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Abstract

We study the low energy physics of gquarks in two dimensions, which
are minimally coupled to CP”Hl fields. Within the 1I/n expansion,
heavy quarks are confined, the U(l)A chiral symmetry is spontaneously
broken and a 1ight isoscalar pseudcscalar boson is avoided via the

axial anomaly.



1. Introduction

That spontanecus chiral symmetry breaking in QCD is not accompanied by
an isoscaiar Goldstene boscon has only recently been understood as an

instanton effect 1)e)

. The infrared divergent dilute instanton gas
approximation is the only calculation supporting this explanation and one
has no means to show that its predictions are gqualitatively correct at
low energies. To get an idea about this and related guestions, we here

1 odet 3% with

propose to study a two dimensional theory, the cp”
quarks 5)4), which is very similar to QCDd: 1t 1s asymptotically free,
there are instantons and the U(I)A~current has an aromaly proportional

4 cpnl models can be 1/n

to the topological density. In contrast to QCD
expanded, and since this expansion is infrared stable, cne is able to

reiiably analyze e.g. the spontanecus breaking of chiral symmetry.

At first sight, one might object that a ccentinuous symmetry in two dimensions
cannot be spontaneously broken and consequently there is no U(l)A probiem.
Because of the anomaly, however, Coleman's thecrem does not apply here so
that it may be perfectly consistent to have < ¥ WS+ 0 and an n -
propagator ((@X;‘VMX) (WXSW)(OD decaying with some power of |x|
(i.e. there would be no mass gap but no Goldstone boscn either). Besides

this, the U(1l}, symmetry could be realized in a phase, where it is almost

A
spontaneously broken in the sense that guarks acquire a spentaneous mass,

_ — — -~ ol

but {FYD = 0 and (VWYY (V)0 ~ Ixl (1x} —> o0)
(this is the Berezinski-Kosteriitz-Thouless phase 6) familiar from the
XY-model). Thus, massless excitations in two dimensions are not apriori

excluded and it is a non-triviai property cf the theory if there is a



massgap in the n channel.

n-1

The glue part in CP models with quarks is the pure CPn"l non-linear

G -model, which has already been analyzed in great detail. We shall assume
here that the reader has read our first paper 4) on this subject. To find

a geometrically natural way of how to couple quarks to CPn_1

fields, we
discuss in the next section the supersymmetric version of the CPn'1 model .
From the point of view of supersymmetry this model is in itself very
interesting, because it has an 0(2) extended supersymmetry (sect. 3).
Readers not interested in the supersymmetric model may skip sects. 2 and
3 and jump to sect. 4, where we write down an action for heavy flavoured

n-1

quarks interacting in an U{N) x U(N) symmetric manner with CP fields.

The 1/n expansion of this model then reveals a rich physical structure,
which we discuss in sect. 5. Conclusions are drawn-in the last section and

an appendix is included describing some properties of the Dirac equation

1

in the presence of a background CP" " field.

n-1

2. The supersymmetric CP mode]

The supersymmetric CPn~1 model has been constructed by Cremmer and Scherk 5)

in the context of supergravity. In this section we want to construct it in
two dimensions proceeding in exactly the same way as in the case of the

supersymmetric 0{n) & -model 7)8).

One starts from a superfield ¢y (x,8) | & = 4,..,n

(1) dx,8) = Z,() + 18X 00 + & 83,0F, ()



whose component fields Z&,, Qﬁd and Fo are complex fields, which trans-
form according to the fundamental representation of SU{n), while © is
a real two component spinor +). Under an Abelian gauge transformation,

4) transforms as follows:

(2) d'(x,8) = (., gt N0

where N s a real scalar superfield.

In order to construct a super and gauge invariant Lagrangian we need a

supercovariant derivative ?)
{3) VvV =D-~4A
Here, D is the usual supersymmetric covariant derivative

Ci .
D= §]§- 4+ 2 ;’e

and A is a fermionic real superfield, which transforms as an Abelian

gauge field under a gauge transformation:

Cf course, U and A also carry a two dimensional Lorentz spinor index which

*) We use the following representation for the euclidesn 3 matrices:

x°=(j3?1) j 34'_‘(?;); ¥y = XOX"\=(—?‘40)



is suppressed for simplicity.

