can be defined as a pair of a 2 -form ω and a 3 -form ρ. Let M_{8} be an arbitrary complex line bundle over N_{6}. We prove that any $S U(3)$ - or $S U(1,2)$-structure on N_{6} with $d \omega \wedge \omega=0$ can be uniquely extended to a $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure which is defined on a tubular neighborhood of the zero section of M_{8}. As an application, we prove that the known cohomogeneity-one metrics with holonomy $\operatorname{Spin}(7)$ on a certain complex line bundle over $S U(3) / U(1)^{2}$ are the only ones.

1. Introduction

The flow equations of Hitchin [14] are a method to construct manifolds with exceptional holonomy, which can also be generalized to the semi-Riemannian case [7]. In this article, we restrict ourselves to metrics with holonomy $\operatorname{Spin}(7)$ or $\operatorname{Spin}_{0}(3,4)$.

We start with a cocalibrated G_{2} - or G_{2}^{*}-structure ϕ on a 7 -dimensional manifold N_{7}. Hitchin's flow equation yields a one-parameter family $\left(\phi_{t}\right)_{t \in[0, \epsilon)}$ of $G_{2^{-}}$or $G_{2^{2}}^{*}$-structures such that $\phi_{0}=\phi$ and $d t \wedge \phi_{t}+* \phi_{t}$ is a parallel $\operatorname{Spin}(7)-$ or $\operatorname{Spin}_{0}(3,4)$-structure.
The metrics which we obtain by this method are in general incomplete. In order to construct complete examples, we assume that N_{7} degenerates for small t into a 6 -dimensional manifold N_{6} such that the space on which the $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure will be defined is a complex line bundle over N_{6}. Later on, this kind of degeneration will be defined more rigorously.

The zero section of the bundle, which we will identify with N_{6}, carries an $S U(3)$ - or $S U(1,2)$-structure $\left(\omega_{0}, \rho_{0}\right)$ where ω_{0} is a 2 -form and ρ_{0} is a 3 -form. Many of the known cohomogeneity-one metrics with holonomy $\operatorname{Spin}(7)$ [1], [2], 8], 9], [10], [15], 17], [20], [21, [22] are defined on a complex line bundle and are precisely of the kind which we investigate. This is a further motivation to study degenerations of the Hitchin flow.
If we assume that all initial data on N_{6} are analytic, our main result can be proven with help of the Cauchy-Kovalevskaya Theorem. We have to pay special attention to the conditions which ϕ_{t} has to satisfy such that the $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure on $M_{8} \backslash N_{6}$ has a smooth extension to N_{6}.

It turns out that the only non-trivial condition on $\left(\omega_{0}, \rho_{0}\right)$ is $d \omega_{0} \wedge \omega_{0}=$ 0 . For any complex line bundle and any $S U(3)$ - or $S U(1,2)$-structure on N_{6} which satisfies this condition, we obtain a unique parallel Spin(7)- or $\operatorname{Spin}_{0}(3,4)$-structure on a tubular neighborhood of N_{6}.
In the literature [1], [2], [17], [20], [22], there are many cohomogeneityone metrics with exceptional holonomy known whose principal orbit is the exceptional Aloff-Wallach space $N^{1,1}$ and whose singular orbit is $S U(3) / T^{2}$ where T^{2} is a maximal torus of $S U(3)$. With help of our theorem, we will see that no further metrics of that kind exist. We expect that there are further applications of our theorem in the construction of parallel $\operatorname{Spin}(7)-$ or $\operatorname{Spin}_{0}(3,4)$-structures which are of cohomogeneity one or have another explicit description.

2. G-Structures

2.1. G is a real form of $S L(3, \mathbb{C})$. In order to formulate our theorem we have to introduce several G-structures. On the total space of the bundle we want to construct a $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure. In this situation, the zero section of the bundle carries a G-structure where G is a real form of $S L(3, \mathbb{C})$. Finally, the set of all points with a fixed distance from the zero section carries a G_{2}-structure or a G_{2}^{*}-structure. A well written introduction to all of these G-structures can be found in Cortés et al. [7]. We use similar conventions as 7 and only recapitulate the facts which we need for our considerations.
We first take a look at the case where G is a real form of $S L(3, \mathbb{C})$. The other G-structures can be build up from these ones. There are three real forms of $S L(3, \mathbb{C})$ namely $S U(3), S U(1,2)$, and $S L(3, \mathbb{R})$. In the later sections, we restrict ourselves to $S U(3)$ - and $S U(1,2)$-structures. Nevertheless, we introduce all three types of G-structures in this subsection, since they share many properties.
All of the G-structures from this section can be described with help of certain differential forms. We will index the differential forms by the corresponding group G in order to avoid confusion. Throughout the article we use the following convention.

Convention 2.1. Let $\left(v_{i}\right)_{i \in I}$ be a basis of a vector space V. We denote its dual basis by $\left(v^{i}\right)_{i \in I}$ and abbreviate $v^{i_{1}} \wedge \ldots \wedge v^{i_{j}}$ by $v^{i_{1} \ldots i_{j}}$.

Let $\left(e_{i}\right)_{i=1, \ldots, 6}$ be the canonical basis of \mathbb{R}^{6}. We define the 2 -forms

$$
\begin{equation*}
\omega_{S U(3)}:=\omega_{S L(3, \mathbb{R})}:=e^{12}+e^{34}+e^{56} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{S U(1,2)}:=-e^{12}-e^{34}+e^{56} \tag{2}
\end{equation*}
$$

Moreover, we introduce the 3-forms

$$
\begin{equation*}
\rho_{S U(3)}:=\rho_{S U(1,2)}:=e^{135}-e^{146}-e^{236}-e^{245} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{S L(3, \mathbb{R})}:=e^{135}+e^{146}+e^{236}+e^{245} \tag{4}
\end{equation*}
$$

Convention 2.2. If we consider an arbitrary 2 -form in $\left\{\omega_{S U(3)}, \omega_{S U(1,2)}\right.$, $\left.\omega_{S L(3, \mathbb{R})}\right\}$ we denote it by ω. Analogously, ρ denotes a 3 -form which is either $\rho_{S U(3)}, \rho_{S U(1,2)}$, or $\rho_{S L(3, \mathbb{R})}$.

The following lemma is proven in [7].
Lemma 2.3. Let $G \in\{S U(3), S U(1,2), S L(3, \mathbb{R})\}$. The subgroup of all $A \in G L(6, \mathbb{R})$ which stabilize ω_{G} and ρ_{G} simultaneously is isomorphic to G.

This lemma motivates the following definition.
Definition 2.4. Let $G \in\{S U(3), S U(1,2), S L(3, \mathbb{R})\}, V$ be a 6 -dimensional real vector space and (ω, ρ) be a pair of a 2 -form and a 3 -form on V. If there exists a basis $\left(v_{i}\right)_{i=1, \ldots, 6}$ of V such that with respect to this basis ω can be identified with ω_{G} and ρ with $\rho_{G},(\omega, \rho)$ is called a G-structure.
ω and ρ are both examples of stable forms in the sense of Hitchin [14].
Definition 2.5. Let V be a real or complex vector space and $\beta \in \bigwedge^{k} V^{*}$ with $k \in\{0, \ldots, \operatorname{dim} V\}$ be a k-form. β is called stable if the $G L(V)$-orbit of β is an open subset of $\bigwedge^{k} V^{*}$.

Lemma 2.6. Let (ω, ρ) be a G-structure where $G \in\{S U(3), S U(1,2)$, $S L(3, \mathbb{R})\}$. In this situation, ω and ρ are both stable forms.

Remark 2.7. The stable forms are an open dense subset of $\bigwedge^{2} \mathbb{R}^{6 *}$ or $\bigwedge^{3} \mathbb{R}^{6 *}$. There is exactly one open $G L(6, \mathbb{R})$-orbit in $\bigwedge^{2} \mathbb{R}^{6 *}$ and two open orbits in $\bigwedge^{3} \mathbb{R}^{6 *}$. One of them is the orbit of $\rho_{S U(3)}$ and the other one is the orbit of $\rho_{S L(3, \mathbb{R})}$.

Let V be a 6 -dimensional real vector space and $\bigwedge_{s}^{3} V^{*}$ be the set of all stable 3-forms on V. We can assign to any stable 3-form ρ a certain endomorphism J_{ρ} by a map

$$
\begin{equation*}
i: \bigwedge_{s}^{3} V^{*} \rightarrow V \otimes V^{*} \tag{5}
\end{equation*}
$$

i is a rational $G L(6, \mathbb{R})$-equivariant map and is described in detail in [7]. $i\left(\rho_{S U(3)}\right)$ is the standard complex structure on \mathbb{R}^{6} which maps $e_{2 i-1}$ to $-e_{2 i}$ and $e_{2 i}$ to $e_{2 i-1}$ for all $i \in\{1,2,3\} . i\left(\rho_{S L(3, \mathbb{R})}\right)$ is the standard para-complex structure on \mathbb{R}^{6} which maps $e_{2 i-1}$ to $e_{2 i}$ and $e_{2 i}$ to $e_{2 i-1}$.
If (ω, ρ) is an $S U(3)$-structure or an $S U(1,2)$-structure, J_{ρ} therefore is a complex structure. If (ω, ρ) is an $S L(3, \mathbb{R})$-structure, J_{ρ} is a para-complex structure, i.e. $J_{\rho}^{2}=\mathrm{id}$.
As before, let V be a 6-dimensional real vector space and $\bigwedge_{s}^{k} V^{*}$ be the set of all stable k-forms on V. With help of another map

$$
\begin{equation*}
j: \bigwedge_{s}^{2} V^{*} \times \bigwedge_{s}^{3} V^{*} \rightarrow S^{2}\left(V^{*}\right) \tag{6}
\end{equation*}
$$

we can assign to (ω, ρ) a symmetric non-degenerate bilinear form. An explicit description of j can also be found in [7]. As i, j is also a rational, $G L(6, \mathbb{R})$-equivariant map. If (ω, ρ) is an
(1) $S U(3)$-structure, $j(\omega, \rho)$ is a metric with signature $(6,0)$. In particular, $j\left(\omega_{S U(3)}, \rho_{S U(3)}\right)$ is the Euclidean metric on \mathbb{R}^{6}.
(2) $S U(1,2)$-structure, $j(\omega, \rho)$ is a metric with signature $(2,4)$.
(3) $S L(3, \mathbb{R})$-structure, $j(\omega, \rho)$ is a metric with signature $(3,3)$.

Convention 2.8. (1) We call J_{ρ} the complex or para-complex structure which is associated to ρ or shortly the associated complex or paracomplex structure.
(2) We call $j(\omega, \rho)$ the metric which is associated to (ω, ρ) or shortly the associated metric. We denote it by g_{6}, since we will also work with metrics on 7 - or 8 -dimensional spaces.

