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in quantum chromodynamics

+
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Abstract

I derive from the QCD Lagrangian differential laws describing motions

and interactions of an infinite set of string operators ~ locally gauge-—
invariant color=-singlet cperators. By truncating the set, I obtain a

q-q wave equation with a confinement potential, and also a jet-fragmenta-
tion equation which describes splitting of a q-g string and creation of

I = 0 vector mesons. I argue for the validity of the perturbative treat-

ment of the string operators.

On leave from the University of Minnesota, Minneapolis, Minn. 55455



I. Introduction and Summary

In quantum chromodynamics (QCD) all physical states, including the vacuum,
are invariaﬁt under local gauge transformations. Only locally gauge in-
variant operators have non—vanishing matrix elements between the physical
states. Such operators must involve a line integral of the vector potential
as a phase and are called string operators tc indicate their path dependence.
There have been some attempts to formulate the motion of such operators (1).
In my previous paper (2) {referred to as I in the following) I considered

a differential equation for a q-q string (quark and antiquark operators
connected by a string) defined on a t-plane. In the present paper I formulate
the dynamics of a more general set of string operators, eliminating altogether
the propagators of quarks and gluons. The virtue of defining the string opera-
tors on a t = censt plane is that their time development is completely
determined by the QCD Lagrangian, or by the equations of motion of the field
operators. Since the gauge symmetry is preserved in QCD, a string operator
may split with time into two or more strings, or convert itself into another
kind, but it will never split into two disconmected objects, each having a
color. Thus the QCD Lagrangian leads to an infinite set of first order

differential equations in time for an infinite set of string operators.

A string operator consists of end points (quark or antiquark) and vertices
{electric or magnetic fields), connected by strings. The equations of motiomn
of the string operators show that the end points and the vertices move
according to the free Dirac and Maxwell equations, respectively, providing
the basis for the parton model. The interaction manifests itself in creation

of new vertices along the string and alsc conversion of field vertices into



quark currents and densities. Whenever a part of a string operator forms

a gauge independent sub-string it will split from the parent string. Thus,

two or more field vertices can form a gauge invariant subset and will be
emitted as a glue ball, Alsc, if a vertex is converted into the quark current,
the original string either splits at this vertex creating two new end points,
or emits a I = 0 vector meson without splitting itself. The string splitting
is a realization of the conjecture by Kogut and Susskind (3). The observation

that there are two processes in a jet fragmentation should have a direct

physical consequence.

In order to deal with an infinite system of string operators and their
equations of moticn I will make two approximations in the present paper.
First, I will neglect all string operators with two or more vertices. With
this truncation I obtain a closed set of equations. Second, I will consider
only straight strings to connect end points and vertices, Such operators
alone do not form a closed system in general, but they do in the truncated
set of equations. The equations of motion of the string operatcrs involve

a linear confinement potential, which is the energy of the electric flux
fepresented by the string. It is naturally there, because I am deéling

with an instantanecus motion of the string. Whether or not such a configura-
tion can be maintained over a longer period of time as assumed here is the
central problem of the confinement. In other words, the truncation will not
be valid if there exist infinitely many almost degenerate configurations
into which the retained strings can transform. I have two observations which

may shed some light on this question.

The first cbservation is about a possible essential difference between the




quantum electrodynamics (QED) and QCD. In QED one can define a gauge

invariant string operator with a finite cross section (a sausage-shaped

string which converges at both ends tec a point which is a quark or an
antiquark) as shown in I. Tn QCD the same does not appear to be possible (4),
because the only way a color spin is carried from one end to the other in a
gauge invariant way seems to be along a strictly linear path. Thus in QED

a string of a small but finite cross section tends to spread with time

without some cutside pressure, because energetically that is more favorable.

In QCD, if the above conjecture is correct, the situation is entirely different.
A linear string may change shape or split but it stays linear. A large change

in shape is energetically less favorable because the electric energy of a

linear string is propertionzl to its length.