A supersymmetric, gauge and SU{n) invariant action is now given by
n 2 :

(5) 8 = ?{de do¥,d8 V.3,V

where the bar denotes complex conjugation. The action (5) together with

the constraint
@ b= 4

provides a supersymmetric extension of the CPn_1 models. The gauge field

A can be eliminated from the action by using its equation of mction:

n A= &-Dd

Inserting eq. (7) back into eq. {5) we obtain an action involving the

field d) only:

®) S = g5 (d d9¥,d6{ Dd-¥, Db — 3D 3,304}

In terms of the superfield d) one can also write a "topologicai charge"
4 2 =
(9 Q= 3_1-de O\stde VCP' Vo )
\

the supersymmetric version of the selfduality condition




(10) Vo = F 3.V
and the equation of motion-(which is impiied by eg. (10))

(1) V3, Vdy + (943,99 by = ©

Next, we rewrite the action {8) in terms of the component fields defined

in eq. (1). The constraint (6) gives
E-2 o= 4 2% 4+ z2-X = O
2 F + F.z = 4 XY X

Performing the integration over the @'s in eq. (8) and using egs. (12)

we get

g = -?% %clzx{\ap?_l"— i."mﬂéw + ‘I.WXFW .;——'-"a/uz
(13)

~(G+93,F)(G - 93,¥) + (23,2)(F3,2)
+ A[EFV + @yt - (T ]]

Here, we 1ntf0duced the following new fields:



Wo{ = XO( - 20( (E'X)
(14) Gy = Fy — 24 (2-F)
g = +(z-X - 2-X)

Eliminating the dummy field G4 using its equation of motion, we see

that § disappears, an effect, which can be traced back to gauge
invariance. We are then left with

1 — '-_'-
S = ——&de{oﬁ*z- Dz — VPV +
(15)

5 (@ @y - @]

wWhere

(16) D)u = 8/“-— z-'a#z

and the fields are constrained by

(17) Z-E2 = A4

Obvicusly, the action (15) is invariant under gauge transformations

/ 1 A (x}
2, = e Z,(x)

(18)

1 )
Vo0 = e M oo



and the supersymmetry transformations are

!

8 2y

1 € Y,

(19)

§U, = -5 ez, (V¥ + %X.sezd(w_ms’tlf)

* 3, € {D}uzu - = zd@xﬁw)]

As in the case of the supersymmetric O(n) & -model, supersymmetry requires
the presence of four fermion interaction terms, which are also chirally

invariant in our case.

We conclude this section with the remark that the supersymmetric CP1 mode]
1s identical to the supersymmetric 0(3) & -model. This can be shown trivially

as in the non-supersymmetric case by defining the field

o

iy 1.- .
(20) q = d-6"¢ ; iL=1,2,3
and checking that the action (8) and the constraint (6) written in terms
of q1 become the acticon and the constraint of the 0(3) supersymmetric

& -model.

3. Complex supersymmetry

As in the case of the 0(3) & -model 8) and the Higgs model 7), the super-

1

symmetric P models have an additional supersymmetry for any n. In other

words, the action (8) is actually invariant under an 0(2) extended super-



symmetry, whose Noether supercurrent is given by

ey I = Fe-3, Ve

where

The structure of an 0(2) supersymmetry implies furthermore the existence

of a conserved C(2) bosonic current

(22) V)u = V. XFV¢:

The most direct way to prove invariance under corplex supersyrmetry is
to rewrite the action (8) and the constraint (6) using only 0(2) super-
fields. This is a function R(x,B.,@) of Xp o @ complex spinor B and

its conjugate 9, transforming as follows under a supersynmetry trans-

formation:
(23) SR = {« %—%¢§]+EL[§3—%’¢Q]}R

This transformation Taw follows directly from the transformation laws

of X ga and € :
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Sxﬂ=—%[okxﬂe + 'ELXFG)
(24)
$6 = & . 86 = o

J

The supersymmetric covariant derivatives are thus given by

$5 ; D=2 +% 70

P e

9
(25) D= 5 T

10)

[t is well known that the superfield R can be reduced by imposing

the invariant constraint

(26) DR =0

which is equivalent to

18v.0,0)

@7) R = R(x,-

The complex supersymmetry transformation (23) then simplifies:
. .

