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1. Introduction and summary of results.

We consider the standard model of an SU(2) gauge field thecory without
fermions on a hypercubkic lattice A in 4—dimensional BEuclidean space time.
It was introduced by Wilson [t]1 and is defined as follows (notations and

definitions as in [21 ).

The (random) variables of the theory are the socalled "string bit
variables" ([ble G = su(2) : A configuration U is a map which
assigns an element UfbleG to every directed link b between nearest neigh-
bour vertices x, y on the lattice in such a way that U [b]—*U[b]Aunder re—
versal of direction of the link b.

If C is an oriented path (with prescribed initial point if it is closed)
which consists of links b1 - 'bn then we write

ufcl = ufb,1...uflb]l (1.1a)
In particular, a plaquette p (=2-dimensional unit cell) has a boundery p =
dp consisting of four links b,...b,. So

ufpl = ulb, 1. ufb] (1.1b)

(€] is called the parallel transporter around C.

The Euclidean action of the model is (1.2)

L(u)= = £ (ulpl) with L(V)= @#V for Vesu(z).
P

Sum over p is cover all plagquettes in the lattice . Their crientation is
immaterial since L(v)=L{v™").

Bourdary conditions will be specified in Sect. 2.

Observables are (real) functions F(U) of the random variables U[b].
Their expectation value in the standard model is

f

<¥> = [du F(u) (1.3)

L{uw)
oL

1

du - L ‘eru[b] ; ZéJeL(“}fdu[b] (4.4)

Integrations over U[b] are always over G; dU[b] is normalized Haar measure
on G. (Normalized means fe dufb] = 1). The product over b runs over all
links in the lattice.
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The center of the gauge group G will be denoted by I' . It consists of
matrices 4. We will not distinguish them in notation from numbers +1.
= Z'2 (the integers 0, 1 with addition modulo 2).

We will show that the model can be reinterpreted as a Z, gauge theory

with monopoles and fluctuating coupling constants?}’I‘his new theory has as
its variableg

ulble G/r  and olpl==1er (1.5)

They are associated with links b resp. plagquettes p. They are not completely
independent. The variables UUJ] specify the values of a function plel=%4e "
for every 3-cell (cube) ¢ of the lattice. Given U , the variables _c[p]
must satisfy
‘IT ofp]l = P[C] for every cube ¢ (1.6)
pe ¢
Product is over the 6 plaquettes in the boundary Jdc¢ of a cube c.

The meaning of this equation becomes clear if we go over to additive language.

Lete, bethe unit lattice vector in pu~direction, and e__/u =-e, . Let p:p/w (%Y be
the plagquette with corner points x| x+ Cu X+e re x+e, . Similarly, let
c=c x);\(x) be the cube with corner points x x+e ,_...)x+%+ey+ex We define
field strength I and current J taking values in the field 2= {O, 1} by the
formalae

O'[’P]" = €xp LW-".:-D(X) L]c P = 'P)_n.:(x)

(1.7)
P[C] = exp LTFJ/uvA(x) tf ¢ o= Cuvi (x)

Then Eg. (1.6) takes the form

BuFon ¥ BT, AT = (0 (1-6')
f_\},l is the difference cperator on the lattice (viz. A «F(x) .F(x+e y-f(xy ).
Egq. (1.6") is to be regarded as an equation between elc—:ments of Zz, i.e.
integers modulc 2.

Eg.{1.6") is of the form of 2nd Maxwell equations in the presence of
a magnetic current j. This current is a gauge invariant function
of the variables Ulb]. It is conserved. The conservation law reads

oy OLe1 =1 forevery hypercube h (1.8)

Or, equivalently, if we set j/qu\ (x) = J? (x) for/w)\p a cyclic permua-
tation of 1234, then
\

A/u];u(x) = 0 | (1.8")

* Another model with monopoles has recently been studied by Yoneya [37 .
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Explicit expressions for ¢ or j and for the path measure in terms of the
new variables will bhe derived in the next section.

Let us draw some tentative conclusions from the observed existence of

mr;opoles in the standard suU(2) model, and compare with the modified SU((2)
model studied in ref, [2] *)

The modified model is obtained by ruling the moncpoles out of existence.
This is done by including in the path measure a factor "g' 8] (;l;rac-}r ulpl).
Product over ¢ runs over all cubes in the lattice. This amounts to admitting
only configurations U such that g[c] =1 for all cubes ¢, cp. Eq.(2.3) below.

