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Computation of quantum fluctuations of quark fields

in an arbitrary Yang-Millian instanton background
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Deutsches Elektronen—-Synchrotron DESY, Hamburg

Abstract

We explicitly compute the determinant of the Dirac operator in a general

multi-instanton background field.



1. Introduction

1)2) 3)

Recent studies in two—dimensional non-linear & =-models suggest
that the Yang-Mills instanton gas is dense and that the infrared divergencies
present in the dilute gas approximation disappear, when this is properly taken
into account. To give this intriguing idea substance, one has to include dense
pulti-instanton configurations in the semi-classical treatment of the functional
integral and is thus led to the problem to compute the determinant of the fluc-
tuation operator in a general multi~instanton background field. We here derive

a formula for the determinant of the corresponding Dirac bperator, hoping that
the determinant of the gluon fluctuation operator can then be computed in a

4)

comparatively simple step exploiting supersymmetry .

We use the same general methed to calculate determinants as in the two~dimen—

2)

sional CPnf] models . Thus, we first compute the variation 8§ of

f
M = €n det Eb . ¢ : Dirac operator

with respect to the parameters of the instanton background field. This is

possible, because
§F = Te{sf s},

S being the known 3)6) Green's function of ¢ . Integrating 3l , one obtains
" up to an integration constant, which is finally computed by considering
an especially simple instanton configuration, where all the eigenvalues of ¢

can be calculated explieitly. Of course, to make ™" well defined, its ultra-



violet and infrared divergencies must be regularized. This will be achieved
by introducing an appropriate set of Pauli-Villars regulator fields and by
projecting the Dirac operator onto a spherical space-time with adjustable

world radius R.

Since the Green's function S is already known, the computation of 80 is
straightforward, except that the projection onto a spherical space-time
causes some calculations to be rather lengthy. The main difficulty, however,
is to integrate & s a step, which involves a lot of guesswork. For the
special case of 't Hooft's instanton solutions 8), this problem simplifies

7)

and it has been solved by Brown & Creamer .

Our article is organized as follows. To fix notations, the general instanton

solution due to Atiyah, Hitchin, Drinfeld and Manin 9)10)

for the gauge group
Sp{r) is reviewed in sect. 2. These particular gauge groups are chosen for
technical convenience. In fact, no serious limitations arise from this choice,
since Sp(r) contains an SU(r) subgroup (also, Sp{(l) = SU(2)). In sect. 3 we
define the Dirac operator on Sé, discuss its zero modes and the Greem's func-
tion 5. 81 is computed subsequently (sect. 4) and integrated in sect. 5.
Finally, the integration comstant is evaluated in sect. 6 and our results

are summarized and commented in the concluding sect. 7.

2, Description of the general Sp(r) instanton solutions 9)10)3)6)

Sp(r) can be considered to be the subgroup of U(n), n = 2r, of all those unitary



+)

matrices u with

1) + T.T

where J is the anti~symmetric n x n-matrix

A
-4 0
o1 O
10
(2) J =
O
o 4
-4 0

Correspondingly, Sp(r) gauge potentials Fﬁ* are special U(n) gauge fields,
i.e. they are anti-hermitian nxn-matrices having the additional reality

property

S T LT
(3) A/.a. = 'JAFJ

In particular, Sp(r) instanton solutions are special cases of U(n) instantoen

fields. To explicitly describe these, we need some spinor algebra.

g FRERN . . = | -
(Multi-) spinors are tensors ghwu-ht,A:«-A‘ with A, 1,2 and Aj 1,2.

+ ., s ‘.. . . .

) T znd + denote transposition and hermitian cenjugatlion, respectively.
Greek indices }L)\?,.“ run from O to 3, capital Latin indices (spinor
indices) A,B,... A",B'... from 1 to 2. The totally anti-symmetric tensor

%uvgc- is normalized such that 80123 = + ] and repeated indices are

always summed over.