The basis $\left(v_{i}\right)_{i=1, \ldots, 6}$ from Definition 2.4 is in all three cases pseudo-orthonormal, i.e. $\left|g_{6}\left(v_{i}, v_{j}\right)\right|=\delta_{i j}$ for all $i, j \in\{1, \ldots, 6\}$. We remark that the objects which we have defined are related by the formula

$$
\begin{equation*}
\omega(v, w):=g_{6}\left(v, J_{\rho}(w)\right) \tag{7}
\end{equation*}
$$

Let (ω, ρ) be an $S U(3)$-structure. The stabilizer of (ω, ρ) is the same as of $\left(\omega, \rho, J_{\rho}, g_{6}\right)$. Since it is well-known that the second stabilizer is $S U(3)$, (ω, ρ) is indeed stabilized by $S U(3)$. The other statements of Lemma 2.3 can be proven analogously.
It is possible to see if a pair (ω, ρ) determines one of our G-structures without referring to a special basis.
Theorem 2.9. Let V be a 6-dimensional real vector space and let $\omega \in \bigwedge^{2} V^{*}$ and $\rho \in \bigwedge^{3} V^{*}$ be stable. Moreover, let J_{ρ} and g_{6} be defined as above. We assume that ω and ρ satisfy the equations
(1) $\omega \wedge \rho=0$,
(2) $J_{\rho}^{*} \rho \wedge \rho=\frac{2}{3} \omega \wedge \omega \wedge \omega$.

If in this situation
(1) g_{6} has signature $(6,0)$ and J is a complex structure, (ω, ρ) is an $S U(3)$-structure.
(2) g_{6} has signature $(2,4)$ and J is a complex structure, (ω, ρ) is an $\operatorname{SU}(1,2)$-structure.
(3) g_{6} has signature $(3,3)$ and J is a para-complex structure, (ω, ρ) is an $S L(3, \mathbb{R})$-structure.
Remark 2.10. (1) Since $J_{\rho}^{*} \rho \wedge \rho$ and $\frac{2}{3} \omega \wedge \omega \wedge \omega$ are both 6 -forms, the second condition from the theorem is a normalization of the pair (ω, ρ).
(2) If (ω, ρ) is a pair of stable forms satisfying $\omega \wedge \rho=0$ and $J_{\rho}^{*} \rho \wedge \rho=$ $\frac{2}{3} \omega \wedge \omega \wedge \omega$, it is in fact an $S U(3)$-, $S U(1,2)$-, or $S L(3, \mathbb{R})$-structure.

The reason for the above considerations of course is to define the notion of a G-structure on a manifold.
Definition 2.11. Let M be a 6 -dimensional manifold, $\omega \in \bigwedge^{2} T^{*} M$, and $\rho \in \bigwedge^{3} T^{*} M$. Moreover, let $G \in\{\operatorname{SU}(3), S U(1,2), S L(3, \mathbb{R})\}$. (ω, ρ) is called a G-structure on M if for all $p \in M\left(\omega_{p}, \rho_{p}\right)$ is a G-structure on $T_{p} M$.
Convention 2.12. Since the endomorphism field J_{ρ} in general has torsion, we call it the almost complex or para-complex structure on M.

If there already is a G-structure of the above kind on M, we can define by the following construction further G-structures on M.
Lemma 2.13. (1) Let M be a 6 -dimensional manifold carrying an $S U(3)$ or $S U(1,2)$-structure (ω, ρ). For any $\theta \in C^{\infty}(M)$

$$
\begin{equation*}
\left(\omega, \cos \theta \cdot \rho+\sin \theta \cdot J_{\rho}^{*} \rho\right) \tag{8}
\end{equation*}
$$

is another G-structure of the same type, which we denote by $\left(\omega, \rho^{\theta}\right)$.
(2) Let M be a 6 -dimensional manifold carrying an $S L(3, \mathbb{R})$-structure (ω, ρ). For any $\theta \in C^{\infty}(M)$

$$
\begin{equation*}
\left(\omega, \cosh \theta \cdot \rho-\sinh \theta \cdot J_{\rho}^{*} \rho\right) \tag{9}
\end{equation*}
$$

is another $S L(3, \mathbb{R})$-structure, which we also denote by $\left(\omega, \rho^{\theta}\right)$.
(3) In both of the above cases, the metric which is associated to (ω, ρ^{θ}) is the same as of (ω, ρ).

Proof. Let (ω, ρ) be an $S U(3)$ - or $S U(1,2)$-structure, $p \in M$, and $\left(v_{i}\right)_{i=1, \ldots, 6}$ be a basis of $T_{p} M$ with the properties from Definition [2.4. Furthermore, let

$$
A_{\theta}:=\left(\begin{array}{ccc}
\begin{array}{|cc|}
\hline \cos \frac{\theta}{3} & -\sin \frac{\theta}{3} \\
\sin \frac{\theta}{3} & \cos \frac{\theta}{3}
\end{array} & & \tag{10}\\
& \begin{array}{rrr}
\cos \frac{\theta}{3} & -\sin \frac{\theta}{3} \\
\sin \frac{\theta}{3} & \cos \frac{\theta}{3}
\end{array} & \\
& & \begin{array}{rl}
\cos \frac{\theta}{3} & -\sin \frac{\theta}{3} \\
\sin \frac{\theta}{3} & \cos \frac{\theta}{3}
\end{array} \\
\cline { 3 - 5 } &
\end{array}\right)
$$

By letting A_{θ} act on $\left(v_{i}\right)_{i=1, \ldots, 6}$, we obtain a new basis $\left(v_{i}^{\prime}\right)_{i=1, \ldots, 6}$ of $T_{p} M$. This basis induces a new $S U(3)$ - or $S U(1,2)$-structure which coincides with $\left(\omega, \rho^{\theta}\right)$. If (ω, ρ) is an $S L(3, \mathbb{R})$-structure, we obtain $\left(\omega, \rho^{\theta}\right)$ with help of the matrix

$$
B_{\theta}:=\left(\begin{array}{cc|ccc}
\begin{array}{|cc|cc}
\begin{array}{cc}
\cosh \frac{\theta}{3} & \sinh \frac{\theta}{3} \\
\sinh \frac{\theta}{3} & \cosh \frac{\theta}{3}
\end{array} & & & \\
& & \begin{array}{l}
\cosh \frac{\theta}{3} \\
\sinh \frac{\theta}{3}
\end{array} & \sinh \frac{\theta}{3} \\
\cosh \frac{\theta}{3}
\end{array} & & \tag{11}\\
\cline { 3 - 4 } & & \begin{array}{lll}
\cosh \frac{\theta}{3} & \sinh \frac{\theta}{3} \\
\sinh \frac{\theta}{3} & \cosh \frac{\theta}{3}
\end{array}
\end{array}\right)
$$

Since A_{θ} is an element of $S O(6)$ and $S O(2,4)$ and B_{θ} is an element of $S O(3,3)$, the associated metric g_{6} remains in both cases the same. We remark that in the case $G=S U(1,2)$ the signature of g_{6} is $(-,-,-,-,+,+)$ and in the case $G=S L(3, \mathbb{R})$ it is $(+,-,+,-,+,-)$.
Remark 2.14. (1) The stabilizer group of the pair $\left(\omega, \rho^{\theta}\right)$ is the same as of (ω, ρ). Nevertheless, $\left(\omega, \rho^{\theta}\right)$ and (ω, ρ) are different G-structures, except for $\theta \in \frac{2 \pi}{3} \mathbb{Z}$ in the first case of the lemma. If we had defined the notion of a G-structure by a principal bundle, (ω, ρ) and $\left(\omega, \rho^{\theta}\right)$ also would not coincide. The reason for this is that we change the frame for the G-structure by the matrix A_{θ} or B_{θ} which is not an element of the structure group.
(2) Let G be either $S U(3), S U(1,2)$, or $S L(3, \mathbb{R})$. The set of all G structures with fixed ω and g_{6} is given by the G-structures from the above lemma. This is a consequence of the fact that the stabilizer of the pair $\left(\omega, g_{6}\right)$ is $U(3), U(1,2)$, or $G L(3, \mathbb{R})$ and that the center of these groups consists of all A_{θ} or B_{θ}. We remark that the set of all G-structures with a fixed associated metric is a much larger set which we will not describe in detail.

For the proof of the main theorem we also need to define $S U(3)$-, $S U(1,2)$-, and $S L(3, \mathbb{R})$-structures on manifolds whose dimension is greater than 6 .
Definition 2.15. Let M be a manifold with $\operatorname{dim} M \geq 6, \omega \in \bigwedge^{2} T^{*} M$, and $\rho \in \bigwedge^{3} T^{*} M$. Moreover, let $G \in\{S U(3), S U(1,2), S L(3, \mathbb{R})\}$ and let D be
a 6-dimensional distribution on $M .(\omega, \rho)$ is called a G-structure on M if there exists another distribution D^{\prime} on M such that for all $p \in M$
(1) $D_{p} \oplus D_{p}^{\prime}=T_{p} M$,
(2) the restriction $\left(\left.\omega_{p}\right|_{D_{p} \times D_{p}},\left.\rho_{p}\right|_{D_{p} \times D_{p} \times D_{p}}\right)$ is a G-structure on D_{p}, and
(3) $\left.\left.X_{p}\right\lrcorner \omega_{p}=X_{p}\right\lrcorner \rho_{p}=0$ for all $X_{p} \in D_{p}^{\prime}$.
2.2. G is a real form of $G_{2}^{\mathbb{C}}$. With help of the G-structures from the previous subsection we are able to define the notion of a $G_{2^{-}}$or G_{2}^{*}-structure.

Definition and Lemma 2.16. We supplement the basis $\left(e_{i}\right)_{i=1, \ldots, 6}$ of \mathbb{R}^{6} with e_{7} to a basis of \mathbb{R}^{7}. The form
(1) $\phi_{G_{2}}:=\omega_{S U(3)} \wedge e^{7}+\rho_{S U(3)}$ is stabilized by G_{2}.
(2) $\phi_{G_{2}^{*}, i}:=\omega_{S U(1,2)} \wedge e^{7}+\rho_{S U(1,2)}$ is stabilized by G_{2}^{*}.
(3) $\phi_{G_{2}^{*}, i i}:=\omega_{S L(3, \mathbb{R})} \wedge e^{7}+\rho_{S L(3, \mathbb{R})}$ is stabilized by G_{2}^{*}.
G_{2} denotes the compact real form of the complex Lie group $G_{2}^{\mathbb{C}}$ and G_{2}^{*} denotes the split real form. If we consider one of the above forms on \mathbb{R}^{7} without specifying it, we shortly denote it by ϕ.