Both theories have formally the same continuum limit, and the monopoles
in the standard model become unimportant as {3 =00 in the following sense.
b
let Xhiaeny nonempty set of [X} cubes. Then

+ I
<c1$(e(—9[cl)> < D(pH* (1.9)
with D([&) £ Ct::n’)sf-e"/3h3 — O qs [3—-‘;00

This follows from inequalities (1.23) of ref. [2] since 9[c‘1=—1 implies
by Eq.(2.3) below that + U{pl< 0 for at least cne plaquette pe d¢, and at
most four cubes in X can have a common plagquette in their boundaries.

Next, let us look at the't Hooft disorder parameter [S] Let X be the time
t = O hyperplane in the lattice A and S a set of links in X . Its coboundary
dS consists of those plaquettes p in 2. which have an odd number of links of
S in their boundary dp. We are mainly interested in S, 39S of the form
shown in Fig. 71; éS is a closed loop bounding the surface S in the dual lattice
of 2 . The t'Hooft disorder parameter < B[S]> is defined as in ref. [2] .
We give another definiticn which will be shown to be equivalent. The't Hooft
disorder parameter is equal to the expectation value of the Wilson loop integral
{1] for a monopole transported arcund 3S . Equivalence is proven by perfor-
rm.ng a duality transformation on the Z, theory. In place of the variables
o [p] one is then dealing with new variables w[c]=+1 attached to cubes c of
the lattice A . These cubes may be considered as links on the dual lattice.
of A . We may go over to additive language as in Eg.(1.7). To this end one
introduces vector potentials A y (x) taking values in the field Zz,= {O,f} by

W

wie] = exp i:rr)'f?t’le (x) = exp .i:er[c] {1.10)

if ¢ =cg, (x) , 4vAp = permutation of 1234

?

(Signs are wpimportant since -A = A for elements A of Z, ). The duality trans-
formation interchanges the role of electric and magnetic fields. As a result,

. . .
The proof of ineguality (1.12) of ref.[2] for the modified model
has been extended to the standard model by Fréhlich [#1 ,
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the current j now appears as an electric current coupled to the vector poten-

tial A , cp. Eg. (3.710b) of Sect.3 for the new action, and the discussion
following it.

Let C the set of cubes protruding from plaquettes pe 9§ in positive
time direction. C is a closed path on the dual lattice of A . It will be

shown that the 't Hooft disorder parameter takes the form
<B[SI> = <exp iv§>CK > {1.11)
where
$ % - % Kle]
C celC
Let the closed path éS bound a rectangular area S of L-T 1lattice

squares as in Fig. 1, with T» L. The Wilson loop formula (1.11) implies
- according to arguments due to Wilson [1] - that

< B[s]> ~ const - e T V() for T»L (1.12}

and V(L) may be interpreted as potential energy of a pair of external mono~
poles a distance I apart.

Since d)rnamical monopoles exist in the standard model, it seems reasonable to

expect that V(I) stays bounded as L-—>o00 . For even if strings form that

tend to confine the external mononoles, thev can break, creating a monopole
the number of plaguélies 1n 35 is

pair out of the vacuum. Since,i535!= 2L+2T this would amount to a bound,
valid for all values of 3 , of the form

<B[s]l>» > (L) eﬁo{l—aSl for T — o0 - (1.13)

i.e. a perimeter law. o may depend on/3 .

't Hooft has argued that bound (1.13) together with a mass gap should be
a sufficient condition for cenfinement of static quarks[lUunfortunately it is
not at all clear that this assertion applies to theories with dynamical mono—
poles. Therefore, even if the bound (1.13) is indeed true for the standard
SU(2) lattice gauge theory model, nothing can be concluded from that.

For the modified SU(2) model menticned above it was shown in ref. [2]
that the bound (1.13) is not satisfied for large enocugh /j . Instead one

finds an area law
<Blsl> ¢ (e (4. 14)
for large.enocugh /3 in the modified model (low {ernpera{urc phase).
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One may ask how validity of (1.13) for the standard model and (1.14)

for the modified model can be compatible with the assertion made earlier that
the moncpoles become unimportant as [3—»00 . A likely answer is that V(L)

increases linearly with L in the standard model before it bends over,and is
approximately equal to V(L) in the modified model so long as L€ Lo(/3),
and Lo([b)—*’oo as /3—->oo s

One may also ask whether the Z, monopoles are confined or not in the
low temperature phase of the standard model (B large). It is instructive
to inquire first whether the analog of the Wilson criterium for quark
confinement is satisfied. This amounts to looking at the
éorresponding thecry without the mcnopoles and determining the behaviour of
the expectation value of the Wilson loop integral (for external monopoles)
in this theory. The theory without monopoles is just our medified model. In
view of Eq. (1.11), the question is then answered by the bound (1.13} for

that model: The monopoles are cohfined. Appeal to a Wilson criterion sesms
reasonable for large 3 since the result (1.9) assures then that the moncpole

pairs are dilute.

