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Abstract

Constraints on the fermion and Higgs scalar content of grand unified
‘gauge theories, imposed by the requirement of asymptotic freedom for
the gauge couplings, are derived for models which have fermion repre-
sentations with only color singiets and color triplets. The constraint
nf,{ 16 on the number Ne of flavors of color triplet quarks in pure
QCG is removed. Definitive Timits are placed on the representation
content of theories based on the exceptional groups.



I. INTRODUCTICN

Gauge theories of the weak and electromagnetic interactions [1,2) and
of the streng interactions [3,{] have become the theoretical foundation of
contemporary e]emeniary particie physics. Hot only have these theories
passed many phenomenologicai tests (for recent reviews, see [5,@]), but
they possess general properties, such as renormalizability [7,%] and
asymptotic freedom [@,lq], which many theorists find attractive. Thus, it
s not surprising that there have been many attempts [11—2@] to construct
a grand unified gauge theory of elementary particle interactions, in which
only the role of gravitation is at present uncertain (for attempts to in-

clude gravitation, see [27] and the works cited therein).

Gell-Mann, Ramond, and Slansky [?Z] have recently enumerated all possible
simple gauge groups which contain a product GfL®SUC(3) of a flavor group
Gfl which contains the weak and electromagnetic gauge group G2 SU2)QDU(T)
and the color gauge group SUC(B) of quantum chromodynamics, and which 1in
addition admits a fermion representation with only color singlets and
color triplets (3C and perhaps §C). They find that such representaticns can

be divided into four classes, based on the structure of the flavor group Gf!:

Class I. sz = GL & Gq@U(l). The leptons transform under G the
guarks under Gq, and the U(1} factor distinguishes leptons and quarks. In
this class, the fermicns transform under the defining representation of one

of the classical groups SU(n), SO(n), Sp(2n).

Class T1. Gy = SU(nl)QSU(nq) @SU(n'_)QU(l)QU(l). The fermions



transform under the fundamental representation of SU(n), with
n=ng+ 3nq + 3”r’ and consist of e color singiet leptons which
transform under SU{(n )}, n_ g-type guarks (3C) which transform under

q
SU(nq), and n_ r-type quarks (3%) which transform under SU(n,).

Class III. Gﬁt = Q;+q (Z) U(1l). There are two representations which

Tead tc this structure:
1. If the fundamental representation of SU(n) is expressed as

c c
n={(1, 37) + - 3,1 1
( )y + (n ) (1)
under SU{(n-3) cg) SUC(3), then the fermions can transform as one or more

antisymmetric tensor representations; the flavor group is SU(n-3) @U(l).

2. The fermions transform as cne or more spinor representations of S0(n),

with flavor group SO(n-6) x U(1).

Class 1V. Gfé = QQ+q' The fermions transform as one or more fundamental

representations of one of the exceptional groups F,, E., E

4°* -6 "7
Only theories of class III and class IV provide a natural connection between
the weak and electromagnetic interactions of leptons and quarks, although

the connection could arise as a necessary consequence of the symmetry break-

ing in theories of class I and class II.

The present work examines the constraints placed on grand unified gauge



theories by requiring asymptotic freedom as a whole. It should be noted

that such an extrapolation of asymptotic freedom may not be required by
present experiment, in view of the Appelquist-Carrazone decoupling theorem
[?8], which states that heavy fields deccuple from a theory at Tow energy,

but there is recent work [?9,3QJ which suggests that there may be exceptions
to this theorem. There is a conjecture by Fradkin and Ka]ashnikovl?i], based
on an old observation of Landau [3%], that asymptotic freedom is necessary
for a consistent field theory, but that conjecture is by no means proven (Fl).
Cn the other hand, attempts to resolve the Landau problem either by an ultra-
violet fixed point [53-351 or by gravitation [;6,3i] have not been completely
successful, so the question of overall asymptotic freedom may be of more

than academic interest.

Here only the restrictions on the fermion representations and Higgs scalar

representations imposed by asymptotic freedom for the gauge couplings alcne

are considered. The theory as a whole can be asymptotically free, of course,

only if the Yukawa couplings and scalar quartic couplings are alsc asymptotically
free. It has been emphasized by Cheng, Eichten and Li [3§]that it is a non-
trivial task to construct asymptctically free scalar quartic couplings, par-
ticularly when enough scalars are included to break a gauge symmetry down to
U{1). In the examples they considered (see also [3@]), asymptotic freedom

and symmetry breaking to U(l) were, in fact, incompatible.

