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EXCEPTIONAL HOLONOMY BASED ON THE HITCHIN

FLOW ON COMPLEX LINE BUNDLES

FRANK REIDEGELD

Abstract. An SU(3)- or SU(1, 2)-structure on a 6-dimensional mani-
fold N6 can be defined as a pair of a 2-form ω and a 3-form ρ. Let M8 be
an arbitrary complex line bundle over N6. We prove that any SU(3)- or
SU(1, 2)-structure on N6 with dω ∧ ω = 0 can be uniquely extended to
a Spin(7)- or Spin

0
(3, 4)-structure which is defined on a tubular neigh-

borhood of the zero section of M8. As an application, we prove that the
known cohomogeneity-one metrics with holonomy Spin(7) on a certain
complex line bundle over SU(3)/U(1)2 are the only ones.

1. Introduction

The flow equations of Hitchin [14] are a method to construct manifolds with
exceptional holonomy, which can also be generalized to the semi-Riemannian
case [7]. In this article, we restrict ourselves to metrics with holonomy
Spin(7) or Spin0(3, 4).

We start with a cocalibrated G2- or G
∗
2-structure φ on a 7-dimensional man-

ifold N7. Hitchin’s flow equation yields a one-parameter family (φt)t∈[0,ǫ) of
G2- or G

∗
2-structures such that φ0 = φ and dt∧φt+∗φt is a parallel Spin(7)-

or Spin0(3, 4)-structure.

The metrics which we obtain by this method are in general incomplete. In
order to construct complete examples, we assume that N7 degenerates for
small t into a 6-dimensional manifold N6 such that the space on which the
Spin(7)- or Spin0(3, 4)-structure will be defined is a complex line bundle over
N6. Later on, this kind of degeneration will be defined more rigorously.

The zero section of the bundle, which we will identify with N6, carries an
SU(3)- or SU(1, 2)-structure (ω0, ρ0) where ω0 is a 2-form and ρ0 is a 3-form.
Many of the known cohomogeneity-one metrics with holonomy Spin(7) [1],
[2], [8], [9], [10], [15], [17], [20], [21], [22] are defined on a complex line
bundle and are precisely of the kind which we investigate. This is a further
motivation to study degenerations of the Hitchin flow.

If we assume that all initial data on N6 are analytic, our main result can
be proven with help of the Cauchy-Kovalevskaya Theorem. We have to pay
special attention to the conditions which φt has to satisfy such that the
Spin(7)- or Spin0(3, 4)-structure on M8 \N6 has a smooth extension to N6.
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It turns out that the only non-trivial condition on (ω0, ρ0) is dω0 ∧ ω0 =
0. For any complex line bundle and any SU(3)- or SU(1, 2)-structure on
N6 which satisfies this condition, we obtain a unique parallel Spin(7)- or
Spin0(3, 4)-structure on a tubular neighborhood of N6.

In the literature [1], [2], [17], [20], [22], there are many cohomogeneity-
one metrics with exceptional holonomy known whose principal orbit is the
exceptional Aloff-Wallach space N1,1 and whose singular orbit is SU(3)/T 2

where T 2 is a maximal torus of SU(3). With help of our theorem, we will
see that no further metrics of that kind exist. We expect that there are
further applications of our theorem in the construction of parallel Spin(7)-
or Spin0(3, 4)-structures which are of cohomogeneity one or have another
explicit description.

2. G-structures

2.1. G is a real form of SL(3,C). In order to formulate our theorem we
have to introduce several G-structures. On the total space of the bundle we
want to construct a Spin(7)- or Spin0(3, 4)-structure. In this situation, the
zero section of the bundle carries a G-structure where G is a real form of
SL(3,C). Finally, the set of all points with a fixed distance from the zero
section carries a G2-structure or a G

∗
2-structure. A well written introduction

to all of these G-structures can be found in Cortés et al. [7]. We use similar
conventions as [7] and only recapitulate the facts which we need for our
considerations.

We first take a look at the case where G is a real form of SL(3,C). The other
G-structures can be build up from these ones. There are three real forms
of SL(3,C) namely SU(3), SU(1, 2), and SL(3,R). In the later sections,
we restrict ourselves to SU(3)- and SU(1, 2)-structures. Nevertheless, we
introduce all three types of G-structures in this subsection, since they share
many properties.

All of the G-structures from this section can be described with help of certain
differential forms. We will index the differential forms by the corresponding
group G in order to avoid confusion. Throughout the article we use the
following convention.

Convention 2.1. Let (vi)i∈I be a basis of a vector space V . We denote its
dual basis by (vi)i∈I and abbreviate vi1 ∧ . . . ∧ vij by vi1...ij .

Let (ei)i=1,...,6 be the canonical basis of R6. We define the 2-forms

(1) ωSU(3) := ωSL(3,R) := e12 + e34 + e56

and
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(2) ωSU(1,2) := −e12 − e34 + e56 .

Moreover, we introduce the 3-forms

(3) ρSU(3) := ρSU(1,2) := e135 − e146 − e236 − e245

and

(4) ρSL(3,R) := e135 + e146 + e236 + e245 .

Convention 2.2. If we consider an arbitrary 2-form in {ωSU(3), ωSU(1,2),
ωSL(3,R)} we denote it by ω. Analogously, ρ denotes a 3-form which is either
ρSU(3), ρSU(1,2), or ρSL(3,R).

The following lemma is proven in [7].

Lemma 2.3. Let G ∈ {SU(3), SU(1, 2), SL(3,R)}. The subgroup of all
A ∈ GL(6,R) which stabilize ωG and ρG simultaneously is isomorphic to G.

This lemma motivates the following definition.

Definition 2.4. Let G ∈ {SU(3), SU(1, 2), SL(3,R)}, V be a 6-dimensional
real vector space and (ω, ρ) be a pair of a 2-form and a 3-form on V . If there
exists a basis (vi)i=1,...,6 of V such that with respect to this basis ω can be
identified with ωG and ρ with ρG, (ω, ρ) is called a G-structure.

ω and ρ are both examples of stable forms in the sense of Hitchin [14].

Definition 2.5. Let V be a real or complex vector space and β ∈
∧k V ∗

with k ∈ {0, . . . ,dimV } be a k-form. β is called stable if the GL(V )-orbit

of β is an open subset of
∧k V ∗.

Lemma 2.6. Let (ω, ρ) be a G-structure where G ∈ {SU(3), SU(1, 2),
SL(3,R)}. In this situation, ω and ρ are both stable forms.

Remark 2.7. The stable forms are an open dense subset of
∧2 R6∗ or

∧3 R6∗.

There is exactly one open GL(6,R)-orbit in
∧2R6∗ and two open orbits in∧3 R6∗. One of them is the orbit of ρSU(3) and the other one is the orbit of

ρSL(3,R).

Let V be a 6-dimensional real vector space and
∧3

s V
∗ be the set of all stable

3-forms on V . We can assign to any stable 3-form ρ a certain endomorphism
Jρ by a map

(5) i :
∧3

s
V ∗ → V ⊗ V ∗ .
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i is a rational GL(6,R)-equivariant map and is described in detail in [7].
i(ρSU(3)) is the standard complex structure on R6 which maps e2i−1 to −e2i
and e2i to e2i−1 for all i ∈ {1, 2, 3}. i(ρSL(3,R)) is the standard para-complex

structure on R6 which maps e2i−1 to e2i and e2i to e2i−1.

If (ω, ρ) is an SU(3)-structure or an SU(1, 2)-structure, Jρ therefore is a
complex structure. If (ω, ρ) is an SL(3,R)-structure, Jρ is a para-complex
structure, i.e. J2

ρ = id.

