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1. Introducticn and summary of results.

Since the invention of lattice gauge theories [4,2] many
attempts have been made %to determine their phase structure (see
for example refs.L[? %51 ). The question, how to characterize
the different phases, is more difficult to answer for lattice gauge

models than for spin models and was investigated by several people.

Recent work of Mack and Petkova LéJ and of 't Hooft L£%]
suggests to classify the phases of pure lattice gauge theories
by the dependence of the free energy of a system in a box or vortex
container on certain boundary conditions. This is reviewed in sect.3
of this paper, including fundamental scalar fields (Higgs fields)
coupled to the gauge field in a geauge invariant way. We consider
gange fields on a lattice in 3 or 4 dimensions. The gauge group G
is a compact semi-simple group with nontrivial center. If a Higgs
" field is included, it is assumed fo transform trivislly under a
nontrivial finite subgroup " of the center of G. The theory then p
possesses [ -vortices. The sysitem is considered on a finite lattice A
with some boundary conditions. /A may either be a vortex container
of ref.[é] with fixed boundary conditions on ®A | or a torus as
in ref.[3] , where the boundary conditions for the gaurse field
specify transition functions of 2 fibre burndle. Then a change of
the boundary conditions is defined by certain singular gauge trans-
formaticns with elements of " . It has the effect to change the
vortex content (the vorticity) of the system by a definite amount.
Now one asks how the free enersy of the system chanpges under the
singular gauge transformations. This change gives & quantitative
measure for the free energy of a vortex, which is used to characterize
different phases. According to 't Hooft's definition the system is
in the Higgs phase if the free energy of a vortex per unit length

resp. area does not tend to zZero in the 1imit of infinite width.

In sect.4 we investigate models with Higgs fields. We show
that the Higgs phase exists at low temperatures by using a Peierls
argument. On the other hand it can be shown [ 8] that the high
temperature phase is not a Higgs phase. These results support the

idea that above is a useful definition of a Higgs phase.
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The reader should be warned not to confuse the Higgs phase
in 't Hooft's sense with the Higgs mechanism. What is popularly
called Higgs mechanism does not imply that the system is in a Higgs
phase. In particular, one speaks of a Higgs mechanism even for
medels where the stability group I of the scalar fields is trivial-
such as for instance a SU(2) gauge theory Qith a Higgs doublet.
Cn the other hand, if [ is trivial the model with the scalars
has no Higgs phase in 't Hooft's sense by definition. In Higgs
models of this type the high temperature region is linked con-
tinuocusly to a region of coupling parameters, where the Higegs
mechanism takes place according to conventional wisdom. See the
discussion in ref.[3]. Nevertheless in such a model there can be
different phases. Their existence has been established for the
Za-Higgs model {10] . The second phase is obtained from the Higgs
rhase of the pure ZZ gauge theory without the scalars by convergent

perturbation theory in the effect of the scalar field.

In sect.5 we discuss the relationship between the Higgs phase
of W-dimensional lattice gauge theory and spontaneous breakdown of °
a global T -symmetry in V-1 -dimensional Heisenberg models with

" fluctuating couplings.
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2. 2-dimensional Ising model and 3-dimensional Z, lattice gauge

theories as introductory examples.

a) The 2-dimensional Ising model.

Consider a 2-dimensional square lattice A with spin variables &= *1

at the lattice poinis xeA . The Hamiltonizn is

- - & () §{y) )
H ) g;; T ¢ (2.1)

{xr» : pair of nearest neighbour lattice points

and describes ferromagnetic coupling. In the statisticsl mechanics of

this model the probability measure on the space of configurations is

given by the Boltzmann factor A h_{;;-g
Zz ¢ (2.2)
~pH
where Z =Z e ; F = ;ﬂ-{: the inverse temperature.

The correlation function is

_PH
{2t dmy = % S e dey) e (2.3)
It is well known that the Ising model has a critical point [5‘ - At small

-1
temperatures F: we have an ordered phase with spontaneous magnetization

QX«M M2y = wm s O (2.4)

bxwyl = oo

whereas at high temperatures there is a disordered phase without

spontareous magnetization.

Peierls[41] was the first to give an arsument for long range order
at low temperatures and we will use his idea of contours in the
following discussion. A Peierls contour is defined to be a set of
links b = {xy)> such that 4(L):= (x2é(y)= -4 . On the duval lattice

a Peierls contour is closed ( Fig.1 )}, because of

Tr e(k) = 4 , P a plaguette of four links (2.5)

b e?dP
Peierls contours can be chosen nonintersecting.