The second observation is about an analogy with infrared photons in QED. Just
as emission of soft quanta gives rise to an infinite degemeracy, creation of
soft vertices may give the same kind of degeneracy in the string configuration.
In QED a charged particle must be dressed with the proper infrared field

and any real transition is accompanied by emission of an infinite number

of soft quanta.

Yet the Klein-Nishina formula remains meaningful unless the energy resclution
is extremely goecd, thanks to the smallness of the fine structure constant.
Alsc the hydrogen spectrum is accounted for including the fine structure
without considering the effect of the proper infrared field. The treatment

of the g-q spectrum and the string fragmentation discussed in the present
paper is very similar in nature to the above two examples in QED. In order

for the present formulation to be valid, the coupling constant that govern



the vertex creation must be small, even though the running coupling
constant for the infrared gluon emission may be large as is commonly

)

believed

IT. Equations of motion for string operators

T surmmarize first the field equations in QCD, which I use to derive the
equations of motion for the string operators. The process may be interpreted
in the sense of the correspondence principle. The standard QCD Lagrangian
for a coler triplet quark field q{x) of mass m interacting with an octet

of gluon vector potentials A;Jx) (a=1,2,...8) is given by
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where the field strength Fiqy are defined by

— G a G : ] 7

e - - . a ’ (2.2)
}_pv 7,“ Ay 9»’}}/4 j JLaba /'}[,M Ay .
f c is the structure constants of SU{3). In the following I take a gauge

A =0, (2.3)

E? = F .® = -p%, (2.4)

and the magnetic field by
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As is customary T introduce for an cctet {]ﬁ }a matrix operator A by

5 (2.6)
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and similarly the field strength f?and B. The field equations which follow

from the Lagrangian (2.1) in the gauge {2.3) are the equivalent of the Ampgre—

Maxwell equation

— — 9? o =
D, x B o , (2.7)

and the Dirac equation
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The quark current j%is defined by

E)au) = i+[.x).; {%ﬁ 7%, (2.9)
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and the matrix j(¥) in the same way as (2.6). The covarlant derivative DA

in (2.7) is defined by
— — =
DA C = VO + LA; OJ, (2.10)

for any octet matrix O. The conservation law for the color charge



F“_-_ %T&a 5@ follows from (2.8) and can be written as
2
— — -

D, J + F = (0. (2.11)

- y . '
From the definitions of E and ﬁ,glven by (2.4) and (2.5) there follow twc

equations
5B
—7 =2 — |
Da x £ T 535~ O, (2.12)
and
DA'B =0 (2.13)

As is well known, an equivalent of the Gauss' law does not hold as a field

equation in the present gauge. Instead one obtains from (2.7) and (2.11)

N
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Thus,
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is a constant of motion, and is a generator for local gauge transformatioms.
Namely, 1if I define for a set of time—independent infinitesimal c-number

. a .
functions (3 (x) a unitary operator

7
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where o = g.t)iQJQL)LLP; and tr® means the trace with respect to
color spinsg, then U generates a tiwe-independent infinitesimal gauge

transformation
%\ - - /% 7 » '

and

CEK/: L % U*j = ( ] — 1 L&-‘_)ﬁé ) (2.18)

Since all the physical states are assumed to be locally gauge invariant a

physical state 'Q} must satisfy
- : = =7 -
GOy :(DA'EL'U"\F(X)>Y: 0. (2.19)

Hence, only locally gauge invariant operators have non-vanishing matrix

elements between two physical states.

Now I derive the equations of motion for such locally gauge invariant operators,
which I call string operators. To study a q-a system, 1 consider a q"a string

defined by
d(1,2)=Ttr [ Ut i) 1], 20

The quark field q(x) has three sets of indices, spinor, color spin and flavor
+
components, and q(1)q (2) in the above equation must be regarded as a matrix

in these three set of indices. The string part {J(2,1) is given by
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where P means the ordering along the integration path, which is taken to be
a straight line. More explicitly, I may use a definition by an infinite
product,
hj—%c}o 91 ] 2