Apart from the fact that for grand unified theories, the requisite un-
broken symmetry is SUC(3)(:)U(1), and the representations of Higgs scalars
can be more complicated than those previously considered, there is another

interesting possibility: the Yukawa coupling constants and scalar quartic



coupling constants may be functions cof the gauge coupling constants
[31,40-4;], corresponding to an ultraviolet unstable fixed point of the
renormalization group equations. This may correspond to a supersymmetric
theory [ﬁ;] » or to a non-supersymmetric theory in which dynamical symmetry
breakdown has been described by an equivalent set of Higgs scalars [ﬁﬁ].
These issues will be studied in detail elsewhere; however, asymptotic free-
dom of the gauge couplings is a prerequisite for any of these prospects to

materialize.

The constraints on grand unified theories of class I and class II are

T

minimal, as explained in Sec. II. The restriction
nf\(lo

on the numter of flavors Ne of color triplet quarks in pure QCD [%] is
removed; 1t is replaced by a restriction on the number of times the funda-
mental representation can be repeated. For sufficiently large groups. Higgs

scalars are forbidden to transform as tenscrs of rank higher than two.

The constraints on class III theories are somewhat stronger, but not of
immediate consequence: for the SO{n) spinor representations, no more than
€4 quark flavors and 64 Teptons are allowed, while for the antisymmetric
tensor representations of SU(n), tensors of rank higher than twc are for-
bidden for n % 15 with four-component fermions; limits are also obtained
for the two-component assidnments to anomaly free reducible representations,

w
which are generalizations of theia + 10 in the SU(5) model of Gecrgi and
Wals
G]ashow[ﬁi].



For theories based on the exceptional groups (class IV), definitive

1imits are obtained on the allowed multiplets of Higgs scalars.

The reason that the present constraints are weaker than those of pure
QCD is that there are massive colored gauge fields in the grand unification
models which tend to further stabilize the gauge couplings. Although this
additional stabilization does not occur until the grand unification mass,
which 1s superheavy in models which do not conserve baryon number (FZ), it
1s not possible to obtain stronger constraints on the mass spectrum of

fermions and scalars (F3).

II. ASYMPTOTIC FREEDOM OF GAUGE COUPLINGS

~ The standard renormalization group equaticn for the running gauge coupiing
constant has the one-loop approximation
¥dg 3
l67C T bog (2)
L » -
where t = .Cy._)\ » With )\ a parameter which sets the momentum scale. The
coefficient bO is given in terms of the gauge group representation content

of the theory by [9,10,38J
b =g 6y - Zs (F) - Ls,(5) (3)
035 35, 5 52

where G s the adjoint representation of the gauge group, F is the representa-

tion of the fermions expressed as two-component (Weyl) spinors, and S is the

(F4)

representation of the scalars expressed as real fields . SZ(R) is a

quadratic invariant associated with the (possibly reducible) representation



R of the gauge group; it is defined in terms of the representation matrices

tA of the generators of the group by
e

Tt tg) = SRV g

The theory can be asymptotically free only if

bO Yy 0

{further necessary conditions on the Yukawa couplings, scalar cuartic
couplings, and requirements that the initial values lie in the domain of
attraction of the origir, are not considered in the present study). The
restrictions on the representation content of the fermions and scalars in
the theory due to this condition are outlined here for the g¢rand unified

theories classified in [2?].

The quadratic invariants SZ(R) for the relevant representations of the
classical groups are collected in the Appendix. These Jea¢ to the results

given below.
SU(n)

For the class I and class II embeddings of SUC(B) in SU(n), with
four-componert fermicns transforming according to the fundamental re-

presentation,
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(four-component fermions are required here to aveid anomalies). The Higgs
scalar content 15 not severely restricted. If p = 1, rank two tensors are
always allowed; for n = 24 (6 coler triplet guarks and 6 leptons), one third-

rank tensor {symmetric or antisymmetric) is allowed.

For the class II] embedding of SUC(3) in SU(n), the vector-like assign-
ment of the fermions to a single irreducible tensor of rank k is consistent
with asymptotic freedom for n€ 9 if k = 4, for n€ 15 if k = 3, and for
any n if k = 2. Alsc, the two-component assignment to the self-conjugate

antisymmetric tensor of rank m in SU(2m) is allowed for mqs 5.

An interesting type of fermion representaticn in this embedding is the
anomaly-free reducible representation, which is a generalization of the
"Woolworth representation (2~+ ygr) of the SU(5) model of Georgi and
Glashow [ﬁé]. These representations allow a two-component fermion assignment
with no fermion mass term, and have an unequal number of left-nanded and
right-handea neutral Jleptons {thus leading naturally to massless neutrinos).
Here cnly a brief characterization is given of the representations of this

type which are consistent with asymptotic freedom; for full details, see [4%].