They carry a representation of the spin covering SU(2) x SU(2) of the

euclidean Lorentz group SO(4):

Ciw,v)g] Vo= WU, o Vg V
) A Ay A A AB TAB, A BT Al B E

47"

B,..By,B,.. B,
(4)

(u,v) € SU(2) x SU(2)

(;A'B' is the complex conjugate of VA'B')' Spinor indices can be raised and

lowered, for example

A BA _ B
U= Bge 8= egE

(5)

Contraction of an upper and a lower index of the same type (i.e. primed or

unprimed) is an SU(2) x SU(2) invariant operation. Note that

A A
gh == % n,
The adjoint ?: of a spinor EA is defined by
+ + romy

(analogous formulae are understood for spinors n A ). The merit of this
construction is that the adjoint spinors transform in the same way under

ST(2) x SU(2) as the original spinors. In particular,

D (¥,m) = % 4



is an invariant scalar product.

The spinor components Xyt of the position vector x}‘ are defined by

o
i

(8)

where &2 | a =1,2,3, are the Pauli matrices. The covariant matrices €

/..l
satisfy the following useful identities:
+ T 7T
e, = €e ¢
(9) “ W
+ — —

oy Teleged = 28, ; (€ anr (8 )gg = 2 €pg €y
Now we are well prepared to describe the U(n) gauge potentials A,A giving

rise to self-dual field strengths va . They can be represented in the form

an Ay = via v . vty = 1

where v is an{n+2k)x n complex matrix. Here, k denotes the instanton number,

viz,

LA 4 #* %* A
(12) k= %K-:.gd-x T*(va va) 3 F/.:.v = 7 Cuvpo chr



v is the solution matrix of a set of 2k complex linear equations

(13) v+AA, = 0 (A' = 1,2)

with AA' a spinor of (n+2k) x k matrices depending linearly on X

fl

a|+be

as D, = g, An

an and bA are constant {(n+2k) x k matrices, which parametrize the instanton

solution. They are not unconstrained, however, but must be chosen such that

+ -1
{15) AA’ &Bs = EA‘B' '.g. for all x.
+ R . . . . .
Here, AA' is the adjoint of AA' in the sense of spinors (ecp. eq. (6)}, viz.

+ ~T + 7T
aey A =-4, 5 b, = B
Noting
+ +A
an A;t = aAr + b Zpapt ®

it follows that eq. (15) holds if and only if
+ +

(18a) ay185. + agrdy, = 0
+ +

(18b) aA,bA+bAa 1 =0

A

+ +
(18¢) bAbB +bBbA—-O



Thus, given a pair of parameter matrices ayrs bA satisfying these quadratic
constraints, the gauge potential de constructed via egs. (13) and (11) has
self-dual curvature. It will be non-singular provided the kxk matrix f_l
defined by eq. (15) is invertible for all x.

Two sets (a bA) and (&

BA) of parameter matrices related by

AI’ Al!

WK ; b =UbK

A K (Ueun+2Kk); Ke Gl{k,€))

give rise to the same instanton solution. This invariance can be exploited

to transform bA to its "mnormal form":

5 i 5
10 0o
1 _ |oo 2 A0
b = {524 m b oo
0o, 04,
1 o
o 4
k

We shall henceforth assume that bA ig in its normal form.

U{n) instanton potentials AP" which are reducible tc Sp(r), come from
aA,'s having the reality property (cp. eq. (2))
T T

+
(20a) a,r = a.d

The analogous equation for bA’

(200) b, = biJT,



holds automatically, when bA is in the normal form (19), Eqs. (20) imply

in particular that f is a real symmetric kxk matrix for Sp(r) instantons.

3. The Dirac operator on S4 and its Green's function

Analogous to the Cl"n-.1 case 2), one could set up a manifestly 0(5) covariant
formalism to deal with Dirac fields and gauge potentials on S&.'We here prefer,
however, to work with explicit stereographic coordinates X}L instead. Thus,
poeints r, K o =0,. 4 ¢ v = R* , of s* are parametrized by X

according to

2t 2 2
(21) q% = _75&2&% . ¥ = TR R; X
R*+ x* * R*+ x*

. . 4,
In these coordinates, the natural metric on § 1is

@22) g = 8, ; a= kRPR'+ A
and the Dirac operator reads *)

D = 2.0 %% D D, = 3, +A
23) B by T B N T
+)

Many authors prefer a normalization of Dirac fields different from ours,

corresponding te a Dirac operator

-%, % ~% 3
D=a%pa™* = 24 44)’PD}A_O_/“

Beth formulations are completely equivalent of course.