= g '
where A:(Z‘:“;ﬁ)//\f and Ew:nz+i77

is ordered from right to left with increasing n

. The product

. Under the gauge transformation

(2,17) and (2.18), q(1,2) is invariant. The equation of motion for q(1,2) was

essentially derived in I, and is

P 91,2)= (Hp k%) §(1.2)

=, N - (2.23)
+5 M'[@gm,:z;x)+ gg(nz;z')x.%,yl

1
Here r = ‘;2 - x][ and HD is the Dirac Hamiltonian for the quark and the
anti-quark,

R A=+ > 2
Hp=""Lo(1,'\7}+j3am“zo(g'\72"ﬁfemy (2.24)
— — —

where C{laCR) means 5{ operating from the left (right) on q(l1,2). 9{? is
an abbreviation
— _ . —> - 4 -7 >
s = A 1 ( ]-I“T?zfo(t + 13- 1| ok ) (2.25)
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In deriving (2.23), the Dirac equation (2.8) has been used. The interaction
term -~ T O—fL . /_f has been cancelled by a term from =7 O‘(_Z."% U[Q,'})’
The latter derivative yields also a line integral involving the magnetic

field g.(the last term in Eq. (2.23)), which arises from the shift of the
integration path when the end point 1 or 2 is moved. qEKEB(I’Z;X) is a

. . C . . . -
gauge invariant string operator with an electric (magnetic) vertex at ¥,

and naively is defined by
. . C = . _ +
92 (1,2;7)=tr [UROE U1) 107 T720] G

and similarly for qg{l,z;x). Ul2,%) and [J{7,1) are defined as in (2.21) with
a straight integration path, but in general the vertex ;>need not be on the
straight line connecting 1 and 2. The term involving qg(],Z;x) in (2.23)
obviously arises from the time derivative of LJ(Z,I). That the Eq. (2.26)
needs a refinement can be seen by taking the time derivative of UJ(2,1) de-

fined by the infinite product (2.22),

. N - o )
iU(‘Q,?): ﬂim Z ey 6LA(§W+J,) A.[ -)—

N2 =1

Ly 7 ' ¢ A5 )-8
~ 14 A32)-8, Ats)-BY, 1] e 18

I move ;?(E%)to the left of ;?(ggh) , and use a commutation relation
4 Lb .
[Aitg”’)i A} (??‘!’)]: 1 (Sab Jz} (S'n’ft/fﬁj;

which corresponds to the standard canonical commutation relation

[' Ai,q (x), Aﬂjb(l’)} = 1 gqb 513 53('75_%/). (2.27)



._ll_

Thus, I obtain

c U= kU =D

oo - o : B A
- el ) D =+ AR A _
'i‘,if,"m Z .-oﬁLA(§n7> 'E(EW,)’A‘e .o s (2.28)

Npoo =1

where

i= 1 L (¢ = '}{gzc S (2.29)

A

he, 2
. 2 .

C is a Casimir operator C = % ()LQ/Q) - 4‘/3_ ' I/Al is equal to 5‘2[0)

as indicated in (2.29), which can be interpreted as the inverse cross section

of the string. Since kz must be finite, the unrenormalized coupling constant

gz must vanish. With the string energy er explicitly ‘extracted in (2.23),

the precise meaning of the definition (2.26) must be given by the second term

of Eq. (2.28). To denote the continuous limit of this term T may introduce a

notation of the open and closed ended string like[}fz;t)and Ul2,%2), and

write instead of (2.26)
¢ =4 7 : .
P21, 2;0)=Tr Utz Eco UL 1§00 972) ], (5.26")

Admittedly, the notion of the open and closed ended string may not be well
founded mathematically, Nevertheless the recogrition of the difference between
(2.26) and (2.26') seems to play a vital role in the later development. For
simplicity, however, I will use a loose notation (2.26) in the following,
keeping in mind the precise definition (2.26'). An equivalent qualification

of Eg. (2.26) is to understand that E&(x) in E(x) stands to the left of
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everything else. The difference between this and (2.26) will be
* <
. . . : & -2
3:C | SPix-xHE = ;_} a*C S7(0) = k",
A
where T have chosen the line 1-3> 2 as the z;axis. One may wonder why ga(x)
is moved to the left instead of to the right, which would produce —kzr.
Later T will consider matrix elements of q(1,2) and qﬁ(gj(l’Z;X) between
a hadron ket and the vacuum bra, in which case moving Ea(x) to the left

proves toc be the right step.