(28) &R = [d5§ - i §8] R

Introducing complex component fields Z ,X and F by

—9-8#9 B/uz (x)

N!r‘o

RUF-%éﬁﬁ)9)= Z(X) —

(29)
-5 (B¥B)63,0) Ozt + 1OX6) — L(0¥50)(BY, Fxex)

+ 1 03,0 Foo



Eg. (28) reads

T2 = LoV
() §ys yeFw +F2%

SE =i BY

The complex conjugate superfield R satisfies the cpposite "chirality™"

condition :

by, 3
(51) DR =0
In addition to R one must also introduce a 0{2) real superfieid V(x,6,8)

vhat ig the 0(2) supersymmetric generalization of the vector field A
11

appearing in the purely bosonic theory.

Under an infinitesimal Abelian gauge transformation these fislés

transform as follows

SR = LAR
(32) TR = "‘;-KR_
sV = -t (A-R)

i

where the gauge Turction A(XM— 5 9 yuQ,Q) is & "chiral™ 0(2) superficld.

In the Wess-Zumino gauge the vector superfiled V thag the following

form

V = 45O A+ 458 M + LN +(BsB)(FF)

+(BEB(O¢) + G058 D

A of2) supersymmesric and gauge ilnvarlant asction is given by

00 8= gl ORT Ly 4 R Y]

By varying S with respect to the vector superfieid V onz gets the

*)

following Bguetion of motion :

(33) RR = e-\/

*) We thank S. Ferrara for very useful discussions on complex supsr-—

symmetry.
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which implies the following identities in terms of the component fields :

Z2z=1 V.2 =0 M=¥y N=iPyy

.

v [z'a,:i-i-a,z - b_‘l.’-'b'pﬂ

>‘/"
D= + (34792 - FIV-FF|+ WMt ML N

F=Ly(PFTv-3T)-4F ¥

Irserting (35) back into (34) after ithe integration cver 8 and 8 one

(36)

gets the action (15), while the first ftwo equations (36) give the constralints
(77)0 Tha+t proves that the action (15) and the constraints (77) are invariant

under 2 complex supersymnetiry.

It is interesting to notice that in a manifestly invariant o(2)

o}

formalism one must not add any constraint with a Lagrange multiplier as in
the case of real supersymmetry, because 1n this case the constraints are

obtained from the ecuation of motion for the vector superfield V.
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1

4. 1/n expansion of cP"™* models with quarks

From the supersymmetric action (15) we see that the coupling between
quarks and CPnnl fields is described by the Dirac equation (neglecting

the four quark interaction)
(37) PV, = Az,

where the Lagrange multiplier A is to be eliminated using the constraint

Some properties of the classical solutions of this equation such as the

Atiyah-Singer index theorem are discussed in an appendix.

The supersymmetric model can now easily be generalized to incorporate
flavored massive quarks with an “electric" charge e possibly different

from that of the z-particle. The total action then reads:

S = \d%{Bz D2 + F(P-w)v +
(38)

i (gs+ D (VW - B{@iv) + («Trxsrriwf]}

with

Gy 2= & . FT.Y =F.z =0
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In addition to the color index o , the quark field ’W; now carries a
flavor index a = 1, ..., N, too. For simplicity, we assume that the bare
Z

mass My is flavor independent. The N x N matrices et ,i=0,1, ..., N -1

form a complete set of hermitian flavor matrices normalized such that

(40 T° = J—%-,'u 5 Tﬂr("l:'t't'i‘)= 3tk

The four gquark interaction in eq. (38) is the mcst general one invariant

under chiral U(N) x U(N) transformations:

V= exp{i(Eig)rity

e / —

YV exp {- tz 43 43¥s) Tl‘w“}

€
I

The covariant derivatives D/u act in a different way on z and W fields:

{ _ o
OuZg = BuZy — 4 (z-aﬂz)zd
(42)
a _ 3 (3
DuVa = 3,¥3 - e (23,2)¥3

Correspondingly, the gauge transformations are
, N
2,xX) = e Z , (x)
(43)

w/: (x) _ ele/\(X) ,\If:(x’
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The supersymmetric model (15) is the special case, where N = 1, e = 1,
9, = 0, 9y = f and MB = 0. To match eq. (38) with eq. (15), the fields

have to be rescaled according to *)