The ¥ -matrices are defined by

¥ = (O+8P)

M e, ©
The gauge potential Aﬂ is tzken to be any Sp(r) k—instanton sclutiorn as
described above. In particular, the Dirac fields, on which D acts, are in
the quark representation of the color group. The factor of 2 in eq. (23)
is added to insure that D formally approaches the usual flat space Dirac

cperator in the infinite volume limit R -»o0,

A characteristic property of the Dirac cperator is its off~diagonal shape

+
o
(24} L = (T 0 )
where
T = 2a et D
'S
(25)
+_ ~% .
T = 20 e, D/u

. A'A .
Writing (Q:‘) for the matrix elements of QN. s we see that T maps
: ) o . N c .
SpLNOTIS QPA of negative chirality onto spinors X cf positive chirality.
These two spaces V_ and v, are equipped with the natural 0(5) invariant

scalar products

(¥, 0) = (d' Q% v o
(26)
(X):g) — gdll-x Q"/a_ X-:u ‘§A'
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(contraction of color indices is understood).

. + . . .
Correspondingly, T is the adjoint of T mapping V+ into V_.

T' has no zero modes, but T has exactly k, viz. 1

1 +
Here, i = 1,...,k labels the solutions, & =1,...,n is the color index
anc A = 1,2 the spinor index. The projector P0 ontc the zero modes (27)

can be written as an integral operator
_ m Y B
(28) (POW)A(X) = %d g L0y P, u) 0 ¥ (g

where

_ I e
P y)g = E Va0 Ny oy
(29)

rqi] = (“V{,QP])

Color indices are to be contracted appropriately, of course, and adjoints

are taken in the spinor sense, eq. (6).

The Green's function 8§ of the Dirac operator D is off-diagonal as well:

(30) § = ( +g—)

Thus, S_ maps v, into V_ and S, is the adjoint of S_. The defining equations



_'l‘l_
for S_ are
(31) TS_ =13 PS_=0

More explicitly, defining an integral kermel S_(x,y)AA, by
4 :
an 6,00 = (dYy Q@ s oy v

eq. (31) reads

1 _4 I

T s _(x,ylag = & h 8;. 8 (x-y)

(33) |
B

Sdu‘fr 'Q(‘é{/l Fo(X,8)yg S_(y,2) g = ©

The solution of these equations is not difficult to guess:

c & 4/1 - B
S"(x’%)AA‘ - S_(x)%)AAI - Sd = Q(Z) PO(X’Z)AB S_(z,{é) A‘
(34) R _
SO,y dan = 1“2-(9#3Mu D, G (x,4)

5)6)

Here, G(x,y) denotes the known scalar Green's function

V0 viy)

G GO T Sy

D/UL D)u Gx-y) = - S(x-'%)

The simple solution (34) can be traced back to the simple conformal trans-

formation properties of the Dirac operator. In particular, we fear that



_12..

it would be much harder to find the Green's function for the gluon fluctuation

4
operator on S ,

4, Computaticn of the variatior of the determinant of the Dirac operator

Because 85 anti—-commutes with I, its non-zero eigenvalues come in pairs
(N y~A ). The overall sign of det D is therefore ambiguous. We remove this

ambiguity by defining
36) P = £fndet'D ¥ L gndet’D?

The prime indicates that the zero modes of D should be omitted. Tc regularize
the UV divergence of M we now add Pauli-Villars regulator fields with large

messes M, and alternating "metric" e,, such that

v

4 i=4

X
(37) M =0  (p=4,.,v-4)

i ''q

T M

When the number ¥V of regulator fields is greater than 3, the regularized

determinant

v
60 Ty 4Tl + E o ta(oer)]
=4

is finite and perfectly well-defined. Eq, (38) can be given a somewvhat simpler

form noting that

2 T
b= (0 TT$>



-~ 13 -
. + . .
and that the non-zero eigenvalues of T T and TT+ are identical:

Vv
@) M, = k¥ e oM, + Te{dn(TTH) + i e G (TT + M)}
reg iZy 4 1 foq L i

The trace here is to be taken in the space V_ of normalizable spinor fields 'X-Au.