Let V be a 7 -dimensional real vector space and ϕ be a 3 -form on V. If there exists a basis $\left(v_{i}\right)_{i=1, \ldots, 7}$ of V such that with respect to $\left(v_{i}\right)_{i=1, \ldots, 7}$
(1) ϕ can be identified with $\phi_{G_{2}}, \phi$ is called a G_{2}-structure.
(2) ϕ can be identified with $\phi_{G_{2}^{*}, i}, \phi$ is called a G_{2}^{*}-structure.
(3) ϕ can be identified with $\phi_{G_{2}^{*}, i i}, \phi$ is also called a G_{2}^{*}-structure.

Remark 2.17. There are exactly two open orbits of the action of $G L(7, \mathbb{R})$ on $\bigwedge^{3} \mathbb{R}^{7 *}$ [19], [23]. Their union is a dense subset of $\bigwedge^{3} \mathbb{R}^{7 *}$. One orbit consists of all 3 -forms which are stabilized by G_{2} and the other one consists of all 3 -forms which are stabilized by G_{2}^{*}. If ϕ is a G_{2}^{*}-structure in the sense of (2), it is therefore a G_{2}^{*}-structure in the sense of (3), too.

Any $G_{2^{-}}$or G_{2}^{*}-structure on a vector space V determines a symmetric nondegenerate bilinear form g_{7} and a volume form vol_{7}. Let $\bigwedge_{s}^{3} V^{*}$ be the set of all stable 3 -forms on V. As in the previous subsection, there are explicit rational $G L(7, \mathbb{R})$-equivariant maps $\bigwedge_{s}^{3} V^{*} \rightarrow S^{2}\left(V^{*}\right)$ and $\bigwedge_{s}^{3} V^{*} \rightarrow \bigwedge^{7} V^{*}$ which assign g_{7} and vol_{7} to ϕ. The explicit definition of these maps can be found in [7]. The tensors ϕ, g_{7}, and vol_{7} are related by the formula

$$
\begin{equation*}
\left.\left.g_{7}(v, w) \operatorname{vol}_{7}:=-\frac{1}{6}(v\lrcorner \phi\right) \wedge(w\lrcorner \phi\right) \wedge \phi \tag{12}
\end{equation*}
$$

Analogously to Subsection 2.1, we have
Lemma 2.18. (1) Let V be a 7-dimensional real vector space and ϕ be a stable 3 -form on V. If ϕ is a G_{2}-structure, g_{7} has signature $(7,0)$.

In particular, g_{7} is the Euclidean metric on \mathbb{R}^{7} if ϕ coincides with $\phi_{G_{2}}$. If ϕ is a G_{2}^{*}-structure, g_{7} has signature (3,4).
(2) In the situation of Definition and Lemma 2.16. \mathbb{R}^{6} and $\operatorname{span}\left(e_{7}\right)$ are orthogonal to each other with respect to g_{7}. Moreover, the restriction of g_{7} to \mathbb{R}^{6} coincides with g_{6}. If
(a) $\phi=\phi_{G_{2}}, g_{7}\left(e_{7}, e_{7}\right)=1$.
(b) $\phi=\phi_{G_{2}^{*}, i}, g_{7}\left(e_{7}, e_{7}\right)=1$.
(c) $\phi=\phi_{G_{2}^{*}, i i}, g_{7}\left(e_{7}, e_{7}\right)=-1$.

Remark 2.19. Since there are only two open $G L(7, \mathbb{R})$-orbits, $(7,0)$ and $(3,4)$ are the only possible signatures of g_{7}. Therefore, it is possible to check if a 3 -form is a $G_{2^{-}}$or G_{2}^{*}-structure without finding a basis with the properties of Definition and Lemma 2.16 .

We can relate vol_{7} to the 3 -forms on the 6 -dimensional space $\operatorname{span}\left(v_{i}\right)_{i=1, \ldots, 6}$.
Lemma 2.20. In the situation of Definition and Lemma 2.16, vol ${ }_{7}$ is
(1) $\frac{1}{4} J^{*} \rho \wedge \rho \wedge v^{7}$ if ϕ is a G_{2}-structure or a G_{2}^{*}-structure in the sense of 2.16 [2.
(2) $-\frac{1}{4} J^{*} \rho \wedge \rho \wedge v^{7}$ if ϕ is a G_{2}^{*}-structure in the sense of 2.16] 3.

In particular, vol $_{7}$ is
(1) $e^{1234567}$ if ϕ is $\phi_{G_{2}}$ or $\phi_{G_{2}^{*}, i}$,
(2) $-e^{1234567}$ if ϕ is $\phi_{G_{2}^{*}, i i}$.

Convention 2.21. We call g_{7} the metric which is associated to ϕ and vol_{7} the volume form which is associated to ϕ or more briefly we call them the associated metric and volume form. g_{7} and vol_{7} determine a Hodge-star operator $*$ on V. The dual 4 -form $* \phi$ will be called the associated 4 -form.

Lemma 2.22. In the situation of Definition and Lemma 2.16, the 4 -form * ϕ is stable and can be described as
(1) $v^{7} \wedge J_{\rho}^{*} \rho+\frac{1}{2} \omega \wedge \omega$ if ϕ is a G_{2}-structure and (ω, ρ) is the $S U(3)$ structure on $\operatorname{span}\left(v_{i}\right)_{i=1, \ldots, 6}$.
(2) $v^{7} \wedge J_{\rho}^{*} \rho+\frac{1}{2} \omega \wedge \omega$ if ϕ is a G_{2}^{*}-structure in the sense of 2.16|2 and (ω, ρ) is the $S U(1,2)$-structure on $\operatorname{span}\left(v_{i}\right)_{i=1, \ldots, 6}$.
(3) $-v^{7} \wedge J_{\rho}^{*} \rho-\frac{1}{2} \omega \wedge \omega$ if ϕ is a G_{2}^{*}-structure in the sense of 2.16. 3 and (ω, ρ) is the $S L(3, \mathbb{R})$-structure on $\operatorname{span}\left(v_{i}\right)_{i=1, \ldots, 6}$.

As in the previous subsection, we can define the notion of a $G_{2^{-}}$or $G_{2^{*}}^{*}$ structure on a manifold.

Definition 2.23. Let M be a 7 -dimensional manifold and $\phi \in \bigwedge^{3} T^{*} M$. Moreover, let $G \in\left\{G_{2}, G_{2}^{*}\right\}$. ϕ is called a G-structure on M if for all $p \in M$ ϕ_{p} is a G-structure on $T_{p} M$.
2.3. G is a real form of $\operatorname{Spin}^{\mathbb{C}}(7)$. Since the aim of this article is to construct metrics with holonomy $\operatorname{Spin}(7)$ or $\operatorname{Spin}_{0}(3,4)$, we finally have to introduce $\operatorname{Spin}(7)$ - and $\operatorname{Spin}_{0}(3,4)$-structures.

Definition and Lemma 2.24. We supplement the basis $\left(e_{i}\right)_{i=1, \ldots, 7}$ of \mathbb{R}^{7} with e_{8} to a basis of \mathbb{R}^{8}. The form
(1) $\Phi_{\mathrm{Spin}(7)}:=e^{8} \wedge \phi_{G_{2}}+* \phi_{G_{2}}$ is stabilized by $\operatorname{Spin}(7)$.
(2) $\Phi_{\operatorname{Spin}_{0}(3,4), i}:=e^{8} \wedge \phi_{G_{2}^{*}, i}+* \phi_{G_{2}^{*}, i}$ is stabilized by $\operatorname{Spin}_{0}(3,4)$.
(3) $\Phi_{\operatorname{Spin}_{0}(3,4), i i}:=e^{8} \wedge \phi_{G_{2}^{*}, i i}+* \phi_{G_{2}^{*}, i i}$ is stabilized by $\operatorname{Spin}_{0}(3,4)$.
$\operatorname{Spin}_{0}(3,4)$ denotes the identity component of $\operatorname{Spin}(3,4)$. If we consider one of the above forms on \mathbb{R}^{8} without specifying it, we shortly denote it by Φ.
Let V be an 8 -dimensional real vector space and Φ be a 4 -form on V. If there exists a basis $\left(v_{i}\right)_{i=1, \ldots, 8}$ of V such that with respect to $\left(v_{i}\right)_{i=1, \ldots, 8}$
(1) Φ can be identified with $\Phi_{\operatorname{Spin}(7)}, \Phi$ is called a $\operatorname{Spin}(7)$-structure.
(2) Φ can be identified with $\Phi_{\operatorname{Spin}_{0}(3,4), i}, \Phi$ is called a $\operatorname{Spin}_{0}(3,4)$-structure.
(3) Φ can be identified with $\Phi_{\operatorname{Spin}_{0}(3,4), i i}, \Phi$ is also called a $\operatorname{Spin}_{0}(3,4)$ structure.

Remark 2.25. For the same reasons as in Remark2.17 Φ is also a $\operatorname{Spin}_{0}(3,4)$ structure in the sense of (3) if it is a $\operatorname{Spin}_{0}(3,4)$-structure in the sense of (2).

Analogously to the previous two subsections, any $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$ structure determines a symmetric non-degenerate bilinear form g_{8} and a volume form $\mathrm{vol}_{8} . \mathrm{vol}_{8}$ is given by $\frac{1}{14} \Phi \wedge \Phi$ and g_{8} satisfies a slightly more complicated formula as (12), which can be found in Karigiannis [18].
Unlike ω, ρ, and ϕ, Φ is not a stable form. Nevertheless, we have similar results as in the previous two subsections.

Lemma 2.26. (1) Let V be an 8 -dimensional real vector space and Φ be a Spin(7)- or $\operatorname{Spin}_{0}(3,4)$-structure on V. In the first case, g_{8} has signature $(8,0)$ and in the second case it has signature $(4,4)$. In particular, g_{8} is the Euclidean metric on \mathbb{R}^{8} if Φ coincides with $\Phi_{\operatorname{Spin}(7)}$.
(2) In the situation of Definition and Lemma 2.24, \mathbb{R}^{7} and $\operatorname{span}\left(e_{8}\right)$ are orthogonal to each other with respect to g_{8}. Moreover, the restriction of g_{8} to \mathbb{R}^{7} coincides with g_{7}. In all three cases, we have $g_{8}\left(e_{8}, e_{8}\right)=$ 1.

Lemma 2.27. In the situation of Definition and Lemma 2.24, vol vis $_{8}$ in all three cases

$$
\begin{equation*}
v o l_{7} \wedge v^{8} \tag{13}
\end{equation*}
$$

Convention 2.28. As in the previous subsection, we call g_{8} the associated metric and vol_{8} the associated volume form.
Remark 2.29. (1) Φ is self-dual with respect to the metric g_{8} and the volume form vol_{8}.
(2) Any 4 -form on an 8 -dimensional real vector space which is stabilized by $\operatorname{Spin}(7)$ or $\operatorname{Spin}_{0}(3,4)$ is a $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure. However, there is no simple criterion like Theorem 2.9 which decides if a given 4 -form is a $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure.

The notion of a $\operatorname{Spin}(7)$ - or a $\operatorname{Spin}_{0}(3,4)$-structure on an 8 -dimensional manifold can be defined completely analogously to Definition 2.11 and 2.23.