As before, let V be a 6-dimensional real vector space and
∧k

s V
∗ be the set

of all stable k-forms on V . With help of another map

(6) j :
∧2

s
V ∗ ×

∧3

s
V ∗ → S2(V ∗)

we can assign to (ω, ρ) a symmetric non-degenerate bilinear form. An ex-
plicit description of j can also be found in [7]. As i, j is also a rational,
GL(6,R)-equivariant map. If (ω, ρ) is an

(1) SU(3)-structure, j(ω, ρ) is a metric with signature (6, 0). In partic-
ular, j(ωSU(3), ρSU(3)) is the Euclidean metric on R6.

(2) SU(1, 2)-structure, j(ω, ρ) is a metric with signature (2, 4).
(3) SL(3,R)-structure, j(ω, ρ) is a metric with signature (3, 3).

Convention 2.8. (1) We call Jρ the complex or para-complex structure
which is associated to ρ or shortly the associated complex or para-
complex structure.

(2) We call j(ω, ρ) the metric which is associated to (ω, ρ) or shortly the
associated metric. We denote it by g6, since we will also work with
metrics on 7- or 8-dimensional spaces.

The basis (vi)i=1,...,6 from Definition 2.4 is in all three cases pseudo-orthonor-
mal, i.e. |g6(vi, vj)| = δij for all i, j ∈ {1, . . . , 6}. We remark that the objects
which we have defined are related by the formula

(7) ω(v,w) := g6(v, Jρ(w)) .

Let (ω, ρ) be an SU(3)-structure. The stabilizer of (ω, ρ) is the same as
of (ω, ρ, Jρ, g6). Since it is well-known that the second stabilizer is SU(3),
(ω, ρ) is indeed stabilized by SU(3). The other statements of Lemma 2.3
can be proven analogously.

It is possible to see if a pair (ω, ρ) determines one of our G-structures without
referring to a special basis.

Theorem 2.9. Let V be a 6-dimensional real vector space and let ω ∈
∧2 V ∗

and ρ ∈
∧3 V ∗ be stable. Moreover, let Jρ and g6 be defined as above. We

assume that ω and ρ satisfy the equations
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(1) ω ∧ ρ = 0,
(2) J∗

ρρ ∧ ρ = 2
3ω ∧ ω ∧ ω.

If in this situation

(1) g6 has signature (6, 0) and J is a complex structure, (ω, ρ) is an
SU(3)-structure.

(2) g6 has signature (2, 4) and J is a complex structure, (ω, ρ) is an
SU(1, 2)-structure.

(3) g6 has signature (3, 3) and J is a para-complex structure, (ω, ρ) is
an SL(3,R)-structure.

Remark 2.10. (1) Since J∗
ρρ ∧ ρ and 2

3ω ∧ ω ∧ ω are both 6-forms, the
second condition from the theorem is a normalization of the pair
(ω, ρ).

(2) If (ω, ρ) is a pair of stable forms satisfying ω ∧ ρ = 0 and J∗
ρρ ∧ ρ =

2
3ω ∧ ω ∧ ω, it is in fact an SU(3)-, SU(1, 2)-, or SL(3,R)-structure.

The reason for the above considerations of course is to define the notion of
a G-structure on a manifold.

Definition 2.11. Let M be a 6-dimensional manifold, ω ∈
∧2 T ∗M , and

ρ ∈
∧3 T ∗M . Moreover, let G ∈ {SU(3), SU(1, 2), SL(3,R)}. (ω, ρ) is

called a G-structure on M if for all p ∈M (ωp, ρp) is a G-structure on TpM .

Convention 2.12. Since the endomorphism field Jρ in general has torsion,
we call it the almost complex or para-complex structure on M .

If there already is a G-structure of the above kind on M , we can define by
the following construction further G-structures on M .

Lemma 2.13. (1) LetM be a 6-dimensional manifold carrying an SU(3)-
or SU(1, 2)-structure (ω, ρ). For any θ ∈ C∞(M)

(8) (ω, cos θ · ρ+ sin θ · J∗
ρρ)

is another G-structure of the same type, which we denote by (ω, ρθ).
(2) Let M be a 6-dimensional manifold carrying an SL(3,R)-structure

(ω, ρ). For any θ ∈ C∞(M)

(9) (ω, cosh θ · ρ− sinh θ · J∗
ρρ)

is another SL(3,R)-structure, which we also denote by (ω, ρθ).
(3) In both of the above cases, the metric which is associated to (ω, ρθ)

is the same as of (ω, ρ).

Proof. Let (ω, ρ) be an SU(3)- or SU(1, 2)-structure, p ∈M , and (vi)i=1,...,6

be a basis of TpM with the properties from Definition 2.4. Furthermore, let
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(10) Aθ :=




cos θ
3 − sin θ

3
sin θ

3 cos θ
3

cos θ
3 − sin θ

3
sin θ

3 cos θ
3

cos θ
3 − sin θ

3
sin θ

3 cos θ
3




By letting Aθ act on (vi)i=1,...,6, we obtain a new basis (v′i)i=1,...,6 of TpM .
This basis induces a new SU(3)- or SU(1, 2)-structure which coincides with
(ω, ρθ). If (ω, ρ) is an SL(3,R)-structure, we obtain (ω, ρθ) with help of the
matrix

(11) Bθ :=




cosh θ
3 sinh θ

3
sinh θ

3 cosh θ
3

cosh θ
3 sinh θ

3
sinh θ

3 cosh θ
3

cosh θ
3 sinh θ

3
sinh θ

3 cosh θ
3




Since Aθ is an element of SO(6) and SO(2, 4) and Bθ is an element of
SO(3, 3), the associated metric g6 remains in both cases the same. We
remark that in the case G = SU(1, 2) the signature of g6 is (−,−,−,−,+,+)
and in the case G = SL(3,R) it is (+,−,+,−,+,−). �

Remark 2.14. (1) The stabilizer group of the pair (ω, ρθ) is the same as
of (ω, ρ). Nevertheless, (ω, ρθ) and (ω, ρ) are different G-structures,
except for θ ∈ 2π

3 Z in the first case of the lemma. If we had defined

the notion of a G-structure by a principal bundle, (ω, ρ) and (ω, ρθ)
also would not coincide. The reason for this is that we change the
frame for the G-structure by the matrix Aθ or Bθ which is not an
element of the structure group.

(2) Let G be either SU(3), SU(1, 2), or SL(3,R). The set of all G-
structures with fixed ω and g6 is given by the G-structures from the
above lemma. This is a consequence of the fact that the stabilizer
of the pair (ω, g6) is U(3), U(1, 2), or GL(3,R) and that the center
of these groups consists of all Aθ or Bθ. We remark that the set of
all G-structures with a fixed associated metric is a much larger set
which we will not describe in detail.

For the proof of the main theorem we also need to define SU(3)-, SU(1, 2)-,
and SL(3,R)-structures on manifolds whose dimension is greater than 6.

Definition 2.15. Let M be a manifold with dimM ≥ 6, ω ∈
∧2 T ∗M , and

ρ ∈
∧3 T ∗M . Moreover, let G ∈ {SU(3), SU(1, 2), SL(3,R)} and let D be
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a 6-dimensional distribution on M . (ω, ρ) is called a G-structure on M if
there exists another distribution D′ on M such that for all p ∈M

(1) Dp ⊕D′
p = TpM ,

(2) the restriction (ωp|Dp×Dp
, ρp|Dp×Dp×Dp

) is a G-structure on Dp, and
(3) Xpyωp = Xpyρp = 0 for all Xp ∈ D′

p.