We now consider a curve Ap(x,s), o£s £1, of instanton solutions with

Ap(x,o) = Af“(X}' Qur aim is, to compute
d
sSh = = l
B! ds ™ ls-o

From eq. (39) it follows that

D Tef{sT[TTCTTTY + P T eyl o+ cc

im4

. . + +. - .
where c.c. means complex conjugate. Noting T (TIT ) b. S_ and defining

M . - .
S_ (x,y}AA. to be the integral kernel of T+(TT++M2) 1, this becomes

= & . A'A
Sr;e% - Sd % T*cota,{ 24 (e;\ SA/A(%) %

(40)
Js xury + 2 e Sy, ] F e
A R YURMEE S TS Ll £V V.U J T
A=A %
Thus, to compute 80 we must study the short distance behaviour of $_

%

and S}_f. From the explicit form egqs. (34), (35) of S_ one derives that up

to terms vanishing at x = y
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S 6y = ";'_ (& ) an {Dju[ll(x,%) (uw* (x—taf')m‘]

(41)
4

- ml[B(Dpvﬂ b2 EE v + vt LBg be(DFv) AR A V](ré)}
- %duz .O_(z\% P (g, 200 g_(z)%)BA.

Here, U(x,y) is the gauge parallel transporter along the straight line from

y to x:
_ X
(42} U.(X,lé.) = Pex? - Sdzlu A}A(Z\ ; P: path ordering
3

On the other hand, the short distance behaviour of Slf_I can be calculated per-

turbatively (Appendix):

v "
::?;4 e; S (Y =
B 1 Qi
1 . 9\
T2 (e/u)AA' {DF[U(x,%\ (l\-'it"(x-—uh) ) ] -~ F;N (4) y, _?_Mctiaz }

Terms, which vanish in the limit where first x =y and then Mi-a- oo, have

been neglected here.

Wher inserting eqs. (41) and (43) into eq. (40) we see that the short

distance singularities cancel and we are left with.
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Bl = 8T, + 8T, + 5 (d T {8400 j, 00}
31'; = - Sd“'% d*z Tf{li(e;]AASAp(\a)E(%,:-:WABQ(!)‘/" g_(z)%\aﬁ} + c.c.

2m2v ]t A
8Ty = - (6x*RY) (dy Quy™ y, Tl8A Ky ()

i

. + ! 1
i V{bh b, At a0, — 8T AL BB Y

8 r; can be simplified as follows. Denote by T and §0 the operators T and

P0 with fL set equal to one. Then

8T, = -T»{STPQ FHETY T+ e

Now %Po = (0 so that

(e %)
—{>
4
I

- TP,

Furthermwore,

and therefore
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8T, = Tr {3F, o' (4-9,)} + c.c.

= §Tr(LaN - 4 N)

(N is the zerc mode matrix (29)).

Sr;_ can also be integrated easily. Namely, using the field equation

D/u [-;W = O, we have

ST’V{ F)uv F).uw} = k& a)u T"’{SAV F}w}

so that
3T, == =, (d% (3.0a0) T {8A, £,
= 5[ g (dt nl TriRLEL))
The rest of SP  will be integrated in the next section. As a preliminary

step towards this goal, we here derive an expression for SA)“ in terms of
SClAa ,» the variation of the instanton parameter matrix (8b, = O since

bA is always assumed to be in its normal form (19)). Defining the projector
P= vvt= a¥ g A*

(44) = vV = 4- A" 44,

it is easy to check that

(45) SA).,\ = \/"":SF’J QHP]V + DH(V+3V)
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The term D)u (vt8v) can be dropped, because BT is gauge invariant

'N.%

(or, equivalently, since = 0). Inserting eq. (44) into eq. (45)

Du fuu
gives SA)“ as a function of So.Ai .

For ease of reference, we finally collect the results of this section to

obtain

SP"% = {T‘I"(&'LN ‘EP'LN) + Sﬁmgd‘x &’l.o. T'V'()uv/av }

(46)

o Sd* T (8A4],)

I

A
Here, the kxk matrices N and N are given by (cf. eq. (273

Sd‘*x a* ’Wi+ it

=
|

47
{d'% vy th

Z>
il

and, with aA‘ -g SGA:

1 + 1 4
sh = vH{a a8y - " g dytv

(48)

f !
ju = v AT a8, - 0ty A bh BTy

5. Integration of 8§
reg

0f course, r‘reg can be obtained by integrating Sr'reg along any path of



._.]8..

instanton solutions connecting Ap with some standard configuration A° R
thus giving l_'reg essentially as a five dimensional integral. Such an ex-

pression is quite implicit, however, because it is difficult to display the

integration paths, In this section we derive a formula for Freg involving
a five diwensional integral too, but with an integrand, which is an explicit

rational function of the instanton parameters and the integration variables.

