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Abstract

We discuss a general way in which QCD can be checked in Tepton induced
redctions - even with low statistics data. This is the “angular energy
flow", or the average energy fraction outside a cone of opening angle
2& about the principal jet axis in the final state of deep inelastic
reactions. We illustrate this method by a perturbative calculation of

the angular energy flow in
+ - ~ .
e e —> gqg—y Jets
This perturbative approach can be extended to other deep inelastic

reactions with gluon jets. At high enough energy, it sheould test QCD

beyond lowest order in c{s .



In field thecries, it is T1ikely that the final state cof deep inelastic
processes (e+e" annihilation in particular) consists of multiple jets of
particles (1)’(2)’(3). Quantum chromodynamics (4) (QCD) 1s partitu1ar]y
important, as it is a candidate for the theory of the strong interactions.

It probably even predicts (5) muitiple jets at a small level - order

Z
O{S(Qz)/'n’ = ESS(QZ)]/IJTF {, 0.1 , where gS(QZ) is the
-effective coupling of the theory at distances 1/\/6-2 and gé(Q2 = EZ) =

Q‘}‘D‘Z/[BS—-ZNF) QME% ]) NF = No. of flavors.

Given extensive data, it will be possible to carry out detailed tests of
QCD in e+e_ annihilation. Without this commodity it is necessary to devise
something simpler. We propose studying the "angular energy flow" (6)’(7),
the average fraction of the total hadronic energy (including neutrals)
found outside a cone of full opening angie 2S about the principal jet
axis +). (This might also work if only charged particle energy is counted).
We will show that this can be calculated perturbatively in QCD. It should

also provide tests of QCD beyond leading order in D%S

The lowest order QCD diagram giving multiple jets (three) (3), is shown in
fig. (la). The jets arise from fragmentaticn of the colored quarks or
gluons into color singlet nadrons. These jets carry the energy of the

parent quantum. At not too high energies the main effect of fig. (1) is

+j The smallness of the short distance coupling in QCD means that there is
a principal axis (8) for events in e'e annihilation {and elsewhere). This

axis is in general near (but not identical to) the "original" qq direction

in ete - qq (9) We will use this principal axis in what follows.



to broaden the lowest order e'e”—3) q3—» 2 jets by bremsstrahlung of
a large Fl gluon. We will calculate an energy weighted cross section
for two reasons. Firstly, by adding the energies of all particles in a
Jjet we obtain the energy of the parent guantum +). Thus we can compute

fig. (1) directly without having to worry about how a q or g fragment

into hadrons. Secondly, cross sections diverge as (_f’@lvo“(l- Coseq_%):)

when the gluon momentum is small or parallel to the momentum of the quark

which radiated it. However, if one calculates energy weighted quantities,

there is no cbvious Pa1uon™ 0 divergence. Of course, the angular

singularity remains and forces us to introduce a cutoff in ang1e,5'min.

We will discuss later how to choose this cutoff angle.

8,9) +)

As principal axis we use the "Thpyst " axis defined by ¥
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X =2IRJ/E , E=f = a4y - herel=q 2-d,

3 = g. The cross section for e+e_._§ qqg is well known (3); we define

T, = Ma

with our assumption)

an angle variable YL = _1_2(1+ Coge) (fig. (1b)) and Born cross

section —\ and find to crder
O, = 3 e} o(etem— P

1

*) We assume that the jet "mass" is small compared to its energy.

-
) ?" is defined relative to an axis and the T axis itself is that

* » -.
one maxim1z1ngzlnﬂ
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NS(E) - [D-n- /[ (33*2‘\){_-] QME//\ ] the energy weighted cross section

L_dE o3y L
E dndT 2 "N on dwdT
d"] l@,&)}(c) © V)d \

i §<2. b w2

JL2E) T w2 | 2

23w =T " (=% %)
@y, (b)) te)

where n runs over the gauge quanta opposite the one whose direction and

2
magnitude defines T, V\«_(_ ] - {_&-%3' cuts out small 6 < Swfw\ and a,b,c

are

(a) xy = T for which

T |- (2-T)T
m:z H X.‘_‘ ! ’ X = i

< I——T7 3 =T

-—
—

3. X7 T
M= 3 2 I—T‘] ] ™

—~ (2-TT B el
| (2-T) 1 ; ;&3

—

o

—
hod
]

2 T (analogous to (a))

T for which

——
(]
—
>
a2
1l

+) Note that this is not the quantity originally calculated by Sterman

and Weinberg (ref. 2). An energy weighted correlation has recently been

calculated by Basham et al. (10).