For two distant peoints x and y, linked by a path € » wWe have

. N
() dy) = T &(b) = (-1) (2.6)
bet
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where N i1s the number of Peierls contours intersecting € an odd number

of times, and therefore

N
{8 8y = EN:M) Pv . (2.7)

Py is the probability that N centours wind around x or ¥ ( not around
vothk ). Obviously contours which do not wind around x or y are of no
interest (Fig.1). Formula (2.7) expresses the correlation function
through the probability distribution of contours. If there were no
contours,<§00&0b'would be 1 identically. A suppression of long
contours would lead to the result that the correlation function

tends to a non-zero constant for large |x-y! . On the other hand,

if contours of arbitrary length are abundant, the correlation fuunction

goes to zero exponentially.

Feierls showed that long contours are suppressed at low temperatures
and that there is spontaneous magnetization. A quantitative measure of
this suppression is the free energy of a contour per unit length. It
is defined in the following way. Consider a finite lattice of length {
and width t : X=(X%Xi), Osx.¢8 , 0£x,<t ., Impose periodic

boundary conditions in the x,-direction, whereas in the x_-direction

1 2

the buundary conditions are

6 (x2,0) = 8(xat) ¥ ,  y= 1 : (2.8)

. 2 o .
The system now lives on a torus T and the boundary conditiens fix
‘s . . 2 . . ..
transition functions for a fiber bundle over T, which is nontrivial
if g=—4 . In this case every clecsed curve which winds around the

torus in the x_ -direction contains an odd number of links with é(b)= -1

2
From this follows the existence of an odd number of Peierls contcurs

winding around the torus in the x_ -direction. In the case {=+1 the

1
number has to be even. The corresponding partition functions are

dencted by Z¢ and the free enerpgy F, 1is given by
H i

BFy = - L2, . (2.9)

Then the free energy of a Peierls contour per unit length is defined by

Ty = e —%—P(F_-FJ: - Qi _'LQM_ZE_.:- (2.10)
+

(aer o e L
and we consider ¥,= QAW\ Q(t) p (2.11)
+ 30

so that the effects of the finite lattice width are ignored.
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If ¥:>O,the probability of finding a contour of length 1 decreases
exponentially with 1. This happens at low temperatures, as can be

shown by the Peierls argument.

The purpose of this section is to illustrate a concept which
will be used for the study of lattice gauge fields. The important
points are

i) objects which disorder the system,
ii) the study of these objects by considering nontrivial boundary
conditions for some containers,
iii) +the characterization of the phases by the change of the free

energy for different boundary conditions.

b) The 22 lattice gauge theory in 3 dimensions.

This is a gauge theory analogue of the Ising model [42]. The gaﬁge
field variables &(b} = *1 € Z, =it on the links b of a 3-dimensional

cubic lattice. For each plaguette P define

6(P)= J:P é (k) ‘ (2.12)
The action is | = (SZ é(P) . (2.13)
P
It appears in the measure of path integrals
L L
o= Lo " Taew | z=[ctTdc) (2.14)
b b
d¢ the discrete Haar measure on Z2 .

A pauge invariant correlation function is the Wilson loop integral [12,4]

Wed = L T e > = Lecely (2.15)

for closed paths ¥ =35 on the lattice. We have the '"second Maxwell
eguation" for cubes ¢

T 2¢¢) = 1 (2.16)

Pede
and g(€)= T 8(F) (2.17)
Pe 'S

Now a vortex is defined to be a set of plaguettes P with € é):-_1
Because of (2.16) they form closed paths on the dual lattice (Fig.2)

and we consider separate paths as different vortices.
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If there are N vortices winding around € and thereby soing through - ,

we find

4)N
é(e) =(- (2.18)

N
and <é(~c)> = Z("‘) Pu (2.19)

where P is the probability that N vortices wind around € . If vortices
were totally absent, < 6(€)> would be 71 identically. We see that
vortices are the analogues of Peierls contours. At high temperatures FA
long vortices are abundant and 1J (€} falls off exponentially with

the area of = , which means confinement of static quarks. Cn the
othker hand they are suppressed at low temperatures and W(€) falls off
only exponentially with the perimeter of = . The importance of
vortices for the confinement problem has been emphasized by 't Hooft,
Glimm and Jaffe, Yoneya, Forster, Mack and Petkova L43.4W.45,4£[4?, 6]

and others. Yoneya pointed out that in the Zn gange theory vortices

are the relevant objects for confinement.

The supprescsion of long vortices at low temperatures can be
described quantitatively by their {ree energy per unit length.
Consider a firite lattice /A as a vortex container (Fip.3). Fix
boundary conditions é(b)on 3A and denote the partition L .

Now change the boundarj conditions by 2 singular csauge transformation

() , b 4T
d b) —> b edA
( —46) |, beT ' (2.20)
and call the partition function Zh‘_ . 1t is easy to see that this

change of the boundary conditicns changes the numrber of vortices which
wind orce through the container by one (mod 2}. The free enerrsy of a
vortex 1s defined by
Pty = = i A En
¢ o2 L

{(2.21)

£= Qinn .@(t)
tyoo
where £ is the length and t the width of the centainer. By a Peilerls

argument one can show that .¥>() at low temperatures 1e1.