It remains yet to be investigated whether the onset of dissociation of
monopole pairs corresponds to a phase transition in the classical sense
(point of nonanalyticity in B of the Gibbs potential). We remark that cne
may interpolate between the standard model and the modified model by using

action

L= p3 {% bulpl + X Zn_i.(1++anm;rgc%u{p])}

For large values of A the moropole pairs will still be dilute when they start
to dissociate. It should be rememenbered, however, that an elaborate argunent
was needed for the two dimensional plane rotator model [6] to show that the
onset of dissociation of vortex pairs produces cbservable consequences of a

phase transition.

In his recent paper [7] 't Hooft argues that one cannot have both elec—
tric and magnetic confinement. However, confinement of the monopoles discussed
here until now does not imply magnetic confinement in the sense of 't Hooft,
and - as we have pointed out already in our papers [2.8] - one cannot con-
clude fram our result that static quarks are not confined when 8 is sufficient-
ly large. In fact, the monopoles discussed so far are merely the smallest ones

of a family of monopoles of increasing size. This will be discussed in Sect. 5.



It turns out that monopoles of any given size are confined (in a sense that
will be made precise in Sect. 5) for sufficiently large B.But it depends on
the monopole's size how large B has to be and the possibility remains open that

for any B monopoles of sufficiently large size (depending on B) are not con-
fined. '



2. 2~ theory with monopoles.

Let U be a configquration of the standard model. We introduce auxiliary

variables ,
bl = ulblr e g/r ~ so(3) (2.1a)

ol[pl = sign b U[p] =%1 e (2.16)
We admit free boundary conditions, or a mixture of free and cyclic boundary

cordlitions in which ['J[b] satisfies cyclic boundary conditions, (and also

o[p] if one so chooses) but not the variables U{b] themselves.

The variables (2.1) are invariant under gauge transformations by elements

of r, viz.

ulbl - yIx, Julbly[x1" for b= (x,.x,) 2.2)
yixl =%1 er

Iet us introduce

ele] = _;Iac sign + U[p] (2.3)

It follows from the definition (2.1b) of olp} that

ora 0[P = plel (2.4)
We will shcw that e [c] depends on the configuration U only through cosets
U[b] This implies that Eqg.(2.4) is a relation between variables o[p] and l:lfb] .
As is explained in the introducticn, it is of the form of a field equation

for field strengths ¢ [p] .

Let U and U'bedwo confiqurations such that U[bl = U'[b] for all b. Then
U'{bl= U{bly[bl with y[bler . Therefore u'[~p]= u[]'o]g[]s] with

y[pl = 1T y[b] (2.5)
be BP
It follows fram this definition that
PT;T'BC y[pl =1 for every cube ¢ . (2.6)

Upon substituting U' for U, ¢lc] changes to p[c]ﬂécx‘[]’:] = plel | Thus
¢ lc] remains unchanged and depends therefore on the configuration U only
through the cosets U[bl, as was to be shown.

It follows from the definition (2.3) of Q[c] that

\(?IBHQIC]: 1 for‘ every h\/percube h . (2.7)



since every factor sign tr Ulp] appears twice. As was explained in the
intreduction, this expresses conservation of the magnetic current,

Let us now suppose that we are given any collection of elements Ulbl of
G/ and olpl of 1" which is such that relation (2.4) is satisfied for all
cubes ¢. We show that there exists then a configuration U - i.e. a collection
of elements Ufble G - such that Fgs. (2.1) hold, and U is unique up to gauge
transformations (2.2} by elements of . |

To compute p[C] from given T.'J, one selects in an arbitrary way represen-
tatives U,l[b]e G of the cosets U[b] so that [l[E]=U1[b]r‘.Then plcl is
conputed from Eg. (2.3), with U, substituted for U. The result does not depend

.
on the choice of representative by the argument given earlier.

