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not simply connected. The confining pOtential\(L) is estimated
in terms of the change of free energy of a system enclosed in
Ay which is induced by a change in vorticity (= singular
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For Abelian gauge theories in 3 dimensions the confining

Coulomb potential is reproduced as a lower bound.
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T Introduction and summary of results.

In the werk of Migdal, Polyakov, Kadanoff, t'Hooft and
others [1,2] on the quark confinement problem, the idea is
prevalent that one should try to generalize mechanisms which
prevent spontanecus symmetry breaking in ferromagnets with a
conﬁinuous global symmetry group G to Euclidean gauge field
theories. In particular, t'Heooft [2] has emphasized that
natural analogues of Bloch walls in ferromagnets exist in
Yang Mills theories with a qauge group G that has a nontrivial

center I'. They are sometimes called vortices .

In ferromagnets, spontanecus magnetization breaks down when
Bloch walls of large extension become sufficiently abundant. Ab-
sence of spontaneous magnetization leads to falloff of the 2-point
spin correlation function with distance. The simplest Bloch walls
appear in two dimensional Ising ferromagnets with spins 6lx]=%1€¢2Z,.
They are called Peierls countours there. The spin direction
changes from +1 to -1 when one crosses the countour. [In
formulae: let b be @ link in a lattice;its boundary b=93b consists
of two points x, y. Define c[E]: c::['x'jcw[\,r]'1 . Then o[b] = -1
when a Peierls countour passes through the link bJ These Bloch walls
have a thickness of only one lattice spacing. However, in ferro-
magnets with continuous symmetry group, thick Bloch walls can also
appear in which the spin direction rotates very gently as one
crosses from one side to the other. These thick Bloch walls can be
made responsibkble for absence of spontaneous symmetry breakdown in
2-dimensional ferromagnets with continuous symmetry group at low

temperatures [# 5].

We consider lattice gauge theories without charged fields. The
place of spins is taken by (random) variables ulblea assigned
to links b in the lattice. For a closed path C consisting of
links b,...b, one defines the parallel transporter u[C] around
C by

ufc]l = ulb,1...ulb,1 (1.1)

In particular, the boundary ﬁ==3p of a plaguette (2 dimensional

unit cell) consists of four links b1...bJ+ , and

ulpl = ulb,1... ulbl



The place of two point spin correlation functions is taken by
the expectation value cf the "Wilson loop integral". Let D be
a unitary representation of the gauge group G and X 1ts character,

¥ (U)=4+D(u) . Consider a closed path which bounds a rectangular
surface of L xT plagquettes. Suppose that

-Tv(L)

}<x(u[c])>] < c-e fJor Tw»L . (1.2)

¢ 1is a constant. According to Wilson [é], static quarks will

then be confined by a potential » V(L) if they transform accor-
dingitotherepresentation D of G and if

V(L) = as L —> o0 (1.3)

In nonabelian gauge theories cne hopes for an approximately linear

rise of V(L) with L .We will consider theories in v=3 andkh
dimensions.,

Vortices can {in principle) produce a falloff of <fy‘(U[C])j>
with L much as Bloch walls can produce a fallceff of spin corre -
lation functions in ferrcmagnets [3,7]The simplest vortices have a
thickness of only one lattice spacing. Their position is specified
by a set § of plaguettes which is <o - closed, i.e. they form a
closed path (y=3) resp. closed 2-dimensicnal surface (v=4 )
cn the dual lattice. Such a path resp. surface can wind arcund
the Wilson loop C . Preliminarily, the reader may imagine
(following Yoneva [7] ) that a vortex on § is characterized by
Ulpl =y for peS, y arnontrivial element of I' . (y=-1 f M=12Z, ).
The results of ref. [8] for an SU(2) model show that such thin
vortices can confine static quarks for sufficiently large coup-
iing constants /51 (i.e. at high temperatures when Euclidean
QFT is considered as a classical statistical mechanics), but
that they are insufficient toc do the same at small/3'1(when the
center M of G is discrete. For abelian groups G the situation
is somewhat different, cp. below). It was concluded that thick
vortices shoulé be allowed for. In a thick veortex it can happen

that Ulpl=1 for all plaquettes.
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In this paper we derive a sufficient condition for confinement
of static guarks. It is applicable for arbitrary compact gauge
group G with nontrivial center " , hence in particular
for G= SU(N) , M= Zy, , N=2,3,.. .[Among the simply connected
compact simple Lie groups, only G, , F, and £g4 have
trivial center]. our condition is similar in spirit to t'Hooft's
conjecture [2] but there are also essential differences. We ‘
admit vortices which are thick at all times, at the cost of
restricting them to a finite veolume in space time. A mass
gap is not required, instead the result is stated in terms of
dependence on boundary conditions. We work on a lattice, but
at a formal level our considerations and results (of Sect. 2)

carry over to theories on continuocus space time.

