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Abstract

We use semiclassical methods to discuss the Scaling behaviour
of Quarkenium level splittings up to M(QQ) = 200 GeV. Special
emphasis is laid on the effects of asymptotic freedom which are
found to be essential for M(QQ) 2 30 GeV. The bound tt

system will almost look like the Y system except that R =
=AM (%P, -38) /AM (3P, - *P,) is larger than o.8.

In the Y system R will already be close tc o.8.
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. Introduction

Since the discovery of the first Quarkonium system, namely the
Charmonium states J/¢ and ¥’ in November 1974, these new states

have been welcome as a laboratory for asymtotic freedom and quark
confinement. Although the first hopes to find a large variety of pertur-
bative tests of (CD already in the Charmonium system were soon destroyed,
the observation of the ¥ and ¥ 'resonances in an e'e  storage

ring (DORIS)’U revived the hope to find such tests in Quarkonia which

are heavier and therefor much less relativistic than Charmonium.

With the present (PETRA) and future machines it may well be that we will
£ind at least one more Quarkonium even heavier than ¥, T . Since

the complicated nature of the interquark forces seems to not allow

its urderstanding with only one "hydrogen atom”", these systems are
highly welcome. In this paper we investigate the level splittings,

fine structure and electronic widths as a function of the quark mass,

so that a comparison of different Quarkoniamayallow one to draw conclu-

sions about the forces between cuark and anticuark.

We start with a discussion of a reascnable static potential for
Quarkonium in section 2 which will be inserted in the Schridinger
equation which in turn is solved numerically. All spin effects are

) treated via the Fermi-Breit Hamiltcnian. In section 3 we then trv to
make some very simple and crude estimates for the scaling behaviour

of the 28 —~ 1S nmass differences, the P wave splittings, the S

wave splittings and the behavicur of f—-éé of the ground state. These
estimates are then checked by detailed mumerical calculations in section 4.
This is done in three different models which all bear the characteristics
of asymptotic freedom. For comparison we also study a model with an ordi-
nary Coulomb component in the static potential (which is not asympto-

tically free), Our conclusions are summarized in section 5.

. The QO potential
.'/ )
In QCD the coupling constant 3 = (47 )Z, renormalized at the relevant

momentum transfer Q2 or the corresponding distance R, turns out to ke a

monotornously falling function of Q2 {or rising function of R). It tends

2
logarithmically to 0 as 02 —> 00 Or R—o0 : asymptotic freedom. !
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This implies that at small distances or large Q2 the chromomagnetic inter-
action between quarks becomes very similar to the electromagnetic inter-
action between electrons, because X is small. At short distances

the interquark potential is essentially of the coulomb type,

(A5 )

_ 2
(R) 3 R (2.1
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where the 4/2 is a colour grour constant. (2.1) is strictly speaking
only an approximation to the interquark potential at the momentum transfer
Qo where o ((,”) has been renormalized. @,2 will be different for
bOLmd states, whose sizes are different. One can, however, renormalize

3
¢ in X-space so that &c becomes a function of < rather than 002 :

g4 g (K)
VAF (Ry = - 3 "éé— (2.2)
is a unicue function of R with *)
127 7
og (R) = = (2.3)

25 .2&(/4/@

with the renormalisation distance e (2.3) looks very similar to the

2}

corresponding formula in momentum space ’

2y AL A
v (&) 72 Lo (BE/12) (2.4)

In principle B is calculable from the renormalisation mass A = Soo MevV,
as measured in deep inelastic lepton scattering. However, one has to

go beyond the leading ﬂe% approximation and the calculation becomes

*) o ¢ also depends on the number of effective (light) flavours,
4 for the Y system and 5 for a 3o GeV tf system. We use (2.3)

for 4 flavours as 8n approximation for any Quarkonium.



very difficult. Celmaster, Georgi and Machacek 4) therefore construct
the static shcort distance potential between quarks as Fourier transform
of the gluon propagator

% (4%) /q?“ (2.5)

with ué(qz) given by (2.4). They find (2.2/3) up to terms of the order
ln_3(1/R) and establish a relation between x and A : p= (A ey

with 9= Eulers constant. Since e? - 1.78, u is of the same order of
magnitude as A1 we will fix px to = 0.5 fm as suggested fram hadron
radii, nonperturbative transverse jet momenta and the effective ug of
0.3 to 0.4 in Charmonium analyses. ) From (2.3) it is immediately
clear that (2.2) is only valid for distances R<ﬂ».