Next I investigate the equation of motion of a q-q string with one vertex
- . 7. . .
qf(g)(l,z;x), or ggqg string. Instead of E and B it is convenient to consider

the vertices

o = -2
F,(x) = Ex)Et b7,

and the corresponding operator qﬁé(l,2;x) defined like in (2.26), or more
precisely (2.26'). The time derivatives of‘q(l)q+(2), I)IZ,X) and TJ(x,1)

can be treated in the same way as in the case of q(1,2). They produce
i 3 . 7 _) ‘2"—7 = Cr'“. -
( Hp +k |4 -7+ k liz*X)Ji.}?i('T,-Z;I)

d . C oy —
triPluzo FeoU1):
[51 +££ )tr {Pluzo R

ﬁa

(B dZ+ Boyxaz o7 -d7) 40§ Y e
>

where
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O-Z‘[Z*DC)}I/}%“/%#E) X6 [ X1, 2]

v ,
Ay (4,7 )= 5 L. (23D
VA=AV AL AR

_)
The P symbol in {2,30) means that'g(x‘) and B(x') be placed at its position
along the path | = ;{ﬁ 2. As stated before, ;?need not be on the straight
i . ~ -2 > .
line 1 -» 2 and when taking M and [7"2 of q]? (1,2;x%), %X is to be held
fixed. The q—i string with two vertices can further be reduced. The operator

involving only two vertices and no end points,
N ~f C", / ', . 3 - v ‘7\’ ra
le. 2 (wo=tr U @ VAV F )] e

is a gauge invariant temsor, which may be called a gg .string. It represents
a glue ball consisting two gluons. The two-vertex strings in (2.30) can be a
product of a gg string and a q-a string. For instance the operator involving

. ?, . .7 .
the vertices ffx) and E(x') can be written, after taking x on the line 1= 2,

which is chosen to be z—axis, as

2 :
PPl gp e eler g0

2 : i
+J; + pC g PlutLD F. ) B, ) 411) ?72)}}@;&;: (2.33)

The second term is a genuine qggg operator, which cannot be reduced into a
product of strings. The P symbol in the first integral is the ordering of the

two vertices along the integration path |- 2. It should be recognized that
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because of the definition (2.26') I have been able to move the operator

87 g tO the left of q(1,2) without producing an extra term from the
-3

commutation of ﬁa(x) with Ka(x).

.-}
The time derivative of F. is, from (2.7) and (2.12),

- 4 - .
E ﬁ?t = I)A X F:t - 1 3»‘

(2.34)

. . e 2 . . . :
Again the covariant derivative of Et(x) is converted to a simple derivative

of q?ﬁ‘l,Z;x) with respect to‘g, plus a ceorrection term coming from the shift

of the integration path of {J(x,1) and (/(2,x). Hence

Pt Uiz Feto Ul 1) 100 572

i

+ 7 ox 92, (1,25%)

+ - HZY ) T0i7,7x’) TrC{P[UQ)”—“) Fetx)
Sy

Uta, 1) x (Boroxd77) (1 1702) 1]

—igtr [UG0 24195209 ) U1) §0)§77)]
;. /5 ) A S , ,

where

(2.35)

(2.36)
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The last term of (2.35) is equal to

> ,_
#0012 -Lg $,0% (22, 2.37)

W“‘!C""

> —
where &,d (%) = Z-}'(;()O( i(;[) , 1f we use a Fierz identity

5 Aa : “\"T- _ . 1 -
[ ‘/2_ )«x;g ({iﬂ)yg - ;% 5»{1 5,55 - :[‘ éer (;'YJ ) (2.38)

The two terms in (2.37) represent the creation of I = 0 vector meson from a
qq string and the splitting of a a-¢ string into two q~c_1 strings. Both will
contribute tec the fragmentation of a qa jet, Collecting {(2.30), (2.33), (2.35)
and (2.37) I obtain the equation of motion for a qqg string operator, after
setting ¥ on the line 1 2,

i (1,250 =[Hp+kir £ Vax] G2 (1,257)

