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1. Introduction

1

When the J/Y¥ and Y were discovered in fall 1974 we all witnessed

a dramatic and beautiful revival of the quark model 2). The predicted

3)

new quark flavour, ¢ = charm could be added to the hadron spectroscopy
by the interpretation of the new particles as cc bound states. It was
argued that the new system is nonrelativistic: Charmonium 4). Whereas the
old mesons suffered from the fact that the quarks are extremely relati-
vistic (mass differences are of the order of the masses themsaives), in
Charronium the heavy (& 1.5 GeV) c-quarks should move relatively slowly,
ﬂz = (v/c)zz 0.2. The well known powerful methods of exbloring a nonrela-

tivistic system could be used. This was the source of real excitement about

the new particles.

In spring 1977 a still heavier meson family, the Y:'rilnﬂs) was <discovered.
6)

From the measurement of their leptonic decay widths in DORIS we learned

7)

is Je | = 1/3: we found the bottom

Q

quark. The bb system, which is supposed to be even much more nonrelativistic

that the charge of the fifth quark

than cc, is thus called Bottonmium. We hope to discover a heavier sixth quark
flavour, t = top maybe, in the new machines PETRA and PEP. In these lectures
we will describe the dynamics of a nonrelativistic QQ bound system,

Q = ¢,b,t,..., called QUARKONIUM.

Quantumchromodynamics 8), QCD, turned ocut to be the most promising can-
didate for the theory of quark dynamics, 1.e, the strong interactions. QCD
is a nonabelian gauge field theory of the interactions of quarks and eight
massless vector gauge bosons, the gluons. The coupling constant ®g, re-
normalized at the relevant momentum transfer q2 or the corresponding
distance R, is a monotonously falling function of qul. Tt tends logarith-

mically to zero as qul—aa:or R30

2y _ 1w 1 -2 (1.1)
0(5 (C‘l ) 33,2‘,\/ ’za?(q?/qoz) + 0—(/6919 )

N = pumber of light quark flavours

9)

n

this is called "asymptotic freedom"

If x¢becomes small, perturbation theory is fine and in Born approximation
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the quark interaction is just ome gluon exchange. The nonabelian selfinter-
action of the colour-charged gluons plays no rdle in lowest order graphs,
thus QCD is very similar to QED, the static potential for short distances

being essentially of the Coulomb type.

ot becomes large for some large R of the order of 1/2 fm, which is the
typical hadron radius. At present this region, where perturbation theory

0).

does not work, is subject to educated speculations only : we believe
that the rising coupling "confines’ the quarks. Models which give a hint

at this are lattice gauge theories or the string model.

When QCD is in fact the underlying theory for Quarkonia, we should be
able to probe QCD features by studying these systems. First we should be
able to probe the one gluon exchange at short distances. The static Coulomb-
like potential gives rise to the spin-spin, spin-orbit and tensor inter-
actions known from Positronium, since the quark gluon vertex has the same
Dirac structure as the electron photon vertex (g?:coupling). Second, at
large distances the "confining" potential should be linear, VC(R) = aR.

It should be flavour independent and the interquark force a at large
distances should alsoc be somehow related to the inverse Regge slope of
the low mass mesons. The ''confining" potential should be essentially spin

0)

independent

We have no guess for the potential at intermediate distances. In
Charmonium a superposition of the spin dependent one glucn exchange
potential and the scalar linear potential has worked out rather well ]]).
However, this potential is not universal, as we have learned from Bottonium.
The intermediate region of the poténtial has to be treated in a more

sophisticated manner.

Besides the spectra, the fine and hyperfine structure we will discuss
radiative transitions in some detail. Chapter 7 will be devoted to the

puzzling states X(2.83), X(3.45) and X(3.59/3.18).

As an application of QCD we will describe the gluonic annihilation of
Quarkonia, which leads to the total hadronic decay width via a nonpertur-

bative dressing mechanism. With the experimentally accessible regime of
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c.m. energies of 10 GeV or more, the gluons which govern annihilations

in QCD, might show up as hadrom jets 2). These jets should carry the

directed momentum of the initial gluon. In angular distributions of these

,13)

jets one should be able to measure gluon helicities One can further

4)

speculate on the existence of glueballs in Quarkonium decays. Lt is
rather difficult, however, to find an easy test of the nonabelian gluon
self coupling. Nevertheless, finding the gluons is very important: they
are the gauge bosons of QCD and a proof of their existence is.as crucial
for QCD as a proof of the existence cf z° and Wi for the Salzm-Weinberg

theory.

2. The Spectra

Quarkonium is essentially nonrelativistic. The perturbative iamiltonian
is then obtained from the Bethe Salpeter equation 1in nonrelativistic approxi-
mation or from the exact relativistic scattering amplitude (Borm graph only}.
One obtains the Schridinger equation in zeroth order of F? and the Fermi-

Breit Hamiltonian terms up to order ﬁ?. In oth order
o SR
L = .’Zm& + P/“"a + \/(2) +  coust (2.1)

a) Charmonium

1)

For Charmonium the standard potential used is

d
3
V _ is the "asymptotically free" short distance part due to one gluon ex-

AF

change. —4/3 is a group factor from SU(3) and usis the effective

colour
coupling. For this one can take two points of view. Either &g is R-depen-
dent 15) or cxsis a constant, different for each quark flavour mass: 9
2 2 33-2AN
us(Ml)=0<5(M4)[’l— R 22 o (M) Jﬁmé(m /H )] (2.3)

N = number of "light" quarks

1,16)

In the standard calculations the second point of view is taken.

O R R TR R T TR TR



At large distances the potential should be "confining". The linear
potential is suggested by lattice gauge theories, or string models where

the field lines are parallel and the force between two coloured constituents

& =

One example is the Meissner effect in superconductors of the second kind

is constant:

and another example is QED in one space dimension.

The potential and the structure of the spectrum is shown in Fig. 2.1

and is compared with the experimental Charmonium.

The parameters are determined as

a=1-09GeV/fm Lrom W'- 3¢

(2.4)
2 L 2
5= 0.3-04 from L @P  Herlealt) _ (3760 22kev
AIACH Mg Toe G/ (34Gev)2h. 3 kev
or from the center of gravity of the P waves. The quark mass only slightly
influences this fit, It mainly influences the wave functions themselves,
the dipole matrix elements and the velocity of the quarks. For the dipole
matrix elements one would like a large quark mass, m = 2 GeV. Fitting
mc to |[W(o)I*from the naive +) Van-Royen-Weisskopf formula 17)
z 2
- 2 {4 (o) 2 [R, 0
[eg (V) =1bTr ey — ;_[ =xreg ——, (2.5)
MV (Hv/.z,)
gives a rather small value, m = 1.1 GeV. However, this does not destroy

the nonrelativistic approx1mat10n. We found f& = (v/e)’<03 in 3/‘4’ and (B < 0.4
in ¥/ for m = 1.16 GeV and X g<0.41. Thus the quark masses are an open
c

question here.

Is the large value of X, reasonable? From the decay formulae to be
described in Chapter 8 one finds ¢ (annihilation at 3 GeV) =¥ 0,2, However,
*) There is a next order QCD correction to the Schriédinger wave function at

. z bot

the origin |4 (o)™ | (1— ig;f
. 18 .. . .
tion ). This is large in Charmonium.

) due to a transverse gluon vertex correc-—
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Fig. 2.1. The shape of the standard Charmonium potential (2,2) with ™Xg= 0.41,

the spectrum and the experimentally observed Charmonium states

other parameters are

a = (0,8665 GeV/fm and mc

. The
= 1.6 GeV.
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this refers to annihilation distances which are shorter than the average
interquark distances. Furthermore the probability for three gluons — hadrons
may be smaller than one. Then ¢¢(annihilation) is larger than 0.2. From
deep inelastic lepton scattering on the other hand we find

™ 3 GeV)= K (0.07 fm) = 0.4 taking the scale parameter A= 0.5 GeV. From
Fig. 2.1 we see that 0.07 fm is just in the middle of the range where V

AF
dominates.

It is remarkable to see that the predicted D wave coincides with L’r’”(3.77),
especially if the spin-orbit and tensor force splittings are taken into
account! Amusingly also the higher S and D waves seem to coincide with the
observed peaks in R above 4 GeV. Historical discrepancies in this respect

are due to the choice of .

The level sequence in Charmonium is 1S,1P,2S,1D,.. There are two theorems 2
about this ordering, let us quote them here:

i) For Vm)=:%3+%(KL where VC is a confining potential non-singular at the
origin, 2S is above IP if VC satisfies the following sufficient condition
(i)z[rz(zvcczm? d:j;m)J >0 YR [\/C(R) = RE, 3 >O} (2.6)

ii) VYR)=%%Fk%ﬁK3, where V, is a non-singular confining potential. If
(d /dR)® (R*V (®)is positive, then the ID state lies above the 25 state,
provided
224 vwer By o vy [\/C(wai, o<5<2] (2.7)

b) Scaling the Schrddinger Equation

We now ask the question whether or not VC(R) = aR is unique for the next
quark flavour (quark mass) as QCD suggests. For this purpose we first consider

the scaling behaviour of the Schrddinger equation. The radial equation

o L A( 2D
Z+ 7
dR R

+ 2p (V(R)—E)JM(R) -0 with VR:aR® g5-0 (2.8)
can be brought into dimensionless form

l‘-dl L Lt | gEv g} w(%) =0 (2.9)

dgz gz



wi th

-2
4(,2_+EJ (2+€)}

¢ —R{2pa) ; B—2uE(2pa) (2.10)

From (2.10) cne reads off the scaling laws

-1 — ~E/(2+¢€)
B o om /?2455 , E o~ /S2+

These scaling laws are also applicable for €= 0, in which case the potential
is logarithmic,V(R) = a-log R/Ro.

. +)
¢) Bottonium eteo.

_ -
If the linear potential dominates, like in Charmonium, then AL ~ m 3.
2l

Lichten and Gottfried 20) predicted for the Y system a spacing of HIJ’#Q.ﬂ 425 MeV
using My -Myu = 589 MeV as input. However, experimentally 6)Mrr- My = 556:3 HeV
which is much closer te My -Myqy . Thus the standard Charmeniur potential is

not the universal potential in yCD. Phenomenclogically one is better off with

217

a logarithric potential hecause of the constant spacings. However a pure
log potential has pno justification in QCD. But one can approximate the inter-

mediate ) potential by a logarithmic one. This has been done by Bhanot and

22y .
LRudaz with the Ansatz
-Ys sk R<e,
VIRY = f;-,ﬁa? (@/ko) 4br R, ¢ R <R, (2.12)
3R R>R,

and with the requirement of V(R) being continucusly differentiable at R] and

B,. With a constant &g for Charmoniur and Bottonium, &= 0.31, and

a = 0,787 CeV/tm they ohtalned HI"HI‘: 560 MeV., Tt 1s amusing to note that
this value of a is even in agreement with what one would expect frem the

old meson spectroscopy.