We first rewrite a4 (SA},\ 3”) in terms of the basic matrices bp, AA'

and f. From eqs. (10), (44) and (48) one finds

T (SA}A j") o=
(%9)

! — — —
2Te{dpbt P DE 816 P + 44 PLIAT B P] + coc.

The lines connecting pairs of matrices imply that their spinor indices are

contracted such that the index of the left matrix is in the upper position,

e.g.

)

By adding a suitable divergence 3},. /\)uk one can express 1« (SA,a 3"
through £ alone:

)+ A, =

TJ\-(BA}, a,, "

Ip
(50)

A+ -2 3 A - - -



Here,

6o A =-2 Tr{ds3,8704b" 0400447}

and the Ti's are the following traces:

T, = Cuyee TrIS887 40,87 40,47 0047 S0, 47
- Te{4887 daug 4o 5a,47 10,47
o« e i488 40 40,07 4047 1a,47)
r, - Te {884 2aug 1o, 40,47 40,47
1, = Tridasf" $9.47 fa.4 go, ]
1o = Triga.88" fo,4 faug" 40,478

ro« Tei4sf 45D $a,47 1.471]
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g = Te {3847 g7 1 bb g

, = Tel42,5¢" 45,47 15 b]

4 e T
1= Te{484 4bb 4 Eh]
(T10 is added to the list fer later convenience). We only know of a rather

lengthy proof of eq., (5C). It goes as follows. First observe that using the

rules
- ! |
57" = 4 (df %+ 2 d%)

8" = (e, BMAY 5 AL, = - B,

all Ti's can be written as linear combinations of traces of products of

da § 5, , baddy, Augdy

Al

+
AA?%'LSB‘ ) )

Andbh, budd, , bgbl,

with all spinor indices contracted. All terms contain precisely one matrix
+ . + .
dA' or dA' and four matrices bA or b,. Such traces are called basic. For

A

example, the expansion of T2 in basic traces is
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T, = 7 Te{dbT A4 AgET ager AT

+ 7 Te{agd MV A agk A4

It is obvicus from eqs. (49) and (51} that the left hand side of eq. (50)
can also be written as a linear combination of basic traces. The two sides
of eq. (50) do not yet match, however, because the basic traces are not

linearly independent.

There are three sources for linear relations between basic traces. First,

the reality property eq. (20) of Sp(r) instanton parameter matrices implies
. . . + .,

that all basic traces are real. Any trace involving dA' is therefore equal

to ancther basic trace containing dA" e.g.

Te{agdt ALBT ALET ARG AfBTY =
*{M—J =L UR

+ L+ ApLE Ap Lt +
T«-{?{b M4BT AfbY ALB ?g,;_\.}

A second set of relations between basic traces arises frorm the rule

€

A'B' ECID[ eAlcl EB'D‘ - GAIDI €B|C|

which reads graphically

| S N — - | | S} i
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0f course, the analogous rule holds for contractions of unprimed indices,

too. Note also that

A third type of relations is finally obtained from

+ + + +
dA' ﬁBI + AAl dal + dBI AA\ + Ael dAl = O

¥ &
d'Al IDA + bA AAI = QO

(this is 2 consequence of eq. (15) resp. eq. (18b)). For example, using

reality, we have

Je | T "
B, 4" 1o Ta% 4407 BTV a6 aghr a4}

= T {dD4E AgE AgE A;b‘*t}ﬂ

de 1] L} I I |
B, g Te{ Ad4b" AELY ALY MRS ALY

0PN 91t Aptt Apiw Apid
To { DY AET ALGY ALL a4}

and therefore B] + B2 = 0.
As a result of all these linear dependences, any basic trace can be re-
presented as a linear combination of the elements of an irreducible set of

14 basic traces. When this is dcne for both sides of eq. (50), they turn out
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to be identical.