3. Hitchin's flow equations

One of the reasons for studying G-structures is their relation to metrics with special holonomy.
Definition 3.1. (1) Let $G \in\{S U(3), S U(1,2), S L(3, \mathbb{R})\}$ and let (ω, ρ) be a G-structure on a 6 -dimensional manifold. (ω, ρ) is called torsionfree if $d \omega=d \rho=0$.
(2) Let $G \in\left\{G_{2}, G_{2}^{*}\right\}$ and let ϕ be a G-structure on a 7 -dimensional manifold. ϕ is called torsion-free if $d \phi=d * \phi=0$.
(3) Let $G \in\left\{\operatorname{Spin}(7), \operatorname{Spin}_{0}(3,4)\right\}$ and let Φ be a G-structure on an 8 -dimensional manifold. Φ is called torsion-free if $d \Phi=0$.
Lemma 3.2. (See [11, [12], [13]) The metric which is associated to any of the torsion-free G-structures from Definition 3.1 has a holonomy group which is contained in G.
Conversely, let G be one of the groups from Definition 3.1. Moreover, let (M, g) be a semi-Riemannian manifold such that for any $p \in M$ there exists an isomorphism $\psi: T_{p} M \rightarrow \mathbb{R}^{k}$ with $k \in\{6,7,8\}$ such that the holonomy group $\operatorname{Hol}_{p}(g)$ satisfies $\psi \circ \operatorname{Hol}_{p}(g) \circ \psi^{-1} \subseteq G$. Then there exists a torsion-free G-structure on M whose associated metric is g.
G_{2} and $\operatorname{Spin}(7)$ are called the exceptional holonomy groups. Compact Riemannian manifolds with exceptional holonomy are hard to construct. However, many non-compact examples with cohomogeneity one are known [1], [2], [5] [6], 7], 8], [9, [10, [15], [16], [17], [21], 22]. Semi-Riemannian manifolds with holonomy G_{2}^{*} or $\operatorname{Spin}_{0}(3,4)$ are also interesting from a mathematical point of view. Explicit examples of metrics with holonomy G_{2}^{*} can be found in [7]. All of the above metrics can be obtained by a method which was developed by Hitchin [14. Since this article is only about metrics with holonomy $\operatorname{Spin}(7)$ or $\operatorname{Spin}_{0}(3,4)$, we explain this method only for these cases. As in the previous section, our presentation of the issue is similar as in [7].
Definition 3.3. Let ϕ be a G_{2} - or G_{2}^{*}-structure on a 7-dimensional manifold. ϕ is called cocalibrated if $d * \phi=0$.

Theorem 3.4. (See [7], [14]) Let $t_{0} \in \mathbb{R}, N_{7}$ be a 7-dimensional manifold, and $U \subseteq N_{7} \times \mathbb{R}$ be an open neighborhood of $N_{7} \times\left\{t_{0}\right\}$. Furthermore, let $G \in\left\{G_{2}, G_{2}^{*}\right\}$ and ϕ be a cocalibrated G-structure on N_{7}. Finally, let ϕ_{t} be a one-parameter family of 3-forms such that ϕ_{t} is defined on $U \cap\left(N_{7} \times\{t\}\right)$. We assume that ϕ_{t} is a solution of the initial value problem

$$
\begin{align*}
\frac{\partial}{\partial t} *_{7} \phi_{t} & =d_{7} \phi_{t} \tag{14}\\
\phi_{t_{0}} & =\phi
\end{align*}
$$

The index "7" emphasizes that we consider * and d as operators on N_{7} instead of U. If U is sufficiently small, ϕ_{t} is a G-structure for all t with $U \cap\left(N_{7} \times\{t\}\right) \neq \emptyset$. Moreover, it is cocalibrated for all t. The 4-form

$$
\begin{equation*}
\Phi:=d t \wedge \phi_{t}+*_{7} \phi_{t} \tag{15}
\end{equation*}
$$

is a torsion-free $\operatorname{Spin}(7)$-structure if $G=G_{2}$ and a torsion-free $\operatorname{Spin}_{0}(3,4)$ structure if $G=G_{2}^{*}$. Let g_{8} be the metric which is associated to Φ and g_{t} be the metric on $N_{7} \times\{t\}$ which is associated to ϕ_{t}. With this notation we have

$$
\begin{equation*}
g_{8}=g_{t}+d t^{2} \tag{16}
\end{equation*}
$$

The equation $\frac{\partial}{\partial t} *_{7} \phi_{t}=d_{7} \phi_{t}$ is called Hitchin's flow equation and any of its solutions ϕ_{t} is called a Hitchin flow.

Remark 3.5. (1) Since $*_{7}$ depends non-linearly on ϕ_{t}, Hitchin's flow equation is a non-linear partial differential equation.
(2) If N_{7} and ϕ are real analytic, the system (14) has a unique maximal solution which is defined on a certain open neighborhood of $N_{7} \times\left\{t_{0}\right\}$. This is a consequence of the Cauchy-Kovalevskaya Theorem. We will therefore assume from now that N_{7} and ϕ are analytic.
(3) If N_{7} is compact, there exists a unique maximal open interval I with $t_{0} \in I$ such that the solution of (14) is defined on $N_{7} \times I$.
(4) Let $f: N_{7} \rightarrow N_{7}$ be a diffeomorphism, I an interval with $t_{0} \in I$, $U=N_{7} \times I$, and ϕ_{t} be a solution of (14) on U. In this situation, the pull-back $f^{*} \phi_{t}$ is a solution of $\frac{\partial}{\partial t} *_{7} \phi_{t}=d_{7} \phi_{t}$ with the initial value $\phi_{t_{0}}=f^{*} \phi$. In particular, the automorphism group of $\left(N_{7}, \phi\right)$ is preserved by Hitchin's flow equation.
(5) If N_{7} is a homogeneous space G / H and ϕ is G-invariant, ϕ_{t} is also G-invariant for all t. In this situation, Hitchin's flow equation can be rewritten as a system of ordinary differential equations and it has a unique maximal solution on a set of type $N_{7} \times I$ even if N_{7} is noncompact. Conversely, let Φ be a torsion-free $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$ structure of cohomogeneity one. The lift of Φ to the universal cover
of the union of all principal orbits can be obtained from a Hitchin flow of the above type.

4. $\operatorname{Spin}(7)-$-Structures on complex line bundles

We assume that we are in the situation of Theorem 3.4. Let $p \in N_{7}$ be arbitrary. The curve $\gamma: I \rightarrow N_{7} \times I$ with $\gamma(t):=(p, t)$ is a geodesic with respect to g_{8}. If $I \subsetneq \mathbb{R},\left(N_{7} \times I, g_{8}\right)$ thus is geodesically incomplete. One method to nevertheless construct complete solutions of Hitchin's flow equations is with help of degenerations.
Definition 4.1. Let N_{7} be a 7 -dimensional manifold, $G \in\left\{G_{2}, G_{2}^{*}\right\}$, and $\left(\phi_{t}\right)_{t \in(0, \epsilon)}$ with $\epsilon>0$ be a one-parameter family of G-structures on N_{7}. We assume that $\left(\phi_{t}\right)_{t \in(0, \epsilon)}$ is a solution of Hitchin's flow equation and that is has a smooth extension to $t=0$. Furthermore, we assume that N_{7} is an $S O(2)$-principal bundle over a 6 -dimensional manifold N_{6} and that for all $t \in(0, \epsilon)$ all vertical tangent vectors X satisfy $g_{7}(X, X)>0$.
Let M_{8} be the \mathbb{R}^{2}-bundle over N_{6} which is associated to the standard representation of $S O(2)$ and let $\pi: M_{8} \rightarrow N_{6}$ be the projection map. If there exists a smooth $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure Φ on M_{8} such that there is a differentiable map $F: N_{7} \times[0, \epsilon) \rightarrow M_{8}$ with the following properties:
(1) $F\left(N_{7} \times\{0\}\right)=N_{6}$, where we have identified the zero section of M_{8} with N_{6},
(2) $F\left(N_{7} \times\{t\}\right)$ is $S O(2)$-invariant and $\pi \circ F\left(N_{7} \times\{t\}\right)=N_{6}$ for all $t \in(0, \epsilon)$,
(3) $\left.F\right|_{N_{7} \times(0, \epsilon)}: N_{7} \times(0, \epsilon) \rightarrow M_{8} \backslash N_{6}$ is a diffeomorphism which maps fibers of N_{7} into fibers of M_{8}, and
(4) $F^{*} \Phi=d t \wedge \phi_{t}+*_{7} \phi_{t}$,
we say that the Hitchin flow on N_{7} degenerates into N_{6}.
Remark 4.2. (1) The idea behind the above definition is that N_{7} is a circle bundle and that the circumference of the circle shrinks to 0 as $t \rightarrow 0$. The reason why our definition is quite technical is that we want to consider an initial value problem on $N_{7} \times[0, \epsilon)$ and identify $N_{7} \times\{0\}$ with the base space. Since it is not clear if the Hitchin flow can be extended to all of $[0, \infty), M_{8}$ is in fact a disc bundle over N_{6}. However, from the topological point of view this difference is unimportant. We remark that any $\operatorname{Spin}(7)$-manifold of cohomogeneity one with exactly one singular orbit of dimension 6 satisfies the conditions of Definition 4.1.
(2) The fibers of M_{8} carry a canonical complex structure which makes M_{8} a complex line bundle over N_{6}.

Since in the situation of Definition 4.1 all vertical vectors are of positive length, N_{6} carries an $S U(3)$ - or $S U(1,2)$-structure. This G-structure can be
considered as the initial value of (14). In principle, it is possible to modify Definition 4.1 in such a way that we have an $S L(3, \mathbb{R})$-structure on N_{6}. In that situation, we would need an action of $S O^{+}(1,1)$ instead of $S O(2)$ on the fibers and M_{8} would be a para-complex line bundle instead of a complex one. However, there is an important difference. The intersection of $F\left(N_{7} \times\{t\}\right)$ and a fiber of M_{8} is not a circle but an $S O^{+}(1,1)$-orbit. For $t \rightarrow 0$ the orbits converge to a set of type $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}-y^{2}=0, x \geq 0\right\}$. Since that set is not a point, it would require more work to prescribe suitable initial conditions for the Hitchin flow. For this reason, we restrict ourselves to the case where N_{6} carries an $S U(3)$ - or $S U(1,2)$-structure. In order to describe that G-structure in more detail, we define two vector fields on $M_{8} \backslash N_{6}$.