For a study of very heavy Quarkonia, however, &g = const is a bad approxi-

mation. One has to take the logarithmic variation of the effective g with R

+)

The justification for bottom, i.e. QQ = -1/3, will be given in Chapter 3.

T I TR TR L e o I R L R T T T R T L R L T e e O A R AT R R L E R A L L LR L



23)

into account, as done by Ono and one of the authors . In this approach

the Coulomb potential is modified via Eq. 2.3

4 2 gz Uy V=3 b4 7t 4
- St (gt a2) 4 v - :
2 S(qf )qz_ t> 27 ?;&/go% (_?f/f_l) (2.13)

and the Fourier transform becomes 28)
V. (R) = Z [ fer 7 + O (leg® 2.14
4 R U 27 twl1/RU2e¥) () f (214

where 4"= Euler's constant,
For Charmonium and Bottonium the two potentials give identical predictions.
The differences will show up at the next Onium, if its mass is high enough.

In Fig. 2.2 the level spacings are shown as functions of the guark mass.

1400

1200

1000

800

Otw 1S ;!Y | MalGeV)

1 |

1 2 4 8 16 32 64 100

Fig. 2.2, Mass differences to the ground state in model Ref. 23 (full line)

and model Ref. 22 (dashed line).

In Fig. 2.3 the reduced leptonic widths are shown. The constancy of g%-/iaf
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from g0(770) teo 129.46) is a rather interesting fact. But its explanation

lies outside the scope of nonrelativistic potential models.

T T 1
eg/ef
[keV]
01 7
W
p% o 10 f
10+ { { SRTA R
1 § Mg {G=V]
05 g 50
Fig. 2.3. Reduced leptonic decay widths.

Whereas in model I (Ref. 22) r;é/bé'increases for Quarkonia heavier than I:
Fig. 2.4, = 30 GeV,
model II (Ref.

have doubled for m.x this increase in

so that i1t will Qd

23) is much slower.

55 e
\ eelge
| [kev]
\
L
-
\
|
|
2,
|
1 //,/
i 1S -
1t
i 25 -
g Y
SR v
1 P4 L
Fig. 2.4. Qé/geé as a function of Ty for model I and II.
The mass of the next quark is an interesting question. In Table 2.1 we

give a list of numbers. This list is typical for the speculative character

of the predictions.

e R T ET LI R T R T T T R TR P I et A A P LA MR T
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Threshold in e+e" due M = 21.3 GeV H. Lehmann 25)
threshold 2
to the sixth quark: M =M +0.7n
n+l n
M1 = 0.3 GeV
Bound states of the MtE = 23.8 GeV G.J. Aubrecht IIT
sixth quark: and D.M. Scott 26)
MQQ = 28-29 GeV every third expert 27
by the 'factor 3 or T rule':
Md: M‘j/‘f/:Mr: 1.02:3.1:9-46
M.~ = 40 GeV G. Preparata 28)
QQ
_ 29)
Current mass of the 2mt = 17.6, 25.8 GeV W. Kummer
sixth quark (top quark): th = 22, 26, 100 GeV M.-A. de Crombrugghe 30
2m, = 27.2 GeV H. Georgi and
t 31)
D.V. Nanopculos
th = 28 GeV H. Harari, H. Haut
and J. Weyers )
2Zm_ = 52 GeV 5. Pakvasa and
¢ 33)
H. Sugawara
= . 34)
th = 54 GeV J.D. Bjorken
th = 80 GeV T.F. Walsh 33)
Current mass of the fourth
quark with eQ= -1/3: ZmQ = 32 - 40 GeV T.F. Walsh 35)

Table 2.1. Predictions for thresholds, bound state masses and current quark
masses. We are aware of the fact that we have certainly missed the

prediction of one or another of cur colleagues.
d) Number of Bound States below Thresliold

The higher the mass of the quark the more states are below threshold.
Their number can be fairly easy estimated. The condition for lying below

threshold is M = <2M - or with M =m +m + E
QQ  "Qq Udy, 9 49 99,
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EQQ < 2mq + 2 EQa (2.15)
The binding of QQ depends on the mass of the heavy quark. The states fall
deeper into the potential well with increasing mq. For Qa, on the other hand,
the light quark mass (reduced mass) determines the properties of the system.
In a very crude first approximation EQ& can be taken as a constant and then
the threshold is fixed. The number of bound states is obtained semiclassically

from the Bohr Sommerfeld quantization condition

R
— t —~ 1
£ dR{mg (5, -VIR) = T (n—="4) | (2.16)
. . . 36)
and one finds, since E = V(R ) and R_ become independent of m.,
thr c 0 Q
1 —
n = ? -+ CD’T-S{: md (2-]7)
Quigg and Rosmer fixed the constant
in Charmonium, where n = 2, Fig. 2.6 T IS R S B e

shows their prediction for heavy

o

gquarks. In Bottonium n = 3 is ex- *‘”*4;*f" —Z e H"f "" y
, —— (g+0g — BS e

pected and ]Tmshould already be a - e C : 18 -,//r -
pm——— {ontinuum <=

factory for B mesons via BB and/or : ///,
eventually BE*, B8¥. The width of ST L 5§
i
LS -

T way be well below the machine

. ’ + - . 3 . -
width 1in e e annihilation, since

the large number of nodes in the

. - r',r .
radial wave function of T will

235

suppress its decay into two slowly

moving ground state S waves like

B or B*.
- .
Fig. 2.6. Number of bound states ]/q) A Y'j Coro ] 1§
below the strong decay 1 i 5 10 20
threshold 36). rﬂu/ﬁ]t

3. The Charge of the Quarks and Local Duality

The charmed quark and its charge were predicted in 1970. The GIM 3)
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mechanism fixes e, to + 2/3. For the charge of the quark constituing the

T-system no such strong prediction exists.

Without any theoretical prejudice one would have to wait until one finds
the B particles in order to tell the charge. If the combinations with the
strange quark Qg, Qs are neutral, eQ = ~1/3, if they are charged, eQ = 2/3.

. . + . .
In this sense, the discovery of the charged F~(2040) meson finally confirmed
that e = 2/3.
c

From the parton point of view, the charge of the new quark is measured

QED | + -

by the step in R = /Gkﬁ in e e annihilation above the new particle

G:nadron
threshold: AR = 1/3 (4/3) for eQ = -1/3 (2/3). However, we need not go into
the continuum, the resonance spikes below threshold already tell us the
charges of the quarks. The quantity
A RED 2
A?/dﬁ%(ms—mm i (M) = AR (3.1)
reg

measures a step AR for a given spacing AM. With help of the relation
2 7 + - 2
fdM G, (res —all) = 67 [M(res —e'e )/MWg (3.2)
s

one obtains in the ¥ system from 6) MY s ete~) =(1.32 7 0,09 ) kev
and AM =My, - My = (5561 3) Mev

ARfr = 0,63 t 004, (3.3)

This value of AR lies between the values for the two possible charges. If we
- +
continue with F(I{°e+e ) = 0.38-0.10 keV and &AM =Iirm(lO.AI)—Mr£10.015)=0.40 GeV

we obtain
A,Q,r, = 0.26 * 007 (3.4)

which clearly favours (e = 1/3, i.e. the bottom quark.

ol

21)

Originally specific models predicted specific values for f;g . Another

way to evaluate the charge of the quark is studying the scaling properties

37

of f;E in possible potential models . Also in this approach the decisive

evidence for a charge of -1/3 comes from [;E of T. A simple continuation of
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the observed constancy of F /eQ (Fig. 2.3) would give (G’Q/e ) = eg (r)/l;e (3/?)
3

and thus [eQ[ 1/3. Potential models predict {7 (T)"O 17 keV.

We shall now demonstrate that a parton type scaling behaviour is a property

of a rather general class of potential models. We use Eq. 3.2 and

2 [ Yies (0)]?
F(ﬁs—ae%“)=4é?%z‘3a9 [ Tres / (3.5)
3 Mz
res

and approximate the mass squared of the n resonance by

(3.6)

Mi Cf&mz + 4mE,

where En is the Schrddinger eigenvalue. Semiclassically one can relate the 5

wave functions at the origin to the spectrum in a rather potential independent

way. With

- 4 Uy (R}
b (5= g Tt P2 (B VR 6.7

the normalized WKB solution is for finite V(0)

P (R) (1 o
w, (R) = 72 sin (3 [ ) G.9)

[ i m"(m}
7

By differentiating the Bohr-Sonmerfeld quantization condition

Rueax
JdR P, (R)
o

with respect to n, one obtains the relation

2}:,,,/ﬁ*
w4 )/ =Tk, /42 d( (3.10)

Tnsertion of this relation into Eq.s 3.5 and 3.2 leads to 40)

= 5 Hh (n+ coust) (3.9)
39)

bre® 5, 7 3 r
;—}1—4 dM G, (es—all) = 205 3eg SV A- 4w M (3.11)
res
For comparison the parton model cross section reads
P A
2 Ui o 2 .Zru
Ooarton (1) = 3 qt Seg (’“ ) Va-#m2/q2 (3.12)

o P AL R DL A0 00 R L2 O N
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Thus even with the nearly correct threshold factors (3/2 =1 + 2m2/q2) the
resonances reproduce in an approximate way the parton behaviour: this is

called local q2 duality. For Charmonium Fig, 3.! shows the smoothened

resonances for four different potential models 4D and the curve corresponds
to Eq. 3.11 with the current quark mass m = 1.25 GeV,
C
3.0 T
* (i)
o (ii)
> & {iii)
e .
s {iv)
2.0 7

0 |

' 4.0
/S (Gev)

Fig. 3.1. From Ref. 40. (i) - (iv) denote the four potential models of Ref. &41.

4. Level Splittings (Fine and Hyperfine Structure)

In the physical spectrum the Schrddinger states are split up due to spin
interactions. In this Chapter we want to compare the magnitude of these
splittings with the simplest Ansatz we can imagine, the Fermi Breit Hamiltonian
These higher order corrections are relativistic kinematic corrections and spin

corrections:

H = Ho . Hrel + Hsp1n 4. 1)

42)



The spin corrections have three contributions:

spin-orbit: HL5= L 5 [R dk] )---*V(ﬁ))
T -1 T dz 1 d
tensor: H = E_f;;z (30;.:?02-2"—0;-0_2)[@"*&'4—}2]%;(9) | (4.2)
spin-spin: H¥= -1, &.5 AV, ®)
pin-spin: = é”%f PR AN Y™

—

Here U_i/z is the quark spin, S = 1/2(054-52) the meson spin, L its amgular
momentum, R the interquark distance. For the potential V(R) we take the
simplest ansatz V = VAF + VC with only VAF(R) being spin-dependent. Never-
theless, the spin—independent VC contributes to the spin orbit intzg‘;ction
due to the relativistic kinematic effect of the Thomas precession , re-
presented by the tem —1/4 V(R) in HLS(A.Z). In Quarkonium this additional
Thomas precession decreases the spin orbit splittings and it decreases

R, = ou(’e,-"2)/ aM(°p 7). While in Positronium, where V(R)w~I/RW,p(R),

RP = 0.8, the experimental value in Charmonium is RP = 0.5. D

We are confident that the Fermi-Breit Hamiltonian (4.2) is not a too bad
approximation. As an example let us consider the part of the relativistic
corrections due to the kinetic enmergy of the quarks. This correction is

pa .. . . .
<(,‘g’1) /Lj,,,, x> }; < %> Up to (5 of 0.4 the relativistic kinetic energy
correction is less than 10 Z. The @ one obtains in Charmonium calculations

is 0.2 to 0.3 for J/¢ and 0.27 to 0.4 for 4 varying L from 1.6 to 1.16 GeV.