As in the case of the Ising model cne might also use cyciic and
anticyclic boundary conditions, if one wants to preserve translation
invariance. Then cone has a trivial respectively nontrivial 22 fiber

bundle over the torus TE. We will come back to this point later.
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3. Definjtion of the Higgs phase.

In this section we consider lattice gauge theories with or without
charged Higgs filelds. Let the gauge group G be a compact

group with nontrivial center Z7(G). The gauge field W(b)leé& sits on
the links b of a hypercubical lattice A in y = % or 4 dimensions.

For placguettes P one defines

UAP)= T wms) ( path-ordered product ). (3.1)
bedP
The action of the gaupge field is

Lo= BeZ (ReX(UG)-§) €0, Boro, 5:2(1), G2

where X is the character of a faithful representation of G. The
Higgs field, if it is included, lives on the lattice points x and
takes wvalues <{>(x) in a lirear space ;;,; . Gavge transformations by

functions V() ¢ & are defined by

W (xy) —> V) Wxp) V() :
(3.2
$x) — D(Vw) ¢

where D is a representation of G on § with kernel [T . We assume

!

that ' is a discrete subgroun of G and therefore also of 7(G).

D may be looked at as a faithful representstion of % - Physically
this means that the Higps field does not bear the fundamental charge
in the theory if ' is nontrivial. In the case of a pure gauge field
theory we set ['= Z(G). Let ( , ) ©be an inner product on § ,

unitary with respect to D, and define the rauge invariant link variables

W (xy)= (4, D(Uxn) ) (3.4)
The Higgs potential is 5 gauge invariant continuvous function

U ¢ >R (3.5)

with zero as its minimum value. The usual action of the Figgs field is

Ly= By L {1 Re Wler) - 14cal™ - 146} =B, 7 U ($ca) € O

Sar> " (3.6)

Be, B. 30

The total action L= Lé + L4, appears in the measure of path intesgrals

dos Letdn oz {otdp PoTaUe) reep. TAUw T @7
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dU is the Haar measure on G and dé the usual invariant Lebesgue

measure on @ .

From the work of 't Hooft and others {13 - 1¢] we know that also
in the case of a continuous gauge group G there are topolegical
nontrivial objects, called vortices, which are important for the
phase structure of the theory. They are (V-2)-dimensional objects
and are characterized by elements of the finite subrroup M . Mack
and Petkova [43] showed that thin vortices produce confinement of
static guarks in a high temperature SU(2) model and a confining

Coulomb potential in the 3-dimensional U(71) model at all temperatures[é].

In peneral vortices cannot be localized as in the case of Zn Fauge
theories. Due to the continuity of G they spread ocut and are to be
defined through the boundary values of the gauge field on some vortex
containers. We shall consider two approaches tc study the free ensrgy
of vortices. First we follow ref. [ &1 and take for the lattice /A
a vortex container as defined there. They are constructed in such a
way that the homotopy group Tfa (/\c) of their compiement /\C is that
of a circle.See figs.3,4 for the case VW= 3. If one takes a loop in NS
with winding number one and shrinks it without touching the interior

of A , one finally gets a clesed curve € in 3A .

Fix boundary conditions W = {uwy, b={$wY on dA and denote
the partition function Z,\(u.éb) . Now a change of vorticity is
defined to be a singular faure transformation U -» u, of the

houndary conditions by an element Tl

Wb , ba&T s
A
Ul —> UColY , b oeT ¢ € (3.8)

T is a set of links in dA as defined in ref.[¢] (see fig.3).The
Higgs field remains unaffected. Call the partition function Zﬁ(ux'q‘:)A

If you take a closed curve € in dA as described abcocve and compute

Wie)= T Ulb) (path~ordered product) , (3.9)
bel
the transformation (3.8) just changes it to W€} . Here it is

crucial that Y is in the center of G. This explains the notion

of a change of vorticity. The Higgs field, *ransfeorming trivially
under [', is not able to compensate the effect of this change.

Now the free energy of a vortex per unit length (¥ = 3) respectively

unit area (¥ = 4) is naturally defined as
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- ._1_. ZA(uJ'd’) . |
\gh“(ul‘b) = ¢ Qﬂ\m , (3 10)

where % is the length resp. area of the vortex container.

In 't Hooft's [3] approach A is taken to be a torus Ty in
order to have translation invariance. With periodic boundary conditions
in all directions one gets a partition function Z“ - Then singular
gauge transformations characterized by elements y of ' are performed,
which preserve the periodicity for gauge invariant variables. These
transformations introduce magnetic vortex flux in A in different
~directions. Choose a specific direction and call the partition
function EEA@ for this case. Define the free energy of a vortex
per unit length resp. area

, .4 Za,
% (d:) = %v;; Q-M = e Lo T Qo S| (3.11)

Law ZEn
where di are the widths of the torus and £ the length resp. area as

in (3.10).