For distances R» C.5 fm there is ancother picture which gives us hints
about the nature of the QQ potential. For such large distances

5) 6)

lattice gauge theories or the string model suggest that the QC

force is completely independent of the interquark distance and the quark
spin. It should alsc be independent of the quark mass and flavour.

This gives rise to a universal sczlar and linear confinement potential
- a R
Vco»\p a-K (2.6)

The Regge trajectories of light mes™m spectra suggest that the inter-
quark force at large distances is a =~ o0.7...... 0.8 GéV/Qm, ; when eva-
luated in BS type models, Schrddinger type meodels or the string model.

We adopt a to be universal, a = 0.787 GeV/fm 7).

For distances around 0.5 Pm ,however, we have no hints how the static
potential should look. The QCD coupling o is certainly large, so that
perturbation theory breaks down. On the other hand, the interquark

distance is not yet large compared to the scale parameter P/ 1.e. the
colour flux string between quark and antiquark is not yet long enough

to result in a constant force. We have to guess the form of the Q) potential
at these intermediate distances (0.2 to 1 fm roughly) and then check it

in the Charmonium and Y systan.

++) We have checked that our results are insensitive to the exact

value of/y.as can be expected from the logaritimic deperdence on Yok



The intermediate potential has to interpolate between the regions
of asymptotic freedom and confinement. One might therefore speculate
that the slope and the curvature of this intermediate potential have

to decrease faster with R than those of V (2.2} and more slowly

AF
than those of VConf. (2.6).

This condition is certainly fulfilled by the potential of Bhanot and
Rudazﬂ » although these authors did not incorporate asymtotic freedcom:

f’ % Q_;ES R< K,

- 2.

VI(Q) ‘\ ’QFLU%(E/C) A?OV R,'<R<RL (2.7)
a-R R > Re

Ryr Ry, b and ¢ were uniquely determined from oty and a by demanding VIR)
to be continoucusly differentiable at R1 and R,. The potential (2.7) success-—
fully fits Charmonium and it predicted the T - T mass difference to be

560 MeV. The fit parameters are an effective W of o4 = 0.31 and

a= 0.787 GeV/fm, which coincide with our prejudices. about ®cand a. To

study the scaling properties of the Q0 system and especially the influence

of asymtctic freedom as in VAF of eq. {2.2), we use this potential (2.7),
referred to as model I, and a variation, referred to as medel II, see Fig.1.:

f—' %(RKOY(N/K{)J-ZQ R< X, '
\/E (B = < b Rog (RAC) for Ky cReRy 12.8)
1 a R K >/84

Here b,c,a,R, are as in (2.7}, m = 0.5 fw. » Ry = 0.07192 {m , and
Cy= 0.3978 GeV guarantees that V(R) is continuous at R1 . For comparison

we also study two potentials, referred to as model III and IV, of the form

V_F_r? W(I{):VAF(R)*\/ (¢y+ - (2.9)

;¥ INT ™

where VAF(R) is given by (2.2/3) for R < H/exp (1) and set to be constant

for larger values of R. VINT has the form (i = III,IV) | compare the Table):

VINT(R) = - bi exp (—R/ci) (2.10)



VINT is of limited variation and is similar to the potential used by
Celmaster, Georgi and Machacek4) . It is unimportant compared to VAF at

small distances and zero at large distances. We have also tried a potential
of the form (2.9) with

V(R = b - log (R/e) (2.11)

but find no parameters b, ¢ to describe Charmonium
with it. The reason is that log(R) is too far reaching and interferes with
the a:R part in the confinement regime R >1 fm.