Definition and Lemma 4.3. Let N_{6}, N_{7}, M_{8}, and $F: N_{7} \times[0, \epsilon) \rightarrow M_{8}$ satisfy the conditions from Definition 4.1. We define e_{φ} as the vector field on $M_{8} \backslash N_{6}$ which generates the action of $S O(2)$ on the fibers of M_{8}. We normalize e_{φ} such that its flow at the time 2π is the identity map and the flow at any time in $(0,2 \pi)$ is not the identity. Moreover, we define the vector field $e_{r}:=(d F)\left(\frac{\partial}{\partial t}\right)$ on $M_{8} \backslash N_{6}$. We call e_{r} the radial vector field. If there exists a $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure on M_{8} with the properties of Definition 4.1, e_{r} is the unique vertical vector field of unit length which is orthogonal to e_{φ} and outward directed.

In order to make g_{8} smooth at N_{6}, we need $\lim _{t \rightarrow 0}\left\|e_{\varphi}\right\|=0$. The metric on $N_{7} \times\{0\}$ therefore has to be degenerate. This fact helps us to define the $S U(3)$ - or $S U(1,2)$-structure on N_{6}.

Definition 4.4. We assume that we are in the situation of Definition 4.1. Let e^{r} and e^{φ} be the duals of e_{r} and e_{φ} with respect to g_{8}. Furthermore, let ω and ρ denote from now on the following differential forms.
(1) $\left.\left.\omega:=\frac{1}{\left\|e_{\varphi}\right\|} e_{\varphi}\right\lrcorner\left(e_{r}\right\lrcorner \Phi\right)$,
(2) $\left.\rho:=e_{r}\right\lrcorner \Phi-\left\|e_{\varphi}\right\| e^{\varphi} \wedge \omega$.

Lemma 4.5. We identify $M_{8} \backslash N_{6}$ with $N_{7} \times(0, \epsilon)$ by the map F. If Φ is a $\operatorname{Spin}(7)$-structure, (ω, ρ) is an $S U(3)$-structure on the distribution $\operatorname{span}\left(e_{r}, e_{\varphi}\right)^{\perp}$. Equivalently, (ω, ρ) can be described as a t-dependent $S U(3)$ structure on the distribution span $\left(e_{\varphi}\right)^{\perp} \subseteq T N_{7}$. Analogously, (ω, ρ) is an $\operatorname{SU}(1,2)$-structure if Φ is a $\operatorname{Spin}_{0}(3,4)$-structure. Moreover, the 3-form

$$
\begin{equation*}
\phi_{t}:=\left\|e_{\varphi}\right\| \omega_{t} \wedge e^{\varphi}+\rho_{t} \tag{17}
\end{equation*}
$$

is a G_{2} - or G_{2}^{*}-structure on $N_{7} \times\{t\}$. $\lim _{t \rightarrow 0}\left(\omega_{t}, \rho_{t}\right)$ is an $S U(3)$ - or $S U(1,2)$-structure on the distribution span $\left(e_{\varphi}\right)^{\perp}$ on $N_{7} \times\{0\}$, which we denote by $\left(\omega_{0}, \rho_{0}\right)$. Finally, there exists a unique $\operatorname{SU}(3)$ - or $\operatorname{SU}(1,2)$-structure on the zero section N_{6} of M_{8} such that its pull-back with respect to F is $\left(\omega_{0}, \rho_{0}\right)$.

Proof. The subgroup of $\operatorname{Spin}(7)$ which fixes the pair $\left(e_{7}, e_{8}\right)$ is $S U(3)$. Moreover, $\operatorname{Spin}(7)$ acts transitively on the set of all orthonormal pairs in \mathbb{R}^{8} [4]. If Φ is a $\operatorname{Spin}(7)$-structure, it thus induces an $S U(3)$-structure (ω, ρ) on the distribution $\operatorname{span}\left(e_{r}, e_{\varphi}\right)^{\perp}$. The differential forms ω and ρ coincide with the forms from Definition 4.3. There exists an open covering $\left(U_{i}\right)_{i \in I}$ of N_{6} such that the normal bundle of any U_{i} has two linearly independent sections. Therefore, Φ induces an $S U(3)$-structure on each U_{i}. Its pull-back with respect to F is $\left(\omega_{0}, \rho_{0}\right) . \omega_{0}$ and ρ_{0} are globally defined forms and the $S U(3)$-structure on N_{6} is thus defined globally, too. Since $\operatorname{Spin}_{0}(3,4)$ acts transitively on the set of all orthonormal pairs whose elements have positive length, we can prove by the same arguments that (ω, ρ) is an $S U(1,2)$ structure if Φ is a $\operatorname{Spin}_{0}(3,4)$-structure.
Remark 4.6. The last statement of the above lemma essentially means that we can consider the G-structure on N_{6} as an initial condition for (14).
Lemma 4.7. Let g_{8} be the metric which is associated to Φ. (ω, ρ) induces a metric on $\operatorname{span}\left(e_{r}, e_{\varphi}\right)^{\perp}$ which we can extend trivially to a degenerate symmetric bilinear form g_{6} on $M_{8} \backslash N_{6}$. With this notation, we have the following two relations.

$$
\begin{align*}
\Phi & =\frac{1}{2} \omega \wedge \omega+\left\|e_{\varphi}\right\| e^{\varphi} \wedge J_{\rho}^{*} \rho+e^{r} \wedge \rho+\left\|e_{\varphi}\right\| e^{r} \wedge e^{\varphi} \wedge \omega \tag{18}\\
g_{8} & =g_{6}+e^{r} \otimes e^{r}+\left\|e_{\varphi}\right\|^{2} e^{\varphi} \otimes e^{\varphi} . \tag{19}
\end{align*}
$$

Proof. Let Φ be the standard $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure on \mathbb{R}^{8}. We have

$$
\begin{equation*}
\Phi=\frac{1}{2} \omega \wedge \omega+e^{7} \wedge J_{\rho}^{*} \rho+e^{8} \wedge \rho+e^{8} \wedge e^{7} \wedge \omega \tag{20}
\end{equation*}
$$

As in the proof of Lemma 4.5 we can identify e^{7} with $\left\|e_{\varphi}\right\| e^{\varphi}$ and e^{8} with e^{r} and obtain our formula for Φ. The formula for g_{8} follows from Lemma 2.18 and Lemma 2.26.
Definition 4.8. From now on, f denotes the function $f: M_{8} \rightarrow \mathbb{R}$ with

$$
f(p):=\left\{\begin{array}{cl}
\left\|e_{\varphi}\right\| & \text { if } p \in M_{8} \backslash N_{6} \tag{21}\\
0 & \text { if } p \in N_{6}
\end{array}\right.
$$

In the Riemannian case, there is a simple sufficient condition for the completeness of the metric.
Lemma 4.9. Let N_{7} be a 7-dimensional compact manifold and let ϕ_{t} be a t-dependent G_{2}-structure on $N_{7} \times(0, \infty)$ which satisfies Hitchin's flow equation and degenerates at $t=0$ into an $S U(3)$-structure on a 6 -dimensional manifold. In this situation, the metric which is associated to the Spin(7)structure on the 8-dimensional manifold is complete.

The above lemma can be proven by the same arguments as in [7] and [20], where similar conditions for the completeness can be found.

5. Proof of the main theorem

Our next step is to make Hitchin's flow equation for the form (18) explicit. In order to do this, we have to prescribe the underlying manifold and the initial data.

Convention 5.1. From now on, we assume that ($M_{8}, N_{6}, N_{7}, F, \omega_{0}, \rho_{0}, e^{\varphi}$) is a tuple with the following properties.
(1) M_{8} is a complex line bundle over a 6 -dimensional manifold N_{6}.
(2) N_{7} is an $S O(2)$ - or equivalently a $U(1)$-principal bundle over N_{6} and $F: N_{7} \times[0, \infty) \rightarrow M_{8}$ is a map with the same properties as F from Definition 4.1
(3) $\left(\omega_{0}, \rho_{0}\right)$ is an $S U(3)$ - or $S U(1,2)$-structure on N_{6}.
(4) e^{φ} is a $U(1)$-invariant 1-form on $M_{8} \backslash N_{6}$ such that $e^{\varphi}\left(e_{\varphi}\right)=1$ and $e^{\varphi}\left(e_{r}\right)=0$.

Since we want to apply the Cauchy-Kovalevskaya Theorem to our situation, we assume that all of the above data are real analytic.

If M_{8} is a complex line bundle over N_{6} and N_{6} admits an $S U(3)$ - or $S U(1,2)$ structure, at least one appropriate tuple $\left(N_{7}, F, e^{\varphi}\right)$ does exist. Let J be the complex structure on the fibers of M_{8}. We define a $U(1)$-action on M_{8} by $\cos \theta \cdot \mathrm{Id}+\sin \theta \cdot J$ with $\theta \in \mathbb{R}$. Moreover, we fix a Hermitian background metric h on M_{8}. The set of all points whose distance from the zero section with respect to h is 1 has a natural structure as a $U(1)$-principal bundle. If we choose N_{7} as this bundle, we can construct F canonically.
Let D be a principal connection on N_{7} and α be its connection form with values in $i \mathbb{R}$. α can be naturally extended to $N_{7} \times[0, \infty)$. On M_{8} there exists a unique 1-form whose pull-back to $N_{7} \times[0, \infty)$ is $-i \alpha$. This 1 -form has the same properties e^{φ} from Convention [5.1. The pull-back of (ω_{0}, ρ_{0}) with respect to the projection from N_{7} onto N_{6} defines an $S U(3)$ - or $S U(1,2)$ structure, which we also denote by $\left(\omega_{0}, \rho_{0}\right)$. The 3 -form $\omega_{0} \wedge(-i \alpha)+\rho_{0}$ is a $G_{2^{-}}$or G_{2}^{*}-structure on N_{7} and N_{7} thus admits at least one such structure.
Conversely, let us assume that we have found a tuple with the properties from Convention 5.1. There exists a unique Hermitian metric h on M_{8} such that $h\left(e_{r}, e_{r}\right)=1$. Moreover, the annihilator of e^{φ} defines a principal connection on N_{7}.
We can obtain any two Hermitian metrics on M_{8} from each other by rescaling the fibers by a diffeomorphism. F is therefore determined by the bundle structure of M_{8} up to a fiber-preserving diffeomorphism of $M_{8} \backslash N_{6}$.