G‘*-Ir-u

2
¢ 35”) p01.2) - g— 9 ¢ (1,705 §(7,2)
2

_.>
' A v 4
+ j dz' Fo (v, 1) 201.2)
]
+ (irreducible qc_{gg operators), (2.39)

where the glue ball operator f:t ls defined by



ﬁ3 is a unit vector in z-direction. A lz, 7/ and T(x,x") are defined
by (2.31) and (2.36) respectively. Figure 1 shows schematically the time

development of q(1,2) and qu(l,Z;x).

I1I. Confinement wave equation for q-q systems

Equations {2.23} and (2.39) are the coupled equatiomns for g(1,2) and
qﬁi(],Z;x), but they are not closed even if the irreducible qagg terms are
neglected because of the unknewn glue ball operator gE;E;(l,Z;x) in (2.39).
4 third equation for gﬁ;ﬁ; is necessary to have a closed set, In this paper,
T will neglect glue ball emissions, which are represented by preducts of a
glue ball operator g and a q—a operator q(1,2). Also by considering a qha
system with some flaver cuantum number (for instance a u-d system) I need
not consider the conversion of a g-q system into a glue ball, which are re-
presented by products of a glue ball operator g and the vacuum expectation
value of §{1,2). This process is certainly important in discussing the spectrum
of T =0, J =0 mescns. I have to retain products of the vacuum expectation
value of g;ﬁza %;: and a q-a ocperator g(1,2). I will also neglect the frag-
mentation terms which may be considered higher order terms as far as the

spectrum is concerned. I introduce c¢-number wave functions

K2 = [, T, 2E))
and (3.1

NE 2, 00= (e, 9z 12,700%)

which satisfy, after the above menticned approximations to (2.23) and (2.39),
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(w-tHp ~k2) X (1,2

W
: A
:j df.[xgm,fz;z)%— )(gtq/z;q-) "0(31 (3.2

o

and

(W-Ho k2 F7,) YR (1,257)

= 11(1,2}1)7([7,2)‘ (3.3)
Here W is the energy eigenvalue of the state g}, and

Z o _ ,
Iiff,‘?jj): J <-‘j-i‘ LT(,Z/_)>D dZ; ‘ (3.4)
]

= . . .
with fg(x,x") given by (2.40). In the following I will neglect the velocity

v
dependent terms (terms involving & ) throughout.

-~
At a large distance r, the gluon momentum ﬁaw and the kinetic energy

VVX*'P{D could be neglected against kzr, so that
. . -——} ' ) , .
Xgn27)~ ~ i‘% L f«ru,lj-‘-’f)**1-[?w’_-/7fﬁ A 113 3.5

Introducing (3.5) into (3.2), I obtain

(W -Ho k%) X (1,2) = U)X (12 (5.6)



_]8_

with

b ken

A S

2
ra) —> o U Az iz 'ﬁ['sz”’)’
1

Here

| : | > g
ﬁ[‘lﬁ; ) = ZZT" s L ﬁ[’z,z’)-% j_(z;{ )J

=< PL ?;EJEJ[%J(")i- ‘?55 5}(% y’) - ;5355 [-,1)1’),]}9‘

I have neglected terms proportional to jz’iiff in (2.40), which prove to

be unimportant. From the translational invariance of h(x,x') T can write

(3.7) as

y)— - 5— I /LLj orz—~j dz z} ’ﬁ(z,,-[?f),

¢ ¢

Hence if }{z,0) falls off faster than 2_2 for large z, then

) = ——g—z J d z f;[z;O) + O (1/n).