The quark mass is a relatively unrestricted parameter for light Quarkonia,
say below 10 GeV, where MVNZmQ needs not held. This is demnstratecél) by
various reasonable fits tc Charmonium with My between 1 and 2 GeV.
The reason is that quantities like rég (¥ / r;g (1/ ¢}, which safely can
be used in lowest order formulae, are insensitive to m, . They essentially
allow to fix the shape of the potential only. The experimentally known
gquantities most sensitive to m, are the absclute values of rég (3/4’) and
[ez (¥'). But at this point theoretical ambiguities enter. QCD knows a

very large first order(ms) correction to the Schrédinger wave function

of cc at the origin %)
z 2 460(5
Rl = [R (o) 4- 2= (2.12)
{ ( A grder Sdnré'd.( K7 )

which has to be inserted into the formula for the leptonic width 10)

ez (V) = otleg R [* (My/4) % (2.13)

Because of the large correction {2.12) the first as well as the zeroth
order formula for (_éé seems unreliable, and sc does any determination
of m, via (2.13). Consequently we study models with two extreme values
for m- In models I to IIT mc=1.05 GeV, as can be found from (2.13) with
|®to) 1% in zeroth order. In model IV m_=1.95 GeV, as is consistent with

(2.13) including the first order correction (2.12).



We discuss S and P wave splittings in terms of the Fermi-Breit Hamiltonian

ro 3 1 ) =14
A _-Q_IMQ& 2 % VSP,,,(’U s Ch-Zc;ﬁf 7% @g) , (2.14)
-1 2 4
B —~(d-1d, )V, .
y MQZ(R R % epinR1y D émazﬁ I_/gp,'@(f?)a
where the spin dependence of the potential is
Py T ey e g A Ve 4 (2.15

with Vspin(R) = V(R}) - a R. We neglect all spin independent corrections
in the Fermi-Breit Hamiltonian , since their net effect is small.

. Scaling estimates by hand

Before we turn to mumerical calculationsin section 4 we want to get a 1)
feeling for the aspects of scaling by a very crude but simple calculation.

For this purpose we take the’standard potential”
ol
Vig)=-4.% + ok (3.1
(R) 5% | )
with the coulomb part as a small spin  dependent perturbation te the

spin independent linear potantial AR .We further use the scaling laws
of E and R in a linear potential

-2
FE~ £ ~ g 3 (3.2)
This gives us for the potential {3.1)

Y p
E o~ mg > + €<-5 Yz >



and for the difference of energies 25 - 18

-4{5 4/3
NE(RS-18) ~mg = + € A (wg) wig (3.4)

Fixing the constant £ in the Charmonium system now allows to

estimate AE for heavier Quarkonia. The mQ dependence of o(s is taken
into account via equ.(2.4). For mQ21OO GeV this perturbative ansatz
breaks down: The Coulamb potential daminates. Here we have

) 2
AE ~ o (wg)- g ~wa-f9? (Lua-/u) (3.5)

We thus ({(3.4) and (3.5)) obtain the dashed line in Fig.2. The decrease
of AE up to mQ’Z-3O GeV iﬁ:zg:onsistent with earlier numerical calculations
by Eichten and Gottfried
the Coulanb sinqularity shows up much earlier, as is also indicated in

Fig.2 (dotted line). The "f’—f mass difference suggests that the

. If one keeps o(s constant as My varies,

potential at intermediate distances is somewhat similar to a log potential,
in which AE = const. Such a logarithmic camponent added to V(R} in (3.1)
would tend to f£ill up the valley of the dotted curve for AE in Fig.2.

Our hand made final guess for the scaling behaviow: of AE(2°S, - 1351)

is shown as solid line in Fig.Z2.

