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fhstract

n-1
e study the two dimensional CP nen-linear o-models at a finite
temperature, Hr., within the _%_expansion. We show that permanent confinement
of their fundamental particles is a strictly zero temperature phenomenon. The
quantum statistical fluctuations suppress the non-trivial topological structure
of the classical Q:P-n_l models and consequently the background topological
density vanishes at‘Tiqé O for an infinite space "vclume". These models do not
depend on the vacuum angle 6 at any —r:# 0.

Alexander von Humboldt fellow. On leave of absence from the Physics Depart-
ment of the University of loannina, Greece.



1. Introduction

Recently, a great amount of interest has been spent on the properties of the
(:F’n—l non-linear C-models in two space-time dimensions. These models have
heen introducsd by H. Eichenherr 1) and their most attractive feature is their
similarity with the four dimensional SU(n) gauge thecries. At the classical
level, they are conformally invariant and exhibit a non-trivial topological

structure. In their quantum version, effects due to instantons are accessible 2)
to the powerful —%— expansion, a method far more rigorous than the infrared
3 2)

divergent 4ilute gas approximation. Using this expansion, it has been proved
that the Q:F’n__l models are asymptotically free and exhibit dimensicnal trans-
mutaticn as well as a non-trivial vacuum structure characterized by a parameter
6 . Moreover, it has been shown 2), that their fundamental particles are

permanently confined by a topological Coulomb force.

In this article, we will study the properties of the (:FDTI ' models at finite
‘temperatures within the ‘%T expansion. We find that the quantum statistical
fiuctuations alter profoundly the main characteristics of these theories. In
particular, at every non-zero temperature, their topological structure is
suppressed and consequently they become 8 -independent. In addition, their
fundamental particles cease to be permanently confined.These results are strictly
cuantum statistical, since at every non-zero temperature there exist topologically

non-trivial classical field configurations with finite action.

We point cut that the critical temperature above which the unconfined phase is

3) on phase

realized is exactly zero in agreement with the general arguments
transitions for infinite systems in one space dimension. In spite of that, the
energy needed to separate a particle and an antiparticle is extremely high for
Tow temperatures, so, in practice, one only sees their bound states. On the “
contrary, at temperatures of the order of the hadronic masses, 1. e.,TE; 10 jﬂ
which were realized in the early stages of the Universe evolution, an appreciable
thermal liberation of particles should occur.

8 -independence of the Q:Pwl_ models at every non-zero temperature suggests
that the 8 -angle is physically irrelevant. The expectation value of the
topclogical density for an infinite system is exactly zero even at infinitesi-
mally small temperatures. This fact does not exclude the possibility of

'creating a non-zero topological density locally.
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This articT:a is organized as follows. In sect. 2, the basic properties of
the €P 777 models are summarized for later use. In sect. 3, we study
the € P ned models at finite temperatures and discuss the physical
consequences. In sect. 4, we give the physical interpretation of our
results. Finally, in sect. 5, we summarize our conclusions.

- ?
2. The Q‘,P model in two dimensions )

This model is an SU(n)-invariant theory of fields, [zl(x), in two dimensicnal
space-time, which take values in the m-1 dimensicnal complex projective space,
(pn-t , i. e., the space of all equivalence classes [2] of complex vectors
E=(Z,,+.4, Z5)F 0, two of which being equivalent, if z‘z;l Zz RE C
The action of SU(n) on CP ™! is defined by

gl21=04921 5 Q2= 9%, g€ UM, (2.1)

The sphere 52" 1 of vectors 2 , 5&2,;1(“: 1,+.+,1), can be looked upon as a
U(1)-bundle with base space CP"~' . The corresponding projection is the

Hopf map
n_1 n-1
n: S > (P , TY="L0=2] .
(2.2)
9 mn—1
A smooth field [Z]: R—— CP can then be used to pull back this
bundle to a U(1)-bundle over R2 which is always trivial and consequently
3 - .
admits a smooth section Z: R ——s Szjli. Thus, any field [27 (x} can be
represented by a field of complex urit vectors z(x) keeping in mind that
two such z's should be considered equivalent if they are related by a gauge
transformation
/ LA
2z =e 2o (XY . (2.3)

The tuclidean action of the model can then be written as

_ *
S = 5\3“. XCI.X DF_Z D’AE ) (2.4)



where

Dt{z B}L—FiAF

(2.5)

<
0

L LA

and is invariant under the gauge transformation (2.3).
The smooth fields [2](x) with finite action can be classified by the topological
charge

Q= Sci,'x o) =

H ] —
EJ&XEHDED‘@ £ﬂ=1 . (2.6)

The guantum version of this model in the féf expansion describes an SU(n)-
vector # of scalar, charged particies with mass m. These particles, called
"nartons™, interact by exchanging scalar (X} and vector ( AF ) quanta. The

non-zero parton mass is entirely due to guantum fluctuations.