As in the examples of sect.2 the phases of the model can now be.
characterized by these quantities. In ref.[ 4] the following criterion
for confinement is proven. Let gm; be the maximum of the #,qx(zk)
for all boundary conditions W . If ‘¥I(L)= Qo £m goes to
‘ Lo i
zero exponentially with di’ static quarks are confined by an approximately

linearly rising potential.

On the other hand the Higgs phase is defined according to 't Hooft [#]

Physically this means that long vortices are suppressed. Their thermo-

by

dynamic probability decreases exponentially with their extension.

The two approaches are related by the fact that the partition
functions on the torus can be obtained by integrating the partition
functions Z,(W.#) of the vortex container over a certain class of
boundary conditions W in ¥ = 3 dimensions. (In y = 4 dimensions
the topologies are different.) If the confinement condition of Mack

and Petkova is fulfilled, the'system is surely not in the Higgs phase.

It should be noted that the socalled Higgs mechanism in the old
terminclogy does not imply that one is in the Higes phase in the above
sense. Consider the case where the Higgs field carries the fundamental
charge and I' is trivial. There cannot be a Higgs phase in the sense of
(3.12). But nevertheless one speaks of a Higgs mechaniem, which is really

a kind of screening mechanism. See the discussion in ref. [9].
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L, The Peierls argument for the Higgs model.

In this section we shall give some results which support the idea

that the above definition of the FHiggs phase makes physical sense.

The pure Zn lattice gauge theory can be shown to be in the Higgs

phase at low temperatures by using a Peierls argument, as we mentioned
in sect.2 (18] . This is in agreement with the conventional wisdom

about the phase diagram of this theory.

In the following we shall prove rigorcusly the existence of the
Higgs phase in the low temperature Higgs model by a Peierls argument.
For the sake of intuition we shall deal first with the 3-dimensional
case and turn to 4 dimensions later. The general definition of the
mcdel has been given in sect.3. We specify the Higgs field further
by the following reguirement. Consider the set of non-generic vectors

in § , namely

I,={ecl [ h+r} s

where H4, = {% e 6 1 Dig)d = 4’} is the stability group of & .
We demand that E; forms a subsetl of measure zerc. Generic vectors

have [ as their stability group. The orbits

B(&) = {lD(g.)cb | 9e¢6} (4.2)

consist either solely cf generic or solely of non-generic vectors.
The Figgs potential 1) is reguired to be such that
o U = C > 0 (4.3)
%,
sp that 1f does not assume its minimum for non-generic vectors.
For simplicity we demand further that U assumes its minimum value
on one orbit enly, and we rescale ¢ tc be of length 71 there.

For |#l=e 7\ should grow like [4|* .
Example 1 : Abelian Higgs model

4 € N

G = u(1) , §= €, D e g is the Higgs charge |

2

-3
1
s
m,—.l
YL
7
2y
‘O
hY
Y
i
-
—
iR

1

$, = {0}

W= b0 W 400, U= (147 )
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Example 2 : Non-Abelian Higgs model

G =8U(2) , z(6) = {+1, -1} =1z,

F-RoR |, $-(4 &), &

This is a pair of Higgs fields which transform according to

the 3-dimensional adjoint representation D(q) of SU(2).
p =" @™ U
§o = { (4, 4.) | 4, and ¢, are linearly dependent }

the inner product on §

(dd')= (&, 4)p + (4.4

VO = (o= 1) + (I -1) + (o d) g

In the 1imit of an infinite sharp potential, P,-—-vw s, we get the

Higgs model with fixed length of & .

Next we introduce variables which will be useful in the later
discussion. Let ¢ be generic, so that 6/[" acts freely on the
orbit B($). Choose a standard representative ¢, of the orbit.
To each. #f«-B(ﬂ there exists exactly one ﬂel% ' , which fulfills
. . .
D) & = 4:', ’ Ue & a representative of W (4.4)

We use this fact to associate with each é(x} two variables

g (x) e{orki{'s} , \./(x) & G/r- . (4.5)

¢x) denotes the orbit of &4} . Let &,(gw) be a standard representative

vector in this orbit. Then V(x) is chosen such that

D(Vn) da = &, (gwa) for  VQd= VG T (4.6)

If 4G4 is generic , V(x) is defined uniquely by (k4.6). $,(3) can be

chosen continuous almost everywhere. For the volume elements we have

dd(x) = d?(ﬁ) v ( gen) (4.7)

where dy is a certain measure on the orbit space.