1

We now estimate perturbative splittings within the standard potential (3.1).
Fram there and (2.14) we have

T LS A & o od
/ ~ 74y TS s L S

where HLS =A' fg is that part of HLS arising fram V__ . alone,
spin Spin

The last relation in (3.6) holds as long as the wave functions are

governed by the linear potential. The spin independent (confinement)

part of the potential, however, contributes to the Thomas precession,

HIchnf. =C L-5 (campare (2.14))

s A 4 o a a
HCO“F- E;O\_z <R d/{ (8/@ )> WQZR, ~ M’{Q\g/.g (3.7)




Using experimental masses as input we can fix A and B for
Charmonium: )

A, = 34 MeV, B, = 10 MeV  in cc (3.8)

A, B and C can now be estimated for heavy Quarkonia using

(3.8) as input and (3.6), (3,7) as the scaling laws. For Ny > oo Gev
the wave function will become more and more coulombic, so that asymtoti-
cally +', H;:,.h ~ gy and HES L 4/“”&. This estimate is displayed
in Fig.3.

An interesting ratio is

L MCR) - MR 24 -% R
P meB-m3m) T A+ 6 B

(3.9)

The expected scaling behaviour of %via eq. (3.6) and (3.7) is also shown
in Fig.3. It is clear that asymptotically R —» 0.8,

The spin-spin splittings are determined through parameter 2 of eq. (2.14) .
In the standard model D is a pointlike operator since A (- Yey = 4y SR)

- - 2 g 2
D= AV, R)> = = =, (@ 3.0
éWQz < SF,(( > 9 az l )[ ( )
D therefore scales as R™* W,Q"Q‘ . It is very hard to evaluate the

scaling behaviour of D without detailed calculations, since the wave
function at the origin is sensitiwe to the Coulombic singularity. With
the wave functions of a pure linear potential 2 ~ wqg ", this is a
clear underestimate. With Coulombic wavefunctions D ~ wig , this is a

clear overestimate. The truth lies in betveen. But asymptotically the wave
functions became Coulombic, and D is given by the Coulomb wave function

at the origin

ﬂ In the standard potential A'= 6B, so that C = 6B - A = 26 MeV

in Charmonium. Thus the Thomas precession is very important for the
magnitude of the P wave splittings.



7 -4
D g wia g fog gy 1310
Relating D to the leptonic width via (2.13) we find for |, ;7 in
asymptotia
. ~ ot ~ £ '3(W ) (3.12)
lleg(\/) s Mg Ma 6’3 & M

This can be understood as an upper bound for the whole U regime and
is displayed in Fig. 4. B

. Model calculations

We begin with a discussion of model I which has an ordinary Coulomb
gingularity at the origin and model II, where this singularity is weakened
by asymptotic freedom. All our potentials are displayved in

Fig.1. We have calculated the mass differences between the first

few S,.P‘ and D waves and display these with respect to the ground

state mass in Fig.5a. The influences forthe stronger singqularity

of model I is clearly seen. In model IT the logs associated with

the coupling strength of the one gluon exchange weaken this singu-
larity substantially: For maé 15 GeV the level differences to the

ground state remain essentially the same as in the T system.For mg >15 GeV
they increase only very slightly. To demonstrate that this effect

is really due to the form of the short range potential (2.2) and rather
independent of the special ansatz for the intermediate potential or the
choice of m, and m, we investigate the potentials VIII and VIV’ see

(2.9/10) and the Table.

The mass differences in these mcdels are shown in Fig.5b and c. respectively.

In both cases we find that the level differences again increase much more
slowly than in model I. This slow down of the increase of AE  with

mQ is due to the functional form of the short range QCD potential
(2.2/3), i.e. to asymptotic freedom. For quark masses larger than



- 10 -

30 GeV the special choice of the intermediate potential (betwee o.1 and

1 fm) becomes irrelevant, because the Bohr radius of the system becomes
smaller than o.1 fm.

We now turn to perturbative spin orbit splittings of P and D waves.
We have calculated the parameters A,B,C as explained by (2.14)

irn all four models assuming (2.15). In Fig. 6a we show the absolute
D wave splitting M(3§32)— M(3 PO) together with the ratio FEP

of (3.9) as a function of m. in models I1,IT. Fig.s tbh to d show the

Q
parameters A,B,C and R in all models.