2.2. G is a real form of GC
2 . With help of the G-structures from the

previous subsection we are able to define the notion of a G2- or G
∗
2-structure.

Definition and Lemma 2.16. We supplement the basis (ei)i=1,...,6 of R6

with e7 to a basis of R7. The form

(1) φG2
:= ωSU(3) ∧ e

7 + ρSU(3) is stabilized by G2.

(2) φG∗

2
,i := ωSU(1,2) ∧ e

7 + ρSU(1,2) is stabilized by G∗
2.

(3) φG∗

2
,ii := ωSL(3,R) ∧ e

7 + ρSL(3,R) is stabilized by G∗
2.

G2 denotes the compact real form of the complex Lie group GC
2 and G∗

2

denotes the split real form. If we consider one of the above forms on R7

without specifying it, we shortly denote it by φ.

Let V be a 7-dimensional real vector space and φ be a 3-form on V . If there
exists a basis (vi)i=1,...,7 of V such that with respect to (vi)i=1,...,7

(1) φ can be identified with φG2
, φ is called a G2-structure.

(2) φ can be identified with φG∗

2
,i, φ is called a G∗

2-structure.
(3) φ can be identified with φG∗

2
,ii, φ is also called a G∗

2-structure.

Remark 2.17. There are exactly two open orbits of the action of GL(7,R)

on
∧3R7∗ [19], [23]. Their union is a dense subset of

∧3 R7∗. One orbit
consists of all 3-forms which are stabilized by G2 and the other one consists
of all 3-forms which are stabilized by G∗

2. If φ is a G∗
2-structure in the sense

of (2), it is therefore a G∗
2-structure in the sense of (3), too.

Any G2- or G
∗
2-structure on a vector space V determines a symmetric non-

degenerate bilinear form g7 and a volume form vol7. Let
∧3

s V
∗ be the set

of all stable 3-forms on V . As in the previous subsection, there are explicit
rational GL(7,R)-equivariant maps

∧3
s V

∗ → S2(V ∗) and
∧3

s V
∗ →

∧7 V ∗

which assign g7 and vol7 to φ. The explicit definition of these maps can be
found in [7]. The tensors φ, g7, and vol7 are related by the formula

(12) g7(v,w) vol7 := −1
6(vyφ) ∧ (wyφ) ∧ φ .

Analogously to Subsection 2.1, we have

Lemma 2.18. (1) Let V be a 7-dimensional real vector space and φ be
a stable 3-form on V . If φ is a G2-structure, g7 has signature (7, 0).
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In particular, g7 is the Euclidean metric on R7 if φ coincides with
φG2

. If φ is a G∗
2-structure, g7 has signature (3, 4).

(2) In the situation of Definition and Lemma 2.16, R6 and span(e7) are
orthogonal to each other with respect to g7. Moreover, the restriction
of g7 to R6 coincides with g6. If
(a) φ = φG2

, g7(e7, e7) = 1.
(b) φ = φG∗

2
,i, g7(e7, e7) = 1.

(c) φ = φG∗

2
,ii, g7(e7, e7) = −1.

Remark 2.19. Since there are only two open GL(7,R)-orbits, (7, 0) and (3, 4)
are the only possible signatures of g7. Therefore, it is possible to check if a
3-form is a G2- or G

∗
2-structure without finding a basis with the properties

of Definition and Lemma 2.16.

We can relate vol7 to the 3-forms on the 6-dimensional space span(vi)i=1,...,6.

Lemma 2.20. In the situation of Definition and Lemma 2.16, vol7 is

(1) 1
4J

∗ρ ∧ ρ ∧ v7 if φ is a G2-structure or a G∗
2-structure in the sense

of 2.16.2.
(2) −1

4J
∗ρ ∧ ρ ∧ v7 if φ is a G∗

2-structure in the sense of 2.16.3.

In particular, vol7 is

(1) e1234567 if φ is φG2
or φG∗

2
,i,

(2) −e1234567 if φ is φG∗

2
,ii.

Convention 2.21. We call g7 the metric which is associated to φ and vol7
the volume form which is associated to φ or more briefly we call them the
associated metric and volume form. g7 and vol7 determine a Hodge-star
operator ∗ on V . The dual 4-form ∗φ will be called the associated 4-form.

Lemma 2.22. In the situation of Definition and Lemma 2.16, the 4-form
∗φ is stable and can be described as

(1) v7 ∧ J∗
ρρ + 1

2ω ∧ ω if φ is a G2-structure and (ω, ρ) is the SU(3)-
structure on span(vi)i=1,...,6.

(2) v7 ∧ J∗
ρρ +

1
2ω ∧ ω if φ is a G∗

2-structure in the sense of 2.16.2 and
(ω, ρ) is the SU(1, 2)-structure on span(vi)i=1,...,6.

(3) −v7 ∧ J∗
ρρ−

1
2ω ∧ω if φ is a G∗

2-structure in the sense of 2.16.3 and
(ω, ρ) is the SL(3,R)-structure on span(vi)i=1,...,6.

As in the previous subsection, we can define the notion of a G2- or G∗
2-

structure on a manifold.

Definition 2.23. Let M be a 7-dimensional manifold and φ ∈
∧3 T ∗M .

Moreover, let G ∈ {G2, G
∗
2}. φ is called a G-structure on M if for all p ∈M

φp is a G-structure on TpM .
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2.3. G is a real form of SpinC(7). Since the aim of this article is to
construct metrics with holonomy Spin(7) or Spin0(3, 4), we finally have to
introduce Spin(7)- and Spin0(3, 4)-structures.

Definition and Lemma 2.24. We supplement the basis (ei)i=1,...,7 of R7

with e8 to a basis of R8. The form

(1) ΦSpin(7) := e8 ∧ φG2
+ ∗φG2

is stabilized by Spin(7).

(2) ΦSpin
0
(3,4),i := e8 ∧ φG∗

2
,i + ∗φG∗

2
,i is stabilized by Spin0(3, 4).

(3) ΦSpin
0
(3,4),ii := e8 ∧ φG∗

2
,ii + ∗φG∗

2
,ii is stabilized by Spin0(3, 4).

Spin0(3, 4) denotes the identity component of Spin(3, 4). If we consider one
of the above forms on R8 without specifying it, we shortly denote it by Φ.

Let V be an 8-dimensional real vector space and Φ be a 4-form on V . If
there exists a basis (vi)i=1,...,8 of V such that with respect to (vi)i=1,...,8

(1) Φ can be identified with ΦSpin(7), Φ is called a Spin(7)-structure.
(2) Φ can be identified with ΦSpin0(3,4),i

, Φ is called a Spin0(3, 4)-structure.
(3) Φ can be identified with ΦSpin0(3,4),ii

, Φ is also called a Spin0(3, 4)-
structure.

Remark 2.25. For the same reasons as in Remark 2.17, Φ is also a Spin0(3, 4)-
structure in the sense of (3) if it is a Spin0(3, 4)-structure in the sense of
(2).

Analogously to the previous two subsections, any Spin(7)- or Spin0(3, 4)-
structure determines a symmetric non-degenerate bilinear form g8 and a
volume form vol8. vol8 is given by 1

14Φ ∧ Φ and g8 satisfies a slightly more
complicated formula as (12), which can be found in Karigiannis [18].

Unlike ω, ρ, and φ, Φ is not a stable form. Nevertheless, we have similar
results as in the previous two subsections.