Our next step is to deduce some helpful relations. We identify M_{8} locally with $U \times \mathbb{R}^{2}$ such that U is an open subset of N_{6} and $U(1)$ acts as $S O(2)$ on the second factor and trivially on the first one. Let $\left(x^{i}\right)_{1 \leq i \leq 6}$ be coordinates on U. With this notation, we have

$$
\begin{equation*}
\left[e_{r}, e_{\varphi}\right]=\left[e_{r}, \frac{\partial}{\partial x^{i}}\right]=\left[e_{\varphi}, \frac{\partial}{\partial x^{2}}\right]=0 . \tag{22}
\end{equation*}
$$

We denote the exterior derivative on M_{8} by d_{8} and the exterior derivative on N_{7} simply by d. With help of the above formulas, we see that

$$
\begin{equation*}
d_{8} e^{r}=0 \quad \text { and } \quad d_{8} e^{\varphi}\left(e_{r}, .\right)=d_{8} e^{\varphi}\left(e_{\varphi}, .\right)=0 \tag{23}
\end{equation*}
$$

However, we do not necessarily have $d e^{\varphi}=0$. Let ϕ be a $G_{2^{-}}$or $G_{2^{*}}^{*}$ structure on N_{7} such that the length f of e_{φ} with respect to the metric which is associated to ϕ is positive. ϕ can be written as $f \omega \wedge e^{\varphi}+\rho$ where (ω, ρ) is an $S U(3)$ - or $S U(1,2)$-structure on the distribution $\operatorname{Ann}\left(e^{\varphi}\right) . \phi$ is cocalibrated if and only if

$$
\begin{align*}
d * \phi & =d\left(\frac{1}{2} \omega \wedge \omega+f e^{\varphi} \wedge J_{\rho}^{*} \rho\right) \\
& =(d \omega) \wedge \omega+d f \wedge e^{\varphi} \wedge J_{\rho}^{*} \rho+f d e^{\varphi} \wedge J_{\rho}^{*} \rho-f e^{\varphi} \wedge d J_{\rho}^{*} \rho \tag{24}\\
& =0
\end{align*}
$$

The equation

$$
\begin{equation*}
\left.\left.\mathcal{L}_{X} \alpha=X\right\lrcorner(d \alpha)+d(X\lrcorner \alpha\right) \tag{25}
\end{equation*}
$$

for any differential form α yields

$$
\begin{align*}
\left.e_{\varphi}\right\lrcorner(d \rho) & =\mathcal{L}_{e_{\varphi}} \rho \\
\left.e_{\varphi}\right\lrcorner(d \omega) & =\mathcal{L}_{e_{\varphi}} \omega, \tag{26}
\end{align*}
$$

We introduce the following projection map.

$$
\begin{align*}
\pi: \Lambda^{*} T^{*} N_{7} & \left.\rightarrow\left\{\alpha \in \bigwedge^{*} T^{*} N_{7} \mid e_{\varphi}\right\lrcorner \alpha=0\right\} \\
\pi(\alpha) & \left.:=\alpha-e^{\varphi} \wedge\left(e_{\varphi}\right\lrcorner \alpha\right) \tag{27}
\end{align*}
$$

After separating the terms which contain an e^{φ} and the other ones we see that $d * \phi=0$ can be rewritten as

$$
\begin{align*}
\pi(d \omega) \wedge \omega+f d e^{\varphi} \wedge J_{\rho}^{*} \rho & =0 \\
\left(\mathcal{L}_{e_{\varphi}} \omega\right) \wedge \omega-\pi(d f) \wedge J_{\rho}^{*} \rho-f \pi\left(d J_{\rho}^{*} \rho\right) & =0 \tag{28}
\end{align*}
$$

By similar arguments we see that

$$
\begin{align*}
d \phi & =d\left(f \omega \wedge e^{\varphi}+\rho\right) \\
& =d f \wedge \omega \wedge e^{\varphi}+f d \omega \wedge e^{\varphi}+f \omega \wedge d e^{\varphi}+d \rho \tag{29}
\end{align*}
$$

Hitchin's flow equation can be written as $\frac{\partial}{\partial t} * \phi=d \phi$ if we omit the subscript $" 7$ " of d and $*$. In our situation, it is equivalent to

$$
\begin{align*}
\left(\frac{\partial}{\partial t} \omega\right) \wedge \omega & =\pi(d \rho)+f \omega \wedge d e^{\varphi} \\
\frac{\partial}{\partial t}\left(f J_{\rho}^{*} \rho\right) & =\mathcal{L}_{e_{\varphi}} \rho-\pi(d f) \wedge \omega-f \pi(d \omega) \tag{30}
\end{align*}
$$

The above system has a unique solution for any choice of the initial data.
Theorem 5.2. Let $\left(M_{8}, N_{6}, N_{7}, F, \omega_{0}, \rho_{0}, e^{\varphi}\right)$ be as in Convention 5.1. Moreover, let N_{6} be compact, $d \omega_{0} \wedge \omega_{0}=0$, and $\mathcal{L}_{e_{\varphi}} \rho_{0}=c \cdot J_{\rho_{0}}^{*} \rho_{0}$ for a $c>0$. As usual, we identify M_{8} with $N_{7} \times[0, \infty)$ and assume that $f(p, 0)=0$ for all $p \in N_{7}$. In this situation, the system (30) has a unique short-time solution $\left(\omega_{t}, \rho_{t}, f(., t)\right)_{t \in[0, \epsilon)}$ such that for all $t \in(0, \epsilon)$
(1) $\phi_{t}:=f(., t) \omega_{t} \wedge e^{\varphi}+\rho_{t}$ is a $G_{2^{-}}$or G_{2}^{*}-structure, depending on whether $\left(\omega_{0}, \rho_{0}\right)$ is an $S U(3)$ - or $S U(1,2)$-structure,
(2) $f(p, t)>0$ for all $p \in N_{7}$, and
(3) ϕ_{t} is cocalibrated.

In particular, $d t \wedge \phi+* \phi$ is a $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure.
Remark 5.3. (1) Near the zero section N_{6} the length of the $U(1)$-orbits has to converge to 0 . Since we want to solve the system (30) on a tubular neighborhood of N_{6}, we have to include the condition $f(p, 0)=0$ in our theorem.
(2) $\mathcal{L}_{e_{\varphi}} \rho_{0}=c \cdot J_{\rho_{0}}^{*} \rho_{0}$ should be understood as an equation on $N_{7} \times\{0\}$ rather than N_{6}, since the vector field e_{φ} is not defined on N_{6}. Our condition should therefore be read as "There exists an $S U(3)$ - or $S U(1,2)$-structure on N_{6} such that its pull-back to $N_{7} \times\{0\}$ satisfies $\mathcal{L}_{e_{\varphi}} \rho_{0}=c \cdot J_{\rho_{0}}^{*} \rho_{0} . "$
(3) We choose a sufficiently small open subset U of N_{6} and identify N_{7} locally with $U \times S^{1}$. Let $\widetilde{\rho_{0}}$ be the restriction of ρ_{0} to the set $\left\{(x, y) \in U \times S^{1} \mid x \in U, y=(1,0)\right\}$. In this situation, ρ_{0} at the point $(x, \cos \theta, \sin \theta)$ is given by $\cos (c \theta) \cdot \widetilde{\rho_{0}}+\sin (c \theta) \cdot J_{\rho_{0}}^{*} \widetilde{\rho_{0}}$. The reason for this is that the equation $\mathcal{L}_{e_{\varphi}} \rho_{0}=c \cdot J_{\rho_{0}}^{*} \rho_{0}$ fixes ρ_{0} along any fiber of $N_{7} . \rho_{0}$ can thus be considered as a special case of the construction from Lemma 2.13. Moreover, we see that we necessarily have $c \in \mathbb{N}$.

Proof. Let (f, ω, ρ) be a tuple of a function, a 2-form, and a 3-form which solves (30). Moreover, we assume that the initial conditions of the theorem are satisfied. Since $\left(\omega_{0}, \rho_{0}\right)$ is an $S U(3)$ - or $S U(1,2)$-structure, ω_{0} and ρ_{0}
are both stable. Being stable is an open condition and ω and ρ are therefore stable forms on $\operatorname{Ann}\left(e^{\varphi}\right)$ if t is sufficiently small. Since N_{6} is compact, the bound on t can be chosen independently from the point in N_{6}. The initial conditions $\mathcal{L}_{e_{\varphi}} \rho_{0}=c \cdot J_{\rho_{0}}^{*} \rho_{0}$ and $f(p, 0)=0$ force $\frac{\partial}{\partial t} f(p, 0)$ to be positive. We assume that t is so small that ω and ρ are stable and f is positive. The 3 -form $f(., t) e^{\varphi} \wedge \omega_{0}+\rho_{0}$ is a stable form and therefore a $G_{2^{-}}$or G_{2}^{*}-structure. $f(., t) e^{\varphi} \wedge \omega_{t}+\rho_{t}$ is a also $G_{2^{-}}$or G_{2}^{*}-structure and $\left(\omega_{t}, \rho_{t}\right)$ is either an $S U(3)$ or $S U(1,2)$-structure.

Our next step is to prove that (30) has a unique short-time solution. Let X be a t-dependent vector field on N_{7} which is of unit length with respect to the associated metric. The norm of $X\lrcorner * \phi$ is always 4. This can be seen by choosing a basis with the properties from Definition 2.16. If we fix X as $\frac{1}{f} e_{\varphi}$, we see that $J_{\rho}^{*} \rho$ has to be of constant length. $\frac{\partial f}{\partial t}$ is thus 4 times the norm of the right hand side of the second equation of (30). By inserting that term into $\frac{\partial f}{\partial t} J_{\rho}^{*} \rho+f \frac{\partial}{\partial t} J_{\rho}^{*} \rho$, we find an equation for $\frac{\partial}{\partial t} J_{\rho}^{*} \rho$. In the special case $f=0$, the second equation of (30) has only a component in the $J_{\rho}^{*} \rho$-direction and we thus have $\frac{\partial f}{\partial t}=c$ and $\frac{\partial}{\partial t} J_{\rho}^{*} \rho=0$.
There exists a certain $G L(6)$-equivariant map $\iota: \bigwedge^{4} \mathbb{R}^{6 *} \rightarrow \bigwedge^{2} \mathbb{R}^{6 *}$ which maps stable forms into stable forms [7]. In particular, we have $\iota\left(\frac{1}{2} \omega \wedge \omega\right)=\omega$. We apply ι to the first equation of (30) and obtain an equation for $\frac{\partial}{\partial t} \omega$. Since the constructions which we have made are real analytic, the short-time existence and uniqueness follows from the Cauchy-Kovalevskaya Theorem.

The initial conditions $f(., 0)=0$ and $d \omega_{0} \wedge \omega_{0}=0$ ensure that $d * \phi_{0}=0$. From the calculation

$$
\begin{equation*}
\frac{\partial}{\partial t} d * \phi=d \frac{\partial}{\partial t} * \phi=d^{2} \phi=0 \tag{31}
\end{equation*}
$$

it follows that ϕ_{t} is cocalibrated for all values of t.
Remark 5.4. Let $\left(\phi_{t}\right)_{t \in[0, \epsilon)}$ be a solution of (30) with the initial data (M_{8}, N_{6}, $\left.N_{7}, F, \omega_{0}, \rho_{0}, e^{\varphi}\right)$, where $e^{\prime \varphi}$ is another 1-form with the same properties as e^{φ}. It is possible to split ϕ_{t} with respect to e^{φ} into ρ_{t} and $f(., t) \omega_{t} \wedge$ e^{φ}. Since $\left(\omega_{t}, \rho_{t}, f(., t)\right)_{[0, \epsilon)}$ describes a solution of (30) with the initial data $\left(M_{8}, N_{6}, N_{7}, F, \omega_{0}, \rho_{0}, e^{\varphi}\right)$, we obtain no new $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$ structures for different choices of e^{φ}.