—
For comparison, < [73 [.?’)E:j (X’) + [5fx)= ‘E){q"') - BE lx 5:;[1/) >p
behaves like Illixjfmqueverywhere for free transversal fields. Then the

upper limit of integration (3.9) is convergent, but the lcower limit is not.

o

(3.7

(3.8)

(3.9)

I expect that - ﬁi;#1 {'z);{’);>0 falls off at least as fast,

because the phase factor would act destructively. For a small distance, how-

ever, the phase factor should be negligible, and from the asymptotic freedom

(6)
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I expect the same singularity l/z& at z = 0, which would lead to an in-
finite constant in {J . Actually, this difficulty is due to the unjustified
transition from Eq. (3.3) to (3.5), and can be removed easily. The z_4

: . . e ,? 3
singularity of g's leads to an infinite constant term of the form 3 /\
(/\ : cutoff) already on the right hand side of (3.4) and hence of (3.3).
Since this term is independent of }'?, the use of Eq. (3.5) would. lead to
Q—independent X E [1,2; Az ) which cannot be correct. Eq. (3.3) tells
that there is a term —17 X Xé? { 1,2, JL) on the left hand

) = 3 2

side. The constant term -ﬁ; /\3 should be matched with 7(3'\/ Mz * (-4
. /\3 , which however dces not contribute to (3.2) where ?-%. is on

1

the z=axis. Thus, a subtraction shculd be made like

. | A
‘T;Ij) (7, 27) —
b= 4 e

and )L should be chosen so that there will be nc term of order /\3 in (3.9).

-
At a short distance r, the gluon momentum VZ will be large on the left hand

side of Eq. (3.3). Hence
“”'% -

“Vox Y (LB~ 5] T,20-1(12:0] Y (1,2)

(3.11)

L
=1 e P Gpg o i T g pa,10), |

1

As r-> 0, I can make a replacement

<P %zs r’::(,zx)]')b > CPL §£’1).E5(1’):[>0

= —5 0T [ emad STA ], 612
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5
where the last expression was obtained using the free fields for E(x)
and g(x). Introducing (3.12) into (3,11), I obtain

— R -
Ve (1257)~ =350 M | e tzz) Sw-a)de

(3.13)

,Fra? &;[;T)L} i{rff;:z).

To determine the unknown function 3 . T invoke the Gauss' law (2.19).

Using the exact expression for qg(l,Z;x) as given by (2.26"'}, 1 notice

that L}LZ;{) can be moved all the way to the right of all the operatoers

in the trace, because [J[Q,W) commutes with ga(x) in E}x). Thus, in (3.1}
E}x) can be considered to operate directly on the vacuum to the left. Hence,

I may use (2.19) and find
V- Xg(Luw) = (&, tri{ Uz prz) uini) 400 972)) ¥ )
-~ C;'

The last step is an approximation consistent with neglecting the fragmentation

(3.14)

terms in going from (2.39) to (3.3). Combining (3.13) and (3.14) 1 have

| 2 |
v Fi) = QLC a?g- f < (z-27) A7 (A-A) Az

/

=920 i ST x-2,)+ -2, ]

Hence
l(\ /f
TR R
{ o yf{.fi{ Iy -7, /. (3.15)
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Introducing this back into (3.13) I find

)
_é N
U) = j X?HJE)?")’AX = 0.
1
The mystery of the disappearance of the Coulomb potential can be solved
by again going back to (2.26') which must be used in defining )ié? (1,2,% )
Then a careful analysis shows that in Eg. (3.11) only the integration region

z'$ z gives non-vanishing contributions. Hence, instead of (3.12) I should

have

(P +7Es WJ!H){'} '0%:- °C 39‘ ['5)3 G1z-z2’) 53[1_1/)1 (3.16)

Going through the same argument I obtain, instead of (3.13},

Xg 1130~ | =93C T | Bre-z) Fira-a)dz?
1

(3.17)
‘*\73”70} Y (127,
and instead of (3.15)
2
l}[i) = - 3——(—: J S . (3.18)
+T - Ay

Firnally from (3.15) 1 obtain

z

oy e, _3C
U[f’l)*—‘k/L"q_n N /\)7 (3.19)
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where the constant term represents the electrostatic self-energy,

Thus, I have recovered the Coulomb potential, but I have yet to consider

the charge renormalization. Since the first term of (3.19) is already finite
any multiplicative renormalization constantlmust be finite. 1f the same re-
normalization multiplies the second term, then the Coulomb potential would
vanish because gZWfO. Hence in crder te obtain a non-vanishing Coulomb
potential, the two tems in (3.19) must be rencrmalized in different ways.