Most of the right hand side of eq. (50) can be integrated quite easily, viz,

(52)

.3 3 A oA - —
y L YR Ay T v Ty - g T~ Ty + Ty~ 3Ty =

3

4 1 _F A _5 kX .5
s(£0,-5D,) + (g M v N - e - AL

4
8

D, = w{!}aﬂsf“gapg“” 13,4 32,8}

D, = Tﬁ-{ %1}

N,o= Telds 4o fa,g7 ga,47'

M= Tel$897 $0,87 4347 42,47
M= Triga81 ga,87 40,07

Ap = Tel{gsg" a4

/\; = {42887}
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Eq. (52) is proved straightforwardly by computing 8D; and GMA;; ,

observing the rules
- A -4 -
8¢ =- 438§ {, apg'""'—"g'aﬂg £ 3P3v§.'l=2.5’w)

and expressing the result as linear combinations of T, ... T (as usual, we

10

L
assume that bA is in its normal form, in particular that b*b = ~2)., For example,

w‘
>
I

AT A

Summarizing eqs. (50) and (52) we obtain
5 d'% Te(sa, ) = Vo {47 + $sp,- 560,

The final step, the integration of Tl’ requires a little detour. Let
H(‘g} e G4 (kjﬂ) be an arbitrary function of five real variables

?o,...) ‘ﬁq_ . Define
54 q(g) = edws,\"ﬁr{HﬁB&N M2 M M2y M H'agH M9, 1

q($) has a topological character in the sense that if M is varied, q changes
by a local divergence only:

(55 8g = 5 3y €uaysy Tr{H 84 H g1 My M K lagM M9, MY

P
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An integrated form of this equation is

1
(56) Q= 59 Sdt eupys, Tr{K 2K oK K K
[]

where K (t,%), o<t <4, is any curve of invertible matrices such

that K (o,¥) is diagonal and K{1,%) = M(%g).

To apply eq. (56) to the problem at hand, we identify E,u with Xu (p= 0,..4,3),

‘54 with any instanton parameter such that 8 =3|¢, , and M with f"]. Then,

T = Guvee 14887 7 4087 10,8 424} = g

Furthermore, cheoosing

K = U-DUx 8 + b f

1j
which is strictly positive and therefore invertible for all t and x, eq. (56)

becomes

1

T = 58 \at

-4 -1 -4
) Tr{K 3K K3, 1. K agKY + 3, E,

Cuves
Integrating over all space finally yields

G dox Tr(8a, 30 = 8 Yax {1D, - 5D, + k (4exy
(57)
e [K 8, K K9,k ... Ko, K] 7]

i
5
oy §>d£ Cuvos
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»

The term k(1 + xz)m2 has been added tc make the integral absolutely convergent.

Te sum up, we have shown that

FN%— 9_»[‘;% = o+ Ta(LaN - nN)
(58)

A
* @Ad"x Loy Te(F,Fy) + ﬁ-ﬁlg&x I, ()

Y
+ o (i §a+ I, (&)

Here, r"rzg equals r;:eg for the case of no background field and one color
enly, X is a number, which is constant on each connected component of the

instanton mapifold, and the integrands Il’ 12 are given by

L= Telda4™ 45,4 2,0 22,47}
(59)

- 20 To{£} + 4L (44 x*y ©

60) I, = Gupe Tr{K'a,K K9, K K™, K K201 K, K

6. Computation of X

Let Aju be any Sp(r) instanton potential. Of course, A,u can also be considered

N
as an instanton configuration Aju in Sp(¥) for any ¥ 2 r, viz.
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L
O 24
(61) Ay = A/u 0
0 0 |t L{F-v)

Denoting by r;eg the log of the determinant of the corresponding Dirac

cperator, we obviously have

(62) l"ﬂ% - L% F‘M Pn% - r“":

il

i.e. the left hand side of eq. (58) is invariant, when A*A is imbedded into
a2 higher group. The same holds for Nij’ ﬁij and the integrals on the right
hand side of eq. (58) and must therefore be true for & , too. Since any
k-instanton solution can be imbedded or reduced to Sp(k), it follows that

it is sufficient to compute & for r = k.