The ®K -intzraction is short ranged and dees not corraspend to an exchange of
g physical particlie. On the other hanrd, the lh_~propagator

DHV(P)'—'(gHY _ ) D (P (2.7)

has a pole at p2 =0, 1. e.,
1 £
D (P) ~ ZiTme (2.8)
P—+O P

Therefore, in the static limit, the ?P_ exchange gives rise to a linear
Coulcmb potential that confines partons permanently. This phenomencn is also
strictly quantum mechanical. We should point out that the pole in eq. (2.8)
does not correspond to a physical zero mass particle, since it does not appear
in the two point function of the gauge invariant operatoer er BF_R.V

The theory constructed on a 95& 0 vacuum is defined by the modified action

e o o




N G (2.9)

It is important to notice that the corresponding quantum theory in the %T
expansion depends on 8 only because of the existence of the pole (2.8)

in the ?xﬁ ~propagator. In particular, the topological density q(x)

has a non-zero vacuum expectation value for 6‘:}‘: 0

3. The statistical fluctuations and their consequences

The transition from zero to a finite temperature T is effected 4-6)

by the
substitution X, —— —1i%, , where x, is the real time and x, an
anguiar variable, which ranges from O to B = 1/kT (k is the Boltzmann
constant) and covers simply an Sl. The fields [2] {x) are restricted to be

periodic functions of X i. e.,

['Z] (Xil X,:!—P) = [ZI(X.’_,XL) . (3.1)

Thus, they are defined on the Euclidean manifold RxSi. A smooth field[z]:
—1 .
RxSt (EPTL can always be represented by a smooth unit complex

1

vector field z: RxSt — 5 SM"_ . This can easily be seen by

repeating the corresponding argument of sect. Z and using the fact that the
U{1}-bundles over RxS! are always trivial. Of course, two fields z and &'

should be considered equivalent if they are related by a gauge transformation,

El(x]: %(X)E(X)E eiA(x)z(x) ) (3.2)
where

%:RXSi—eU(i} .

The periodicity of g{x) { 3(xi,x&+}5)= %(xi,xl) ) implies that



(3.4)
/\<X1,XL+F’):/\(X1>XQ+ 2wk, ke

Therefors, the space of all gauge transformations (3.3),(%, consists of a
denumerable number of homotopy classes, C%k;(k EEE.)'

The gensrating functional for the temperature-dependent Green functions is

given by 2, &)

Z07) =220 1] 5 (ert ).

(3.5)
- eXp {_ S+ g [ T ) 2(x) + z(x)jm]}
Rxgt
where
2 §F 2 g
— 32 4+ = (Z32) (T2
ghjd{h +ELGEEE L
RxS*
4y,
Here, the fields z_(x) have been rescaled by & factor (jy/ixf) and the
integrals are understood over the tuclidean manifolid RxS”.
Field configurations [2] (x) on RxS1 with finite action must obey the
following boundary conditions
(2] (x)—— > [2,1= Const. |
X, —> 00
-
(2] () ——— (2, 7="Const. .
K, —> — o0 (3.7)

Thus, RxS1 can be compactified to a sphere 52 by identifying its points at
x; =20 and x; = - o0 separately. The fields [2](x) can be considered as
mappings '

(2] S; — Q;{D )

(3.8)

n—1
and by virtue of the relation 2) TTLQQ.P ) =2 ( Ty is the second
order homotony group) are classified in & denumerable number of homotopy

classes lebeled by an integer topological charge Q.



£q. {3.7) implies that

7 (%) — e‘Ai(xﬂ z
Xl—'p o

1) 21 = Const.

where A\ (x,) (i=1,2) satisfy the relations

Ay Gegtp) = Ny () +2mky , ki €& (3.10)

The topological number Q can be written as

% ES
Q:i dx &,, 9, A, = dx ¢x)= ky—k
S py A L\ g LT )

i P\XSL 2t
A= ..fT iiﬁ}g : | (3.11)

It is easy to show that there exist classical field configurations 2(x) on

RxS1 with finite action and any topological number. Thus, the non-trivial
n—1 -

tonological structure of the classical P models persists at any

finite temperature at the classical level.