(2)



=T ) =l2-TOT

M= : X,: — : XZ: |~ (2-T) 9!
/"/‘7 I—T\—J (3)

)= (2-T) _ 1= T

n=2"- X‘,: L) 5 X?_- ——

I-.'T")

The kinematically allowed range of T is determined by({3) to be
1\ . . ¢ ¢ 3
| — \H-V) . 2
RE— < : = £
o T4 s M

We are principally interested in {2) integrated over all T and over all

-‘i < ¢! Ly = %_( \-{-c_@_og) i.e., in the fraction of E outside

the cone of full opening angle 28 \"ZSM\«; It is important to realize
that (2) only gives the energy between y) and \r)+dV) per gauge quantum,
and that there are kinematic correlations between the two quanta opposite
the most energetic one. These must be taken into account when integrating
(2). For-‘z—gw'] g% only one guantum at a time can lie outside thé cone.
For 3/4 ¢nwg - (Bwiw 72 )z either one or two quanta can lie
outside 23 . For 2-1/51 ¢ T& | only one quantum is outside, and for
Jﬁ[l—\ﬁr‘q—] (T ¢ 2-1/% , two are. This has to be taken

into account when weighting the energy outside the cone. Then we have

[ . de
- - (4)
F&co(E'E) - SCQV] S AT E dvwdT
I/Z- TM;V\



We computed (4) numerically for £ = 30 GeV, setting txs(30 GeV) = 0.200
for the parameter A\ = 0.5 GeV and NF = 5, The result is shown on fig. (2).
(For comparison we also present E‘?(EJ B) for a model with finite ¢,
guark jets only +).) We have also carried out the perturbation calculation
for the case of scalar gluons. The shape of F[E)S) does not change signi-
ficantly. Taking the charm quark mass into account also does not affect
our results significantly at these energies {we have done this using the

cross section quoted in ref. (11)}).

In order to use our result at other energies, note that

g P B -
e B g n e (o)

(It is important to check the log t scaling behaviour of (5); 1t is as much

a prediction of QCD, as is the absolute magnitude of F.)

From fig. (2) we see that at £ = 30 GeV, the QCD prediction for F(E,d)
dominates over the contribution of a finite 4, Jet forB}ZO‘:However, for

_ ® \o (6) ~ .03,
the PLUTO data at E = 9.4 GeV, Fexp(q,q, L) 15 whereas Foep = 3
Jets at this energy are much broader than the QCD expectation. Of course at

fixed 3 a finite ?.L jet Jeads to FNP(E,S) decreasing rapidly with

*) This model assumes that all quarks in e'e” —‘)qa fragment as
2dN/b2dd. ~ (1-2)° expl—b pf ) with B = 0.15 Gev?

The angular energy flow is just the integral of Zdu/dl-dpi and is

unity for S =0 (all energy outside the cone). It drops rapidly away

from 8:0 , falling at high energy as E"1 for fixedg . {See also ref. (7}).



E(F . as £V

NP
increases, the experimental F(E,S) will shrink rapidly down onto F

in our finite P; Jjet model). Thus we expect that as E
QCD(E,&).
Further shrinkage is only logarithmic, as expressed in equ. (5).

We expect that F(E,a) will change significant]j on passing the threshold

for pair production of new quark flavors. Weak decays of new quarks lead

to nearly isotropic events near threshold. Since light quark flavors do not
populate F(E,%) at large & » the signature for a new threshold is a dramatic
Jjump in F(E,S) for large S. *) However, FNP(E’B) arising from these non
perturbative new quark jets eventually drops as 1/E for large % . Hence

at hign enough energies the perturbative GCD prediction again becomes

relevant.

With more data than needed to check FQCD(E,B), one can look at a slightly

more differential quantity, the"angular energy density" (6).{7)

1 C‘EE
E dcaod

which can be obtained from (2) by integration over T. In figs. (3a-c) we

show %; 3%; in various thrust bins at E = 30 GeV.++) For T near unity

+) It is clear that F(E,B) at large ® is even sensitive to new flavors of
charge ~1/3, which lead to a very smail rise in R = 6'(9*6-4»\%‘0“5)/5'[/.&"‘/5)
(Compare ref. (12)).

| dE

We follow ref. (6), where data is presented for Ao =—= in the

E d

++)

thrust bins shown on figs., (3a-c).



there is a steep rise at small O due to the angular singularity mentioned
garlier. Fdr comparison of the remaining plots with data, it is important
to remember that the forward jet contributes asymptotically a term to
F(E,$) or (L) which is proportional to a delta function at zero angle.