The instanton manifold is essentially a convex space for r = k and is there~
fore connected (cf. the description of instantons given by Drinfeld & Manin 10)).
ol is hence the same for all k-instanton configurations. It can conveniently
be computed by specializing eq. (58) to the case of a superposition of k one
instanton solutionms, each of them occupying one of the k commuting SU(2) sub-

groups on the diagonal of Sp(k). Then, A = lcd1 where ., is independent

of k and can be calculated for k = 1,

The one instanton solution cf size R centered at the crigin has parameter

matrices
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OO0 0 —
N
oo —-Q

(63)

Q== 0QQ
™
- O Q0

Exploiting 0(5) invariance, one finds that TT has the following two series

of eigenvalues (e.g. Ref. 12)

B = 4R 2 (m+1) (mtd)

m
(64a)
d; - %{m*Z)(m+3)(2m+5)
Ei = 4R 2 (m+2) (@+3)
(64b)
a2 = L1y (@es) (2m+5)
m 2

(E; is the eigenvalue, d; its multiplicity and = = 0,1,2,...). In the vacuum

case, there is only one series of eigenvalues

E; = 4R Z(m2)2
(64c)
&O = %{m+l)(m+2)(m+3}.

Preg for the one instanton solution (63) can now be obtained using 't Hooft's
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13)

method to compute the regularized sum (39) over all eigenvalues (64a,b):
noo= T e tainm[ 2R + 4 mat + )
g = F, G PRIL o7 WMy 3 WRY + 35 ] + R
(65)
b 8 ! 224
3‘5(~4)—§‘%(-3)— a2 - nl3 + =—

540

(% (z) is Riemann's zeta function, Ref. 14, § 9.5), Similarly, from the

series (64ec) we get

o _ 4 A A4
r‘ﬂ%_ §4e %(HR)[ (MR + (HR)-‘-S ]
(66)
I8 I b 1 A4 4
4 = — —_ — - —_— — - sm——
3%()l 3‘9(3) ‘30&(Ll 2%0

The left hand side of eq. (58) thus beccmes

_ o _ 2 3 A )
rfn% 27" = 3 E‘e_{%H{ + —gfnR — I €' (-4)
(67)
3_ 5
-3 ~ n3 +

A2

It is a trivial matter to evaluate the right hand side of eq. (58) for the

special configuration (63). Comparing with eq. (67), we then obtain of, and

hence o :

»
60 o= k{ZF e taM~45'Cn -2+ 2}
t:
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7. Summary and discussion

Our final formula for the regularized determinant (38) of the Dirac operator

D (eq. (23}) in a general Sp(r) k~instanton solution is

r,o— w° = k{-z-é oM, - k¢ L2 + 2}
*eq ey PR A B Al 12
69) + T (£aN = LaN) + 2y (d% £00 T (Fy Fuo)

1
4
o Vdx T,00 + zﬁ,ﬁzga‘*xga& I, %)

Here, T2 is the determinant with vanishing background field, the kxk

matrices N and N (eq. 47) are built from the zero modes (27) of D, and the

integrands I!, 12 are

I,-= T»{ﬁgaﬁg" $3.4" 22,47 §2,47"

(59)
- 20 T {2 + 4k (4ex2Y

- - - -4 -
60) T, = Eupe T {K 2K K3, K K'9,K K 30K K '3,K}

The real symmetric kxk matrix f£(x)} is defined in terms of the instantom

parameters by eq. (15) and, finally,

(70) K(’c,x);Ll = (4-tY(4+ x"\%‘.i + ’cfmq
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Eq. (69) simplifies in the infinite volume limit R =00:

i (D= 2000 ) = k{%3

wr s ey 2 e dnM; ~l+§(-4)—3b19_+

i=4
(71)

+__.. g I .__.. S 4

o Ydx T 00+ o= Y d¥x aH: T, & x)

This is a tractable expression, althcugh it is not completely explicit.
Maybe, with sufficient ingenuity, one could calculate the integrals, but
we did not attempt to do so. The integrand 12 vanishes for all one- and two-
instanton solutions. We checked that in general it contributes, when k2 3,
thus indicating that two-instanton solutions are not generic multi-instanton
configurations. I, also vanishes for 't Hooft's instanton solutions

4 = 1
(72) Ap=3,'°}wav4“?' Q = 4+Z —_—

? i=1 (x - aty*
which are therefore rather special, toc. For these solutions, eq. (71) can

be written more compactly:

b (0 -272) = k{27 e tnM; - bg'-n) - 2 0a2}
R->00 M% i #eq, 3;‘:‘6& 4 ‘f 3

(73)

‘M

(d¥x 2n§ D' + 5 2 tan; + § 2 tald-dV

4 1,(3

36"

n

1

+) . )
where, following Belavin et al. 3) ), ¢ is defined by

L d -En
a0 § =9

i 2
T (x-a'y~
i=4

Our result, however, seems to disagree with their equation (7).
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An equivalent form of eq. (73) has previously been found by Brown and Creamer 7).