Now choose = sheet 6 ¢ 6 of the covering 6 —> G/p

with 4 in its interior. To every Ve e §/,-. we find an unique
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group element V() e & with

V= Ve Vid e 6 _ (4.8)

I

Define R(xy) = V) Wlxy) Vi~ (4.9)

It transforms nontrivially under gauge transformations in [' . We have

AU(b) = dR(v) (4.10)
W) = (4 (3e) |, DIRGA) &, (s¢n) ) . 4
We introduce variables H(b) ¢ 6', (k) e n .They are uniquely
determined by
R(bY = H(k)y(b) , Hkyes | (4.12)

H{b) is pauge invariant, while ELE) transforms nontrivially under [ .

For the measure we write

AR(k) = dH (L) dgcb) . (4.13)

dH is the restriction of the Haar measure dR onto G‘r and
dy = 75 $(3'5)dg (4. 1L)
gf.r‘ .

the discrete measure on " . For gauge invdriant integrable functions

#(,{u(b). #C*\}) one has

S!;olt’; = STJH(H T dyls) 'ﬂ_olv(lg(x‘) £({H(b)g(b) , #o(gw)}) . (4.15)
b ™ 3

Therefore the model is well described by the variables ¢x), H(b) and a(bL
Because ¢(x} and H(b) are gauge invariant and H(blé r we recognize [

as the effective zauge group.

Example 1 : (see atove)
Ve
b(x)= gL e | g 30 ~T < Qe £
. e(_n)
\'{(x)= -2 * r‘ i
. Q(.xl
‘l? 'tr -1 q’
6.’_—.{e_ l —1‘4‘?5—}}, V= e
16w g 1@ty % th
H{x.7) = ( e Wil e )4 y the ¢ root is defined

to be in G°.

The action is easily expressed in the new variables.

L=7 L, (4.16)
P
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with the plaguette action

L, = P[ ﬁp{mz(nmg(é))~s} -%-Ax}:v(gm)

X e3P

+-?;§1 Z: {lRLW(X-Y}*H,(sw\[ - |4’,(g</1)r} (4.17)

{myde b
where H(P)= T W , 3P =T 5 | (4.18)
bedr bedf
W) = (&, (g |, D( HExn) 4, (o)) (b.19)
U(g(")) = U(C‘?o(s(x))) . (4.20)
We introduced an overall temperature P::-{;— by renormalizing nﬁnﬁ;=1_
We shall now investigate the vortices in the Higgs model.
If y)=y #1 on a plaquette P, the variable WU(F) is near -
Because of
Ty =1 (4.21)
Pede
the plaquettes with (il #$ 1 form closed lines on the dual lattice.
These lines may split or Jjoin according to the multiplication law
of T (Fig.D). A vortex is defined to be a set of plaguettes with
K(é)¢=i which is connected on the dual lattice. We define the
vortex flux through a surface = by
§(=) = T 38 _ (4.22)
Pe T
Now the action L of a plaguette P in a vortex will be studied,
where Y(P)= ¥ * 4 . X has the property
Ra X(ﬂ) < § for all 9 + 1 i (4.23)
Suppose H(#) e 6’ , so that H(P)J(H & 6 . 6’ contains an open
neighbourhood & of 4 and we conclude by compactness of G\ &
Re X (WP y#®)-§ € —¢c, <« O (L.2k)
hat 4.2
so tha LP'S_C""FP (4.25)

where c1 is a numerical constant.

. f '
The other possibility is H(e)=TT I-I(b)¢ 6 . There exists an open
b edP
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[ -
neighbourhood G < & of 41 , with the property

W
%‘: & Gf | P 1,2|3;H’ % T %; & 6" ("’*-26)

and we conclude that there is at least one link b, €3 with H{b,) & & .
Let b,=<*y> and consider

P- B {a re (et Do) 4 Ggon) - 4, Coaall - (4ol

- %— {U(gl"’) % U(g(;ﬂ)} P2 PALP (4.27)

The maximum of £ is at H(bo) = 1 and some orbit gwi=¢Gi:g,,

where £_=O - By a continuity argument,one obtains a bound

]<-k<o o Heb,) & 6" (4.28)

For the example 1 (Abelian Higgs model) K is of the form Mfﬂ(ct?\:.,cg ﬁ.‘)

So we have the result
Ly € -B== it (P& 1 , ®>0 . (h29)

2 depends on the F’; .

We proceed with the Peierls argument by specifying the boundary
3

conditions. The lattice A 1is chosen to be a torus T° of extension fxdxt
and cyclic bdundary conditions are required fer all gauge invariant
variables. Consider a closed cross-section of A , for example the
surface =, : x, = const. (Fig.4). In order to have nonvanishing
vortex flux through ‘31 we have to impose anticyclic boundary conditions
on the variables yt) , for instance

\&‘(I.,) cyelic n %y x,

1 ) be&T (4.30)
Flor= Jlbrtd)-8(b), (L) 3cr e

See fig.4 for T. In this case we find —[S(H: é& . The translation
invariance for gauge invariant quantitigsmis not violated by (&.30).
Instead of the variables K(b) it will be advantageous to use the
plaquette variables §{(f) , which are cyclic in- all directions.