Let us now compare experiment with the predictions from (4.2). The three P

waves of Charmonium are quite well established, as shown in Table 4.1:

3 ++ 3 ++
P.(1) | P00 )

State 3P2(2++)
Table 4.1:

centexr of gravi ty‘

nass [Cev] | 3.552 I 3.508 | 3.415 \ 3.522 |

The P wave splittings can be parametrized as

CHSS < AKL-8> , <H™> =BT %.3)

- A Ao s . -
where the tensor operator T = 35;-Ro;-R-0,-9, . The expectation values of L-S

. . L4 .
and T can be found in textbooks on Quantum Mechanics ). They are displayed
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in Table 4.2. A Charmonium analysis with the experimental masses of Table 4.1

4 K-8 <T >
L+1 ¥ ~2€/(20+3)
4 -7 | )
£-7 - (6+7) =2 (4¢1)/(20-1)
Table 4.2

vields for A and B
A = 34 MeV, B x> 10 MeV (4.4)

We obtain from (4.2) for the standard Charmonium potential

2 -3 7 -9
A 7;;? {og R - E;-Q/Q >

i

?

4 (4.5)

B=3,2 <% RS

We see that the spin dependence from the one gluon exchange (VAF) is governed
by (R >'wh11e the Thomas precession 1s governed by <R > Taking our
= 0.4, mc <R >1’O.07 GeV2 and (R >—O.£+ GeV from numerical fits we obtain

the values of A and B given in Table 4.3 for two different values of m . By

[GeV] 1.6 1.1
A [Mev] 35-12=23 56-32=24
B [Mev] 6 9

Table 4.3: A and B from numerical fits. In row A the contribution from the

Thomas precession is 12 and 32 MeV respectively.
comparison of Table 4.3 with Eq. (4.4) we see that we are in the right ball
park. We could not have expected a better agreement from our crude approxima—

tion!

Let us now try the spin-spin interaction which arises from the short
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range one gluon exchange V,_ alone. The relevant term in the Fermi-Breit

AF
Hamiltonian (4.2) was

55 4 = =
M= = P <, -G AV, (R) (4.6)

-

Because LY%F{R)NHA(' =45 8(R)the integral over the wave functions becomes

trivial and with & .G =25%-3 we have

Pl

4 = '

CHS> = 2o, 4r L, (052-3) [4(0)]* 4.7)
3 é:MQ

It is clear that (4.7) is an overestimate because the one gluon exchange

potential has a weaker singularity at the origin than the -1/R potential.

. L// \/2’ /'_—r . .
Taking ] (o) from .o via Eq. (2.5} and ng from Eq. (2.4) gives us
for the splittings

M(13s,) — M(175,) = Fo Mev My /2m.)?

M(23S,) - M(275) =35 MeV (Myr/2m )? “-®

Trying to identify ozc(ilsO)EX(z.sm means 70 MeV £ 250 MeV, »l;@’so)s 1%3.45)
means ® 35 MeV = 230 MeV, or 7;(2180)5 %¥(3.59) means =35 MeV = 80 MeV. Many

solutions have been proposed to solve this puzzle, among these are instanton

45) 46)

effects The

simplest solution might be that the [410){1 in Eq. (2.5) and in (4.7) are

and an anomalous ceclour magnetic moment of the c—quark

different objects. The next order correction to HP(m/L in (2.3) comes in

through a transverse gluon exchange between the two quark lines before

8)

annihilation. It yields a factor

A6 s (4.9)
(1- =5 )

which in no case is small. But before continuing this discussion let us wait
for estimates of some decay rates involving the pseudoscalars. Then we will
find that we have much more severe problems which question the identifications

above.

Let us now discuss the P and D wave splittings for heavier Quarkonia in

models I (Ref. 22) and II (Ref. 23). Fig. 4.1 shows the mass difference

TR TE LR R E R TR DL TRCN S U T T S e ECT U TR LU IUR TR T

A
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AM(3P2 - 3PO) and the ratio Rp =‘AM(3P2 - 3P1)/43M(3P] - 3PO) as a function

of the quark mass. The decrease of the overall splittings can be estimated

150

E [MeV] '

1251

100

as

50 /r, —05
) e
nJﬂb l :T r 1 . L
1 2 4 8 3] 32 64 100

Fig. 4.1. The mass difference AM(3P2 - 3PO) and the ratio R, as a function

of m. in model I and II.

Q

from the scaling behaviour of the radius R (2.11) in intermediate potential
regimes, where the potential is logarithmic, R“3m,—2aam -]/2, compare Eq.s (4.5).

Q Q

The Thomas precession contribution from confinement, however, decreases much

faster like R“]mQh2~ mQ_B/Z. The sharp rise of RP between 1 and 8 GeV quark

mass is due to this difference in the scaling behaviour. The increase of the
splittings above M(QQ) = 200 GeV (model II) is due to the Coulomb like potential
at short distances for which all mass differences have to scale like m., the

Q
better the smaller A/m_ is. If QCD were not asymptotic free but pure Coulombic

Q
at short distances, the increase would show up much earlier, namely above
M{(QQ) ¥30 GeV (model I). With asymptotic freedom the ratio RP approaches the
asymptotic Coulomb value of 0.8 from above, because the spin dependent potential

is weaker than Coulomb.

For the D wave masses we also parametrize like in Eq. (4.3) with <I8> and

{T> again given in Table 4.2. The coefficients A, B and RD=AM(3D3—3D2)AAM(3D2“3

DI)
are shown in Fig. 4.2 as functions of the quark mass. The interesting thing is

the change of sign of A for m  ~ 1.4 GeV which in case of small m_ leads to an

Q
inversion of the D wave multiplet in Charmonium. A similar inversion of the P
wave multiplet of the charmed mesons, D;; F;; has been predicted by Schnitzer 47) .



6 — Effects of this Thomas pre-
—— S . .
A.B R . .
» - cession also seem to show up 1n
;,_(MeV) R 1
—_——— the baryon spectrum, where a
2 08 phenomenological description of
‘ the splittings indicates that
0 06 the net spin orbit splittings
are small. In a potential model
-2 I
04 the L+S term and the Thomas pre—
- : 48)
-l do2 cession have to cancel .
J mg(GeV)-
-6 I"pJ_ " *T | N M .,..IQ . O
1 10 100
Fig. 4.2. The parameters A,B,C and the ratio RD {or Quarkonium D waves
as functions of mQ in model I ( = -~ ) and I (—).

5. How to Find the Levels

T e _ .
The best place to study the levels of Quarkonia 1s 1n e e annihilation,
There the vector states are produced via one-photon annihilation. The cross

section is given by

—
1237 lvoete m—?f

e —v—{ = (5.1)
2 212 2 2 .
(g*- M5) >+ M7 11
which yvields for a narrow resonance
- ~l [V et~
fdM o (ete” — V—“?je) = 7 Tﬁ “BV—'»; (5.2)
res v

From the 1 Qa states one can reach the lower levels by photonic and/or

hadronic transitions.

The C = + levels can be reached by one photon transitions. In the next
Chapter we shall discuss the electric and magnetic dipole transitions. The
C = — states can be reached from the vector mesons via two photon emission,

preferentially via a C = + state.

In Fig. 5.1 the hadronic transitions via 77, 7, 37 are shown for Bottonium.

R T R R L O L I T e T U TN T TR U T AR CR A T KRR AY ] N VR AR
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Fig. 5.1. Hadronic transitions in Bottonium. The Figure is an updated

version of that of Ref. 20.

A rather important transition to be looked for is the decay
33S](Iw>—9IIP1(1+—) + E{TT). It would reveal the ]Pl state, whose existence

is difficult to prove in Charmonium, where one had to look for‘f{3.7)—9]+_+3?f
Finding of the IIP] state is important because its mass allows to determine,
whether there are long range spin-spin correlations or not. In our Ansatz for
the Hamiltonian we only had short range spin-spin forces. They do not act on
P waves and therefore the ]]P] state is degenerate with the c.o.g. of the

49)

]3Pj states. A long range spin-spin force s however, would act on the P

waves and would lift this degeneracy.

30 the hadronic cascade decays can be understood

According to Gottfried
as radiative gluon transitions which can be subject to a multipole expansion
similar to electromagnetic radiation. While the expansion in (kR/2)2 might
converge, the expansion in &g /5 needs not. The distances involved in the pro-
cess are of the order of the wave function radius and O will be large. This
is the essential reason why we do not expect to be able to calculate absolute

rates for gluon radiation. But we might be able to derive selection rules
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51)

and the scaling behaviour. The typical example is
— = -2
[eq, —agd, 1) ~ mg (5.3)

for any two Qa stétes of the same flavour Q and A any state of light quarks,
provided QQ] and Qaz have the same parity, AL = 0 or 2 and 45 = C. If this
scaling law is already valid in Charmonium, then F(ﬁp,—)Jﬁ/’F?f):’fCUfEV implies
(/= Yrm ) = 10 ke,

In a recent paper, Billoire, Lacaze, Morel and Navelet 52) have investigated

the cascade 23SI(Q(_})—>1381(Q6) + hadrons. They constrain themselves to the
lowest order in ® and kR ("two gluon colour electric dipole emission™) and
project out the final spin states. They are able to roughly reproduce the ex-
perimentally observed 77 spectrum in ¢ J4 %7, see Fig. 5.2, However, in this

3

approximation the transition ZBSI(QQ)—-‘;’I SI(QQ) +% is zero because the gluon

momenta are neglected. (% is emitted with £= 1, but zero momentum gluons

cannot carry angular momentum).

50 |- Events/0.005 [GeV/c2] i
wh 1
0k | -
20} .