= (%)4/22 ;0 Y- (%)%W; ¥ — (-1)(%)4’17{47

As in the Thirring model the coupling constant 9 is not infinitely re-
normalized and since it does not give rise to any interesting interactions,
we put it henceforth equé] te zero. No other interactions than those in-
cluded in the action (38) will arise through renormalization, because there
are no other gauge, U(N) x U(N) and parity invariant possibilities to
couple z and W fields that satisfy the constraint (39) (the mass term

breaks chiral symmetry only "at small momenta").

The 1/n expansion of the generating functional for the euclidean Green's

n-1

functions of the CP model with quarks

203,97 = (D2020v0¥ TJ[S(IEF— 5’“;) 8(W.2)8(2-v)| x
(44) ,

% exp-{—S + Sdzx[ﬁ-a +ZJ3+ mV 4+ 'TV"Q]}

can be done as in the case without quarks 4). Thus, to remove the constraints

and the quartic interaction terms one introduces a set of Lagrange multipliers

+) The factor (

-1) is introduced for notational convenience.
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= { i
&,¢,C, ?\/u,cb and d)s:

(45) ]I[S(]zl"‘ Y8 2) 5(z-¥) e.xpgal2 {—*-[(i% 2)-eVy ’llf]

2
Y@t + @yvt]) =

S@d&)c@c&)?\ Do D, expgdx{r (122~ *

+ = (C2-W + ¥eozc) + —j:f—;a\ (@32 - W3,)

3|

- (A kD L(cbiw'riﬂlf + & W)

- 15, (6% + ¢ ob)]

For later use, a parameter m2 has been introduced here. It is completely
irrelevant at this stage, because izl2 = constant. Inserting eq. (45) back
into eq. (44) and performing the Gaussian integral on W, A,z and Z

one gets

2(3,3,9,5) = | DoDecDE DDEDds &p{ - Segy
(46)

+ ([ 7870 + (T+ ER-8lc) (o, + 2247 oy I+t Am)]}

where
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o | 2 _ i _ i
(47) Dg = —=DBubuy + m" — = Dp—aﬁ-'rﬁ?\,/u

(48) Agp = ¢~HE“7-:—L-(¢£+ ¢§85)-ri3 Dy = 3, + &9

The effective action Seff is given by

Se£§= ’(LT'Y"eO%(A + = CA C)— ‘l’lT'f&)%A
(49)

+ (d% {—;-oc it ‘ot + ok g}

. . . 4 - . .
We wish to expand Seff in a power series of Aﬁ? around a minimum. Such
a minimum occurs at a non-zero constant field & , i.e. within the 1/n
expansion chiral symmetry is spontanecusly broken. The quark mass term
acts like an external magnetic field on a ferromagnet, i.e. it defines

the direction of spontaneous U(N) x U{N) symmetry breakdown:

(9°> = {nuN Mg ; Mg >0
(50)

<Py = 0 W+0); <4l =

MS is the spontaneously generated quark mass. Defining

<P° = Cbo -—WMS
(51)
¢ = o' (i+0); = ¢t
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and expanding

-V
(52) Segg = constant + \§4 (m4 ’ S(”’

one finds

9
S(‘i) — “i. &’.(O) {*4__ . d.ﬂ_ (q'2_+ mﬁ.)"‘l}

24 (ax)*
(53)
e Mg 4 -1
+ B°0) JF{;;V - M S8, (e my
where
1) X = (d*x e Plaoa; ete
and

(55) M= MB + MS
is the total guark mass. Regularizing the divergent integrals in eg. {53)
with a Pauli~Villars cutoff A , the saddel-point condition S(l) = 0 requires

the bare coupling constants f and g to vary with A according to

"t 2
(56) Zg— = Log Nja

AR

= M N
(57) gy fog "/
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The renormalization of f is identical with what we found in the pure

CPn_1 models 4). In particular, fermions do not affect asymptotic freedom

ne matter how many flavers are introduced.