Let 0’1[p] = sign tr U‘I [é] , whence 9[C]=PT;I'BCQ‘1 [F] . By hypothesis,
Eq. (2.4) is fulfilled. Therefcre

It

T G[P] =

{p]
pede %P

*peac

Let us write

alpl = o lplylpl
with X[p] =*{e ™ . Then X[p] satisfies the relation

Tra y[P] =1 «For every cube ¢ ' (2.8)
Ppedc .

It follows that there exists for every link b a y [bl=%fel” such that

¥lpl= JT; Y,[b] for all plaquettes p. ¥,[b] need not satisfy cyclic boundary
cdp

conditions even if y[p] do. Obviously, U[bl=u [bly [b] fulfills relations

(2.1} . This proves existence cof the configuration U.

Now we turn to uniqueness. Suppcse cenfiguraticons U and U' produce the
same values of the auxiliary variables defined by Egs. (2.1). This requires
that U'[b]=U[bly[bl with y[bl=*{er, and

LN bl =
bcapy[ ! 1

for every plaquette p. The last requirement implies that y[bl is a pure
gauge, and therefore U and U' are related by a gauge transformation (2.2)

by elements of " as was to be shown. The gauge transformation need not cobey
cyclic boundary conditions.
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Let us also note that ?[c] is invariant under S0(3) gauge trans-

formations

Gibl= Vix,Julblvix,T' with V[xleG/r = so@) (2.9)

With a one to one correspondence between old and new variables established,

we can rewrite the path measure. We introduce
Kp (1) =/3|1~—u[p]l » 0
Clearly, because of the absolute signs it depends only on cosets Ll [b1, and

it is invariant under S0(3) gauge transformations (2.9).

(2.10)

The action (1.2) becomes

L= t{u,0) =% KP(Q)U[pj (2.11)

Of course the path measure also has to include § - functions to take care of

the constraint (2.4).

- Any gauge invariant function F(U) may be regarded as a function of the

new variables

F(u) ='<F;(L.1,<r)

{For local obsefvables, defined as in , this is always true. For more

general functions, which may depend on variables attached to cells on the
boundary of the lattice A, it follows fram our choice of boundary conditions)

Expectation values take the form

<F S = Ed/“‘?(ﬁ"“) (2.12)
with
L(U,e) -1 .
du =1 e T (elel'T o T dulbl Wde[p1 13
7Tz ¢ (?[ ]Pe_'ac [P]) b P P (2.13)
A new expression for the partition function 7z results from <1 >=fc§u =1 .
Notations are as follows. The & —function is a Kronecker- & defined by

d(1)y=1 , 8(-1)=o0 (2.14)

dU is normalized Haar measure on G/, and
fdo(-y =32 ()

T=4+1

Products over b, p, ¢ in (2.13) run over all links, plaquettes, and cubes in

(2-15)

the lattice N\, respectively.
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3. Duality transformaticn.

Electric-magnetic duality has been extensively studied in the literature,
see e.g. Mandelstams recent paper [310l It was also noted there and before
that the t'Hooft disorder parameter may be viewed as expectation value of a
Wilson loop integral for monopoles. Nevertheless it appears necessary to give
proof of assertion (1.11) in the introduction. It is based on performing a
duality transformation on the Z, theory of section 2. The duality transform-
ation is performed in the same way as for the modified model of ref.[2].

It amounts to a Fourier transformation on the Abelian group T.

The variables of the dual model take values in the dual group I?‘ = group
of characters of unitary irreducible representations of '. For "= Z, there
are two such characters, and Mz~ Z, again. We identify them with mmbers

w=*1, The corresponding characters are functions on I given by
1 L‘F W= 1

-for y-‘.‘:iEP . (31)
¥ if w=-1

B (y) = {

A variable wlc] is assigned to every 3-cell ¢ of the lattice. It takes values
wlc]=*1. The corresponding characters will be denoted by CSC (y)-

It will be convenient to use the coboundary operator d (= boundary
operator on the dual lattice). It is defined by saying that a 3—cell

s

cedp if and only if pedc , etc. (3.2)

p is a plaquette. One writes accordingly

w[dp] = TN, wle]l = T olc] | (3.3)
cedp pe dc
For convenience we shall use a non—normalized Haar measure on F" ’
(do(-) = Z () (34)
w=%1

Temporarily we shall neglect indicating u —dependence of functions (such
as Kp ) "Ep v F below) explicitly.