101

nl n o | |

3 b 5 b W([6ev]

Fig. 5.2. Comparison of the o' spectrum for ¥ 3¢ +2g to the experimental
data for $'—3/¢ #7. The spectrum corrected for acceptance is normalized
to the observed events in the peak region. The disagreement on the low
mass side is due to phase space and the absence of an Adler zero in

the matrix element of Ref. 52. 53)
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6, Photon Transitions and Sum Rules

For photon wave lengths long against the bound state size one can do a

multipole expansion. The widths are 34)
2 [K3R% Zk'/?z(”'f) En
[T~ « € 5 "%IGTE_ for transitions, (6.1)

Here k is the photon wave number, R the bound state radius in the reduced system.
The expansion parameter is (kR/Z)2 and is roughly 1/4 to 3/100 in Charmonium,

thus justifying the multipole expansion.

a) Electric Dipole Transitions and El Sum Rules

In Quarkonium the formula for an electric dipole transition (El) is 34)
E1 @ —sn QB = 2 ocel k™ [Ko 12
M2(AQ —y AR ) = 3 ¥y £ (6.2)

where §¥£ is the matrix element of the dipole operator.

There are many corrections to the naive formula:
i) higher multipoles which are at most 5 % in 4 decays;
ii) interference of the finite wave length of the photon field elkR with

55)

the bound state wave function. Okun and Voloshin have shown that these
corrections amount to at most 5 Z in Charmonium;

iii) relativistic corrections, consisting of a) relativistic corrections to
the wave functions, b) the interaction of the quark magnetic moment with
the electric vector of the photon field, the last correction gives factors

1.0 to 0.6 55); ¢) the recoil corrections have been found to be + 20 7 in

a relativistic model 56).
The radiative El widths of the standard Charmonium model are shown in Fig. 6.1.
The numbers in brackets are the model widths with corrections of type iii b).

All this indicates that the model numbers are only correct up to a factor two.

There are two kinds of electric dipole sum rules, the so called Thomas -

Reiche — Kuhn (TRK) sum rule (SR) and the Wigner SR 57)
58)

. They were rediscovered
for Charmonium by Jackson . Both SR's apply to the dipole matrix element
(6.2) without corrections. The SR's are derived from Heisenberg's uncertainty

relation



_23....

MeV
seug_ $'37) .

500 58101 Ke

X (3.55)
X {3.51)

400 i
X(3.41)
300 |
200 _
modet {460 KeV
[ 2350 Kev
100+ 170 KeV |
0 ]

Fig. 6.1. El transitions in Charmonium. Model widths are calculated via

Eq.s (6.11,12}. The numbers in brackets are the corrections of

type 1ii,b).
%, p]= 34 (h=c=1) (6.3)

In a static QQ potential without velocity dependent terms, we can replace P

via the equation of motion
— P [ N
B o= A ZQ[H ,x] (6.4)

After taking the expectation value in a state [4” and imserting a complete set

of states |[f)> the replacement of P leads to

Y (ES—EN IR 1E = = (6.5)

The number of final states is restricted by selection rules. In an arbitrary

static potential A€= =1 for dipole transitions. In a harmonic oscillator

I UERTSNETRRE TN AR L T ATEL LTV ON VTG R IRRUUREI DU TR LT MR L L AL B L b B
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potential, however, the number of final states is further restricted by the
oscillator selection rule: The change of the number of radial nodes Ar is
either 0 or -af . This fact is called saturation of the ST by the harmenic

oscillator.

To derive the Wigner SR we recall Egq. (6.3) which can be written as

Y 8 . - — . .
mex [(PORTPId = LipENRIXKIL> = 34 _ (6.6)
!
The angular selection rule now enables us to project out the final states with
Al= + 1 and those with &0= - 1. After some elaborate algebra one arrives at
two SR's 57):
~° oy 2 2 ~LReE-1) 4
D, (Ep —E7) Ryt = ===t L (6.72)

o ey, = 2_ (0+1)Re+3) 1

which of course add up to Eq. (6.5). We have gained two things: first the
number of final states on the l.h.s. of (6.7) is smaller than in the TRK SR,
and second, (6.7a) has a negative sign which will be very helpful.

b) Explicit Transition Rates and Bounds

To write down the rates it is convenient to express the dipole operator of

Eq. (6.2) through the radial operator Rf i 59)
g2
: / -, L)lo(fZ St ’efﬂ's rpr 2
¢ — g = R 7)d . < 8Ixjir ¢
[T(rls,§ — 78,54 ) G k@p){jm I X, €>] (6.8)

with

v e-1lxlT,e> = éﬁfo?"d!? @f@f(&)-k-&?ﬁe(@ =70 Ky,
o (6.9)
<rleetlix e > =F£Vf+1'jfe%l€ @H(R)-:?-U?re(k) =-(701' Ry,

The matrix element [ﬁ}il of the sum rules Eq.s (6.5,7) does not involve quark
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spin. It is related to <f;€qlxﬂf}€)’ by

ST et (v em >l = A_jert el T, ey

- | %
20 +4

(6.10)

/

"
We can now write down rates and bounds. In Fig. 6.2 we show the guark spin
triplet El transitions for Bottonium. Transitions for which there is an

upper and/or lower bound are labelled by the formula numbers.

3's,

Fig. 6.2. El tramsitions in
Bottonium. The numbers in
brackets indicate formulae

for upper and lower bounds.

The transition rates are:

3 2
NG —>y 5 )= —g o g I{ES(P\ 6.11)
24 3 2
(%5, =7 P = % 254 ol g K | R s (6.12)
p 3 ‘ 2
F(3Pﬂ-——>fz’Dér)=-%(an)o(eo%k{jﬁij} IR, 1 (6.13)

y y {4471 72 2
F(Bpﬂ-—vg’ 3D,a-f)=-§(gg+1)o<e\fk {ﬂ“} /RP,D) (6.14)
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The TRK SR (6.5) gives us as a bound

3
g

(£, - £, )/KQNS/ <

which implies an upper bound on IP — 18§
3 4 43
(13 P —y1%5,) < 9“% o g

For £ =1 in the initial state the first two terms of (6.7a) give
O__CD _.4
(&, Q.zsrp/ +(€/5 “4{))/’857/9/ s Mg
With (6.16) this results in
— 2
(‘-I:_ZS”E )//?zs:¢p "a

and leads to the upper bound

2 3 4 K2
[T(R%, —r17p) ¢ 5 - oleg L Py

In a similar way we obtain

) e 2 3 o ..v 5_
(Ezp—[:zs>/@625/ & nig * (5:25 )/ 254!’/ M,
o 5
(E/I "IE )/ 4,0’!,9/ m&
(.9_ o 7 2 —3 o -2 2.
( 2o £ )/’QZP,"LD/ < Ma ! (E:TD )/QP’W/ < Wy

and thus upper bounds on the widths:

{(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)
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3 244722 k3 2
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Next, we write (6.18) as

- o o A
(tIP -E//s )/R%/Pﬂ-; ,_;,,a *+ '/E E )/’stfzp/

and obtain by 'inverting' (6.20) the lower bound

3 3 ¢ 5 K4 3 k«ms Lo %P
. 2 e LANNSEE Z Al f !
BRI 3% o e T 2 1 k2O @8 = gt
lS‘IF 'ff"fS

Similarly we obtain from (6.23)

o 3 2 _%_ G © 2
(549 E4p )/Rﬁ;w/ z mMa ! (Ezp Em )/QA’»PX’D/

and thus the lower beound on the width

3
147192 & 3
[(1°p;, — 7{43%/) ”(21*4)°<eq {j 24; P ’
;oqr i
123‘-#7) gz,'fj Kapap A/Z(fo’,)’»‘ﬂ /—’?ifg —->9r7p )
,, i

1 KL
) 27 4} o2
(J +1) Jv 1 1 ‘//zf’w 10,7°

In Fig. 6.3 we give the upper bounds for Bottonium using m = 4,6 GeV.

We neglect the splittings and restrict ourselves to states with j = 1.

(6.

(6.

(6.

(6.

(6

24)

.25}

.26)

27)

28)

29)

.30)
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Fig. 6.3. Upper bounds for El =13.0keV

transition widths in

Bottonium.

1S,

The bounds in Charmonium are of more practical use at present. They are compiled

in Table 6.1.

transition TRK SR W SR model
z?’s1 ——>;r13P2 <40 36
2381 ——>?"]3P1 < 56 50
23s] —>'5*13PO < 64 58

3 3

1 P2 —> 7T S] < 490 > 160 + 140 460

3 3

1 P, 71 S] < 370 >125 + 75 350

3 3

1 PO%TI S1 < 180 > 60 + 30 170
Table 6.1: Upper and lower limits on E! transitions from the Thomas—Reiche~Kuhn

and Wigner (W) sum rules (SR). All widths in keV. The secend numbers
in the lower half of the W SR column arise from the second term r.h.s.
of (6.28). The quark mass 1s taken to be m, = 1.6 GeV. Also the model

numbers are only sensitiwve to m .
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Combining the bounds of Table 6.l and the experimentally measured branching
ratios for /¥ - 'L)*J/‘Fone can obtain bounds for the total widths, as shown
in Table 6.2.

P states x3.41) = 07T B 3.5 = 17T KU3.55) = 2"t
BR(FI/Y), exp. [ %]3%s3 35 £ 7 1626
[oe ® /%), bounds [Mev] 3...6 0.57 ... 1.05 2.15 ... 3.5

Table 6.2: Bounds on (_;ot(l’c/}{) derived from the sum rules, Table 6.1,
and the experimental BRs of 'E/x —73’]{/'4—'. The sum rules correspond
to an uncorrected El transition, this gives an additional theoretical

uncertainty of a factor 2.

The total widths of the PC/:‘C states are calculable as the sum of the radiative
and the hadronic (gluon annihilation) widths. A comparison of these total
widths with the bounds in Table 6.2 will be a comparison of theory with

"experiment'. This will be done in Chapter 8.
¢) Magnetic Dipole Transitions

Ml decays are due to the interaction of the magnetic photon field vector

-
T = kx& and the quark magnetic moment Ha =e'ec{'é?““o\' The matrix element reads

S —

Cf | pgT(kxe)|4> (6.31)

and involves the spin part of the states |[i> and !f> only. We have two graphs

54)

and therefore &4 times the rate as for atomic Ml transitions

T i3
[T (\/7_——> i PS,._')-: = oieé' ?n‘é (Yrr’ ;
(6.32)

S
F(PST_*'JFVT’)’“" 4045'@& *;i—az Cy—f‘d"’

An M1 tranmsition requires Al=0 and the spatial overlap between ii>and [£>

is either 1(r = r') or O (r # ', forbidden M!) in this approximation.

S L L L e SETEY e UL TEE IR L U TSR TR L LN TE AR LU T UL LR
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Relativistic corrections of course modify the rate (6.32) and lead to small
transitions alsc between orthogonal (r = r') states. In allowed transitions
(r = r') the spatial overlap of one should not be changed much by relativistic

corrections (but compare section 7).

d) Problems with M! in Charmonium

In Fig. 6.4 possible candidates for the pseudoscalar partners of J/¢ and ¥ ¢
and the corresponding Ml transitions are shown. Tf the second A is not at
3.59 GeV but at 3.18 GeV (second experimental solution) it can hardly be

explained as a pseudoscalar. In the figure the calculated M! widths are shown.