At finite E this is broadened by nonperturbative fragmentation eﬁfects.
These disappear rapidly with increasing E. In fig. (3b) there are three
ranges of B. The behavior at small and large 8 1is determined by phase
space and the expanding integration range in T. At intermediate # there
is a "bite" in %5 E%{g , due to the fact that the kinematically allowed
integration range in T for this bin does not change for this P range. In
this range one just sees a bremsstrahlung spectrum. At small T the allowed
range in @ is sharply restricted by massiess 3 body kinematics. At high
energies, data for this bin should show a sharp drop as 6 increases away
from small values B <8w\i\4 (where the forward peak is located) followed by

the striking bump shown in fig. 3c.

It will be interesting to extend all this to the angular energy flow in

deep inelastic Tepton hadron reactions. One can also compare e'e” data for
F(Efﬁ) directly to leptoproduction data. For this, one needs to choose a
reference frame. The comparison of lepto production and e"e” is clearest

in the Breit system (13) where Q = P_Q’ - Pg = lO,a )] (Pnr , PQ are out-
going and incoming lepton momenta in Y —%.2,+ jets). The hadron kinematics

=3/2(48/2).

The construction.of the cone analogous to that in fig. (1) is thus straight-

is collinear in this frame, the struck (recoil) quark having pquark
forward. It is, however, amusing to note that one can find a Lorentz frame
in which the struck and recoil gquark energies are fixed, although Q2 can vary.

{The orentation of struck and recoil quark three momenta relative to one



another varies with QZ, of course.) This frame might be useful in looking
for the QCD induced quark and gluon substructure as the prove wavelength
1/{6? varies at fixed quark energy. 0f course, we do not expect FUES) in
deep inelastic reactions to be affected much by production of new quark
flavers {even charm). New flavors are produced only via the QQ ”sga" or
(in.neutrino reactions) by mixing with valence u and d quarks. Both effects

are small.

We now discuss the range of validity in S of F(E,s). The expression (2)
for the energy weighted cross section shows an apparent singularity for
y = 1. This is cancelled in perturbation theory by virtual corrections to
e+e_-%> qq (2). But we can just as well evade it by introducing the cutoff
0> %Min , V]_{ | - (gm-“ /2)2, Provided SM;\,\ >8MP (the angle
for non perturbative e+e__;> qq —> 2 Jjets), fig. la can be used to calcu-
late F(E,S). We then expect that the criterion for F to be calculable by
lowest order perturbation theory is simply that it be small compared to
unity. For example,

F (E %M\'V\ ): 3 (7)

Kep )

should provide an estimate of the minimum angle 55 » for which (2) is

Miv

valid +). Numerically, we find

[~] o 8
%CD(BOGQ\J, 7.57 ) = FMD('DOGPV,‘%.Z) = F&(D(SOOGQV)Z.SD)"—'-g (8)

+) This is like the procedure used by Sterman and Weinberg (2).
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We can fix %MM in an alternative way by considering only the leading
logarithms 1in FQCD(E,S). These will dominate eventually if SMM—)Q .

Caltculation gives

2
_ o NS[E)(QMI—-CMS>
%CD(E,%) %0

e > (9)
and (7) yields F(€,0u5 )=.3 = QO(SIE)(QME’_%““ )2/”5’;? or
[ 457
,%\MKV\ ~ Z %f(-— O(SZE) ) (10)

or, for E = 30 GeV,

S . o~ %°

Wiiw

Since the two values (7), (10) differ a bit, we have alsc considered non

leading logarithms. Including these gives

Q 3T 1z 2

Xs(E) _eard Y (15 |- caod
FES) 2 {L(QM\ 2 )+(1%;~20AA2)9/“___.} .

Remarkably enough, the leading term in (11) is a good approximation to the
exact result for 550}_ 6 > 1{}0; terms constant as 5_>o seem even to

cancel the non leading leg in {11).

For ¢ BM.Mit is necessary to go beyond lowest order in calculating
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FQCD' As we have indicated, this cannot te done foréi“fma NP(1.e. E~30 GeV),

vy

as confinement plays the essential role for E><3N At high encugh energies,

.
we can hepe that perturbation thecry can be summed so as to yield FQCD(E,S)

for SN? < 6 < 5 —in Then F(E,E) can te_st QCD beyond leading order. .
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Figure Captions

Fig. (1) a. The perturbation diagrams for e e —3 qqg and

b. the cone discussed in the text

Fig. (2) The quantity FQCD(E,%) for E = 30 GeV and 5 flavors.
Also shown is the expected (nonperturbative) FNP(E,S)

for a bounded h Jet at E = 30 GeV.

. L dEe

Fig. (3a-c) E do for
(a) .85¢ T<¢1
(by .75 ¢ T £ .85
(c) .5 ¢ T <75
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