. n-t . 4 .
The partition function for the gquantum P models in the —- expansion

can be constructed from eq. {3.5) by introducing Lagrange multiplier fields
& (x) and }F(X) defined on RXSI to make the action quadratic in =.

Performing the Gaussian z-integral, we obtain 2)
= 2 TF=p =
= L(I—]%ﬂu— S‘D‘Xinr exp SL‘ Seﬂ(o(,lr)} , (3.12)

where

G ()= nTrdn, (a) + 280 e
epp W% Au =M ™Rkt —+ Y Rxs&x )

v :
Az—DPDP_,_mP—% * Dp"': B?‘_}_ —\;—*—ﬁ’hﬁ ) (3.13)

=
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and the operator [\ is restricted to act on functions z(x) defined on
1

RxS™. The invariance of the theory under the transformation in eq. (3.2)
is now reflected by the invariance of Seff under the transformation

o ()Q-—-———) oY ,

i L A(x [
Frm—> ?ﬂ(x)+~rﬂ1313ﬁ, g=2 e Rx S U(1).
(3.14)
Seff can be expanded in a power series of 1/J%
=  1-3 W
Segp=)_™7F ST
Nz (315)

The coefficient of the first term is given by

& : fa . _4 :
S [ o e {0y ]

= 1%(0) 51_3% -t Z j%}r (e + q’“+m;‘)‘i} )wi:ivgii{)w.m)
£-.

oy ™OQ
where
~ = -i_Px -th_lX
®(p,W)={d=x e Tt e Y A(x) .
xSt (3.17)
The sum appearing in eq. (3.16) can be evaluated by the usual trick 7)
o0 oo
-1 r .
B § 3(w) = j—gfi—‘jr £{w)
-l:-uo -ty
-1'.E+uo L£+OO
i} dz1(m) 1 ded(
+ = - + TR 0<e<m
9‘“& e*fz 4 am ) e PRy ¢ Pl3.18)
-1E- 18- 00

where the first term in the right-hand side of the eguation coincides
with the corresponding zero temperature . expression with m replaced by
mp and the rast is the Tinite temperature contribution which is always

finite. Then, regularizing the zero temperature part of eq. (3.16),
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calculating the second and the third integral in the right-hand side of
eq. (3.18) by distorting the contour of the z-integration so to pick
the contribution of the poles at 2 =—1(m% + qz) 1/2 and 2 = i(mi + qZ)

respectively, and imposing the saddelpoint condition 2) S(1 = 0, we obtain

1/2

the effective parton mass at a temperature T, mp :

2 i cl o 1y,
fn( 5 = : (b gt
M) Lf[j Yoty 200 35(mpra) Do (a9)

Here, m = m_, is the parton mass at T = 0. Eq. (3.19} implies that

m m m, — s O
F,>/ VA B B> 0 )
m —— 0 .

4 f—0

(3.20)

The coefficient of the second term in the expansion (3.15) can be written

as
= ——j clx [ d {cx(x)r(x y)ucy )+, (x)I“ (x-1)A, (y)} (3.21)
where the Fourier transform of F" is
==k
r}w(Fﬁ%3=’l Z;; _i_(mp+q-+wk)
-1 = uai, (Pe*r3g0) (Py+29y)
oF XQ“ ('Y“L+ql+w:)(*ﬂ;+(3+p)‘+(uk+mﬂ‘) (3.22)

Kzaod =0

Here, hj)\ = lTTFB-li, Wy = lﬂ_@-‘l\( ) k G. EE Fr (P3 ) qTLC‘l. q.‘“ (q,mk)

Using eq. (3.18), we now write r" ( P,LUQ) as follows:
Tl ( =
/‘*" P !)“‘ MV (P’me)_*'ﬁr‘v([’) g’ ) (3'2_3)
Yo oo . .
vwhere FUAV is the zero temperature polarization operator with m

replaced by m_, and

P



- Q-

~tE4ed

Ar‘ (?\ l)“ [ tP?dE [ iﬁ_ i i-gr;y - - (P:'!’l.o‘l“} ( PV:lq-r) . }
i 1 ~m'w ™ 4g R Cmp+f4zz)bmp+Q*Wﬁ(2H%))
i{,-tuo o
__}...K .dz Aﬂ { lgrv _ (Fr+i’(ik)(PV+L¢lv‘
iw iie:?"t_ 1 _.inr ﬁn;ﬁ»q‘-ﬂ'z"- @ﬂ’{;+1‘}z'&)(m’é *(1'*(’)""’(2*“()") )
3.24
.= (9,2) , (3.24)

=~
is the finite temnerature contribution to Ffrv .