5B, ¢'(37)
(0.3:01)°/, B1<2%
[ <5keV

(0.820.L}%

1/4{31)

2 kel Bi<7%
214 107 X{283)=ﬂ;/ r"< 1keV

Fig. 6.4: Ml transitions in Charmonium. Theoretical widths, eq. (6.32)

are indicated at the transition lines. Bl(ll) and BI-B are

2
from experiment, Ref. 1), 60).

They have at first to be contrasted with the experimental bounds on these
transitions as indicated. Together with the experimental product of branching

ratios these bounds allow tec derive lower limits on the decay branching fractions
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of these states, as shown in Table 6.3. There is no way of assigning one of

the experimental states to a pseudoscalar without coming into conflict with

a) absolute M1 widths, b) branching fractions for the decay of this state.

In the mext Chapter we shall discuss alternatives which have been proposed

in the literature.

State X(3.59) K (3.45) X(2.83)

B, -8, (Exp.) [7][0.37 0.1 0.8 % 0.4 0.014 * 0.004
B, (Exp.) [2] | <2 <2 < 1.7

B, (Theory) [7] [~o0.5 ~9 ~ 45

B, (Exp.) [7] [>10 > 20 > 0.7

B2 (Theory) [Z] <1 < 1 =~ O,1

Table 6.3: Experimental upper bounds on B1 and lower bounds on B2 via B,+B

72

and comparison with theory. The kind of tramsition for Bl’ BZ is

H

indicated in Fig. 6.4. The theoretical numbers arise from allowed

and "forbidden" M] transitions and the ratio of 2% versus 2 gluon

annihilation. For the latter see Chapter 8. The forbidden MI transi-

tion should lead to a B, not bigger than a few 10 keV/a few I\IeVﬁ"--IO—2

e) Scaling of El and M! transiticns

For El transitions the scaling behaviour is most easily cbtained from the

sum rules:

k*® 4 k2
[T ~ — o~

k(o; ma m&

Ml transitioms, on the other hand, scale like

L3

o
Ma

[T~ /“szs ~

(6.33)

(6.34)

The ratio MI/El scales like k/mQ. A comparison of related radiative transitions

in Charmonium, Bottonium and eventually Toponium can thus help to distinguish

El from M1 tramnsitions.
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7. The X(2.83), X(3.45) and X(3.59/3.18) Puzzles

In Chapter 4 we learned that the mass splittings 1/% - X(2.83) and 4"~ X
are a factor three larger than naively expected. But the really important
point which disfavours the interpretation of ¥ and any X as the pseudoscalar
partners of J/¥ and ¥/is the following: The radiative MI transitions, which
should be allowed, are by factors 5 to 30 smaller than expected. The branching
fraction of the forbidden transition XKB.AS)—991V¥ is at least a factor 20
larger than estimated. Similarly the B(X(2.83)—§2g§ 1s sbout one order of
magnitude larger than predicted in Charmonium. These numbers were shown in
Fig. 6.4 and Table 6.3. The discrepancies with the M! transitions are most
puzzling, because related estimates in the 'old' meson spectroscopy work with-

. . . o .. 61
in a factor 2 or better. We just like to recall the famous W-—>FT transition ).

The pleasant solution would be to find the true pseudoscalars much closer
to J/¥ and ?Jrespectively. Experimentally this is not ruled out. Then, however,
the X and X states are either not real or at least no simple QQ states.

51)

At the 1977 Hamburg Conference Gottfried has enumerated possible ex-
planations for the X and X(3.45) states. We are going to repeat them and add

some new speculations (the following also applies to ¥(3.59/3.18)).

There is the suggestion of 4 quark states ccqq with all quarks in the same

2)

orbital state., De RGjula and Jaffe 6 estimate a jP = 0" level at 3.6 GeV.
This model suffers from a disease: The hadronic width must be large because it
can decay Zwelg allowed into X% or Xﬁ if it has I = 1 or O.

63)

Lipkin has a similar idea. He argues that estimates of masses of 4 quark

states are unreliable, but the level ordering is to be taken seriously. He
further assigns the states 5(970)[1 = I,jp= O+J and S*(993)[i =0, jP = O+J to
the configurations (sgqa'), both below the ¢(s§). By analogy one would expect
ceqq' to lie below J/¥. The states would be Zweig stable and possibly narrow
enough to be assigﬁed to an I = 0,1 doublet X(2.83). It is to be noted that
the transitions ]/‘f’»xy, 4% Xy are now of El type and ¢l Xy has lot of phase
space and, maybe, a sizeable dipole matrix element! To test the idea, omne
should search for the transitions %> X¢ and %J4yXGﬁﬂ-%rXﬂi Their observation

would show that X is not a cc state. The ¥(3.45) could be fitted into this
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+ = = . .
scheme as a O ccss state. In a rvecent paper Filam, Margollis and Rudaz 64)

discuss the X(2.88) production in ﬁ?)» 7y n at 40 GeV/ce 65).

66
): In the Bethe
Salpeter framework with strong binding there are excitations also in the re-

Another explanation for ¥(3.45) was given by the authors

lative time coordinate, which have mneo analogue in the nonrelativistic
Schridinger equation. The first extra C = + state is a "time like' P wave
with jPC =0 or 1++, depending on the Dirac structure of the model. The
¥~ray transitions become of El type. However, this model offers no explana-
tion for the X(2.83), besides being the 0"+ ground state.

Earari proposed that the X(3.45) 1is the cc state 1D2 67). However, there
are problems with the magnetic transition to the J/f. For a detailed dis-
cussion see Ref. 55.

It could be that the X¥(3.45) is a ce - gluon state 68,69)

70)

states were conjectured e.g. by Jaffe and Johnson . In a recent paper,

. Purely gluonic

Ishikawa 71 claims a glue ball at 2.81 GeV with jPC = 0 7 which mixes with
the true 7;.

We already mentioned in Chapter 4 that the contribution to the hyperfine
interaction induced by the presence of instantons has been considered as a
. . 45 . . .
solution to the large J/¥-X splitting. ) However, quantitative estimates

are unreliable 72) and instantons do not cure the M1 problem.

Maybe the pertdrbative treatment of the hyperfine interaction is grossly

misleading? In a recent paper, Gromes 73 gives the following qualitative

arguments: if the hyperfine gplitting is essentially due to one gluon exchange,

o must be large (x> 0.53). This then leads to a strongly localized and rela-

tivistic wave functiocn of the (A and a rather strange form of the wave function

of Yc" while nothing peculiar happens to the triplet states. Overlap integrals

are quite different frem the naive expectation and the problems connected with

radiative decays may well be solved. The hadronic width of %, may become
~20 MeV, that of chis much smaller. The branching ratio B(7.-2y) remains
unaffected. The naive use of the Fermi-Breit Hamiltonian for the Charmonium
hyperfine splitting was already eritized by Ditsas, McDougall and Moorhouse

There is, however, one problem in the approach of Gromes:‘+L57X becomes an

74)

Y
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1)

almost allowed M1 transition. But experimentally we do not see it .

From all these considerations we conclude that we need additional experimen-—
tal information. Maybe the first piece of new experimental information already
rules out the ¥(3.45): The Mark IT collaboration does not find the ¥(3.45) at

the expected level 75).

8. Electro~ and Chromomagnetic Annihilation

Quarkonium states may annihilate intc photons and/or gluons. Since for non-
relativistic bound states annihilation is a pointlike process, the quarks must
come together to annihilate. Not only the annihilation into photons is governed
by a small coupling &= 1/137 but hopefully also that into gluons by a small
®¢(small R). We can approximate the decay by the lowest order (Born-) graph 4),
i.e. we can apply the 'minimal gluon scheme'. What do we mean by annihilation
into gluons? Of course Quarkonium annihilates into hadrons, not gluons. How-
ever, QCD suggests that this annihilation proceeds via gluons. We can approxi-
mate the amplitude for hadronic annihilation as the product A(Qa ->»hadrons) =
AI(Qa—a-minimal number of gluons) -A2 (minimal number of gluons —s hadrons)}. A]
is calculable in QCD and this is what we will do. For A2 we have to make
assumptions. The simplest assumption is A22 = 1. ) This is an absolute upper

bound. In practice 4 2 may well be smaller. First, the gluoms may be in a

state with zero overiap to any known hadron system, e.g. two gluons in a spin
2 state at an invariant mass of M = 300 MeV. Second, colour bleaching effects
can only make A22 smaller, not larger. Third, in some regions of the three
gluon phase space higher orders become very important, because a 400 MeV

decay gluon cannot be discriminated against a 400 MeV confinement gluon.
Realistic rates might therefore be much smaller than what we will calculate.
Additionally, not only A22 = | may be too optimistic, but also the calculation
of A] in lowest order might be grossly misleading because of higher order
corrections. We do not know these higher order corrections in QCD but we know
the next order QED correction to the 381 positronium decay into three photons 76):
With ®€= 1/3 it would be — 100 Z. But note, the more massive Qa is the better
our approximations should hold. For Charmonium they are most probably wrong.
This might explain a part of the discrepancy between the O(annihilation),
found from the calculation described above, and the Og(spectruml We will, how-

ever, ignore all these shortcomings and just calculate hadronic widths as gluon
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annihilation widths.

We proceed as follows: first we collect well known formulae. Since in
Born approximation there is no gluon selfinteraction yet, the conversion from
photons to gluons is just dome by redefining the charge. We will then discuss
applications to Quarkonia. The results will also be relevant for the next

Chapter on jets.

a) Annihilation Formulae

The vector state can decay intc a lepton or quark pair (hadrons), Fig. 8.1.

I\

-e Fig. 8.1. Leptonic decay of 17 (QQ) .
///// The electrons may be re-

placed by M% T's or quarks

lighter than Q.

For Mé » 4 mi and including colour the formula for a 381 state is 17,
- -2
[(3s,—vete”) = oled |R@/* (M /2) (8.1a)

Here R(0) is the radial Schrddinger wave function at the origin. Quarks couple
to the photon in the same way as leptons so that (8.1) is understood for each
55)

lepton or quark flavour separately: r%q =3Eﬁ12?-' For a 3D1 state one has

(3D, —> e'e’) = 200 ®eq /R "oyt M8 (8.1b)

Numetical estimates of (8.1b) for Charmonium (‘Fk3.77)—9e+e_) only give a few
eV. The experimental value for K —(‘P(B 77)) = 0.36 keV 77). So, there must

be other decay mechanisms. The 51mplest would be an admixture of the ?(3 7).
Within the nonrelativistic bound state picture only the tensor forces, arising
from one gluon exchange, mix the 2381 and 13D1 wave, but numerical estimates
again only give a few eV 55). There must be another source of mixing. The
Cornell group 78) proposed an S-D mixing via virtual DD states and they success-—
fully predicted [+ = of ¥(3.77).