From Fig.6. one reads off that in all four models the ratic Rp of equ.
(3.9) increases fast from Charmonium to the ¥ system, where it is

almost ©.8. For 5 Gev slqg & 30 GeV the value of R is influenced by the
intermediate part of the potential whose details are unknown in principle.
But for mQ z 30 GeV also the intermediate part of the potential becomes
unimportant and we can state a clear difference between model I and models
IT-IV. In model I R approaches its asymptotic value of ©,8 from helow. In
models Ii—IV, however, R approaches the asymptotic value of 0.8 from above.
This is a direct consequence of the asymptotic free one gluon exchange.
The short range QCD forces decrease slower with the distance than coulomb

forces. Therefore R has to be larger than ©.8!

We found an interesting effect for the D wave splittings in
Charmonium, which led us to plot (for D waves) the parameters

A and B, which are defined by equ.(2.74), as well as the ratic R

o . M) MDY 34 -%B,

D MDY - MI3D,)  2A,+ % Bs

(4.1)

in Fig. 7. The four models differ inm,. (m, = 1.05% GeV in I,IT,
IIT and 1.95 GeV in IV). This leads to substantially different
Thomas precession contributions from the confinement potential. While

for me = 1.95 GeV the Charmcnium D multiplet is normal ordered, it



_‘|‘|_

is inverted for m¢ = 1.05 GeV. The reason is obvicus: For a smaller
m, the wave functions reach out farther in space and feel substanti-
ally more of the confinement forces. A measurement of any other Char-
monium D wave than the 3D, = " (3.77) might be able to restrict
the dynamical charmed quark mass much more than other experimental
input.

The behaviour of the D wave splittings at high quark masses is already
familiar from the behaviour of the P wave splittings. Also here RD

- approaches the asymptotic value of 27/28 from above.

We continue by considering spin spin splittings and (_éé- , both
quantities which supposedly are only sensitive to the wave function

at very short distances. While due to the lack of trust-worthy
experimental candidates for pseudoscalar Quarkonium statesﬂthe camputed
spin spin splittings cannot reliably be compared to experiment, r’efz'
usually is the first known quantity of a Quarkonium state, when produced
in e+e". We will therefore discuss only one Quarkonium decay: INee.
However, one should remember the large ambiguities in [ea  introduced
through the large first order correction to the Schrédinger wave
function at the origen, as given by (2.12).

In order to cover a wide range of possible procedures, we take formula
(2.13) literally for models I,II,IIT and include the first order (g )
correction in model IV. For very heavy Quarkonia this makes no difference
" anyway. P€€ (wg) is plotted in Fig.8.

The spin spin splittings are governed by H*® in equ. (2.14). While in
model I A Y .Spiv\.( R) essentially results in @ ¢ -function, this is
no longer true if one has the logarithmic weakening of the Coulomb
sinqularity through assymptotic freedom as in models IT to IV. Here

the {aplacian of V—“P"‘“ is a regular function and the matrix elements

of H* have to be computed using the wave functions of Quarkonium states .
For S waves the spin spin splitt—ings in models IT to IV are considerably
gmaller than m model I. This is understood as an effect of the over-
estimate of |4w>|? in model T because of the too strong coulamb singu-
larity. The effective smearing of |40yl % and the weaker singularity of

Vspin ( ) lead to the smaller spin spin splittings in models IT to IV,

J”The possible candidates suffer from the fact that one cannot explain the
magnetic dipole transitions to and from these states.
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campare Fig.9 .

The scaling behavicur of ree' and HSS gives no surprise, it follows
the same trends as that of HT‘S, HT and the gross splittings. It is
noteworthy, however, that the quantity most sensitive to asymptotic
freedom corrections is I—;g of the Quarkonium ground state. Withcut
asymptotic freedom it would double between mQ =5 GeV and mQ = 15 GeV
while the asymptotic freedomnature of the one gluon exchange potential

guarantees that F}_g does not double before My = To GeV!