One expands in Fourier series on I,
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eKPG[P] - '(dwp eL-P((.OP) SP(G[P])-‘I

(3.5a)
§(ot ]prercc,w) So{m[c] SC(Q[C]JEBCG[};T‘)
- [dleofe SC(Q[C]):EBCGC(G[PI)_i (3.5b)

And, for a function F that depends on variables olplwith pe ¥

({U[P]} ) j?( ch pe‘/iw (olpl) “de! } (3.5¢)

One insecrts these expansions into the definition of < F > . Summations

over variables ofp] may then be performed with the help of orthogonality

relations of characters. They produce § ~functions. The Wy -summations can

be performed next, making use of the presence of these $ —functions. As a
result one obtains (w[dpl= ,_.'e'éPw[C])
. !
Tdib1Tdol] [T do
[TdibITdol] [T doy (.6)

_1
<Fy =2

N (ool
r({uP}Pey) T3 (ol exp I Ly (@ wl3p1)
If pd Y one is to put w;=1 . .CP, plel  and, in general, also ¥ de-

pend also on variables (U[b1. an explicit formula for .f is obtained fram
its definition (3.5a)

.Ep(w) = ;’\P(L'L)+QP(L1)L.> for w=x%1 cr (3.7)
QP =-;:fn coth KP{L}) > 0
M. =

b ‘I fn(Ath_KP(L:l)cosh KP(U))

Expression (3.6) involves the new path measure

rY

C

Because of the factors o (plcl)=%1 this measure is not positive.

It 1s amusing to see formula (3.8} translated into additive language.
Tt involves then the vector potential A  and the current J . They take

values in the field Z, = {0,1}] and were defined in terms of wlc] resp.
plelin Egs. (1.10) resp. (1.7) and f. of the introduction.

We introduce
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:Fﬁ;‘w(x) = A/AKV_A\JE\/U\ (39)

It is defined as an element of the field %, = {0,1}; addition is addition
in Z2, i.e. modulo 2.

In this language one finds
1 Lt —_ Y
= L e TdU[bTTT dA (x)
A = X [ o /u( (3.10a)
with action l: that can be written in the form

L - Z{f:\'\P(L:{)Jr—}f{P(L-I)—Zl}P(L})fﬂv(x);}v(x‘)}
+LTZX}*(X);}*(X) : (3.10b)

The current 3" is also a function of U . The first sum goes over all pla-

quettes p = p/u,,(x) , and the second one over all links (x, x+e}4) (they are

in one to cne correspondence with cubes Ty

fadd () = 2 ()

~—

A=0,1

?(x)). Finally

Apart from the fluctuating coupling constant 2Kp(fj) , expression {3.10b)
has a familiar lock, except for the strange imeginary factor ix mualtiplying
the last term. This factor would not have been expected from analogy with
electrodynamics. We note however that complete analogy cannot held. In electro-
dynamics, the Coulcmb force between like charges is repulsive, between oppo-
site charges it is atiractive. In a 22 gauge field theory there can be no dis-
tinction between like azld opposite charges, since -1 =+1 in Zy- The factor
i7 in (3.10b) makes e' invariant under TF(")”’—L(X)‘ At the same time it is
responsible for the lack of positivity of the measure d/& .

The new path measure d/& is that of a z, gauge field theory. We show

that it is invariant under the following local gauge transformations
-4 i A
wicl = vlhTwlelvlh] f B¢ =h,-h, (3.11)
for v[hl=%1 I
Interpreted as elements of the dual lattice, ¢ is a link and h1 ’ h2 are the

" two endpoints of this link. (In the original lattice they are 4-dimensional
hypercubes tQuching each other along the cube c).
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In terms of the vector potential A, these gauge transformations are
of the familiar form

A/u(x)—»A/u(wa/uf(x) (3.12)

with £(x) € 2, = {0,1} . Gauge invariance of the measure (3.10) follows
therefore fram the fact that the current ¥ is identically conserved. That
is, for any configuration U = {I:T[b]} the values of the functions f];u (%)
of the rardom variable U[b] satisfy Eqs. (1.8').

We conclude this section with a cament on the lack of positivity of the
measure d/i . Physical positivity in the quantum field theoretic sense ~ also
known as reflection positivity or Osterwalder Schrader (0S) positivity [11] -
.holds in spite of it. Basically this is a consequence of the fact that the
measure is obtained by a duality transformation fromamodel that is known
to respect OS-positivity [127 .