They obey the restriction (4.21) , and therefore it is

T FE =1 for = a closed surface of the form ==aG _ (L.31)
Pel
But on T3 we have three homelogy classes of closed surfaces, 3= = o,

which are not boundaries of any volumes S . Representatives are

Sk Poxg o= const. , i =1, 2, 3 . For any surface (= in the homology
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. [ g | L
class of ., i.e. =-5;:=3% , one has

T g = T gx(b)l=: 8, el . (4.32)
Pe ™ Pell.
So the variables (P} obey three further constraints (4.32) in addition

to (4.21). Summarizing we can write down the fellowing partition functions

L. 3 :
z@,,sg,gs = j'ﬂ'o\y(gm)' _E' dH (k) Tdyek) e T S(Tg(.‘:)) Tr S(X(E‘L) g;")
> P c .-4

Peac

3
L hd A :
= J dx o T S(3(Z)87) (4.33)
The product over ¢ goes over all cubes. With the definitions
L L.
Jr\ = —ﬂz_‘ e JF ' Z = ge. Ar- = ;} 2‘4.‘;.‘5 (4.3&)

we write 3 ]
Zpes = 2 L T SC¥(Z0¢) > | (4.35_,)

Expectation values are performed with the measure dr . Making use
z&-fa

of translation invariance we can find an upper bound for Zoaaa
L

Qur argument uses the chessboard estimates of ref.D?]*_ They can be

proven for our model in the form

4
. < . 1P}
| < TFP(X(P})>\ = W<T F,,,(g(r})> : (4.36)
PeP, Pe P, Pep,,
ch is a set of even parallel placuettes (see [43]) and FP some observables.

First we estimate

Zaa < L Zi40.., mE = < §(§(3.)e7) > o (h37)

1.6
Every configuration with g(EL): é+1 has a vortex running through A

in the x1—direction. Let W be the set of all these vortices.

SL3ENe> < 2 T S(w)é;“)> (4.38)
€eV Per
éP#=i is the value of Y(#} in the vortex € . If s = |[€| is the
total length of € , there exists a set Pah containing at least f%
rlaguettes of € . The chessboard estimates give us

*Chessboard estimates require translation invariance, which we achieved
by going onto a torus. Furthermore they demand the three & -functions

for 5(2;) to be treated as observables and not as part of the measure.

LU LRI TR L T TR T T A (T R e A R RN L RTINS
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<T1' §(xne,” > <W S(3<é)é,“')>

PeC -

PetCanf,
~ EYTN
< Tf S(g(é) é° )> , A= Ld v (4,39)

Peb,,

¢ is the value of €#41 for which <T 6(3‘(?\ &™) > is maximal.

P‘.ch
Every configuration which contributes to the expectation value on

the r.h.s. of (4.39) carries an action L, s-Pa at all plaquettes
on P_... This allows one to estimate the expectation value. We give

2h
only the result and put the calcnlational details in an appendix.

31Nl

< T s (g g,‘*)> D(p) (4.40)

PePy,
where [(f) goes to zero exponentially, when p goes to infinity.

From this we get

o>
s
Z, < 27, N D(p) _ (b b1)
: 153 4 .
N{s) is the number of vortices in Y of length s . The bound
(S) d-t- 5 o (B h2)
i's- easily derived. Therefore
ot s
| Zg,m < 2 dt :Zi (SDE ) i (4.43)

This bound goes to zero exponentially for P-—'r o ., For the other
partition functions 23““.;5 exept 2.,”'4 we get similar bounds

in the same way and find

Z for 1 ough Ry
an <2 - Z or large enoug P .

&ql “o ‘ % >/ 2-«
(“h‘h 3;] * ("l‘r‘l

If we choose ? so large that 5 D(p) < —} , then

Z 34 4
zf,:,',, < %4t (spp) (4. 45)

_‘q,‘= o Qi %L23,4.1 < Q’V\(SD(F))< O  (k.h6)

At =200 Lo R

The result is : there exists a value P‘ with

..¥& < D for (3) P" . | (4.47)

Thus the model is in the Higgs phase at low temperatures.
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In the case of the fixed length Higgs field (P> ) the calculation
can be made along the same line. Large {3 means that PP as well as B
is Jarge. This is just the region where one expects the Higgs phase

from other arsuments L[97 .

In four dimensions the calculations are similar. We take a
L .
torus T as the lattice and the relevant homology group Ha(Tu) is
generated by six elements ELJ , 184 < j £ Y% . The partition functions

are :Z{gﬁg and we get a bound for large P.