[Xrﬁrv is finite and can be calculated by distorting the contours of

the z-integrals in eg. (3.24) soc tc pick the contributions of the poles
. . i

at 2 = 1 (m‘p-i-q")i"’- and z = - wtil(mmp-f(q-f[))i) " The

result is

{ e
\] 9..Tt \d(e [ 1) w — 14w B+F(P+2‘1)

T 1
|

w:+i¢u(5+P(w&ﬂ3

AP Lpyw)=

3 = (*m?%-cf‘]”" »0 , ﬂ11 = (P+1q)") ﬂilz TT5.1= ('P-\' 11) (m{—iia) ,
o (3.25)

t is easy to see from eqg. (3.25) that

=
F,.‘/—\‘rw(i’:“’g)z 0. (3.26)

Seff must be invariant under infinitesimal gauge transformations (see
eg. (3.14)). Thus

=A
Prr,w(f’ﬁ%) = 0, (3.27)
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which implies that

Py rw’ (p9y)=o0. (3.28)

r\}?f contains two divergent loop integrals and, therefore, must be
renormalized so to obey eq. (3.28). This 1eads£o the unambiguous
expression of Ref. 2 with m replaced by mp . l“ff‘,, 15 not a Lorentz
tensor for T# 0 8). However, the lack of transverse directions in
one dimensional space implies that any object satisfying eq. (3.27)
must be of the form

=1
0= (5 ) Pocpig (00,

wr +P
Ta (o0 = 5,5, T,
Eg. (3.25), then, gives

(3.29)

L)

Ar (p)w,) = g 4 iq_ (P*iq)l'*' (W29 (P+?~.d|)"+ (Wet2iy)™ }
L

2w y(ePLy) w;- Liwgy+plpilq) W +i~.w3+p(y+iq)
(3.30)
In the static 1imit, LA3l=‘0 , we obtain
F—"A L HN'I- eocl 1
AT (p,w=0)= 2*1m g 3
?) '] P E LT X(QPB-—'.L](G[-&P/,_)
% (3.31)

where Y‘_) denotes the proper part of the integral. For p= 0, this equation

becomes
[~

o 4 Y m& €] e%
AT Cpmuyze) = 2mi K‘-‘!“ ¥ (™) MIPS = ¥ (ePt)®

(3.32)

Trerefore P}(ngt)):f: 0 for T=£ 0 . This can be understocd by noticing
that cendition {3.27) allows for a non-vanishing \:.L(pz wy= 0 }, since
the energy variable, W, , is discrete.

Now, we would 1ike to commert on gauge invariance of the renormalized Seff'
A typical term of Seff can be written as
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= d,l ] L9 B [P .
= jm;L a e L) (3.33)

The condition BPF;"" (x,... ) = o is not sufficient to automatically
insure invariance of Seff under gauge transformations (3.14) which are
not homotopic to the identity, since

AN - ™~
e Qﬂ_. Y — Z_—ﬂ(lwkp"‘)--- lﬂlm(\nwg:ol--.ﬂ ceey

—

T ALK
e € CTk ) r:,..(?=we=°1"'):}"0 . (3.34)

In the diagrammatic language, this means that the gauge transform of

any diagram representing a term of Seff will consist of the original
diagram plus all diagrams obtained from it by replacing an external

A -lire, §awgr 472 2u(x) , by — v (2wke?) &Ly

Fourier transforming with respect tc x and putting p=w,= 0 .
Therefore, to each order in 1/dm , we wiil have an infinite set of
diagrams. The zero temperature part of F"a__,_( P=t=0, -+ . ) is always
zero. Tnus, we can restrict ourselves to the finite temperature parts

of these diagrams which are given by convergent expressions of the type
(3.24), One can, then, convince himself that all these parts sum up to
give us the finite temperature part of the originai diagrams to the given
order in 1/Jd+w with the internal energy variable # replaced by 2—i1rp'1k.

Changing varizbles, = 2 — Aw [b'lk , we see that the renormalized
Eeﬁ’ is invariant under all gauge transformations.