Lemma 2.26. (1) Let V be an 8-dimensional real vector space and Φ
be a Spin(7)- or Spin0(3, 4)-structure on V . In the first case, g8
has signature (8, 0) and in the second case it has signature (4, 4).
In particular, g8 is the Euclidean metric on R8 if Φ coincides with
ΦSpin(7).

(2) In the situation of Definition and Lemma 2.24, R7 and span(e8) are
orthogonal to each other with respect to g8. Moreover, the restriction
of g8 to R7 coincides with g7. In all three cases, we have g8(e8, e8) =
1.

Lemma 2.27. In the situation of Definition and Lemma 2.24, vol8 is in all
three cases

(13) vol7 ∧ v
8 .
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Convention 2.28. As in the previous subsection, we call g8 the associated
metric and vol8 the associated volume form.

Remark 2.29. (1) Φ is self-dual with respect to the metric g8 and the
volume form vol8.

(2) Any 4-form on an 8-dimensional real vector space which is stabilized
by Spin(7) or Spin0(3, 4) is a Spin(7)- or Spin0(3, 4)-structure. How-
ever, there is no simple criterion like Theorem 2.9 which decides if a
given 4-form is a Spin(7)- or Spin0(3, 4)-structure.

The notion of a Spin(7)- or a Spin0(3, 4)-structure on an 8-dimensional mani-
fold can be defined completely analogously to Definition 2.11 and 2.23.

3. Hitchin’s flow equations

One of the reasons for studying G-structures is their relation to metrics with
special holonomy.

Definition 3.1. (1) Let G ∈ {SU(3), SU(1, 2), SL(3,R)} and let (ω, ρ)
be aG-structure on a 6-dimensional manifold. (ω, ρ) is called torsion-
free if dω = dρ = 0.

(2) Let G ∈ {G2, G
∗
2} and let φ be a G-structure on a 7-dimensional

manifold. φ is called torsion-free if dφ = d ∗ φ = 0.
(3) Let G ∈ {Spin(7),Spin0(3, 4)} and let Φ be a G-structure on an

8-dimensional manifold. Φ is called torsion-free if dΦ = 0.

Lemma 3.2. (See [11], [12], [13]) The metric which is associated to any
of the torsion-free G-structures from Definition 3.1 has a holonomy group
which is contained in G.

Conversely, let G be one of the groups from Definition 3.1. Moreover, let
(M,g) be a semi-Riemannian manifold such that for any p ∈M there exists
an isomorphism ψ : TpM → Rk with k ∈ {6, 7, 8} such that the holonomy
group Holp(g) satisfies ψ◦Holp(g)◦ψ

−1 ⊆ G. Then there exists a torsion-free
G-structure on M whose associated metric is g.

G2 and Spin(7) are called the exceptional holonomy groups. Compact Rie-
mannian manifolds with exceptional holonomy are hard to construct. How-
ever, many non-compact examples with cohomogeneity one are known [1],
[2], [5], [6], [7], [8], [9], [10], [15], [16], [17], [21], [22]. Semi-Riemannian
manifolds with holonomy G∗

2 or Spin0(3, 4) are also interesting from a math-
ematical point of view. Explicit examples of metrics with holonomy G∗

2 can
be found in [7]. All of the above metrics can be obtained by a method which
was developed by Hitchin [14]. Since this article is only about metrics with
holonomy Spin(7) or Spin0(3, 4), we explain this method only for these cases.
As in the previous section, our presentation of the issue is similar as in [7].

Definition 3.3. Let φ be aG2- or G
∗
2-structure on a 7-dimensional manifold.

φ is called cocalibrated if d ∗ φ = 0.
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Theorem 3.4. (See [7], [14]) Let t0 ∈ R, N7 be a 7-dimensional manifold,
and U ⊆ N7 × R be an open neighborhood of N7 × {t0}. Furthermore, let
G ∈ {G2, G

∗
2} and φ be a cocalibrated G-structure on N7. Finally, let φt be

a one-parameter family of 3-forms such that φt is defined on U ∩ (N7×{t}).
We assume that φt is a solution of the initial value problem

(14)
∂
∂t

∗7 φt = d7φt
φt0 = φ

The index ”7” emphasizes that we consider ∗ and d as operators on N7

instead of U . If U is sufficiently small, φt is a G-structure for all t with
U ∩ (N7 × {t}) 6= ∅. Moreover, it is cocalibrated for all t. The 4-form

(15) Φ := dt ∧ φt + ∗7φt

is a torsion-free Spin(7)-structure if G = G2 and a torsion-free Spin0(3, 4)-
structure if G = G∗

2. Let g8 be the metric which is associated to Φ and gt
be the metric on N7 × {t} which is associated to φt. With this notation we
have

(16) g8 = gt + dt2 .

The equation ∂
∂t

∗7 φt = d7φt is called Hitchin’s flow equation and any of its
solutions φt is called a Hitchin flow.

Remark 3.5. (1) Since ∗7 depends non-linearly on φt, Hitchin’s flow
equation is a non-linear partial differential equation.

(2) If N7 and φ are real analytic, the system (14) has a unique maximal
solution which is defined on a certain open neighborhood ofN7×{t0}.
This is a consequence of the Cauchy-Kovalevskaya Theorem. We will
therefore assume from now that N7 and φ are analytic.

(3) If N7 is compact, there exists a unique maximal open interval I with
t0 ∈ I such that the solution of (14) is defined on N7 × I.

(4) Let f : N7 → N7 be a diffeomorphism, I an interval with t0 ∈ I,
U = N7 × I, and φt be a solution of (14) on U . In this situation,
the pull-back f∗φt is a solution of ∂

∂t
∗7 φt = d7φt with the initial

value φt0 = f∗φ. In particular, the automorphism group of (N7, φ)
is preserved by Hitchin’s flow equation.

(5) If N7 is a homogeneous space G/H and φ is G-invariant, φt is also
G-invariant for all t. In this situation, Hitchin’s flow equation can
be rewritten as a system of ordinary differential equations and it has
a unique maximal solution on a set of type N7× I even if N7 is non-
compact. Conversely, let Φ be a torsion-free Spin(7)- or Spin0(3, 4)-
structure of cohomogeneity one. The lift of Φ to the universal cover
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of the union of all principal orbits can be obtained from a Hitchin
flow of the above type.

4. Spin(7)-structures on complex line bundles

We assume that we are in the situation of Theorem 3.4. Let p ∈ N7 be
arbitrary. The curve γ : I → N7 × I with γ(t) := (p, t) is a geodesic
with respect to g8. If I ( R, (N7 × I, g8) thus is geodesically incomplete.
One method to nevertheless construct complete solutions of Hitchin’s flow
equations is with help of degenerations.

Definition 4.1. Let N7 be a 7-dimensional manifold, G ∈ {G2, G
∗
2}, and

(φt)t∈(0,ǫ) with ǫ > 0 be a one-parameter family of G-structures on N7. We
assume that (φt)t∈(0,ǫ) is a solution of Hitchin’s flow equation and that is
has a smooth extension to t = 0. Furthermore, we assume that N7 is an
SO(2)-principal bundle over a 6-dimensional manifold N6 and that for all
t ∈ (0, ǫ) all vertical tangent vectors X satisfy g7(X,X) > 0.