The formulae for the determinants, which we have derived here, are strikingly
1)2)

similar to the corresponding ones in two dimensionzl non—-linear & -models

This suggests that the integrals over I, and 12 have perhaps a universal geo-

1
metrical meaning relating to the topological and metric properties of the in-

stanton manifold.

To compute the determinant of the gluon fluctuation operator via supersymmetry,
requires the quarks to be in the adjoint rather than the fundamental re-—
presentatiorn of the gauge group. In view of the tensor product formula for

5)

instantons , however, cur result applies to this case as well. The ensuing
exact instanton gas will be rather complicated and what its physical properties

are, remains to be seen.
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Appendix: Short distance expansion of S_(x,y)AA.

s¥ is defined by

4

A 1
an s° Xy = 2000 * 1(eF)ABl D)u GH(x,tﬁ)B A

. +
where GM igs the Green's function for TT + Mz:

] L A
{- 85 DD, - (e e,V g (0% 3, 0 ) D,

(42)

. ' Y
* %QHQSQ‘} G‘H(x,%)a ot = ':;Slz § (x-u)

We first derive the short distance expansion of GM(x,y) for y = 0 and shall

later exploit 0(5) covariance to extend the result to all y. Defining

Uy = 2R, + e e (o', a %)
Vo= 3AL+ AGAL < ey (sf"ap.(fd/z) A,

¥ = 4 - -4

A
L

W

2
\LNBP+V+)€H

eq. (A2) reads (spinorial indices are suppressed)

- - M = 2L
@3 { 9.2, + M wl 6" (x,0) = 5 8(x).
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The perturbative solution of this equation is

o0
@ 61,0 = 3 2 (dk L d, Gy ler )W) Gyt W) 600

1) G = (L &P (s iy

Fach term in the sum (A4) can be expanded for x -» 0. It is sufficient to

calculate the expansion up to and including the order Xy Define

we)y C,(x)= Sd?g o dix,, G (X=X I W0, o WX, Gg(x,)
Expanding

G WE = WO 2, W+ e, w;'v +

the integral (A6) can be evaluated in p-space and reduces to a sur of
Bessel functions. Most of the terms, however, do not contribute in the
limit where first x -0 and then M > o0 , In particular, for m3 4, Cm(x)
is once continuously differentiable at x = 0 and Cm(o) as well as 3#Cm (o)
vanish for M —> oo ., Also, integrals involving W‘e , 224 , need not
be censidered for the same reason. Thus, we are left with a finite number
of integrals to compute and expand fer x =0, M—> o , This calculation

is lengthy but straightforward and we therefore merely quote the result:
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(A8) jZ1 e, SMix00,, = —%(eP)M. [u(x oy (¥r2x®Y )

U(x,0) is the gauge parallel transporter from the origin to x along the

straight line comnecting the twe (eq. (42)).

The 0(5) covariant expression reducing to (A8) for y = 0 is

: A
Z e; S " Sl an = -:',i .Q.(x)/"'(ep\lg(x,tﬁﬂm. *

J=4
(49) * D,y u¥x [ (ke aeat (x-y 22 Y
2 A 9 ’\/1 3/
~ (327 R*Y " A (Q00 t(x-4) Qly )]} Qly) 4

Here, Ug(x,y) is the gauge parallel transporter along the (shorter) geodesic
connecting y with x. Similarly, Vg(x,y) is the spin parallel transporter

along the same geodesic,

¥ =
@10y V¥xy) = Pexpi- SdF o 13,2008
where E}W = -'—;: (e}t e,- e} e)u) . Noting that

4/1

@y Wiy = Uy + (X~%31(X-%\Hﬁw%)‘gv%% + O(teg')

{(and an analogous formula for Vg(x,y)), another tedious but straightforward
computation shows that eq. (A9) is equivalent to eq. (43) up to terms vanishing

at x = vy.
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