I do not know how this could be done. Summarizing, I have established a

wave equation for a q-q system, which is

(i - Hp -vio ] L2 =0, 3.20)

where

Vi) 1::2 4 (1260 )

The behavior of V(r) as r >0 is not very clear. The conventional wisdom

will tell us to take as the electrostatic part of V(r)

(2—=¢)
>

where f%g? igs the running coupling constant. This would require different

renormalizations for two terms in (3.19)., The solutions of Eq. (3.20) for the

(7

light-quark systems have been given by D.A. Geffen and myself.
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IV, Fragmentation equation

The string operators can be used to represent various jets if we use
momentum representations for the end points and the vertices. Thus,
q(1,2) describes a q—a jet, qﬁ(l,Z;z:) a q—a—gluon jet, and gFF(I,IB

a two-gluon jet, and so forth. The equations of motion for the string
operators as derived in section II, can then be used to obtain transition
probabilities for a jet to fragment into different channels. For example,
the coupled equations (2.23) and (2.39) describe the fragmentation of a
q—-q jet through splitting, emission of a I = 0 vector meson, or emission
of a glue ball., Just to illustrate how this is done, I will retain only
the splitting term in (2.39). Assdming the splitting vertex does not move

very fast T get from (2.39)

| oo N N ,
Tz~ = 5§z -Hoka) gl gex2)

and q?(I,Z;[)NaC) . The singularity of the denominator should he avoided

in the ordinary way. Introducing (4.1) into (2.23),

(i —Hp-ka) g(1.2)

i R o v ! N (4.2)
== AX-(isz —Hp=k2) 1,0 9(x,2),
,1
The right hand side represents a string-splitting interaction. I infer the
matrix element M for the parent string to split into two to be
T 2
) ; 3 3 — -+ )
= - 4t W dox d'x X - W (1)
i 2, 14y | 4 (4.3)

1
NEAIN .
x (iff—HD—J(‘/L) ULLIIX U R) .
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where u(1,2), u(l,1) and ul¥ ,2) are the time-dependent c-number wave
functions of the parent and two daughter strings. There are certain problems

in this equation.

It develops that if u(1,2) is taken to be a product of two plaﬁe waves then
the transition probability is inversely proportional to the linear dimension
of the space. The difficulty is not essential because any q—a state of energy
E has =z matural boundary given by r = E/k2 due to the confining potential(Y).
How the renormalization of the coupling constant g can be done i1s a problem
as already mentioned at the end of section ITII. Finally, the non-covariant
character of (4.3) may not be just apparent. In spite of these difficulties,
(4.3) may be used to evaluate relative branching ratios for fragmentation

into different flavor states. Similarly to Eq. (4.3), the matrix element

for creation of a I = O vector meson V is given by
(;, =7 - - .
o ' 3 3, = 't
M= tF by [at [l die i i)«

'l

: . -~ - . s
(i - Hp “it ) Vo UL

(4.4)

Here u(1,2) and u'(1,2) are the wave functions of the original and resultant

strings, andT?(X) is the wave function for the wvector meson. ;{v.is the

=

coupling of GQX) te the current JS’ri)'
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Fig., 1

Diagramatical representation of the time development of a q—a string and
a q-g-gluon string as given by equations (2,23) and (2.39), respectively.
The end points (dots) represent a quark and an antiquark and the vertices
{crosses) the gluon field. The diagrams for a q-q-gluon string represent
kinetic energies, creation of a vector meson, splitting of the string and
creation of a second vertex in that order. The last reduces to the sum of

emission of a glue ball and an irreducible qagg operator.
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