Not any smooth solution of (30) corresponds to a smooth 4-form on M_{8}. The reason for this is that the vector fields e_{r} and e_{φ} become singular along the zero section. In the following, we are going to answer the question under which conditions a $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure on $M_{8} \backslash N_{6}$ has a smooth extension to N_{6}.
Let $\psi: \mathbb{R} \geq 0 \times \mathbb{R} \rightarrow \mathbb{R}^{2}$ be defined by $\psi(r, \theta):=(r \cos \theta, r \sin \theta)$. Furthermore, let $h: \mathbb{R} \geq 0 \times \mathbb{R} \rightarrow \mathbb{R}$ be an analytic function. There exists an analytic
function $\widetilde{h}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\widetilde{h} \circ \psi=h$ if and only if the analytic extension of h is invariant under $(r, \theta) \mapsto(-r, \theta+\pi)$. This can be seen by expanding \widetilde{h} into a power series in (x, y) and replacing x by $r \cos \theta$ and y by $r \sin \theta$.

Let Ψ be the flow of the vector field e_{φ} at the time π. Analogously to above, f, ω, and ρ correspond to smooth objects on M_{8} if their analytic continuation is invariant under $(p, t) \mapsto(\Psi(p),-t)$.
We describe these smoothness conditions at $t=0$ in detail. The function f has to satisfy

$$
\begin{equation*}
f(p, t)=f(\Psi(p),-t) . \tag{32}
\end{equation*}
$$

Since we assume that f vanishes on $N_{7} \times\{0\}$, this is obviously true for $t=0$. The conditions on ω and ρ are equivalent to

$$
\begin{equation*}
\Psi^{*} \omega_{0}=\omega_{0} \quad \Psi^{*} \rho_{0}=\rho_{0}, \tag{33}
\end{equation*}
$$

where we consider ω_{0} and ρ_{0} as objects on $N_{7} \times\{0\}$. Let $t>0$ and let

$$
\begin{equation*}
\widetilde{N}_{7}^{t}:=\left\{(v, x, y) \mid v \in \mathbb{R}^{6}, x^{2}+y^{2}=t^{2}\right\} . \tag{34}
\end{equation*}
$$

The flat $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure on \mathbb{R}^{8} can be considered as a degeneration of a family of $G_{2^{-}}$or G_{2}^{*}-structures on \widetilde{N}_{7}^{t} to \mathbb{R}^{6}. In this situation, e_{φ} is the vector field which generates the action of $S O(2)$ on the last two coordinates of \mathbb{R}^{8}. By a short calculation, we see that the $S U(3)$ - or $S U(1,2)$-structure $(\widetilde{\omega}, \widetilde{\rho})$ on the 6 -dimensional distribution on \widetilde{N}_{7}^{t} satisfies

$$
\begin{equation*}
\mathcal{L}_{e_{\varphi}} \widetilde{\rho}=J_{\widetilde{\rho}}^{*} \widetilde{\rho} \quad \text { and } \quad \mathcal{L}_{e_{\varphi}} \widetilde{\omega}=0 . \tag{35}
\end{equation*}
$$

Let Φ be a parallel $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure. Around any point p, we can choose local coordinates such that the coefficients of Φ are the same as of the flat $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure on \mathbb{R}^{8} and that the first derivatives of all coefficients vanish at p. Therefore, it follows that (ω_{0}, ρ_{0}) has to satisfy

$$
\begin{equation*}
\mathcal{L}_{e_{\varphi}} \rho_{0}=J_{\rho_{0}}^{*} \rho_{0} \quad \text { and } \quad \mathcal{L}_{e_{\varphi}} \omega_{0}=0 . \tag{36}
\end{equation*}
$$

If we replace the action of $A \in S O(2)$ by the action of A^{-1}, we obtain $\mathcal{L}_{e_{\varphi}} \rho_{0}=-J_{\rho_{0}}^{*} \rho_{0}$. In both cases, the conditions (33) are satisfied.
Let $\left(\omega_{t}, \rho_{t}, f(., t)\right)_{t \in(-\epsilon, \epsilon)}$ be a solution of (30) such that we have $f(., 0)=0$ and (361). In that situation, $\left(\Psi^{*} \omega_{-t}, \Psi^{*} \rho_{-t}, f(\Psi(.),-t)\right)_{t \in(-\epsilon, \epsilon)}$ is a solution of (30) with the same initial values. Since (30) has a unique solution for any
choice of the initial data, both solutions coincide and Φ is indeed invariant under $(p, t) \mapsto(\Psi(p),-t)$.
Up to now, we have proven that ω, ρ, and f have a smooth extension to N_{6}. The 4 -form which is determined by these objects has to coincide up to first order with the flat $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure. We therefore get additional conditions on the three objects which we have already deduced for ω and ρ. The missing condition on f can be seen as follows. The length of a $U(1)$-orbit has to be $2 \pi t+O\left(t^{2}\right)$ for small t. This can only be satisfied if $\left.\frac{\partial}{\partial t}\right|_{t=0} f(p, t)= \pm 1$ or equivalently if $\mathcal{L}_{e_{\varphi}} \rho_{0}= \pm J_{\rho_{0}}^{*} \rho_{0}$, which we already assume.
We are now ready to state our main theorem.
Theorem 5.5. Let N_{6} be a compact 6 -dimensional manifold and (ω_{0}, ρ_{0}) be an $S U(3)$ - or $S U(1,2)$-structure on N_{6} which satisfies $d \omega_{0} \wedge \omega_{0}=0$. Furthermore, let M_{8} be a complex line bundle over N_{6} with a fixed orientation. We assume that all data are real analytic and identify N_{6} with the zero section of M_{8}.
If (ω_{0}, ρ_{0}) is an $S U(3)$-structure, there exists a unique parallel $\operatorname{Spin}(7)$ structure Φ on a sufficiently small tubular neighborhood U of N_{6} such that $\Phi \wedge \Phi$ is a positive volume form and the $\operatorname{SU}(3)$-structure on N_{6} which is induced by Φ is $\left(\omega_{0}, \rho_{0}\right)$. If $\left(\omega_{0}, \rho_{0}\right)$ is an $S U(1,2)$-structure, there exists a unique parallel $\operatorname{Spin}_{0}(3,4)$-structure on U with the same properties as Φ.

Proof. Let $p \in N_{6}$ be arbitrary. We first consider the case where $\left(e_{\varphi}, e_{r}\right)$ together with a positively oriented basis of $T_{p} N_{6}$ again is positively oriented. As we have discussed at the beginning of this section, it is possible to construct a degeneration F and a 1-form e^{φ} with the properties of Convention 5.1 Let $\left(\omega_{0}, \rho_{0}\right)$ be an arbitrary $S U(3)$ - or $S U(1,2)$-structure on N_{6} with $d \omega_{0} \wedge \omega_{0}=0$. The pull-back of (ω_{0}, ρ_{0}) to $N_{7} \times\{0\}$ is an $S U(3)$ - or $S U(1,2)$ structure on $\operatorname{Ann}\left(e^{\varphi}\right)$ which satisfies (36) and therefore also $\left.\frac{\partial}{\partial t}\right|_{t=0} f(p, t)=1$.
The solution of the system (30) with the above initial data thus describes a $\operatorname{Spin}(7)$ - or $\operatorname{Spin}_{0}(3,4)$-structure which is smooth along N_{6}. As we have shown in Remark [5.4, a different choice of e^{φ} would not yield a different solution of (30). If we had chosen another map $F^{\prime}: N_{7} \times[0, \infty) \rightarrow M_{8}$ with the same properties as F, we would have $F^{\prime}=\psi \circ F$ where ψ is a diffeomorphism of M_{8} which rescales the fibers. The corresponding solutions of (30) would therefore be related by the pull-back of ψ. With help of Theorem 5.2 we finally conclude that Φ exists and that it is unique.
In the above situation, $\Phi \wedge \Phi$ is a positive volume form. If the basis from the beginning of the proof is not positively oriented, we simply replace e_{φ} by $-e_{\varphi}$ and obtain a Φ which satisfies the conditions from the theorem and $\mathcal{L}_{e_{\varphi}} \rho_{0}=-J_{\rho_{0}}^{*} \rho_{0}$.

Remark 5.6. (1) If N_{6} is non-compact, a similar theorem can be proven. In that situation, U is a neighborhood on N_{6} which is not necessarily tubular with respect to g_{8}.
(2) The metric on $\operatorname{Ann}\left(e^{\varphi}\right)$ which is associated to $\left(\omega_{0}, \rho_{0}\right)$ is invariant under the $U(1)$-action on $N_{7} \times\{0\}$. However, the metric on M_{8} which is associated to Φ does not necessarily have an isometry group of positive dimension. For example, the normal bundle of any 6 -dimensional submanifold of a compact Riemannian manifold (M, g) with holonomy $\operatorname{Spin}(7)$ satisfies the conditions of Theorem 5.5. However, the isometry group of (M, g) is discrete. Since (M, g) is Ricci-flat, any Killing vector field of (M, g) would be parallel and (M, g) would thus be covered by a Riemannian product. In that situation, the holonomy would not be all of $\operatorname{Spin}(7)$.
(3) The condition $d \omega_{0} \wedge \omega_{0}=0$ on an $S U(3)$ - or $S U(1,2)$-structure is a weak one. In particular, it is satisfied if $\left(\omega_{0}, \rho_{0}\right)$ is half-flat. Furthermore, any 6 -dimensional symplectic manifold $\left(N_{6}, \omega\right)$ which admits a stable 3 -form with $\omega \wedge \rho=0$ and $J_{\rho}^{*} \rho \wedge \rho=\frac{2}{3} \omega \wedge \omega \wedge \omega$ is of that type.
(4) Bielawski [3] has proven a theorem, which is similar to ours, on Ricciflat Kähler metrics on complex line bundles. In [3, it is assumed that the metric on the base space is Kähler. In that situation, the complex line bundle has to be the canonical bundle in order to admit a Ricci-flat Kähler metric. Furthermore, the action of $U(1)$ becomes isometric and Hamiltonian.