The decay of 1 into two photons as well as two gluons is impossible. Imn
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the two photon case this is just the photon C parity. Also two gluons in a
symmetric colour singlet state have even C. This can be seen as follows 55):
gluons can be represented by matrices in colour space, A,B,C,... There is

only one way to construct a colour singlet out of two gluons A,B: Tr(AB).

But Tr(AB) is even under charge conjugation. For three gluons we have two

ways to construct a cclour singlet, Tr{ABC) and Tr(ACB). The symmetric combina-
tion has negative C parity (D-coupling), the antisymmetric one has C = +1
(F-coupling). Therefore a 1  QQ state can decay into any number of gluons
larger than two. Remember that for electromagnetic decays only an odd number

of photons is allowed: photons are C eigenstates.

In lowest order the 1" can decay into three photons as well as three
gluons or one photon plus two gluons. The three photon decay of 381, Fig. 8.2.
has been originally calculated by Ore and Powell 79) (here including the

statistical colour factor):

M(3s — 23y) 3z xvey
¢} 2 2
(38, — 3g) _ 20 o3 . ”,:5 [Reor] (8.2)
&7 7 ma?.
&o) F 4 2
[7(35, — y<3) 5 ¥ 2

Fig, 8.2.: 37 decay of 3S](QQ). When the

— hotons are replaced by gluons,
3 P
S] u. T this denotes the "direct' hadronic
' decay.

The conversion factor from the three photon to the three gluon decay is 33)
M L A %l 2 .
53/G - 3 G.?Z 'V(E_i—2j> (8.3)

r °< ea QJGJC Sym

3 . .
and has the following origin: C{széiseé’gust converts the charges together with

17}(3_0" 42. &C) mlz The zq’@'c counts the number of coloured graphs in the 3 g
L 1 L'y

case, while the 3 ° counts the number of coloured graphs in the 37y case.
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The pseudoscalar 1SO ground state can decay into two photons or two gluons

in lowest order, Fig. 8.3.

3 | Fig. 8.3.: 2 ¢ decay of QQ. For the
0,27 SO hadronic decay the photons
are replaced by gluons.

81)

The two photon decay was first calculated by Pomeranchuk . Including colour
one has '
81)
1 1y .
(s, — 2y ) Soc €
(5o =2y 3| IR ®
= — (8.4)
4 4) 2, o L
with the conversion factor
2
2 a 1¢
of 41 2%
0o/n s X 25 fr(—“‘)i (8.5)
2. -
%/27 ey 9 a,& ¢ 2

We do not discuss the decay intc more photons or gludns. Assuming that the 2 g
decay is the basic process for the dominant hadronic decay of the pseudoscalar,

Eq. (8.5) yielded the branching fraction for the 2% decay {Table 6.3.)

We now turn to P wave annihilation,

] g, Figs. 8.3 and 8.4. In a P wave the wave
3 . C
F: , P] 92 function at the origin is zero. That means
a) g that the quarks do mot like to come together
’ 3

to annihilate. The P waves, however, can

annihilate when the two quarks come near each

3 TI Gy
a other and simultaneously have a relative
,8) 32 veloi?ty # 0. This is a higher order process
3 in ﬁ =($€)% It is governed by the spatial
3P 9: derivative of the wave function. The anni-
1 q hilation widths of P waves will be smaller
¢ _ than that of the 1SO wave! The widths of the
9 spin O and spin 2 P waves of Positreonium have
. Fig. 8.4.: The gluonic decay first been calculated by Alekseev 82). The
diagrams of spin same calculation for Charmonium has been done
1 P waves. by Barbieri, Gattc and Kdgerler 83). They

yield
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(3R —24) bots” IR (037

2 - & 2 4 (8.6)
f_'( /)2, — 2% ) -EO«/S ma

3

The 2y width of “P can be obtained from (8.6) by the conversion facter (8.5).

0,2
It is interesting to note that the two gluons in the 3P2 decay come out with
. C e _+ . 84)
opposite helicities (wmmp), Jz = -2
b ]
P (8.7)
AN

;=42 #0

whereas in the 3PO decay both gluons necessarily have the same helicity. The

decays of the j = 1 P waves are more complicated. A spin | state cannot decay
into two massless vector bosons, either photons or gluons in a colour singlet 85).
We therefore have to consider the next order (in ®) diagrams, which for gluon
annihilation are shown in Fig. 8.4, They bring up another complication. We now
have a three body phase space and have to integrate over all possible energies

of, say, gluon 1. Gluon ! is allowed to be soft. It further is allowed to carry
away the angular momentum of the P wave. So it has all characteristics of a
bremsstrahlungs gluon. The same is true for photon annihilation, except that in
this case diagram b) of Fig. 8.4 is absent. A bremsstrahlungs gluon or photon in
the anrihilation of a free QQ pair with £= 1 leads to the typical bremsstrahlungs
singularity. The cross section factorizes into the bremsstrahlungs part and the
annihilation of an £= 0 QQ pair into two photons or gluons. For a bound state,
however, the annihilation amplitude cannot be singular, because the quarks are
not on shell. Their virtuality is of the order of the bound state dimensions.

For a bound state annihilation we therefore may cut the amplitude at momenta

of the soft (bremsstrahlungs) photon or gluon which correspond to the bound state
radius. In diagram language, the singularity will be cancelled by higher order
graphs like vertex‘corrections. For QED this procedure 1s well defined 86). We
hope that it will work parallel for QCD. As a cutoff momentum for QCD annihila-
tion we take the typical momentum for a soft "confinement" gluon, 400 MeV, since
in a QCD process higher order graphs will involve such "confinement'" gluons.

For heavier Quarkonia one has to take the minimum of R%lhr and 400 MeV. We will ;

87)

express the cutoff in terms of a parameter A= 2M-400 MeV » M being the
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Quarkonium bound state mass. Let us first discuss the !Pl decay. This state

P +- . . . .
has ] C. ] and therefore only diagram a) of Fig. 8.4 can contribute, 1in
either photon or gluon amnihilation. Its decay has been calculated by Barbieri,

Gatto and Remiddi 86). They find

20 3 /@ébﬂl
g s 4
ma

2
M('P,. — 34) = fmj% (8.8)
where the log arises from the bremsstrahlungs singularity of the diagram. For
the decay of the 3P] state, jPC = ]++, only diagram c) can contribute to the
photon annihilation while in principle all three diagrams can contribute to
the gluon annihilation. Barbieri, Gatto and Remiddi found that the singular
parts of the diagrams a) and b) cancel each other. Okun and Voloshin 35) gave
the general argument for this: The amplitudes a) and b) interfere, since they
lead to the same final state. Since they can both be factorized into the brems-
strahlungs part times the corresponding annihilation diagram for the 2 gluon
annihilation of a coloured 35I state, also their sum can be factorized in this
way. This sum, however, contains all graphs to this order for 38 {coloured) =»2g,

55) :

which must be zero from unitarity arguments . Neglecting the non—singular

parts of amplitudes a) and b) against the singular c¢) means that also for the

gluon annihilation the calculation of graph c) is sufficient. It gives 86,87)
- N s [Rywm]* ut
3 — ~ N s 4 M1
P( l:>4-1-+ 94 % ) 3 2% g (,ZJ'?’ =~ 2 ) (8.9)

where N is the number of light flavours q. The photon versions of (8.8) and (8.9)

can be found in Ref. 55.

For completeness we note the formula for the decay of the spin 2 D wave
into 2 gluons which is given by the second derivative of the wave function,

.. . . Z
this is the second order in an expanslion of ﬂl=(qﬁ:) and therefore even less

reliable. Okun and Voloshin 33) calculated
17 2.
~ /4 . _ 2 2 IGQD(O)/
1 (Dz,'+ »2q ) = —3“5 P (8.10)
&

b) Applications

The ratio of Eq.s (8.2) and (8.1a) gives
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BN

3¢ e 2 3
s = 39) 0 728 o Ly,

3
— — = — Xg . (8.11)
735, —> ete”) 17 «*C* Feg

If we interpret as usual the 3g annihilation as the total direct hadronic

annihilation then this is a measurable quantity and we have e.g. in Charmonium

/H( J/ ¢ — ﬁaa’r)af,',
/(Y ¢~ efe”)

from which follows that the ¥ (annihilation) is ®.=0.19. Because of the third

~ A0 (8.12)

power of o in (8.11) this value is quite stable even against large correctioms
to the widths. But it certainly is subject to many corrections like those dis-
cussed at the beginning of this Chapter or corrections to the wave function at

the origin like (4.9).

A very interesting ratio is that of Egs. (8.6) to Eq. (8.9):

MR 29) @ [(38,—9ig) : (%R, —29)

2+
8.13)
—_ R 20”“(; ﬂz_ 1 . (
It leads to ratios of
15 ¢ 2.1 (¢ ¢ & I/ 4 system
15 : 5,70, : 4 in the T system (8.14)
15 ¢+ 11 o 4 30 GeV Qa system

We can of course calculate more than these ratios, namely the total widths of
the P waves, assuming that these are given by the gluon annihilation width and
radiative transition width essentially. The result is shown in Table 8.1 for
Charmonium, the Y and the tt (30 GeV) system, and compared to the quasi-experi-
mental bounds of Table 6.2, For the calculation of Eq.s (8.6, 8, 9) we need
IR'(O)IZ_ Numerical calculations give lQ'CE(o)lzmc‘?"z 0.024 Gev2,
[Q'bg(o)lzmb"3r_~ao.012 Gev? and [Q’tE(O)[th"3uo.oo7 GeV?. These quantities

are relatively quark mass independent. Although the widths of Table 8.1 are



_.4]_

—1 3 1 3 | 3
Tooe Cro) [kev]| [0, CBp [kev] | T Crp [kev]
_ theory 4000 500 1500
cc
"quasiexp."| 6000 T 6000 1000 T 200 3200 1 1600
o =0.15 | 350 50 150
bb  °
o, =0.20 | 600 80 200
o« = 0.12 85 53 60
- =3
tt
oL, = 0.15 | 105 56 65

Table 8.1.: Comparison of Charmonium "experiment' and theory for the P wave

total widths, including the radiative transitions from Table 6.1. The Yexperiment"

line is taken from Table 6.2, here only errors arising from BR({J/‘/’) are shown.