Let M8 be the R2-bundle over N6 which is associated to the standard rep-
resentation of SO(2) and let π : M8 → N6 be the projection map. If there
exists a smooth Spin(7)- or Spin0(3, 4)-structure Φ on M8 such that there is
a differentiable map F : N7 × [0, ǫ) →M8 with the following properties:

(1) F (N7 × {0}) = N6, where we have identified the zero section of M8

with N6,
(2) F (N7 × {t}) is SO(2)-invariant and π ◦ F (N7 × {t}) = N6 for all

t ∈ (0, ǫ),
(3) F |N7×(0,ǫ) : N7 × (0, ǫ) → M8 \N6 is a diffeomorphism which maps

fibers of N7 into fibers of M8, and
(4) F ∗Φ = dt ∧ φt + ∗7φt,

we say that the Hitchin flow on N7 degenerates into N6.

Remark 4.2. (1) The idea behind the above definition is that N7 is a
circle bundle and that the circumference of the circle shrinks to 0 as
t → 0. The reason why our definition is quite technical is that we
want to consider an initial value problem on N7 × [0, ǫ) and identify
N7 × {0} with the base space. Since it is not clear if the Hitchin
flow can be extended to all of [0,∞), M8 is in fact a disc bundle
over N6. However, from the topological point of view this difference
is unimportant. We remark that any Spin(7)-manifold of cohomo-
geneity one with exactly one singular orbit of dimension 6 satisfies
the conditions of Definition 4.1.

(2) The fibers of M8 carry a canonical complex structure which makes
M8 a complex line bundle over N6.

Since in the situation of Definition 4.1 all vertical vectors are of positive
length, N6 carries an SU(3)- or SU(1, 2)-structure. This G-structure can be
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considered as the initial value of (14). In principle, it is possible to modify
Definition 4.1 in such a way that we have an SL(3,R)-structure on N6. In
that situation, we would need an action of SO+(1, 1) instead of SO(2) on the
fibers andM8 would be a para-complex line bundle instead of a complex one.
However, there is an important difference. The intersection of F (N7 × {t})
and a fiber of M8 is not a circle but an SO+(1, 1)-orbit. For t → 0 the
orbits converge to a set of type {(x, y) ∈ R2|x2 − y2 = 0, x ≥ 0}. Since that
set is not a point, it would require more work to prescribe suitable initial
conditions for the Hitchin flow. For this reason, we restrict ourselves to the
case where N6 carries an SU(3)- or SU(1, 2)-structure. In order to describe
that G-structure in more detail, we define two vector fields on M8 \N6.

Definition and Lemma 4.3. Let N6, N7, M8, and F : N7 × [0, ǫ) → M8

satisfy the conditions from Definition 4.1. We define eϕ as the vector field
on M8 \ N6 which generates the action of SO(2) on the fibers of M8. We
normalize eϕ such that its flow at the time 2π is the identity map and the
flow at any time in (0, 2π) is not the identity. Moreover, we define the
vector field er := (dF )

(
∂
∂t

)
on M8 \ N6. We call er the radial vector field.

If there exists a Spin(7)- or Spin0(3, 4)-structure on M8 with the properties
of Definition 4.1, er is the unique vertical vector field of unit length which
is orthogonal to eϕ and outward directed.

In order to make g8 smooth at N6, we need limt→0 ‖eϕ‖ = 0. The metric
on N7 ×{0} therefore has to be degenerate. This fact helps us to define the
SU(3)- or SU(1, 2)-structure on N6.

Definition 4.4. We assume that we are in the situation of Definition 4.1.
Let er and eϕ be the duals of er and eϕ with respect to g8. Furthermore, let
ω and ρ denote from now on the following differential forms.

(1) ω := 1
‖eϕ‖

eϕy (eryΦ),

(2) ρ := eryΦ− ‖eϕ‖ e
ϕ ∧ ω.

Lemma 4.5. We identify M8 \ N6 with N7 × (0, ǫ) by the map F . If
Φ is a Spin(7)-structure, (ω, ρ) is an SU(3)-structure on the distribution
span(er, eϕ)

⊥. Equivalently, (ω, ρ) can be described as a t-dependent SU(3)-

structure on the distribution span(eϕ)
⊥ ⊆ TN7. Analogously, (ω, ρ) is an

SU(1, 2)-structure if Φ is a Spin0(3, 4)-structure. Moreover, the 3-form

(17) φt := ‖eϕ‖ ωt ∧ e
ϕ + ρt

is a G2- or G∗
2-structure on N7 × {t}. limt→0(ωt, ρt) is an SU(3)- or

SU(1, 2)-structure on the distribution span(eϕ)
⊥ on N7 ×{0}, which we de-

note by (ω0, ρ0). Finally, there exists a unique SU(3)- or SU(1, 2)-structure
on the zero section N6 of M8 such that its pull-back with respect to F is
(ω0, ρ0).
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Proof. The subgroup of Spin(7) which fixes the pair (e7, e8) is SU(3). More-
over, Spin(7) acts transitively on the set of all orthonormal pairs in R8 [4].
If Φ is a Spin(7)-structure, it thus induces an SU(3)-structure (ω, ρ) on
the distribution span(er, eϕ)

⊥. The differential forms ω and ρ coincide with
the forms from Definition 4.3. There exists an open covering (Ui)i∈I of N6

such that the normal bundle of any Ui has two linearly independent sec-
tions. Therefore, Φ induces an SU(3)-structure on each Ui. Its pull-back
with respect to F is (ω0, ρ0). ω0 and ρ0 are globally defined forms and the
SU(3)-structure on N6 is thus defined globally, too. Since Spin0(3, 4) acts
transitively on the set of all orthonormal pairs whose elements have positive
length, we can prove by the same arguments that (ω, ρ) is an SU(1, 2)-
structure if Φ is a Spin0(3, 4)-structure. �

Remark 4.6. The last statement of the above lemma essentially means that
we can consider the G-structure on N6 as an initial condition for (14).

Lemma 4.7. Let g8 be the metric which is associated to Φ. (ω, ρ) induces a
metric on span(er, eϕ)

⊥ which we can extend trivially to a degenerate sym-
metric bilinear form g6 onM8\N6. With this notation, we have the following
two relations.

Φ = 1
2ω ∧ ω + ‖eϕ‖e

ϕ ∧ J∗
ρρ+ er ∧ ρ+ ‖eϕ‖e

r ∧ eϕ ∧ ω ,(18)

g8 = g6 + er ⊗ er + ‖eϕ‖
2eϕ ⊗ eϕ .(19)

Proof. Let Φ be the standard Spin(7)- or Spin0(3, 4)-structure on R8. We
have

(20) Φ = 1
2ω ∧ ω + e7 ∧ J∗

ρρ+ e8 ∧ ρ+ e8 ∧ e7 ∧ ω .

As in the proof of Lemma 4.5 we can identify e7 with ‖eϕ‖e
ϕ and e8 with er

and obtain our formula for Φ. The formula for g8 follows from Lemma 2.18
and Lemma 2.26. �

Definition 4.8. From now on, f denotes the function f :M8 → R with

(21) f(p) :=

{
‖eϕ‖ if p ∈M8 \N6

0 if p ∈ N6

In the Riemannian case, there is a simple sufficient condition for the com-
pleteness of the metric.

Lemma 4.9. Let N7 be a 7-dimensional compact manifold and let φt be a
t-dependent G2-structure on N7× (0,∞) which satisfies Hitchin’s flow equa-
tion and degenerates at t = 0 into an SU(3)-structure on a 6-dimensional
manifold. In this situation, the metric which is associated to the Spin(7)-
structure on the 8-dimensional manifold is complete.
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The above lemma can be proven by the same arguments as in [7] and [20],
where similar conditions for the completeness can be found.