6. Examples

In the literature [1], [2], 8], [9], [10, [15], 17], [20], [21, [22], several examples of cohomogeneity-one metrics with holonomy $\operatorname{Spin}(7), S U(4)$, or $S p(2)$ on complex line bundles are known. All of these metrics fit into the context of Theorem 5.5. In order to show how the theorem works, we take a look at one class of these metrics. Let

$$
U(1)_{1,1}:=\left\{\left.\left(\begin{array}{ccc}
e^{i t} & 0 & 0 \tag{37}\\
0 & e^{i t} & 0 \\
0 & 0 & e^{-2 i t}
\end{array}\right) \right\rvert\, \text { with } t \in \mathbb{R}\right\} .
$$

We assume that M_{8} is a cohomogeneity-one manifold whose principal orbit is the exceptional Aloff-Wallach space $N^{1,1}:=S U(3) / U(1)_{1,1} . N^{1,1}$ is a circle bundle over $S U(3) / T^{2}$, where T^{2} consists of all diagonal matrices in $S U(3) . M_{8}$ shall have exactly one singular orbit of type $S U(3) / T^{2}$. The orbit structure fixes the topology of M_{8}, which has to be a complex line bundle over $S U(3) / T^{2}$. We choose the basis

$$
\begin{align*}
& e_{1}:=E_{1}^{2}-E_{2}^{1} \quad e_{2}:=i E_{1}^{2}+i E_{2}^{1} \quad e_{3}:=E_{1}^{3}-E_{3}^{1} \\
& e_{4}:=i E_{1}^{3}+i E_{3}^{1} \quad e_{5}:=E_{2}^{3}-E_{3}^{2} \quad e_{6}:=i E_{2}^{3}+i E_{3}^{2} \tag{38}\\
& e_{7}:=\frac{1}{2} i E_{1}^{1}-\frac{1}{2} i E_{2}^{2} \quad e_{8}:=i E_{1}^{1}+i E_{2}^{2}-2 i E_{3}^{3}
\end{align*}
$$

of $\mathfrak{s u}(3)$, where E_{i}^{j} is the 3×3-matrix with $E_{i}^{j}\left(e_{k}\right)=\delta_{k}^{j} \delta_{i}^{l} e_{l}$ and denote its dual basis by $\left(e^{i}\right)_{1 \leq i \leq 8}$. The tangent space of $N^{1,1}$ can be identified with $\mathfrak{m}:=\operatorname{span}\left(e_{1}, \ldots, e_{7}\right)$. The extension of e_{7} to a left-invariant vector field on $N^{1,1}$ is the Killing vector field of the right-action of

$$
\left\{\left.\left(\begin{array}{ccc}
e^{i t} & 0 & 0 \tag{39}\\
0 & e^{-i t} & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, \text { with } t \in \mathbb{R}\right\} .
$$

If we choose N_{7} as $N^{1,1}, N_{6}$ as $S U(3) / T^{2}$, and e_{φ} as e_{7}, M_{8} satisfies all topological conditions from Definition 4.1.

We search for $S U(3)$-invariant $S U(3)$-structures on the distribution span $\left(e_{1}\right.$, \ldots, e_{6}) which are possible initial values for the system (30). If $\left(\omega_{0}, \rho_{0}\right)$ is such an initial value, we have $\mathcal{L}_{e_{7}} \omega_{0}=0$ and $\mathcal{L}_{e_{7}} \rho_{0}$ has to be proportional to $J_{\rho_{0}}^{*} \rho_{0}$. The only differential forms on $N^{1,1}$ which satisfy all these conditions are

$$
\begin{align*}
\omega_{0}= & a^{2} e^{12}+b^{2} e^{34}-c^{2} e^{56} \\
\rho_{0}= & a b c \cos \theta\left(-e^{135}-e^{146}-e^{236}+e^{245}\right) \tag{40}\\
& +a b c \sin \theta\left(-e^{136}+e^{145}+e^{235}+e^{246}\right),
\end{align*}
$$

where $a, b, c \in \mathbb{R} \backslash\{0\}$ and $\theta \in \mathbb{R}$ are arbitrary. The condition $d \omega_{0} \wedge \omega_{0}=0$ is always satisfied. Unfortunately, we have $\mathcal{L}_{e_{7}} \rho_{0}=-2 J_{\rho_{0}}^{*} \rho_{0}$ and the solutions of (30) therefore cannot describe a $\operatorname{Spin}(7)$-structure which is smooth along the singular orbit. However, if we square the complex line bundle, we obtain $\mathcal{L}_{e_{7}} \rho_{0}=-J_{\rho_{0}}^{*} \rho_{0}$ and the smoothness conditions are satisfied. Equivalently, we could have replaced the principal orbit by a suitable quotient of type $N^{1,1} / \mathbb{Z}_{2}$, since this construction yields the same complex line bundle. In that situation, Theorem 5.5 predicts for any choice of a, b, c, and θ the existence of a parallel $\operatorname{Spin}(7)$-structure near the singular orbit.

It is possible to assume that $\theta=0$. The reason for this is that the onedimensional subgroup of $S U(3)$ which is generated by e_{7} leaves ω_{0} invariant and acts on ρ_{0} by a change of θ. The parallel $\operatorname{Spin}(7)$-structures for different values of θ can therefore be obtained from each other by the pull-back of a diffeomorphism.

The above $\operatorname{Spin}(7)$-structures are of cohomogeneity one and are studied in more detail in [1], [2], [17, [20], [22]. Since there are no further suitable $S U(3)$-structures on the distribution span $\left(e_{1}, \ldots, e_{6}\right) \subseteq T N^{1,1}$, the following theorem follows immediately from Theorem 5.5,

Theorem 6.1. Let M_{8} be the cohomogeneity-one manifold which we have defined at the beginning of the section. The only $\operatorname{SU}(3)$-invariant parallel Spin(7)-structures on M_{8} are those which are already known in the literature.

There are several possibilities to generalize the above examples. M_{8} is not the only complex line bundle over $S U(3) / T^{2}$. Theorem 5.5 predicts the existence of further parallel $\operatorname{Spin}(7)$-structures on all of those bundles. Moreover, it is possible to construct by our theorem parallel $\operatorname{Spin}_{0}(3,4)$-structures on the same spaces. However, a detailed investigation of those structures or a study of their global behaviour is beyond the scope of this paper.

References

[1] Bazaikin, Ya.V.: On the new examples of complete noncompact $\operatorname{Spin}(7)$-holonomy metrics. Siberian Mathematical Journal Vol.48, No.1, 8-25 (2007).
[2] Bazaikin, Ya.V.; Malkovich, E.G.: The Spin(7)-structures on complex line bundles and explicit Riemannian metrics with $S U(4)$-holonomy. Preprint. arXiv:1001.1622v1 [math.DG].
[3] Bielawski, Roger: Ricci-flat Kähler metrics on canonical bundles. Math. Proc. Cambridge Phil. Soc. 132, 471 - 479 (2002)
[4] Bryant, Robert: Metrics with exceptional holonomy. Ann. of Math. 126, 525-576 (1987).
[5] Bryant, Robert; Salamon, Simon: On the construction of some complete metrics with exceptional holonomy. Duke Mathematical Journal 58, 829-850 (1989).
[6] Cleyton, Richard; Swann, Andrew: Cohomogeneity-one G_{2}-structures. J. Geom. Phys. 44. No.2-3, 202-220 (2002). arXiv:math.DG/0111056.
[7] Cortés, V.; Leistner, T.; Schäfer, L.; Schulte-Hengesbach, F.: Half-flat Structures and Special Holonomy. To appear in Proc. London Math. Soc. arXiv.math/0907.1222 [math.DG].
[8] Cvetič, M.; Gibbons, G.W.; Lü, H.; Pope, C.N.: Supersymmetric non-singular fractional D2-branes and NS-NS 2-branes. Nucl. Phys. B 606 No.1-2, 18-44 (2001). arXiv:hep-th/0101096
[9] Cvetič, M.; Gibbons, G.W.; Lü, H.; Pope, C.N.: Cohomogeneity one manifolds of $\operatorname{Spin}(7)$ and G_{2} holonomy. Ann. Phys. 300 No.2, 139-184 (2002). arXiv:hep-th/0108245
[10] Cvetič, M.; Gibbons, G.W.; Lü, H.; Pope, C.N.: Ricci-flat metrics, harmonic forms and brane resolutions. Commun. Math. Phys. 232 No.3, 457-500 (2003). arXiv:hep-th/0012011
[11] Fernández, Marisa; Gray, Alfred: Riemannian manifolds with structure group G_{2}. Ann. Mat. Pura Appl., IV. Ser. 132, 19-45 (1982).
[12] Fernández, Marisa: A classification of Riemannian manifolds with structure group Spin(7). Ann. Mat. Pura Appl., IV. Ser. 143, 101-122 (1986).
[13] Hitchin, Nigel: The geometry of three-forms in six dimensions. J. Differential Geom. 55, 547-576 (2000).
[14] Hitchin, Nigel: Stable forms and special metrics. In: Fernández, Marisa (editor) et al.: Global differential geometry: The mathematical legacy of Alfred Gray. Proceedings of the international congress on differential geometry held in memory of Professor Alfred Gray. Bilbao, Spain, September 18-23 2000. / AMS Contemporary Mathematical series 288, 70-89 (2001). arXiv:math.DG/0107101
[15] Herzog, Christopher P.; Klebanov, Igor R.: Gravity duals of fractional branes in various dimensions. Phys. Rev. D 63, 126005 (2001). arXiv:hep-th/0101020
[16] Kanno, Hiroaki; Yasui, Yukinori: On $\operatorname{Spin}(7)$ holonomy metric based on $\operatorname{SU}(3) / \mathrm{U}(1)$ I. J. Geom. Phys. 43 No.4, 293-309 (2002). arXiv:hep-th/0108226
[17] Kanno, Hiroaki; Yasui, Yukinori: On Spin(7) holonomy metric based on $\operatorname{SU}(3) / \mathrm{U}(1)$ II. J. Geom. Phys. 43 No.4, 310-326 (2002). arXiv:hep-th/0111198.
[18] Karigiannis, Spiro: Deformations of G_{2} and $\operatorname{Spin}(7)$-structures. Can. J. Math. 57 No. 5, 1012-1055 (2005). arXiv:math/0301218 [math.DG].
[19] Reichel, W.: Über die Trilinearen Alternierenden Formen in 6 und 7 Veränderlichen. Dissertation, Greifswald 1907.
[20] Reidegeld, Frank: Spin(7)-manifolds of cohomogeneity one. Dissertation. Fakultät für Mathematik, TU Dortmund, 2008. Online available at: https://eldorado.tudortmund.de/handle/2003/25817.
[21] Reidegeld, Frank: Special cohomogeneity one metrics with $Q^{1,1,1}$ or $M^{1,1,0}$ as principal orbit. J. Geom. Phys. 60, No. 9, 1069-1088 (2010). arXiv:0908.3965v1 [math.DG].
[22] Reidegeld, Frank: Exceptional holonomy and Einstein metrics constructed from Aloff-Wallach spaces. To appear in Proc. London Math. Soc. arXiv:1004.4788v1 [math.DG].
[23] Schouten, J.A.: Klassifizierung der alternierenden Größen dritten Grades in 7 Dimensionen. Rend. Circ. Mat. Palermo 55, 137-156 (1931).

E-Mail: FRANK.REIDEGELD@MATh.Uni-hAMBURG.DE