We also give the prospects for the Y and tt systems of 30 GeV, where the radiative

transitions are included, they are =40 keV for X' P waves (Fig. 6.3) and 50 keV

for each tt P wav

e.
cc decay channel: eE+;A,:: an 3g TZg
2 32 L gy o2
e = 2/3 s . R 5(r-9) otg E(r=-3)
Q 78 7 o @ 95 <
a) A =0.19 2 i 2.5 10 1.2
bb decay channel: | eetup: Jgd +17: 3g ¥2g
e =_1/3 2 . R 2-0(172'—9)0(53 P(”L‘jjdlL
Q 14 7 2 9 7 o .
b) OLS = 0.15 2 5 20 0.8
oL = 0.18 2 5 34 1.1
tt (30 GeV) e e
decay channel: ee+/4,u:2qq +T7: 3g 72g
e. = 2/3 2 : R S5(rt-9 53 P(r4-9) Ko *
Q IF T et g7 =<
c) D¢S = 0,12 2 : 5 2.5 0.5
&, = 0.15 2 : 5 5 0.8
Table 8.2.:

Ratios of the ground state decay channels a) in Charmonium,

b) in the Ysystem, c¢) in a 30 GeV tt system. For Charmonium O(S: 0.19

agrees with experiment {lowest order formulae). For rdecays the value

of D(Sbest compatible with experiment, B/“_/'; s

88)

seems to be 0.18 at present.



_42_..

very model dependent, we conclude that the pattern of (8.14) agrees very well
with the observed branching fractions of the Charmonium P waves. This is one

of the successful predictions of QCD within Charmonium.

We now give ratios of widths of the 381 decay in Table 8.2. The decay
channels of the vector ground state are: i) into lepton pairs, eg,/ﬁ:,'ri?,
ii) into Zqq, iii) the three gluon annihilation and iv) the annihilation into

one photon and two gluons (Eg.s 8.2).

The radiative decays of J/4 (or]) 381—?9”+ hadrons are very interesting
because they allow to study the Zweig suppression mechanism. QCD predicts
the branching ratio y2g/3g to be of the order of 1/10 in Charmonium, while
in the old hadron sbectroscopy photon inclusive decays were usually down by
a factor of 200. For Charmonium three exclusive contributions to 3S]—§y2g
have been seen so far, namely lﬁé—agﬁ,yiﬂa¥\vith branching fractions
0.082 % 0.01é (;.24 2 0.07, 0.2 £ 0.07 7 respectively. Billoire, Lacaze, Morel
9

and Navelet have performed a spin parity analysis of the two gluon system

in 381-9y2g. Their result is shown in Fig. 8.5. The remarkable feature is the

4 ar

0 S

dw

Total
20 -
1. -
b
f e
Fig. 8.5. The total hadronic mass spectrum and the contributions of 0 , 2
89)

+ . . - I
and 4 states to i1t. Other contributions are negligible.
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. + . . .
dominance of the 2 two gluon state, especially at small invariant mass W.

This can be seen from the Ore-Powell matrix element:

W ([(17 k&p 17 €2y 57’(5) ]:(k#()ks(ky“ks (J(+k)k&] 1)(
{5 A:’. *A' +hpky K 5 + kol € -k,ﬁ%]f—
[@h-%a k&gp g@+@@ggq%j+

+ 4 &&= 3 + _24——-)3}

(8.15)

In the limit of small gluon—gluon invariant mass Mi 5 = (kI + kz)z-—po, which
, ‘

for real quanta (ki = 0) implies /fz_ — /U{,, 5 F.;'*[{’ _50?451-%—90, it 1s easily

checked that in this limit only the first term aFQ_E“‘] survives 90). From

this structure follows: the helicities of the two gluons are opposite, their

transverse polarizations are parallel

-

3
%Dgﬁgggm’ | (8.16)

<=
1220, #22

If we allow a finite but small two gluon mass (corresponding to a small angle
between g, and gz) the transformation into the two gluon rest frame yields the

configuration

-p
TEEO00 ™ Bso00s (8.17)

. + . . .

l.e, Jz = X 2, The gluons are now polarized in such a way that they like to
couple to the 3Pz(qa) state (see Eq. 8.7). Interpreting the £(1270) meson as
a 3P2(qa) state the diagram

(8.18)
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90)

has been calculated , describing the production and decay of the f meson

by three kinematically independent helicity amplitudes
- i . - _
74 (4{0{ 7) rd ?(4) + 2 (0,4,-2) = (/40! }44/ AL) (8.19)

which can be measured via the decay kinematics. The result of the calculation
is shown in Fig. 8.6 as function of the mass ratio M( P (qq))/M( S (QQ))
the point J@ﬁagf these amplitude ratios have been measured and agree with

this QCD calculation, as shown in Fig. 8.7.

io E
< : 1. o1
-

y i 9

] 8

- 7

1+ 6

1 B

} l 4r—-J/4J—*‘\’f

of] - 3
2
]

M2

Fig. 8.6. Ratios of helicity amplitudes Ag in 331(Q6)'*?3“+ 3Pz(qa) as a
function of M(3P2)/M(Q5). £l, M2, E3 denote the familiar multipole

transitions, the (x,y) pair for J/%héafis indicated.

T T T O S AT ST PP



X = A1/A0

Fig. 8.7.: A measurement of the predicted (x,y) pair of Fig. 8.6 for

J/4‘e7¢by the PLUTO collaboration. The cross is the central

value of the experiment, the lines indicate standard deviatioms.
92)

+

TMD denctes the prediction of the tensor meson dominance model

-+
Billoire et al, ) compare the 0” chamnnels where there is no 'width anomaly'

at small W (see Fig. 8.5) with experiment, Fig. 8.8 The agreement with 1_and %’

is rather satisfactory.

A W

Sk dr*Oi
d 1

3 w

Fig. 8.8. The spectrum

integrated up to W,

dW’ [keV]

versus W, for Ot final
states., The shaded area

is the experimental result

for Pt = yyray').

Upper bound for L
I WiGev
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9, Jets from Quarkonia

The exploration of QCD suffers from the fact that its constituents, the
quarks and gluons, cannot exist as free particles because of the confinement.
Their properties cannot be investigated directly. But there is a surrogate for
the observation of the free constituents, that are the jets. Experimentally
jets are observed not only in deep inelastic hadron-hadron and lepton-hadron
scattering but especially in ete” annihilation, once the c.m. energy of 5 GeV
is exceeded. The angular distribution of these jets is completely comsistent
with the production of two spin 1/2 (almost) massless particles 93’94), the
quarks, via photon vacuum polarisation. The fragmentation of quarks or gluons

into hadrons is imagined as a nonperturbative confinement effect, which con-

serves the original directed momenta.

At present there is no way of calculating this process, but there exists a
very suggestive picture: Inside a small space region with 21/2 fm radius colour
can exist and within this region the qq pair (or gluocn) production is a short
distance effect (see Fig. 9.1). When hard coloured quanta (quarks or gluons)

with momenta P reach the con~

ar
o\. qL-l—-—!(s:\Q/ finement sphere they must frag-
0 .
i ment into white hadrons since
/ * %,
jgt] / Y \ et 2 colour fields cannot exist out-
-— -— l% side this sphere. The coloured
/\\ ﬁ] {q) -ﬁz(ﬁ) ™ gquanta break up into hadrons
"b\\ ,{, with a finite perpendicular
N Q \GOQ momentum p; . This breaking up
v
arks ) is energetically much favoured
Fig. 9.1. Quark jets. over a further existence as

coloured quanta. When the
perpendicular momenta are small compared to the longitudinal hadron momenta,
which add up to the momentum of the original quantum, we see hadron jets. The
confinement effects, however, are assumed to be soft, carried by long wave-
length quarks and/or gluons. The wavelength corresponds to the colour bag of
1/2 fm. Therefore the jet momenta equal the original quantum momenta up to
the order of 400 MeV. This picture demands the production of the original jet
quanta to be a short distance effect («1/2 fm). This is certainly true for

. . . . + - .
the (electromagnetic) quark pair production in e e . It is also true for a
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95)

hard gluon bremsstrahlung process . Resonance decays, however, are not

pointlike but involve propagators (Fig. 9.2 and 9.8). Here it is not so clear,

how well the jet picture will

LY 0/; jetZ work. However, because the pro-
pagators are mass dependent the

picture will work the better the

higher the mass of the decaying

Qa resonance is. For a Q-mass of

5 GeV the propagator length in

Fig. 9.2 is probably already short

enough to apply the jet picture

and for the next mnew flavour
(higher) QQ resonance it will

Fig. 9.2. QQ —3 gluon jets. definitely be so.

The quark jets in e+e_ annihilation became visible above s = (p1+p2)2g(5 GeV)z,
i.e. a massless quark needs 2.5 GeV of energy against the c.m. to be able to
form a jet. The first PETRA experiments with c.m. energies up to 17 GeV show
quark jets which can clearly be seen by eye and which have a fixed transverse

94)

momentum of 350 to 400 MeV . This experimental evidence is - up to present

energies - consistent with the nomperturbative fragmentation picture described

)

above. What can we guess for gluon jets? For gluons the jet threshold * certainly
is not lower. It is equal to that of quark jets if the gluons fragment like quarks.
But it can also be higher, since a gluon carries the colour indices of a quark
antiquark pair and each index may fragment separately. Then the multiplicity of
gluon jets may be higher and the longitudinal hadron momenta may be lower than
those of quark jets. Physics will be somewhere in between. It follows that a

gluon jet of a certain longitudinal momentum will have a somewhat higher multi-
plicity and larger opening angle than a quark jet of the same momentum. The
threshold for gluon jet production will be higher than that for quark jet pro-

duction.

Some possible sources of gluon jets are shown in Fig. 9.3. The pseudoscalars

are omitted, they may also lead to two jets from the two decay gluons. We begin

+) Speaking of a jet threshold we refer to the energy of a single quark or

gluon versus the center of mass of the colour bag.



BT TN T TR S TTCT R VTR

_AS..

235, (00!

1381[3'

‘l%%\

gory

)

Fig. 9.3. Possible sources of gluon jets in heavy Quarkonia.

with the

351 decay into 3 gluons. The three gluons of this decay will form a

plane. The angular distribution of the normal @ to this plane against the beam

is

di’
d con Qﬁe

For these decays one defines a variable T, "Thrust",

is just the scaled energy of the most energetic gluom, T =

2
3~w39;;e

(9.1)

96) which in lowest order

X, = 2pg4/M =. The

QQ’

direction of 8 defines the thrust axis. The differential rate of the 3 gluon

decay together with the angular distribution of this thrust axis as calculated

from the Born graph is shown in Fig. 9.4. While off resonance the coefficient

of the cos2

average & (T) for QQ —3g is 0.39
98)

existing experiments

97)

term,® , is uniquely 1, it shows a T dependence for QQ decays. The
. This average can readily be compared to

» in contrast to the distributions of Fig. 9.4. The

reason is, that experimentally we cannot measure the gluon momenta and thus

the thrust as we defined it. The corresponding experimental quantity, also

FUURSE SN Y R LR E eI D 8RR R L R SR e e e e
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Fig. 9.4. The differential rate of 3S](Q(_Q)-—~?3g and the thrust angular
distribution VV‘“A+«(T)&§¥%E as functions of T. E%E is the angle
between the thrust axis and the beam.

called thrust, is T. = max(2 HNJ/t{pD where the projection axis (the thrust

axis) is chosen sc Ehat TE is maximal. If the jet would have zero tramsverse
momentum x, = T = TE. But with the nonperturbative pL_# 0 the relation between
T and TE is only statistical. We do not know the momentum of the original jet
quantum on an event by event basis. But for averages we need not know it, ex-—
perimentally as well as theoretically we just sum over all events. The ex-

perimental result for the average ®(T) in Y decays is shown in Fig. 9.5.
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Fig. 9.5. The angular distribution of the most energetic gluom in QQ — 3g

and the data points for Y — 3p.