5. Proof of the main theorem

Our next step is to make Hitchin’s flow equation for the form (18) explicit.
In order to do this, we have to prescribe the underlying manifold and the
initial data.

Convention 5.1. From now on, we assume that (M8, N6, N7, F, ω0, ρ0, e
ϕ)

is a tuple with the following properties.

(1) M8 is a complex line bundle over a 6-dimensional manifold N6.
(2) N7 is an SO(2)- or equivalently a U(1)-principal bundle over N6 and

F : N7 × [0,∞) →M8 is a map with the same properties as F from
Definition 4.1.

(3) (ω0, ρ0) is an SU(3)- or SU(1, 2)-structure on N6.
(4) eϕ is a U(1)-invariant 1-form on M8 \N6 such that eϕ(eϕ) = 1 and

eϕ(er) = 0.

Since we want to apply the Cauchy-Kovalevskaya Theorem to our situation,
we assume that all of the above data are real analytic.

IfM8 is a complex line bundle over N6 and N6 admits an SU(3)- or SU(1, 2)-
structure, at least one appropriate tuple (N7, F, e

ϕ) does exist. Let J be the
complex structure on the fibers of M8. We define a U(1)-action on M8 by
cos θ · Id + sin θ · J with θ ∈ R. Moreover, we fix a Hermitian background
metric h on M8. The set of all points whose distance from the zero section
with respect to h is 1 has a natural structure as a U(1)-principal bundle. If
we choose N7 as this bundle, we can construct F canonically.

Let D be a principal connection on N7 and α be its connection form with
values in iR. α can be naturally extended to N7×[0,∞). OnM8 there exists
a unique 1-form whose pull-back to N7 × [0,∞) is −iα. This 1-form has the
same properties eϕ from Convention 5.1. The pull-back of (ω0, ρ0) with
respect to the projection from N7 onto N6 defines an SU(3)- or SU(1, 2)-
structure, which we also denote by (ω0, ρ0). The 3-form ω0∧ (−iα)+ ρ0 is a
G2- or G

∗
2-structure on N7 and N7 thus admits at least one such structure.

Conversely, let us assume that we have found a tuple with the properties
from Convention 5.1. There exists a unique Hermitian metric h on M8

such that h(er, er) = 1. Moreover, the annihilator of eϕ defines a principal
connection on N7.

We can obtain any two Hermitian metrics onM8 from each other by rescaling
the fibers by a diffeomorphism. F is therefore determined by the bundle
structure of M8 up to a fiber-preserving diffeomorphism of M8 \N6.
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Our next step is to deduce some helpful relations. We identify M8 locally
with U ×R2 such that U is an open subset of N6 and U(1) acts as SO(2) on
the second factor and trivially on the first one. Let (xi)1≤i≤6 be coordinates
on U . With this notation, we have

(22) [er, eϕ] = [er,
∂
∂xi ] = [eϕ,

∂
∂xi ] = 0 .

We denote the exterior derivative on M8 by d8 and the exterior derivative
on N7 simply by d. With help of the above formulas, we see that

(23) d8e
r = 0 and d8e

ϕ(er, .) = d8e
ϕ(eϕ, .) = 0 .

However, we do not necessarily have deϕ = 0. Let φ be a G2- or G∗
2-

structure on N7 such that the length f of eϕ with respect to the metric
which is associated to φ is positive. φ can be written as f ω ∧ eϕ + ρ where
(ω, ρ) is an SU(3)- or SU(1, 2)-structure on the distribution Ann(eϕ). φ is
cocalibrated if and only if

(24)

d ∗ φ = d(12ω ∧ ω + f eϕ ∧ J∗
ρρ)

= (dω) ∧ ω + df ∧ eϕ ∧ J∗
ρρ+ f deϕ ∧ J∗

ρρ− f eϕ ∧ dJ∗
ρρ

= 0

The equation

(25) LXα = Xy(dα) + d(Xyα)

for any differential form α yields

(26)
eϕy(dρ) = Leϕρ
eϕy(dω) = Leϕω ,

We introduce the following projection map.

(27)
π :

∧∗ T ∗N7 → {α ∈
∧∗ T ∗N7|eϕyα = 0}

π(α) := α− eϕ ∧ (eϕyα)

After separating the terms which contain an eϕ and the other ones we see
that d ∗ φ = 0 can be rewritten as

(28)
π(dω) ∧ ω + f deϕ ∧ J∗

ρρ = 0
(Leϕω) ∧ ω − π(df) ∧ J∗

ρρ− f π(dJ∗
ρρ) = 0
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By similar arguments we see that

(29)
dφ = d(f ω ∧ eϕ + ρ)

= df ∧ ω ∧ eϕ + f dω ∧ eϕ + f ω ∧ deϕ + dρ

Hitchin’s flow equation can be written as ∂
∂t
∗φ = dφ if we omit the subscript

”7” of d and ∗. In our situation, it is equivalent to

(30)

(
∂
∂t
ω
)
∧ ω = π(dρ) + f ω ∧ deϕ

∂
∂t

(
f J∗

ρρ
)

= Leϕρ− π(df) ∧ ω − f π(dω)

The above system has a unique solution for any choice of the initial data.

Theorem 5.2. Let (M8, N6, N7, F, ω0, ρ0, e
ϕ) be as in Convention 5.1. More-

over, let N6 be compact, dω0 ∧ω0 = 0, and Leϕρ0 = c ·J∗
ρ0
ρ0 for a c > 0. As

usual, we identify M8 with N7 × [0,∞) and assume that f(p, 0) = 0 for all
p ∈ N7. In this situation, the system (30) has a unique short-time solution
(ωt, ρt, f(., t))t∈[0,ǫ) such that for all t ∈ (0, ǫ)

(1) φt := f(., t) ωt ∧ eϕ + ρt is a G2- or G∗
2-structure, depending on

whether (ω0, ρ0) is an SU(3)- or SU(1, 2)-structure,
(2) f(p, t) > 0 for all p ∈ N7, and
(3) φt is cocalibrated.

In particular, dt ∧ φ+ ∗φ is a Spin(7)- or Spin0(3, 4)-structure.

Remark 5.3. (1) Near the zero section N6 the length of the U(1)-orbits
has to converge to 0. Since we want to solve the system (30) on
a tubular neighborhood of N6, we have to include the condition
f(p, 0) = 0 in our theorem.

(2) Leϕρ0 = c · J∗
ρ0
ρ0 should be understood as an equation on N7 × {0}

rather than N6, since the vector field eϕ is not defined on N6. Our
condition should therefore be read as ”There exists an SU(3)- or
SU(1, 2)-structure on N6 such that its pull-back to N7×{0} satisfies
Leϕρ0 = c · J∗

ρ0
ρ0.”

(3) We choose a sufficiently small open subset U of N6 and identify
N7 locally with U × S1. Let ρ̃0 be the restriction of ρ0 to the set
{(x, y) ∈ U ×S1|x ∈ U, y = (1, 0)}. In this situation, ρ0 at the point
(x, cos θ, sin θ) is given by cos (cθ) · ρ̃0 + sin (cθ) · J∗

ρ̃0
ρ̃0. The reason

for this is that the equation Leϕρ0 = c ·J∗
ρ0
ρ0 fixes ρ0 along any fiber

of N7. ρ0 can thus be considered as a special case of the construction
from Lemma 2.13. Moreover, we see that we necessarily have c ∈ N.