. Conclusions

We have calculated the level splittings and the fine structure for
Quarkonia between 3 and 200 GeV., We find that in a potential model

without asymtotic freedom (model I} the coulomb singularity of the

one gluon exchange becomes manifest for Mg > 8 Gev. The wave

function of the ground state at the origin increases rapidly for

M > 8 GeV. At the same time the level splittings to the ground state
start to increase, but a bit more slowly. At mQ = 15 G&V the mass diffe-
rence 2S5 - 15 = 700 MeV, but ]_'eé has already doubled compared to IT'Q:JGGV.
If we campare model I to models II,III,IV, which include the effects

of asymtotic freedom (especially model IT differs from model I only in this
respect), there is no difference for ai,; below 5 GeV. ’I‘hv;j present Quarkonia,
Charmonium and the Y system, do not allow to test the idea of asymptotic
freedom! But above mg = 5 GeV without asymptotic freedom the ground state
becomes Coulambic very soon, this is not the case in all three different
models which incorporate asymptotic freedom. The logs in the short range
cne gluon exchange potential lead to a scaling behaviour of all quantities
which is very similar to that in an overall log(R) potential for a wide
range of mQ between 2 and 30 GeV. At tge samg time thg,se logs are
responsible for the fact that RP = AM( P2 - P1)/AM( P1 - PO)

becames larger than 0.8: The short range QCD potential is softer

than the Coulamb potential. If Quarkonia have samething to do with

OCD and asymptotic freedam, then the next Quarkonium will at first

sight lock the same as the Y system! Only for mQ larger than 30 GeV

the slow inset of the weakened singularity in the short distance

potential can be cbserved. For mQ 2 100 GeV l—elé will almost have

doubled for the ground state. Also the 2S - 18 mass difference will
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almost have doubled by then., The fine and hyperfine splittings will
still be considerably below their magnidudes in Charmonium, and the
spectrum in general will be much more Coulambic.

We can summarize that - although the similarity of the Tspectmm with
Charmonium is hardly related to asymptotic freedam - exactly this asymptotic
freedan feature of the one gluon exchange is responsible for the fact

that also the next Quarkonia up to 60 GeV will at first sight again

lock the same as the Y or Charmonium system except for RP > 0.8,

For the T P waves R, will be close tc 0.8.
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Figure Captions

Fig.1. The potentials I to IV, campare the Table.

Fig.2. Estimates of the scaling behaviour of AE(QD) in:
the "standard potential" according to equ.s{3.4/5)

—————————— the "standard potential with & & const.

- - - — the logarithmic potential
this is our final hand made guess.

Fig.3. Estimates of the parameters A, B, C and the ratio RP of (3.9)
as a function of Ty according to (3.6/7) with Charmonium (3.8) as input.

2
Fig.4. Estimates of the scaling behaviour of r;é/ 5 :

—————————— experimental evidence below mQ =5 GV

in a pure Coulamb potential

in the asymptotic free one gluon exchange potential
according to (3.12).

Fig.5. Mass differences of the first S, P and D wave excitations to
the ground state in a) models I and II, b) model IIT and ¢) model IV.

Fig.6. Spin orbit splitting of P waves as a function of mQ :
a) The mass difference AM(3P2 - 3Po) and the ratic R of (3.9)
in models I and II,
b} to d) The parameters A, B and C as defined by (2.74) in all

models. R is given for the models ITT and IV.

Fig.7. Spin orbit splitting of D waves as a function of mQ in all
four models. We also give R for the D waves as defined by (4.1).
The parameters A and B are again defined by (2.14).



‘ Z . .
Fig.8. r;e / 9eQ as a function of my in all models
a) A camparison of mocel T and I1 for the two lowest S waves,

D) to e) For the first four S waves in all models. The dashed

lines give f—;; (MVJZID)z / 9eQ2, a quantity proportional
o [440)§Z/mQ4. Tor larce M, we have set M = 2 My
In models I to IIT equ. {2.13) has been taken literally, while

in model IV the correction (2.12) is applied.

Fig.9. The hyperfine splittings of Quarkonium as a function of My
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