Let Fbealocal observable which is a real gauge invariant function of the
variables wlc] ,l:i[l::] attached to cubes ¢ resp. links b in the halfspace
t=x*5 0 only. Define

(67 )({olel, alb1}) = F({elec]. dlob1}) (5.13)

123 4

Time reflection 6: (X X x",x ) —> (x1x2 3

X ,—x4) acts on cells ¢, b in the
obvious way.

Any such function F can be regarded as a function which depends on
variables w{c] only through gauge invariants w[ép] associated with plaquettes
p in the halfspace x%3 0. By doing the duality transformation backwards and
using OS-positivity of the original medel one can show that

<(oF)F > = jd/d (eF)F % 0 | (3.14)
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4, Wilson loop for Z., monopoles.

2

Let Sbeaset of links in the time t = 0 hyperplane X . The t'Hooft
operatcr B[S] is defined by its action on wave functions in the quantum
field theoretic Hilbert space of states, and < B[5]> is the vacuum expecta-
tion value of this operator, cp. [2] . By using the path integral formula for
the vacuum state it was shown there (cp. Eq. (4.11) of [2] } that < R[s]>
is equal to the expectation value of a multiplication operator, viz.

< B[] =<F > = Id}*r(u) | (&.1)

exp = {L(-ulp1)- £ (uip)]

Flu)

This holds generally, both for the standard and the modified model.
Py, is the plaguette protruding from the spacelike link b in positive time
direction. In the variables of Sect. 2
¥ = exp -25: KPb(fJ)G[Pbl (4r.2)
€S )

Now cne can use formula (3.6) to rewrite < ¥ » in the language of the

dually transformed model. & short computation {(the same as is carried out

in Egs. (4.12)...(4.13) of ref. [2] ) gives the result
<Bs1> = <M wle,]> = [ds T olep] (4.3)

cp is the cube protruding from the spacelike plagquette p in positive time

direction. In additive language (1.70) this is the desired formula (1.11).
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5. Z, moncpoles of larger size,

Let us for a mament restrict attention to the t=0 plane 3 in the
lattice A, and consider a confiquration U = {u[b]}be 5 . Iet c be a
cube in X . If p[c]=—1 then there is a monopole located at c. By Eq. (1.6)
it is end point of a string of magnetic flux, cp. Fig., 2. We attribute
size ‘Ia3 to the monopole (& = unit of length given by the lattice spacing in
A.) The string has cross section 1a2.

Besides these gmall monopoles there are moncpoles of larger size, they
are end points of strings of magnetic flux of larger cross section. To discuss
them we introduce sublattices Ay of A with larger lattice spacing 2Na. We
consider Ay as cell corplexes consisting of vertices x', links b', plaquettes
o cubes ¢', and hypercubes h'., The links b' in Ay are paths in A consisting
of 2V links of A . A plaguette p' in Ay is composed of N plaquettes of A,
Its boundary p=9p is a path in A and so the parallel transporter Ulp'l can be
defined by Egq. (1.1a).

We may now proceed as in Sect. 2. For plagquettes p’e Ay we define
o, P’ ] = aygn + Ulp’] (5.1)
For cubes ¢ ¢ /'\N we consider the monopele distribution function

P [¢'] = 7T ALgh U[P] (5:2)
P'e Ic¢’

It follows that
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Products are of course over plaquettes in A, .

A substitution of variables U[b]~> u[bly[bl (y[bl=%1, b linke
in the original lattice A) takes U[b']—> ([ ]y[b'] for b'e Ay with
y[b’] = +4 . Therefore, by the same arqument as in Sect. 2, the mono-
pole distribution function o, is a function of the cosets U[bl=ulblr (bea)
only. Thus the conflguratlon (I also determines the distribution of mono-
poles of size gl a .



A monopole of size 8Na3 in the t = 0 plane } is end point of a
string of magnetic flux of cross section 4Na2 . cp. Fig. 2,

Next we derive an estimate for the cost in action of quanta of magnetié
flux.

N P .
Let p' be a rectangle of ZN‘ x 2 '*  plaquettes PCP in A . We will
show that

. N+ N .
bUpT-2 3> 27 X (fulpl-2) (5-4)
PCP’
Specializing to a plaquette p' in Ay we see that making o, [p'}=-1 costs at
least an amount of 28-4_N of action. The factor 4"N represents & bound on

the possible savings achieved by spreading the flux over an area of 4-_Na2.