The quadratic part of S_.. is given by

(58) S = (i dy { £+ a0 Cox-grotty) +
TR A, + F @l TPty @iy +
T @500 MR- 0l + 2,00 T 0y 920 +

C(x) F'Ec(x - 4) Cy) }

where

(59) % = Alp;n)

60 Fo® = (8 = Z{(p+ ) Alp o) =

2 a2 4
#Ne " M*A(p; M*) + (Ne"-ﬂ-%}

~J 2 0y
60 e = 8515 - -ty + (P AR, MH}
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(2) Pt = 8 {3, — 3 fog b + p* AlpsM™)]

(6 TR = — €, py 26N M Alp; M)

A
by p"

(64) F‘EC(P)# t/F{{ _eo%% 4+ iﬂF(Pz_‘_mi_Hz)A(ijq.sM:)}
= MA(p; wd; M)

Here, A(p;_mz; Mz) denotes a one loop integral

& -1
(65) Alp;m’; M%) = S(;;qz{(q%ne)( (p+q+ M2}

_4
= [ me otV - b ] A,

% 2o Pl + MY 4 (PRt 4 ML) A HE

Pt + MY - J(p"-&-m"-k- MY — L2 M2

and A(p; mz) = A{p; m2; mz). The calculation of M® and % involves a

divergent fermion loop integral, which has been regularized with a Pauli-

Villars cutoff. In the limit A —» 00 we require that
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To match with eq. (57), the bare mass MB must scale as

iy

A’L
z"% 'ﬁg

(67) Mg(n) = & Mg

Thus , MB goes to zero as A\ —>o00 so that the total quark mass M coincides
with the spontaneously generated mass MS in this limit. Taking eq. (66)

“into account, I'? and M% read

(68) ﬁiT(P) = %{j{e + (p*+ #MA(p; M)}

(69) fﬂ‘g’-"(p)= Syle + A M}

The higher order terms in the 1/n expansion of Seff are finite and need

not be renormalized. From eqs. (56), (57) and (67) we see that the coupling
constants f and g, and the bare mass MB have disappeared and are absorbed
into the physical parameters m, M and € . The "electric charge" e is not

renormalized at all at this level,

The free parameters N, m, M, € and e take special values, when some symmetry
is realized: in the chiral 1imit MB = 0, we have € = 0, and in the super-
symmetric case N =1, e = 1, m =M and € = 0. When supersymmetry is broken

by a mass term 0n1y, then M>m and the chiral symmetry breaking parameter

k3
€ is fixed to the value 5%109-{%? by the requirement that supersymmetry
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be recovered at high energies.

Es in the pure cpn~1

model, the 1/n expansion of euclidean vacuum expecta-

tion values of z and W fields are obtained by expanding the integrand

of the generating functional (46) in powers of 1/n and performing the re-
sulting Gaussian integrals over the Lagrange multiplier fields. The correspond-
ing Feynman diagrams are composed of the propagators and vertices displayed

in Fig. 1 respectively Fig. 2. The graphs collected in Fig. 3 should not

be drawn, since "they have already been included in the propagators of

the Lagrange multipliers". We use the following convention for the propagators:

& iplx-y) AR
(10) A0 Blyy = | 2B, o'P0y) pre

27 op
Explicitly, in the Lorentz gauge aj_,}yz 0, one finds

(71) DZE(F)-—-—— (Pi-{-‘\ml)-d

7 0% ~ -

73) DX = (AGp;m)) "

oo D@ = FEEFEB%E + 2 (Fer]T
5y DY = e+ (praumn) A ]

-4
(76) D%(p) = [e + prAlpy M)
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) D% = Ty [P Fe + g () ]

(78) Dw(p)

I

F”p(p'} [ﬁ%(\b)ﬁ%(m + \31(f""“"(Pﬂ:"]”l
(79)  DC(p) = (r""‘EC(P))"4

where (cf. eqs. (607), (63) and (69))

[

Y ) ~
r'/uv (P) = (Spv - -E#F;EE)‘—Q(P)

M (P) = epvPv PMP(P)

M@
Jl" 5(p)