The representation

i) -1}

containing the fundamental representation n-4 times, and the conjugate



antisymmetric tensor of rank 2 once, is anomaly-free for n;-ﬁ. For
L
n==517t is the 5+ 10 of SU(5); for n =6, it is the 6 + 6 + 15
LY L LI L]
of SU(6) obtained from the '2.2 of E. under the reduction & =>SU(6) GISU(2).
There are in genera]-% {n-3){n-4) massless neutrinos in the representation,

if oniy neutral and singly charged lentons are present.

The number p of copies ("generations") of the representation is re-

" stricted by

11n

P € Zm3y

For SU(5), this gives p€13, which is certainly consistent with the

phenomenological arguments [46,4{]»wﬁch suggest o = 3 (or possibly 4).

There are, in addition, anomaly-free reducible representations of groups
as large as SU(16) consistent with asymptotic freedom; tweive cf these are
consistent with the cosmological bound I:SOJ of 7 on the number of massless

neutrincs.

SC{n)

For the class 1 embedding of SUC(3) in SO0(n), with p two-compcnent

fermions transforming according to the fundamental representation,

The Higgs scalar content is here somewhat more restricted; for n = 24
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(3 color triplet quarks and 3 leptons), one third-rank tensor (symmetric

40, only one

fl

or antisymmetric) is allowed, as it is for n = 32; for n

anti-symmetric third-rank tensor is allcwed, while for n 48, no third-

rank tensors are allowed.

For the class IIl embedding of SUC(3) in SO(n}, with fermions trans-
forming according to one or more spinor representations, the constraint
b0 2 0 allows 64 quark flavors and 64 Teptons, but not more; if these are
assigned as two-component fermicns to a single irreducible spinor represen-

tation, the Targest unified group of this type is $0(20).

Sp(2n)

For the class I embedding of SUC(3) in Sp(2n}, with p two-component
fermions transforming according to the fundamental representation,
_ 22 2.1
bO = =3 (n + 1) 3P 52 (S)
Here the Higgs scalars are guite restricted; for n;16, nc third-rank

tensors are allowed at all.

It remains to discuss the exceptional groups F4, E6’ E7, which have
fermion representations with only cclor triplets and color singlets (FS).
The constraints on the Higgs scalar multiplets for these groups, with

minimal fermion representations, are summarized in Table I.

For F4, up to 16 two-component fermions transforming as 26 are ailowed
e
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(the Higgs scalar content must be reduced accordingly), corresponding to

a maximum of 48 quarks and 144 leptons and antileptons.

For E6 [i8—2f], the restrictions on the scalars are significant, especially

in the flavor-chiral version of the theory curréntly favored [%O,Zl]. Since

* '
7%x27 = (27 +351") + 351

b i You g ‘n'&

) (8)

it foliows that only scalars transforming as 2? or %E} can be responsible
for the superstrong symmetry breaking required to suppress proton decay,

if no fermion masses are to be made superheavy. If a 22} is used for this
purpose (it may be possible with more than one LE_B), then on]yé?, E_f, Higgs

scalars are available to grow fermion masses.

For E7 [22—2%], the restrictions are even more stringent. In order to
provide superstrong breaking, it is necessary to use a representation of

Higgs scalars larger than 56, as explained in [é4{b2]. But
e

56 x 56 = (133 + 1463)¢ + (1 + 1539), | (9)

W Y L i S L) LY

so that use of 133 or 1463 for this purpose will make some fermions super-
LV . .

(F6)

heavy . The representation %&2 is pseudoreal, not real, so that a Higgs

scalar in this representation is necessarily complex; from Table I it can
then be seen that there can be no scalars with Yukawa couplings to the

fermions. This leaves 1539, but then the fermion masses must be generated
Vg

by at most two 133 scalars, which is apparently not encugh to reprcduce the
Ay

known pattern of guark and lepton masses [?4(§i].
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Thus an asymptotically free E7 model with a single EE of fermions is
presently excluded. However, it might be possible to construct a theory
with two éE—p?ets of fermions (then baryon number could alsc be conserved [éZ]),
with symmetry breaking via Higgs scalars in 1463.