Proof. Let (f, ω, ρ) be a tuple of a function, a 2-form, and a 3-form which
solves (30). Moreover, we assume that the initial conditions of the theorem
are satisfied. Since (ω0, ρ0) is an SU(3)- or SU(1, 2)-structure, ω0 and ρ0
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are both stable. Being stable is an open condition and ω and ρ are therefore
stable forms on Ann(eϕ) if t is sufficiently small. Since N6 is compact, the
bound on t can be chosen independently from the point in N6. The initial
conditions Leϕρ0 = c · J∗

ρ0
ρ0 and f(p, 0) = 0 force ∂

∂t
f(p, 0) to be positive.

We assume that t is so small that ω and ρ are stable and f is positive. The
3-form f(., t)eϕ∧ω0+ρ0 is a stable form and therefore a G2- or G

∗
2-structure.

f(., t)eϕ∧ωt+ρt is a also G2- or G
∗
2-structure and (ωt, ρt) is either an SU(3)-

or SU(1, 2)-structure.

Our next step is to prove that (30) has a unique short-time solution. Let X
be a t-dependent vector field on N7 which is of unit length with respect to
the associated metric. The norm of Xy ∗ φ is always 4. This can be seen
by choosing a basis with the properties from Definition 2.16. If we fix X as
1
f
eϕ, we see that J∗

ρρ has to be of constant length. ∂f
∂t

is thus 4 times the

norm of the right hand side of the second equation of (30). By inserting

that term into ∂f
∂t
J∗
ρρ + f ∂

∂t
J∗
ρρ, we find an equation for ∂

∂t
J∗
ρρ. In the

special case f = 0, the second equation of (30) has only a component in the

J∗
ρρ-direction and we thus have ∂f

∂t
= c and ∂

∂t
J∗
ρρ = 0.

There exists a certain GL(6)-equivariant map ι :
∧4 R6∗ →

∧2R6∗ which
maps stable forms into stable forms [7]. In particular, we have ι(12ω∧ω) = ω.

We apply ι to the first equation of (30) and obtain an equation for ∂
∂t
ω.

Since the constructions which we have made are real analytic, the short-time
existence and uniqueness follows from the Cauchy-Kovalevskaya Theorem.

The initial conditions f(., 0) = 0 and dω0 ∧ ω0 = 0 ensure that d ∗ φ0 = 0.
From the calculation

(31) ∂
∂t
d ∗ φ = d ∂

∂t
∗ φ = d2φ = 0

it follows that φt is cocalibrated for all values of t. �

Remark 5.4. Let (φt)t∈[0,ǫ) be a solution of (30) with the initial data (M8, N6,
N7, F, ω0, ρ0, e

′ϕ), where e′ϕ is another 1-form with the same properties as
eϕ. It is possible to split φt with respect to eϕ into ρt and f(., t) ωt ∧
eϕ. Since (ωt, ρt, f(., t))[0,ǫ) describes a solution of (30) with the initial
data (M8, N6, N7, F, ω0, ρ0, e

ϕ), we obtain no new Spin(7)- or Spin0(3, 4)-
structures for different choices of eϕ.

Not any smooth solution of (30) corresponds to a smooth 4-form on M8.
The reason for this is that the vector fields er and eϕ become singular along
the zero section. In the following, we are going to answer the question under
which conditions a Spin(7)- or Spin0(3, 4)-structure onM8\N6 has a smooth
extension to N6.

Let ψ : R≥0×R → R2 be defined by ψ(r, θ) := (r cos θ, r sin θ). Furthermore,
let h : R≥0 × R → R be an analytic function. There exists an analytic
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function h̃ : R2 → R with h̃ ◦ ψ = h if and only if the analytic extension of

h is invariant under (r, θ) 7→ (−r, θ + π). This can be seen by expanding h̃
into a power series in (x, y) and replacing x by r cos θ and y by r sin θ.

Let Ψ be the flow of the vector field eϕ at the time π. Analogously to
above, f , ω, and ρ correspond to smooth objects on M8 if their analytic
continuation is invariant under (p, t) 7→ (Ψ(p),−t).

We describe these smoothness conditions at t = 0 in detail. The function f
has to satisfy

(32) f(p, t) = f(Ψ(p),−t) .

Since we assume that f vanishes on N7×{0}, this is obviously true for t = 0.
The conditions on ω and ρ are equivalent to

(33) Ψ∗ω0 = ω0 Ψ∗ρ0 = ρ0 ,

where we consider ω0 and ρ0 as objects on N7 × {0}. Let t > 0 and let

(34) Ñ t
7 := {(v, x, y)|v ∈ R6, x2 + y2 = t2} .

The flat Spin(7)- or Spin0(3, 4)-structure on R8 can be considered as a de-

generation of a family of G2- or G
∗
2-structures on Ñ t

7 to R6. In this situa-
tion, eϕ is the vector field which generates the action of SO(2) on the last
two coordinates of R8. By a short calculation, we see that the SU(3)- or

SU(1, 2)-structure (ω̃, ρ̃) on the 6-dimensional distribution on Ñ t
7 satisfies

(35) Leϕ ρ̃ = J∗
ρ̃ ρ̃ and Leϕω̃ = 0 .

Let Φ be a parallel Spin(7)- or Spin0(3, 4)-structure. Around any point p, we
can choose local coordinates such that the coefficients of Φ are the same as of
the flat Spin(7)- or Spin0(3, 4)-structure on R8 and that the first derivatives
of all coefficients vanish at p. Therefore, it follows that (ω0, ρ0) has to satisfy

(36) Leϕρ0 = J∗
ρ0
ρ0 and Leϕω0 = 0 .

If we replace the action of A ∈ SO(2) by the action of A−1, we obtain
Leϕρ0 = −J∗

ρ0
ρ0. In both cases, the conditions (33) are satisfied.

Let (ωt, ρt, f(., t))t∈(−ǫ,ǫ) be a solution of (30) such that we have f(., 0) = 0
and (36). In that situation, (Ψ∗ω−t,Ψ

∗ρ−t, f(Ψ(.),−t))t∈(−ǫ,ǫ) is a solution
of (30) with the same initial values. Since (30) has a unique solution for any
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choice of the initial data, both solutions coincide and Φ is indeed invariant
under (p, t) 7→ (Ψ(p),−t).

Up to now, we have proven that ω, ρ, and f have a smooth extension to
N6. The 4-form which is determined by these objects has to coincide up to
first order with the flat Spin(7)- or Spin0(3, 4)-structure. We therefore get
additional conditions on the three objects which we have already deduced
for ω and ρ. The missing condition on f can be seen as follows. The length
of a U(1)-orbit has to be 2πt+O(t2) for small t. This can only be satisfied
if ∂

∂t
|t=0f(p, t) = ±1 or equivalently if Leϕρ0 = ±J∗

ρ0
ρ0, which we already

assume.

We are now ready to state our main theorem.

Theorem 5.5. Let N6 be a compact 6-dimensional manifold and (ω0, ρ0)
be an SU(3)- or SU(1, 2)-structure on N6 which satisfies dω0 ∧ ω0 = 0.
Furthermore, let M8 be a complex line bundle over N6 with a fixed orien-
tation. We assume that all data are real analytic and identify N6 with the
zero section of M8.

If (ω0, ρ0) is an SU(3)-structure, there exists a unique parallel Spin(7)-
structure Φ on a sufficiently small tubular neighborhood U of N6 such that
Φ ∧ Φ is a positive volume form and the SU(3)-structure on N6 which is
induced by Φ is (ω0, ρ0). If (ω0, ρ0) is an SU(1, 2)-structure, there exists a
unique parallel Spin0(3, 4)-structure on U with the same properties as Φ.