5. Physical interpretation of results

The 1/n expansion provides a description of quarks and partons (the z-
particles, cf. Ref. 4) valid at low energies. The Feynman rules of the
last section reveal that both kinds of particles are massive and interact

by exchanging o,A @ &g and ¢ quanta. From egqs. (73), (75), (79)

and

A 2

P
q_rm}{'l— con T oM} (p-> )

(80) A(P3m") =
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it follows that the o, ¢ and ¢ | exchanges are short ranged, i.e. the
corresponding Yukawa forces have a range of order 1/m or 1/}. The other
interactions can conveniently be summarized by writing a low energy

effective Lagrangian density:

M
M“+ 2Ne’m* o A W E iy
+ £
24T w2 H? 8 H‘*(a o)+ z (¥5)
ielN o A = 3 i
+ —— —
mn n VTV %

_ = i ; ;
where F = €, Bﬂ Ay and Dy = B, + & Am  when acting on z re

spectively DM= BN + }F%Af‘ when acting on W .

As in the case without quarks, the propagator of 7\7“ has a pole at p2 = 0:

(82) D“(P) = = + 0@

o
with
. - AL > M*
(83) 3Ne*m® + ex (M*4 N e*m?)

When € 4 0 , i.e. when the bare quark mass MB is not zero, the exchange
of A quanta gives rise to a linear Coulomb potential so that quarks and

parions are confined: the physical Hilbert space contains only states with
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zerp n-ality. Tnis effect has already been discussed at length in

Refs. 4 and 11 so that we are not going into it any further.

When the bare quark mass vanishes, & = 0 and the pole eq. (82) disappears.
Consequently, quarks and partons are liberated, i.e. there are one particle
states carrying the fundamental SU(n) quantum numbers. This phenomenon is

a screening effect: any externally applied "electric" field is bleached

-by chiral guark-antiguark dipoles. To make this explicit, we add two in-
finitely heavy static charges with values X LR {relative to the z-particle)

s
at Xy = o0 to our system. This amounts to a change of the effective action

by

o
efs

.8 (n
Sep T ‘mm Ve ey Suv

(84y S
The external charges produce a constant background "electric" field. Due to

vacuum polarization, the actually measured field (cf. eq. (83))}

_ .9 -
(85) {F)y = e —= + 0w ™)

is much reduced, when & is small, and disappears: for £ = 0.

That the screening of an external "electric” field is due to chiral quark
antiquark pairs is also supported by the following observation. From the

effective Tow energy Lagrangian eqg. {81) or directly from eq. (78} one

r DA®

finds that the mixed propagato has a pole at b2 = 0:
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(8) Dy = — —‘; + 0M)
where
d exINe m* M
87 =
(87) INe*m? + ex(M%+ LNe*m?)
is implies that @2 = A I ) acquires a non-vanishing
This implies tha 5 W 5

expectation value in the presence of external charges:
—_ e A
(8)  (gquVE Vo= = Wd + 0(%)

i.e. there is a constant background density of chiral quark antiquark

dTpo'Ies, which is indeed maximal for €& = 0.

Although quarks are liberated in the chiral Timit €=0, it is not straight-
forward to construct one quark states. For example, the quark field W in
the Coulomb gauge ‘X,‘ = 0 creates a state of infinite mean energy when
applied to the vacuum. The problem roots in the gajtige variance of W(x),
which reguires a non-local tail such as exp {%-S ola}_\ 9\#(;)} to be
added. Roughly speaking, this phase factor represents the unscreened Coulomb
field due to a point charge at x. One can show, within a non-relativistic
approximaticn, that the infinite Coulomb energy can be reduced to a finite

value by multiplying with an appropriate exponential of "VB'S"U in complete

agreement with the physical picture explained above.

Chiral symmetry is spontaneously broken: from eq. (50) and ¢°= LA vy

\nN



- 27 -
it follows that
(89) (%V'\_V'\V) = nNMg

where MS = M is the spontaneocusly generated quark mass. From the Goldstone
theorem, we then expect the existence of a multiplet of pseudosca]ar bosons
with a mass of the order of the chiral symmetry breaking parameter €

Indeed, from eg. (81) it is obvious that the 9’;,'1 =1, ..., N2 -1, are

interpolating fields for mesons ("pions") with a mass
(930) i = bwe M?