(4. 483
- = Q@WN Lirnn _;1__. -Zlﬂmmﬁn -
'gé A'&ldq" L] cL,Al.a.o 44 J:_ QJV\ 1"'4‘4'4)1." ‘é Q/V\. (S D(?))

B> 0 = poe dw1

di are the lattice widths.

For the Zr gauge theory a Peierls arsument can be carried through
along the same line without the need of chessboard estimates. This
case might be rercarded as the limi: P¢$9W of the fixed length Higgs

model for =2, .

We already noted the importance of the group [ for the
characterizaticn of the Higrs phase. If M is trivial, there are
obviously no vortices of the kind we discussed and a Higgs phase
is not defined. This, for example, is the case in the Abelian Higgs
medel if q = 7 . For this model analyticity has heen shown in a
large resion of the coupling parameters 9] . There one has a kingd
of screening phase. In contrast, if g £ 1 one finds two well

separated phases in this region, a high temperature phase {(confinement)

and a Higgs phase in the sense of 't Hooft.
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5. Symmetry breaking aspects.

We ask ourselves wether the Higgs phase can be characterized by

a broken symmetry. The Higgs phase is sometimes brought into
‘connection with the breaking of a gauge symmetry. But a local gauge
symmetry, i.e. a symmetry under gauge transformations which are

unity outside a compact set, cannot be broken spontaneously. This

is a trivial consequence of the local structure of the theory,

as described by the Dobrushin - Lanford - Ruelle equations [5] .

One may consider the behaviour under more general gauge transformations.
However there is also a simpler possibility : in this section we

shall argue that the Higgs phase in Vv -~dimensional lattice gauge
theory is accompanied by the spontanecus breaking of a global discrete

symmetry in a y-1 ~dimensional spin model.

We consider 1atticé gauge theory as defined in sect.? . For
definiteness we take G = SU{(2) as our gauge group and ¥V = 3 .
The lattice A  is & box of size Ixdx«t . It contains a sublattice
ﬁf” P x; =0 (see fig. €),which is chosen in such a way that the
endpoints of the links beT touch /Vh1. . With fcba we shall

associate & spin model &4 la Frdhlich and Durhuus L4A4] . Define

WU x) = U(b) € SU(2) for x e N (5.1)

where b = (x,0) (x4 is the link pointing from x in the

positive x_~direction. The total action L contains a part

2

1 I '

! .

L = PP L TTU® 4 Pe z: 2 Ra W(x.y) (5.2)
P T dayy

which includes only those plaquéttes resp. links which involve

y-1 V=4 .
an element U ,xeA . If x,y e A\ are nearest neighbours,

the corresponding variables TG, U(y) are coupled through the term

Te (W) = Tr (W(ba) U2} Ulbg) U(by) = Tr { Ux) u(b,)u"(y}ws.)) (5.3)

See fig.7 . Now we associate 4-dimensional unit spin vectors with

the variables 1A(x) by the formula
: .=
u(x‘ = SrLK) gr . (gr‘) = ( lg [ i) ¢ ’A=1,2|;;+ (5."‘4‘)
2. =3
2. () =1 , & the Pauli matrices
=
With the help of

TrL'ULq'M;A) = lz S“r SI‘ - 2545’- . u"_‘ Sj_rgr. (5'5)
r
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we find
Tr (W) = 2 sea J ) sepn) (5.6)
The matrix (=} & S0(L4) = §U(2) = su(2) is given by
3 >,
-Ay - r
AT {y) W) W (by) = [ PRS2 S(f)] gf“ (5.7 a)
v Fpo ot = LT (7 We 8, W) ) (5.7 )

The Higgs field is chosen as in example 2 of sect.3 and we get

for u(b): 'ULLx]. X & {\,-4

Re W (b} = 500 Kix) s¢x) (5.8)

with some real matrix K(x) depending on the Higgs field at the

endpoints of b . So we have

L = 1?’P Z S(x\}Lx./JS()«') + P,_ Y s K s(x) y Ry e N (5.9)
. Cxyd x

M = 8T (y) = 1
which is the action of a SO(4) Yeisenberg model with variable

coupling matrices J(x,y), XK(x) . These are given by the external

field Fext ={u(b). b*A’-“} (b(,(\} - With
!
L
z'\v-« (Fext) :J T Ju(x) -2 (5-10)
. xe N
we write

"
L (rtxt)
(5.11)
ZAV :‘.j T Ju(b) —“_' 0‘*(“" e ZAV—‘\ (cht) . 5
be A\ A *eA”
We recognize this as the partition function of a Y¥-1 -dimensionsl

Heiéenberg model with fluctuating coupling matrices, immersed in a
Y-t
V -dimensional heat bath. The Heisenberg model on A has for

generic Fext enly the global symmetry

S(x) —» — &(x) (5.12)

and the symmetry group is [T =2, .