Salithgiu
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APPENDIX. EVALUATION OF THE INVARIANT S,(R)

Appearing in the coefficient bO in the renormalization group equation
(2) is the quadratic invariant SZ(R) defined for a group representaticn K

by
Tr(t 4 &) = Sp(R) 9 (A1)

where the t j are the matrices representing the group generators in R. These
L4

invariants can be evaluated recursively using the relations

"
(V)
—
X

4(Ry) Sy (Ry) + Sy (R) € (Ry) (A3)

where d(R) = dimension of R. The normalization can be defined by specifying

the value of SZ(R) in the fundamental representation.
Values of SZ(R) for selected irreducible representations of the classical

groups are given in Table A.l, with nermalization accerding to the following

conventions:

5, (n) =% (A.4)

corresponding to t , = }-X in the fundamental representation (the X are
R P A bAY -
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the generalized Pauli-Gell-Mann matrices).

chosen so that the generators of SO(3) coincide with those of SU(2).

Sp(2n)

S,(2n) = 1 (A.6)

chosen so that the generators of Sp(4) coincide with those of SO(5).

The guadratic invariants for the representations of the exceptional groups
shown in Table I are computed using the standard SU(3) normalization for the
generators of the color group, and the known reduction of the representations
under G =p Gf] (:) SUC(3) (see [ﬁ9,20,22—2&,2? ). Note also that SZ(R)
coincides (apart from normalization) with tﬁe Dynkin index computed by
Wybourne and Bowick [5%], who also give many additional useful properties

of the excepticnal group representations.
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FOOTNOTES

(F1)

(F4)

The difficulty is that.the singularity observed by Landau involves
using the lowest order perturbaticn expansion for the renormalization

group function €3(9) in the strong coupling region.
See [45-47:] for a discussicn of this point in SU{5).

Even with a perturbaticn theory approximaticn to @(g), the recent
work of Maiani, Parisi and Petronzio[48_] suggests that even 16
quarks of relatively Tow mass, and & corresponding number of leptons,
will not Tead to strong coupling either in QCD, or in SUR)U(L),

until the Planck mass or beyond.

The representations F, S are in general reducible, in which case 82

is a sum over values of the quadratic invariant for irreducible re-
presentations. If the fermions can be expressed as four-component
spinors, and F is the gauge group representation cf the four-component

fermions, then the coefficient of SZ(F) is 4/3.

G2 has no flavor, E8 has a color octet in the fundamental representation
248. It turns out that representations of E8 larger than 248 (either
L Vons

for fermions or for scalars) are not consistent with asymptotic freedom.

This might not be a disaster if only the 175 of SU(6) contained in
L]

5&53 developed a Targe vacuum expectation value - then only some un-

wanted leptons would be made superheavy - but it is hard to see how

to arrange this in a natural way.
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Table I. Maximal muitiplets of Higgs scalars consistent with asymptotic
freedom for the exceptional groups Fq, E6’ E7 with minimal fermion multiplets,

Fy (fermions in 26 + 26)

: 26 2 23 2
S,(R) 3 9 63 81
A 57 0 0 0
B 0 19 0 0
C 0 5 2 0
D 0 1 1
E 0 1 0 2

Note: One 52 is equivalent to three 26,
_— - L

E6 (fermions 1in Ef + 27)

t

R 274¢) 784" 351(¢) 351'1¢)
. | oad W b
| 52('R) 3 12 75 84
A 39 0 0 0
B 1 13 0 0
C 0 7 1 0
D 1 5 0 1
Note: (r) = real representation, {c) = complex representation; one real 78

is equivalent to two complex 27,
e

E7 (fermions in §§)

: 2w o s e
SZ(R) 6 18 180 330 324
A el 0 0 0 G
B 1 20 0 0 ¢
C 1 0 2 0 0
D 0 2 0 1 0
E 1 2 0 0 1

Note: One real 133 is equivalent to three real éﬁi; the representations E?,
JACAACES —

§!§ are pseudoreal, so that for scalars these representations must occur
in pairs,
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Table A.l. The quadratic invariant SZ(R) for selected irreducible

representations of the classical groups. The representation R is denoted

by the partition {fnm, h} with which it is associated (for a standard
+

review, see [5@]); Sém’ 52m+1 denote the spinor representations of S0(2m),

SC{2m+1), respectively.

) n+2k-2(n+k-l
n

n+k-1

R SU(n) S0(n) Sp(2n)

{1} B 2 1

{23 Hm2) 2(n+2) 2(n+1)
{12} Sin-2) 2(n-2) 2(n-1)
{3} Hnw2)(m3)  (nel)(n+d) (n+1)(2n+3)
{21} Hn?-3) 2(n°-4) 4(n%-1)
{7} oo e2ee (n-2) (2n-1)

) )

2 n~2 n-k+1 f2n
k-1 n k-1
+
- m-3
Som B 2 -
3 - 2me -
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