Due to the mixing term between 7&“ and qog » however, there is no light
particle associated to the isoscalar g , 1.e. when the propagator (77)

of <Pg is worked out in the Tow p2 range, it turns out to be analytic there,
no matter how small &€ is. This shows that there is no U(l)A prcblem in

our model: the “qz” (if it exists) is not a Goldstone boson! No contra-

diction between the absence of a low mass isoscalar boson and the Ward

identities of the axial U{1l) current arises, because of the anomé]y:
(51) B}ij x) = —2eaNig) + 2&M gy (W ¥, W) (x)

Here, J; = ’E}XSXPW and g(x) is the topological density

{ — 1
(92) q(X\ == %Gﬁv 'c)/uz J,z = -?__T\:-\]-E Euy 'a,u’)\v
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Note that %VTIXS"V = N (Pg is the renormalized axial

quark density, so that it makes sense to call &M the current quark mass.

If there would be no anomaly in eq. (91) the Ward identity in the chiral

Timit € =10
(92) 3, <J;i ) gy (T AN () = — 2 8(x) Lqy¥V¥>

would imply that there was a pole at p2 = 0 in the two point function

< _\’i (x) gy (*"FXS'\V) (o)) . However, from eq. {86) we see that
the anomalous term -2enNig(x) contributes at p2 = 0 and a short calculation
reveals that it cancels the right hand side of eq. (92) exactly there. In
particular, < ]fx (x) 9y (@XSW)(O)> is analytic around p‘2 = 0.
Remarkably, the way how the U(l)A problem is resolved in our model looks
rmuch the same as in the dilute instanton gas approximaticn 1)2), except
that due to the many zerc modes of the Dirac equaticn in an instanton field
(cf. appendix), this approximation predicts (aFW?;= O (instead chiral
symmetry is broken by a non-zero vacuum expectation value of a product of

Zn guark fields).

When there is more than ore quark flavor and € = 0, the 1/n expansion

breaks down: higher order diagrams invelving internal 49; lines are infra-

red divergent, because of the pion poles at p2

12)

= 0. This was to be expected
from Coleman's thecrem and the fact that the flavored axial currents

are anomaly free. If the theory nevertheless exists, SU(N) x SU(N) chiral
symmetry cannot be spontaneously broken, in particular CW¥> = 0. 0On the

other hand, the currents
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LT iy . 45 o i
(93)  Ju = VYTV ‘]/u. = Vi3, T 44
are both conserved for i 0 and since 35¥, = — €,y 3y in two

dimensions, they are actually free massless fields. The presence of
these massless excitations suggests that the SU(N) x SU(N) chiral symmetry
is realized in a phase similar to the Berezinski-Kosterlitz-Thouless phase

6)

of the XY-model , but we did not analyze this question any further.

6. Conclusions

An outstanding property of CPn_1 models with quarks is their asymptotic
freedom. Some high energy processes could therefore be calculated in per-
turbation theory yielding logarithmic scaling violaticns as in QCD4. On the
other hand, from the 1/n expansion one can derive a superrenormalizable
effective Lagrangian valid at Tow energﬁes. In this regime, chiral symmetry
is spontaneously broken and the quarks consequently acquire a large con-
stituent mass. If they are given a bare mass MB, they are also confined

by a linear Coulomb force, which is produced by the CPn_1 fields with non-
trivial topology. If MB = 0, a screening effect takes place and the funda-

1 fields with

mental SU(n) quantum numbers are liberated. Also due to cp”
non-vanishing winding number is the absence of a light isoscalar boson in

connection with chiral symmetry breaking.

We believe that the breaking of the U(l)A chiral symmetry in QCD4 1ooks
very much the same as in our two dimensicrnal model. In particular, we con-
clude that the mechanism resolving the U(l)A problem as suggested by the

dilute gas approximation is likely to be valid beyond this approximation.
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We doubt, however, that confinement breaks down in QCD4 in the chiral
Timit MB = 0. Topologically non-trivial glue fields are suppressed in
this 1imit too, but it seems that confinement in four dimensions is not
due the contribution of these fields. It might be more closely related to
the dynamical mass creation mechanism, which occurs independently of the

existence of a topological number and is still poorly understood.