Now we come to the boundary conditions. First we choose periodic
boundary conditions in all directions. ﬁf has to be considered as a
torns T and ﬁeﬂ. is a torus 'qu with periodic boundary conditions too.
Next we perform the singular gauge transformation (3.8) , so that we

get anticyclic boundary cornditions in X3
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ULb) = U(b+td): &(b)

and c¢all the partition function Z“v_ . The singular gauge transformation

t b &aT

., b &T
20-{] (5.13)

affects only variables U, xeAN " and we write for the partition

v-4
function in A ot o (Fer) , so that

L

Zo_=) T due) Tdew e Zpr _(Fo) . (5.1%4)
' be NAA % e '

One recognizes easily that the singular gauge transformation introduced

a Bloch wall in the SO(4) Heisenberg spin field. It is characterized

by a spin flip between two distant lattice boundaries. In contrast

to the Ising model,where we had a thin Bloch wall, namely the Peierls
contour, the spins here may vary slowly between the boundaries,

forming a thick Bloch wall. As it was ex?lained in gect.2 for the

Ising model,the log of the ratio Zﬁpg_//éhr1 is a qualitative measure
for the free energy of a Bloch wall. If the free energy of a Bloch

wall per unit length is not zero, long Bleoch walls are suppresced

and we expect an.ordered phase, where the global Zz—symmetry is

broken spontaneously.

Now we see from (5.14) that this just happens, when the gauge
field is ir the Higgs phase. Thus the Higgs phase in ¥ dimensions
is accompaniéd by a spontaneous breakdown of the global ZZ symmetry
of an associated Heisenberg model in ¥-1 dimensions with fluctuating
coupling matrices. This result can be derived in the same way for
Vv==4, 5, ... and for ¢ = SU(n) , where we find a SU(n)xSU(n)

Heisenberg model with variable couplirgs and global symmetry group I' .

Acknowledgement: T would like to thank Prof. G.Mack very much

for constant support. He introduced me to the subject and discussed
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Appendix: Inequality (4.40)

To estimate the expectation value

E= T S(g(i’)Z"‘)> (A1)

PeF,
we modify the measure dy,
KU(- ) "U“(S] poU‘L(S) va“(s) A
QP g dv(g) = eﬁ e dvg =+ e d¥ ) , (A.2)
where
e (K.3)
-U(g) = UA QQ'P,‘) + '_F;'; Uz.(g) I Po < (3"
0, |éol <a
Ua{g) = (k)
Veg) ERTIEE

The constant a>» 1 can be chosen so large that the modified sction i,

which containe U, instead of VU , has the property (4.29)

L, < -p= I (SN (4:5)
Define the new measure df by

A4 by, 4 PoValgem) T,

) e o‘r = —-ie_ Te Jr = ‘g\:‘“e "(I“‘ (a.6)
_ Bo V. (g} _
dp = ™ Te 4 (A.7)
Ind
BoUa(ged o Valg)

with "™ =j T e dff = Jep * Ay (g) ) (A.8)
so that S AF- =1 (A.9)
Z = S e it - Ew ~o (A.10)

The purpose of these manipulations is to get a normalizable messure JF
while maintaining property (4.29). Now we have
A C e
L YA ~ -
E = "?\;Se P;ﬂ;&(g(r)é ) g < —%— e (A1)
because in all contridbuting configurations the action obeys

N 1Al
L & ~[Bae—>3 _ (A.12)
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We estimate

- -Be Al N -peial IAl
250 " i > e P §dp =e Tw@ (A.13)
at stﬁ.

”~
where Slg 1is an integration volume around the minimum of L

with tp?- - -% . TLL) can be seen to go like a power of € . We obtain

\ _P(%—e) IN 1Al
E < (‘t(g)- e =! D{__(F) for all €>0 (A.14)
. 3 n D
With D (g) = ”2“ E(P) (A.15)
we get the result
3IAL ‘
Y
D(p) decreases like e—FT for 3> = . The factor of -g- is

due to the fact that we calchonly a sixth of a vortex with our

chessboard estimates (4.3%54).
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Figure captions.

Fig.

Fig.

Fig.

Fig.

Figs

Fig.

Fige

1.

Peierls contours (dotted lines) in 2-dimensional
Ising model. Lattice points x and y are linked by a
path € .,

Vortex in 3-dimensional Z, lattice gauge theory; winding

2
around a path € =3E.

Vortex container A in 3 dimensions, which winds sround

the path € . On the boundary of /A the set T is marked.

Vortex container in 3 dimensions, egquivalent to that
of fig.3. The righthanéd face and the lefthand face
(hatched) are to be identified. 5, is a cross-section
of the container.

If one identifies the other faces pairwise, one gets

3

a torus 7.

Part of a [ -vortex (for example [N = 23), which splits.

‘Vortex container A’ with sublattice A* . The container

is as in fig. 4 .

Illustration to equation (5.3).
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