Proof. Let p ∈ N6 be arbitrary. We first consider the case where (eϕ, er)
together with a positively oriented basis of TpN6 again is positively oriented.
As we have discussed at the beginning of this section, it is possible to con-
struct a degeneration F and a 1-form eϕ with the properties of Convention
5.1. Let (ω0, ρ0) be an arbitrary SU(3)- or SU(1, 2)-structure on N6 with
dω0∧ω0 = 0. The pull-back of (ω0, ρ0) to N7×{0} is an SU(3)- or SU(1, 2)-
structure on Ann(eϕ) which satisfies (36) and therefore also ∂

∂t
|t=0f(p, t) = 1.

The solution of the system (30) with the above initial data thus describes
a Spin(7)- or Spin0(3, 4)-structure which is smooth along N6. As we have
shown in Remark 5.4, a different choice of eϕ would not yield a different
solution of (30). If we had chosen another map F ′ : N7 × [0,∞) → M8

with the same properties as F , we would have F ′ = ψ ◦ F where ψ is a
diffeomorphism ofM8 which rescales the fibers. The corresponding solutions
of (30) would therefore be related by the pull-back of ψ. With help of
Theorem 5.2 we finally conclude that Φ exists and that it is unique.

In the above situation, Φ ∧ Φ is a positive volume form. If the basis from
the beginning of the proof is not positively oriented, we simply replace eϕ
by −eϕ and obtain a Φ which satisfies the conditions from the theorem and
Leϕρ0 = −J∗

ρ0
ρ0. �
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Remark 5.6. (1) If N6 is non-compact, a similar theorem can be proven.
In that situation, U is a neighborhood on N6 which is not necessarily
tubular with respect to g8.

(2) The metric on Ann(eϕ) which is associated to (ω0, ρ0) is invari-
ant under the U(1)-action on N7 × {0}. However, the metric on
M8 which is associated to Φ does not necessarily have an isometry
group of positive dimension. For example, the normal bundle of
any 6-dimensional submanifold of a compact Riemannian manifold
(M,g) with holonomy Spin(7) satisfies the conditions of Theorem
5.5. However, the isometry group of (M,g) is discrete. Since (M,g)
is Ricci-flat, any Killing vector field of (M,g) would be parallel and
(M,g) would thus be covered by a Riemannian product. In that
situation, the holonomy would not be all of Spin(7).

(3) The condition dω0 ∧ ω0 = 0 on an SU(3)- or SU(1, 2)-structure
is a weak one. In particular, it is satisfied if (ω0, ρ0) is half-flat.
Furthermore, any 6-dimensional symplectic manifold (N6, ω) which
admits a stable 3-form with ω ∧ ρ = 0 and J∗

ρρ ∧ ρ = 2
3ω ∧ ω ∧ ω is

of that type.
(4) Bielawski [3] has proven a theorem, which is similar to ours, on Ricci-

flat Kähler metrics on complex line bundles. In [3], it is assumed
that the metric on the base space is Kähler. In that situation, the
complex line bundle has to be the canonical bundle in order to admit
a Ricci-flat Kähler metric. Furthermore, the action of U(1) becomes
isometric and Hamiltonian.

6. Examples

In the literature [1], [2], [8], [9], [10], [15], [17], [20], [21], [22], several exam-
ples of cohomogeneity-one metrics with holonomy Spin(7), SU(4), or Sp(2)
on complex line bundles are known. All of these metrics fit into the context
of Theorem 5.5. In order to show how the theorem works, we take a look at
one class of these metrics. Let

(37) U(1)1,1 :=








eit 0 0
0 eit 0
0 0 e−2it




∣∣∣∣∣∣
with t ∈ R



 .

We assume that M8 is a cohomogeneity-one manifold whose principal orbit
is the exceptional Aloff-Wallach space N1,1 := SU(3)/U(1)1,1. N1,1 is a
circle bundle over SU(3)/T 2, where T 2 consists of all diagonal matrices in
SU(3). M8 shall have exactly one singular orbit of type SU(3)/T 2. The
orbit structure fixes the topology of M8, which has to be a complex line
bundle over SU(3)/T 2. We choose the basis
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(38)

e1 := E2
1 − E1

2 e2 := iE2
1 + iE1

2 e3 := E3
1 − E1

3

e4 := iE3
1 + iE1

3 e5 := E3
2 − E2

3 e6 := iE3
2 + iE2

3

e7 :=
1
2 iE

1
1 −

1
2 iE

2
2 e8 := iE1

1 + iE2
2 − 2iE3

3

of su(3), where Ej
i is the 3 × 3-matrix with Ej

i (ek) = δjkδ
l
iel and denote its

dual basis by (ei)1≤i≤8. The tangent space of N1,1 can be identified with
m := span(e1, . . . , e7). The extension of e7 to a left-invariant vector field on
N1,1 is the Killing vector field of the right-action of

(39)








eit 0 0
0 e−it 0
0 0 1




∣∣∣∣∣∣
with t ∈ R



 .

If we choose N7 as N1,1, N6 as SU(3)/T 2, and eϕ as e7, M8 satisfies all
topological conditions from Definition 4.1.

We search for SU(3)-invariant SU(3)-structures on the distribution span(e1,
. . . , e6) which are possible initial values for the system (30). If (ω0, ρ0) is
such an initial value, we have Le7ω0 = 0 and Le7ρ0 has to be proportional to
J∗
ρ0
ρ0. The only differential forms on N1,1 which satisfy all these conditions

are

(40)

ω0 = a2e12 + b2e34 − c2e56

ρ0 = abc cos θ (−e135 − e146 − e236 + e245)

+ abc sin θ (−e136 + e145 + e235 + e246) ,

where a, b, c ∈ R\{0} and θ ∈ R are arbitrary. The condition dω0∧ω0 = 0 is
always satisfied. Unfortunately, we have Le7ρ0 = −2J∗

ρ0
ρ0 and the solutions

of (30) therefore cannot describe a Spin(7)-structure which is smooth along
the singular orbit. However, if we square the complex line bundle, we obtain
Le7ρ0 = −J∗

ρ0
ρ0 and the smoothness conditions are satisfied. Equivalently,

we could have replaced the principal orbit by a suitable quotient of type
N1,1/Z2, since this construction yields the same complex line bundle. In
that situation, Theorem 5.5 predicts for any choice of a, b, c, and θ the
existence of a parallel Spin(7)-structure near the singular orbit.

It is possible to assume that θ = 0. The reason for this is that the one-
dimensional subgroup of SU(3) which is generated by e7 leaves ω0 invariant
and acts on ρ0 by a change of θ. The parallel Spin(7)-structures for different
values of θ can therefore be obtained from each other by the pull-back of a
diffeomorphism.
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The above Spin(7)-structures are of cohomogeneity one and are studied in
more detail in [1], [2], [17], [20], [22]. Since there are no further suitable
SU(3)-structures on the distribution span(e1, . . . , e6) ⊆ TN1,1, the following
theorem follows immediately from Theorem 5.5.

Theorem 6.1. Let M8 be the cohomogeneity-one manifold which we have
defined at the beginning of the section. The only SU(3)-invariant parallel
Spin(7)-structures onM8 are those which are already known in the literature.

There are several possibilities to generalize the above examples. M8 is not
the only complex line bundle over SU(3)/T 2. Theorem 5.5 predicts the exis-
tence of further parallel Spin(7)-structures on all of those bundles. Moreover,
it is possible to construct by our theorem parallel Spin0(3, 4)-structures on
the same spaces. However, a detailed investigation of those structures or a
study of their global behaviour is beyond the scope of this paper.
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