Another mismatch between the cP" ! model and QCD, is the fact that the
latter is not straightforwardly 1/n expandable (n is the number of colors),
although some simplifications cccur in the large n limit. A topological

13). In case of the

explanation of this has recently been given by Atiyah
CPﬂnl model, the functicn space to be integrated cver in the Feynman path
integral becomes contractible in each instanton sector when n = oco. On the
other hand, the space of all gauge potentials modulo gauge transformations
does not become topologically trivial for n =00 . From this point of view

one cannct expect the n =o0 Yang-Mills theory to be representable in terms

of free fields,.

There are two very interesting questions concerning the CPn"l models with
guarks, which we could nct answer so far. First, it is not clear to us how
precisely the perturbation expansion (including instanton contributions)

and the results of the 1/n expansion can be patched together so as to ob-

tain a consistent physical picture for all energy ranges. Secondly, in case

of more than one flavor and MB = 0, the 1/n expansion breaks down, because

it is impossible to break the anomaly free SU(N)A chiral symmetry spontaneous-
ly. On the other hand, the flavored axial currents are free massless fields

so that chiral symmetry is maybe almost spontaneously broken. We do not
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know whether such a non-Abelian Berezinski-Kosterlitz-Thouless phase

exists and what its properties might be.
Appendix: Soluticns of the Dirac equation in a CPn_1 background field

Ir the geometrically most natural case where e = 1, N =1 and M, = 0, the

B
Dirac equation in an external P L fie1d z,(x} reads:

(A1) (84— 2,23)PY, = 0 5 =z ¥ =0

As usual, Dirac indices nave been suppressed and

(2) P= 8 (3 +1A) 5 Au= £EF2; 1zl=14

Solutions of eq. (Al) split into eigenstates of ¥g :

w v = (Hwr s (1)

~i

(Ad) (ES‘,‘{3 ~ 24%,) Dy 'tlf*r; =0 z. vt = o
(A5) (5"‘P — zdiﬂ\ Dgw; =0 -V = 0
where

(6)  Dg= T(Dg+1iD,) ; Dz = 3(D,~1D,)

)
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The number of solutions cof the Dirac equation, which are normalizable

when projected on the sphere, i.e. for which
2 3 =1 2
(a7)  §d** (e [V ool® < o

is related to the topclogical charge

4 2
= 3
Q zﬁgdx %W}AV
of the background field z,(x). More precisely, dencting by'}+ and'}_ the

number of solutions of eq. (A4) respectively eq. (A5), we have

(AB) "34.—%_: "'"ﬂQ

This is a special case of the Atiyah-Singer index theorem. A physicist's

proot of eq. (A8) can be given following Schroer and Nielson's argumentation.As)

In case z (x) is a multiinstanton solution, the Dirac equation can actually
be solved explicitly. The most general g-instanton solution can conveniently

be written in the form

P

(R9)  Zy = sy, 5 =4,
(ﬁ ']h ’
e Pa

Here, F)d denotes a set of polynomials of s = Xo 1x1 with no common

root and maximal degree g. The gereral solution of eq. (A4) is



- 33 -

(A10) W: = (‘pﬁpﬁw’- {4

where f, s an arbitrary vector of holomorphic functions of s orthogonal
t0 Py Pgfa= © . On the other hand, the general solution of
eq. (Ab) is

- _ Y - _
(A1L) Wy = (Bypy) (Sdp (Psps) — PdP,s\ s
with gy an arbitrary set of holomorphic functions of s.

None of the solutions (AlQ) is normalizable so that we have a vanishing

theorem:
(Al2) 4 = 0 for instanton solutions.

From the index theorem (A8), we then expect precisely n-q of the sclutions
(Al1l) to be normalizable. These sotutions are obtained by choosing 95 to be
a polynomial of degree of at most ¢, the coefficient wuy og-‘ 59

being proportional to that one of s9 in Pu -

Note added: The CP™ 1

E. Witten 14).

models with quarks have also been discussed by
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Figure Captions

Fig. 1: Graphical representation of the propagators occurring in

the 1/n expansion.

Fig. 2: Vertices for the 1/n expansion.

Fig. 3: Forbidden (sub-) diagrams.
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