To calculate the partition function (3.12) in the iﬂ expansion we must

integrate over the Gaussian fluctuations of o {x) and '}F(x). One can

show that &, -configurations with a non-vanishing topological charge,

f&

e
Q - 1 K A.X £ v '3 ly(X) )
WHR e (3.35)

do not contribute to this integral for Ti 0 , since they give an infinite
A
S (Zf. To see this, let us nctice that eq. (3.35) implies that
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AL ) ~— —-—-——-9*“{'@‘ T (3.36)
p—0 P
S (2) contains a term
-1 < de =1 ‘~
$a g (e g om0 T (ogm0) Tup 000,
~ 00 ‘ (3.37)

So, egs. (3.3%) and (3.32) imply that T—-+00 for Q£ O . Therefore, the
non-trivial topological structure of the classical G:PTL_1 medels is

suppressed by the quantum statistical fluctuations in the —-i»,\—expansion for

every T == 0, and consequently we can restrict the functional integral in

eq. (3.12) to 'Ar -configurations with Q =

Now w2 are ready to fix the cauge in eq. (3.12) for the partition function.
- We spiit the space of ?\!‘ -configurations into a denumerable set of
classes, Lk(k '3 z), defined by

}1 (x) € \"‘\r\ if amd onl\‘ 5 ’A.-—-...__, N /\(X,_))

x-——vuc
NCxp+p) = A(xg) + 4k .
(3.38)
Gauge invariance of Seff implies that
. Sets -5
%: % I)A Ix e — 1 d] Jx e T
M (3.39)
k=-20 L'K L’o '

(we do not keep track of infinite constants). We are now left with the free-
dom to perform gauge transformations which are homotopic to the identity.
:herefore, the gauge condition ? 1#_ 0 , supplemented with the
assumption that /\ ) tends to a regular function of Xy as Ixil—---; o0,
fixes the gauge comp1ete1y. The partiticon function reads

£ = X LD?{{JJM e Segs (%) il S(Brﬂr) . (3.40)
L *

-]
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The temperature-dependent 'A# -propagator

A _ Puby \ o=yt
D,w(P’w()—'(éﬂﬁv-ﬁ)D(P?mﬂ)r .D_(r"l) (3.41)

does not have a pole at p=w,=0 for T:[: 0 . Thus, the topological
Coulomb force due to the quantum fluctuations at T = { is screened by
thé quantum statistical fluctuations at any T= 0. In particular, in
the static limit, W,= 0 , and for P'm;s» 1 , egs. (3.32) and (2.8)

give oo
M %p,w=0) ~—r —F —— 42m 3 .
£ t p—>0 i?.ﬂ"m.?s p -m&.ﬂ' U’“(Q?Zf__l]’-
(3.42)
Therefore, the screening radius, T , for (5'mt3>> 1 is given by
<3
* g
= 49mm* J’é-i Ly el
Plar yr(ef¥_1)*
)
~ Cm;(ﬁhpf’e'fb“p S ocyo, 0< Vg 2
Prig= = (3.43)

The transition from the 6 = 0 to a ©4# 0 vacuum is effected by the replace-

ment

5 | v
5. — S =S5 .. -1 9 de&,v“b'}v(x).
e4y _ e$§ e g Arin RSt By F (3.48)

The temperature-dependent A —propagator does not have a pole at p=wy=0.
m—1 . . .
Thus, the quantum (P model in the -%: expansion is @ -independent

at any T=+ 0 . In particular, the expectation value of the topological

density is always zerc for =0, 1. e.,

< qYH> =20 V6, T4£0.
qx>@, ’ , TH (3.45)
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4. Physical interpretation

n-—-1
The long rarge behaviour of the quantum CP model in the “%r expansion

at T = 0 can be mimicked by the phenomenological Euclidean Lagrangian
density ?)

ﬂ=5_z"Drz+"m"iz+ : (i\-_i) ,

(4.1)

So, we have a system of n partons (antipartons) with mass m and electric

1 1
char —— -
arge ( =

= )interacting through an instantaneous Coulomb force.