The authors of Ref. 97) have alsc cal-

653

two gluons opposite the most energetic

culated the opening angle of the
gluon, as defined in Fig. 9.6. Also
this calculation was done in lowest

order (Born graph only). Fig. 9.7 shows,

if one remembers the differential rate
Fig. 9.6. Definition of 653. of Fig. 9.4, that the opening angle is
rather small, cn the average it is only
75 degrees. If gluons fragment like quarks (which for this discussion is a conser-
vative assumption!), one can extract the opening angle of a gluon jet from Y

1s = 6 GeV: Half of the hadronic energy lies
o 94)

decays from data on quark jets at

inside a cone of half angle d= 30 . This means that an average Y event will

not show a three jet structure! Only a subsample of Y decays with small T will

8

23
left with at most 30 7 of all events. Another average to be compared to experiment

. 0
show a three jet structure, e.g. for 290" we need to cut at T £0.85 and are

igs the average thrust <T> of all direct X decays. The perturbative value of T can

be calculated, <T >= 0.89. Assuming jet cones of half angle §~30° simple geometry

allows one to calculate the value of the experimental thrust,

97> 93)

.. +
(TE> *<¢T >cosd= 0.77 . Experimentally it is measured to be 0.76 - 0.01 .
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Fig. 9.7. The mean value of 653, as defined in Fig. 9.6. as a function

of T. The dashed lines show the kinematic boundaries.

Higher order QCD calculations for Quarkonium
decays inte hadrons may serve as a test for the
cubic (and quartic) self coupling of the gluons.
99)

De Rijula, Lautrup and Petronzio have found a

measure for the three gluon coupling in the next

order of o Interference terms like those of

graphs 9.8 a plus 9.8 b allow to calculate an

asymmetry of the angular distribution (9.1) when
the QQ state is produced with longitudinally

Q 5§§%¢@§’ polarized beams. This asymmetry is intimately re-

lated to the 3g self coupling of Fig. 9.8 b. Un-

o

fortunately cancellations occur in the calculation,
> 9 sc that the effect is rather small, the asymmetry

is only 0.3 Z in a subsample of all QQ decays (this

[i»]

sample with 0.8¢T 0.9 contains 20 7 of the events).
It may therefore be more favourable to go to the
next order. There we expect a change AJO%} of the

opening angle 923 (Fig. 9.6) in p2g or 3g decays

ol

of the Quarkonium ground state.
v

Fig. 9.8. The lowest and possible higher order Gxg) diagrams for Qa decays.
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In events with high thrust (3g) or a large photon energy QTZg) the two gluons
opposite the most energetic quantum are nearby in phase space and interact with
each other according to graphs like Fig., 9.8 b and 9.8 c¢ {(there are many more
graphs of course). But we see that the colour combinations of Qa-_>3g and QQ-%JZg
are different. In the first case (hadronic decay) the two slower gluons are in

a colour octet, they repel. In the second case (radiative decay) the two gluons
are in a colour singlet, they attract. The effects on 973(T) of Fig. 9.7, although
of order<ﬁsz, may well be larger than the asymmetry of ;rder ds discussed before,
because here no cancellations should occur (we just square the amplitudes). If
these speculations turn out to be true, then the decays of heavy Quarkonium

ground states become a laberatory for QCD.

We now turn to jets originating from Quarkonium P wave decays. The lowest P
waves can be reached from the first radially excited S wave, e.g. ¥Y', via an
El transition (compare Fig. 9.3). Experimentally it will be necessary to trigger
on this monochromatic photon to identify the P wave. The P state then can decay
into 2 gluons in case of the 3PO and 3P2 states, We will discuss the jet decay
of the 3P] state later. These two gluons have a distinct energy of half the P
state mass. This 1s the essential difference to the 3 jet decavy of Quarkonium.
Here we have monochromatic jets! In IJthe jet energy is almost 5 GeV, this should
be sufficient to determine the original gluon direction via the jet direction.
A measurement of the gluon angular distributions becomes feasible! For the decay
of the 3PO state this angular distribution is trivial: no matter, what the
dynamics are, there is only one helicitv amplitude which can contribute. But in
the 3P7 decays there are two independent helicity amplitudes for massless gluocns.

- 13)

The QCD matrix element for the 3PZ——egg decay reads with g Ekq—kz

- + * -« ) ¥ v ¥
€ (A)[qm.% ere” - €, €, q"q + e, ej."q -2 € ng“_qv‘} (9.2)

and for on shell gluons we find the selection rule (8.7), 1.e. the decay procceeds

. .. . . 1 . .
via the helicity M 2 state. The formula for the kinematics 3 glves us, 1lntegrated,
the distribution

+4

_ 2 ,
WZ% (O5) ~ N4 o Oy, (9.3)

where ébj ig the angle between the trigger photon and one of the jJets, measured

in the c.m.s. of the jets (Fig. 9.9). If the 3P2 would decay into two quark jets



Fig. 9.9. 23s](Q5) _
1’+13P0 2(QQ)—93’+ 2 g jets, as

imagined within the colour bag.

k{v)

by some arbitrary mechanism, the helicity of the two quarks can at most add up

to A= ¥ |. The kinematic formula then gives
24+ br 3 AL 2
N N — 22T et
WOﬁ [95«4 ) A0+ 3A% 77 o

where A gives the weight of helicities X = - 1 over helicity 0. The sign
difference between (9.4) and (9.3) allows a clear test of the QCD mechanism.

The rate for this process will be around 5 7% of all If/decays 13).

As we have discussed in Chapter 8) the 3Pl decay proceeds via the complicated

graph ¢) of Fig. 8.4. The decay is displayed again in Fig. 9.10. We will see two
quark jets and a hadron cloud from the soft gluon from this decay. The quark jets

should be easy to detect. Their angular distribution is given by

et

%

already smeared over the important kinematic regime of small gluon momentum

P
Wqﬁ ~J 2‘- w-,zere + L;O')@re (ﬁ;@TJ %@ée (9.5)

100)

Q%j is the same angle as before, QTE is the angle between the trigger photon
and the beam, say e_, and 6bb is the angle between the same jet arm as for 6@7‘
and e . 9?@ is measured in the lab frame, but ég@ as well as é%v'are in the
c.m.s. of the jets. As an alternative process, the decay into two massless

quarks weuld give 100)
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k{vy)

Fig. 9.10. 23SI(Q6)_914-13P1(Q5)—90’+ Z quark jets. Here a soft gluon

recoils against the two quark jets.

W o~ A %QTQ m@rj w Ge (9.6)

Here the CDSEQJE term is missing and the term linear in the cosines has a
different sign. But the most iImportant difference between the two alternatives
(9.5) and (9.6) is the reccil of the soft gluon in the gqq decay of the 3P1
state. This recoil will be much larger than the recoil of the trigger photon
alone which of course is always present. But with the recoil of the trigger
photon alone, the 2 jets would be collinear up to a 10° deviation at most. From
the recoil of the soft gluon in the decay of the 3Pl state, however, the angle
between the two quark jets may be as small as 110°. This is true for the r

system. For a heavier Quarkonium the "soft" gluon may even form a third jet
Yy B y ]

in a smail subset of all events.

10. Conclusions and Qutlook

QCD gives us hints to the static Qa potential at short distances and allows

an educated guess for long distances. The simplest potential constructed this
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way, the "standard potential™ V(R) = -(4/3)0( /R + aR works astomnishingly

well in the Charmonium system. In first order perturbation theory (Breit-

Fermi Hamiltonian) we are able to describe the fine structure reasomably well,
while the application to the hyperfine structure might suffer from the lack of
trustworthy experimental candidates. The Y system is nonrelativistic to a much
better approximation, @2230.08, semirelativistic methods should give even better
results here. But the attempt to describe Charmonium and Bottonium with the same
static potential in the Schrddinger equation requires a modifigation of the
"standard potential" at intermediate distances (QCD gives us no hints here).
With this modification and a refinement of the short distance shape of the
potential according to the distance dependence of the running coupling constant
one can speculate about and predict itemsof still heavier Quarkonia yet to be
discovered: Level spacings and r;; will be as in Charmonium or Bottonium, but

the fine and hyperfine splittings will decrease considerably. The ratio
R = AM (3R -3P)

oHU (3P, - 3R
(experimentally it is 0.5 in Charmomium) and exceed 0.8 for more massive Quarkonia

is interesting. It will already be close to 0.8 in Bottonium

to approach its asymptotic value of 0.8 from above! The spectra will nevertheless
lock very different from Charmonium. Not only that the number of bound states
below the strong decay threshold will increase 1ike'f55, also the first states
above thresheld will be very narrow because of the large number of radial ncdes
in the wave function. E.g. X''', the first bb state above BB threshold will be
very narrow, probably even below e'e” machine widths, thus turning out as the

ideal BB factory.

The confinement part of the potential may be spin independent as suggested by
lattice gauge theories. Numerical fits to Charmonium and Bottonium are consistent
with a complete spin,flavour and mass independence cf the long range interquark
forces. Even the inverse Regge slope of the "old" mesons fits into this picture.
We seem to understand parity changing photon transitions in terms of El radiation.
This only means that we understand the "size" of Charmonium. E]l transitions of
heavier Quarkonia therefore allow to test their size, too. We alsoc seem to under-—
stand the branching fractions of P wave decays via the special QCD annihilation
mechanism into twe gluons. This is a short distance phenomenon. We further seem
to understand radiative decays of J/4 into yf and yy as well asJ*Z/ via simple

gluon spin arguments.

Up to now we do not know any Quarkonium pseudoscalar state definitely. The
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. . 3.59
experimental candidates X(2.83), ¥(3.45) ande(3 18) can hardly be understood.
Especially their Ml transitions and gluon annihilation properties should be much

different from what 1s observed for these states.

Hadronic decays of X indicate the existence of gluon jets. Maybe we caught
the first glimpse of the gauge bosons of the strong interactions. Qur hopes
for the future are that these gluon jets can finally be proven. Then Quarkonium
states, S and P waves, become a laboratory for QCD. We can measure the gluon spin
and verify certain QCD processes like 3P1—9 gqa. Studying the three jJet decays of
Quarkonium ground states we can learn about the gluon selfinteraction either by
finding asymmetries or better by comparison of angular distributions of the Tse

decay with the ggg decay.
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