To prove inequality (5.4) we divide the rectangle p' into two rectangles

p]J and p‘,')- of 2”“-4x 2Nz plaquettes each (for N1 2 N2) . One has then

ulp’l=-vu,v'uy, (55)

where U;= U[p/1l and v=ulb] . B} is the boundary of p! with a
choice of initial point as indicated by dots in Fig. 3; the path b' joins

these initial points.
We introduce 4-dimensional unit vectors 5: = (S- t j) by

_ e e 5
Uj = ’cij 13-, 7 (5:6)

o=(6"0%0*) are Pauli matrices. In this notation
-

{T'UJ‘ = 2‘&1 (5.7a)

Fulpl=2(tt, - Rs-s,) (5.7b)

1 WMl

R = R(V} is a 3-rotation given by (the fundamental formula of spinor cal-
culus) Vokv ™ =of R(v){k .

”~

It follows that
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eulp'l 2 (b, - (1-£20 (1-¢2)7)

where -1€£j$1 . ¥Yor fixed value of t:t‘t+t2 the minimum of the

r.h.s. is attained at £1=t2¥-%{:. This gives
& Ulp’'l » t*-2 - (%-2)z+ h(t-2)+2

Therefore

t(teulp'l-2) 2 2(t-2) = (v ulp/1-2)+ (bulp/1-2)
ITterating the procedure gives inequality (5.4). g.e.d.

From inequality (5.4) one can derive conclusions concerning confinement
of the larger monopoles.

Let T be a set of IT| plaquettes in Ay . By using chess-board estimates [13]
in the same way as in Sect. 8 of our first paper {2] one deduces from in-
equality (5.4) that

< T o(-Hulpl)> < ?DN(/s)lTI with
peT _ (58)

DN(F)S:CEJN eXP'/Z’(:‘%R—‘N-f) — 0 as /,’z—'oq

£> 0 may belaken arbitrarily small. The constant C,  may depend on g N but

not on B8, {In inequality (1.9) we chose & = ).

LA
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Let us now look at our (standard) model with the eyes of a quantum field
theorist. The Hilbert space of physical states consists of wave functions
W{U) which depend on arguments U[b] asscciared with links b in the time O
plane X . Among them is the wave function {1 of a vacuum state (eigenstate of
the transfer matrix with eigenvalue 1) which is given by a path integral
formila, Eg. (1.15) of ref.[2]. Let us ask for the probability Py lc,,c,]
of finding in this vacuum state a pair of (virtual) monopoles of size
&'a3  located at cubes c, resp. c, of AyNZ and linked by a string of mag-
netic ﬁlux (cp. Fig. 2). This probability is less than or equal to the proba-

‘ bility of finding a siring from C; to Cy- From the path integral formula for
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) it follows then that

P ole.c,l ¢« Z T 0(-tulpl)

s
T  peT (5.9)

Sumation is over all possible strings T. If 4 and c, are a distance L apart
in units of 2 a ( lattice spacing in A ) then the number | T{ of plaquettes
in T obeys |T! 2 L. The number of strings of length [T| is bounded by
e®!Tl, « a constant. It follows therefore by combining inequalities (5.8) and
{5.9) that the prohability PN[é1,c2] decreases exponentially with the distance
L between the monopeles if ‘B is sufficiently large. We may regard
such an exponential falloff as a defining feature of monopole confinement.
How large B has to be may depend on N because of the N-dependence of CEN
and the factor 4 multiplying 8 in inequality (5.8).
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Figure captions.

Fig. 1. A set S of links {(heavy lines) in the time O plane X and plaquettes
in éS {squares) .

Fig. 2. A pair of monopoles in the time O plane X and a string of magnetic

flux joining them. The monopoles are located at cubes ¢, ©., where Q [c;l=-1,

17 72
and the string consists of a sequence of plaquettes p for which o [‘P]=-1.
Considered as elements of the dual lattice of X these plaguettes form a path

Jjoining points c, and Cy-
The same figure applies to moncpoles of arbitrary size 8N a'3 and a string of
magnetic flux of cross section 4Na2 joining them. In this case the cubes and

plaquettes are of the lattice A.

Fig. 3. Illustration to Eq. (5.5}).
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