The following rough argument can give us some insight into our result.
One can say that, at a non-zero temperature, the mean parton (antiparton)
density, which in the absence of interaction is

ﬂ__nv[dq 1 , oy =(m*+ ")1/" n—> 0
LT o] a ePi_1 ’ ‘1 ! (4.2)

provides a screening of the Coulomb potential between two external static
oppositely charged particles. The screening radius, for m——soc0, is given

by the classical Debye-Hiickel formula 6)

RPN e

¢ (4.3)

where we sum over all species of particles in the system. e; is the charge,
n. the mean number and u; the chemical potential of the particies of the
ith kind. Egs. (4.2) and {4.3) give

2.8 efY '
T =1.,T’~gdi or M -—>Q
R e (4 )y
- o
which agrees with eg. (3.43) for q2 <<, mg, The electric field between two
oppositely charged condensor plates placed at X =oa and xi = - oo vanishes.
Thus, for 1=£ 0 , there exists no background electric field {topological

density) in the “vacuum'.
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It is physically instructive to study the sbectrum of excitations of our
system at 1== 0 . For that, we need the retarded time-dependent Hr-ﬁ
propagator 5’6). This is constructed from the temperature-dependent 2’.—
propagator, D](P,ut) (wy >0 ) , by analytic continuation with
respect to the energy, W, — — (W (w € ([) , and 1is ana]y-tic for
Imwy 0 . Its poles for Imw¢ O provide us with the energy and
attenuation of the excitations.

To this end, let us analytically continue (W, —— —tw , Imwdo)
NT M(p,w,) - Eq. (3.30) gives

e

=1,R I TaR? v 1y | dg 1
AT L) pmgme )K 2 y(ePl) (plprag)-w') = duty™

-0

plp+iq) -w®

(4.5)

It is easy to see that, for p¥< w¥¢ “rm’;ﬂ;'“ , this function is analytic
and Iwm A\"‘?"Rz 0 . In the long wave length limit, p = o, and for
W << Fmip s p™my > 1 , one obtains from egs. {4.5) and (2.8) that
' oo
_—wt  (de 2wy ,
1 §iefion)

- 00

ER’R W,p=10) T~ :
(4.6)

Therefore, in the leng wave length Timit and for |5 0, there exists an
undamped plasma osciliation ) of our system whose frequency is given by

oy

*
mjé 11am: g‘h 2wy

Pl axw ‘da(ﬁpx—l)
/ - —
ﬁ\_)cm’;(PmP)PerP ] ¢ yo . *‘ISP$1 .

This s a real mode of the system, since the corresponding pole appears in
the retarded time-dependent two point function of the gauge invariant
operator F = €491, .

One can easily understand this plasma oscillation by an elementary argument 10).
To this end, we return to the phenomenological description of the cp™-1
mode] (see eq. (4.1)) and we confine our system in a box of length L.
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Displacement of the partons by x and the antipartons by -x creates an
effective electric field through the system

.Fz—ix(N) 1irm®

L ARy
(4.8)
Then, the equation of motion of a parton (antiparton),
1
4 r_ d x
CR r
(4.9)
implies that the system oscillates with a frequency W, given by
o0
W = 1imm" dg ~ .
i1 m(ef 1)
-0 (4.10)
This equation coincides with eq. {4.7) for q2<< m% . The plasma

oscillation can be thought as an oscillation of the dipole moment of
the system with frequency W, and exists only for T= 0 . One can say
that two particles interact in the presence of the system by exchanging
a virtual plasmon.

5. Conclusions

We have studied the properties of the two dimensional CI.P“ non-
lTinear o -models at finite temperatures within the % expansion. We
showed that permanent confinement of their fundamental particies is a
strictly zero temperature phenomencn and that these theories become

8 -independent at every T=£ 0o . These conclusions depend heavily on
the fact that the Qﬁ—propagator does not have a pole at Pa= 0 for
T:;: 0 , 1. e., temperature acts like an infrared cutoff so there

are no infrared singularities at T < 0.

n—-1
The non-trivial topological structure of the classical LP models
is now suppressed by the guantum statistical fluctuations at T={= 0



- 17 -

and the topological Coulomb force is screened. Consequently, the background
effective electric field (topological density) vanishes for an infinite
system at Ts£ 0 . ATl these results are strictly quantum statistical.

In addition, we have argued that at'T;# 0 there exists a real undamped
plasma oscillation. One can say that particles interact in the presence
of the system at T 0 by exchanging a virtual plasmon.

Our results can be understood gqualitatively as follows: An external static
charge impurity in the system at T =£ 0 is clcthed by an oppositely charged
statistical parton cloud, which extends up to a distance T . Thus, the
effective Coulomb field of this impurity is screened. Two oppositely charged
condensor plates placed at Xy = o0 and X; = =% produce no effective electric
field at any finite space point for T+ 0 . Consequently, the expectation
value of the topological density is zero and the theory becomes 6-independent
for any T#0 . The parameter 8 , which appears at zero temperature, now
becomes physically irrelevant, since the temperature of the background
radiation in the Universe is of the order of few degrees.
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