To be specific we take the Euclidean action to be of the form

L(u)=/3§i(uﬁ5]) (1.4a)

The function « on & is supposed to be real, bounded above,
gauge invariant in the sense that 1'(V»;V4) =‘[(% ), and it
must satisfy :[(v)z‘[(v”), for V,v, €G . Summation is over
all plaguettes p 1in the lattice A . The path measure s

L(U)
. (1.4Db)

du (U) = = 7T dulble
! Z ben
dU[b] is normalized Haar measure on G and product over b runs
over all links on the lattice. Our res-ults remain valid for
the modtfied Su{2)-models studied wn ref. [8] {(since
their path measure also has the Markov property). The precof is

the same.

To begin with, we should say what a "vortex" is. However we
shall see that 1t is not necessary to specify that. Instead it

suffices to say what is meant by a "change of vorticity".

Change of vorticity will be labelled by an element y of the
center U of the gauge group G . If G is abelian, M=G . If G

compac
is a (simply connected)hsemlslmple Lie group then I is a finite

L8]

roup. In any case we write dy for ncrmalized Haar measure on I,

We will need some topology.
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We consider finite lattices AczZY -as cell complexes made
cf (oriented) 0 -cells, 1-cells, ;.. v ~cells . O-cells
are points, T-cells are links, 2-cells are plagquettes, 3-cells
are 3-dimensional unit cubes (cubes for short) etc.. n -cells
are open subsets of RY , but A is assumed closed, i.e.it
contains with every cell also the cells on its boundary. In this
way, A specifies a subset of RY (in the case of free boundary
conditions. For cyclic boundary conditions some points on the
boundary are identified). Thereby A inherits a topology and it
makes sense to say that A is simply connected, or not. We write
d for the boundary operator, and Pede 1if p has . trcidence
number + 1 with the boundary of €, etc.. It is convenient to use

alsoc the co-boundary operator é - For cells it is defined by

C e ap if and only if +pe dc , etc.
a is the boundary operator on the dual lattice. One says that
S is closed if 9S=o0 {empty), coclosed (= closed in the dual
lattice) if 8%= o .

We consider sublattices A of one big lattice A whose com-
"plement in A is not Simply connectedf'They'will be called vortex
contatiners. They are supposed to wind around C yi.e. C cannot
be shrunk to a point in the complement of A in A . Diffe-
rent vortex containers may touch but not intersect each other or
the path C. A vortex container in 3 dimensions (4 dimensions) is shown
in Fig. 71a (Figs.la, b, c). It can be viewed as a 3-dimensional

{4-dimensional) neighborhood of a path (2-dimensional surface)
winding around ¢ . A, are considered as closed v -dimensional

cell complexes.

Let dA; be the boundary of Ay« It is a v-1= 2 (3)dimensional
cell complex. We consider the gauge theory on A, which is speci-
fied by the path measure (1.4) plus boundary conditions u.on'ad
The boundary conditions prescribe U[b] for all links beBAL-

A change of vorticity Ln.AL is a change of boundary conditions
U-u, on 9A; which has the form of a "singular gauge transformation®
[Only equivalence classes of singular gauge transformations

modulo ordinary gauge transformations are relevant. Importance
of singular gauge transformations was emphasized by Ezawa [9] and

Englert [10] ; see also [11] J]. 1t may be chosen as follows. Let P,
be a set of links in JA; which is co-closed in

In the main text, vortex containers etc. will be labelled by

an index pair i,r which indicates their position.
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OA, and winds around C as shown in Figs.l. A change of vorticity
(in Ay ) by 3eT™ 1is effected by mapping
ulbly  if beP,
U[b]—’rug[b]={ o (1.5)
ulbl otherwise .
This does not change u[}S] for plaguettes pedA,, but there
does not exist V[x]€G which is defined for all vertices x€JN;
-1 T—
and such that U, [b] = v[xTublvlyl for a1l links = (x,y)edN, .
Example: Gauge inequivalent "Classical vacua” =(configurations
U with U[pl=1 for all pﬁ'a/\-L) are mapped into each other by map (1.5),

Let Z (/\-ULL) be the partition function of the system
in A, with boundary conditions U. A change of vorticity produces

a change /u(x)/\_ g in free energy
F/UCX)AL,U =" fn_ {Z(AL’UY)/Z(A"'U)} (1.6)

Our results are simplest to state for gauge group G = SU (2)

with center = Z, - The general result is embodied in Eqg.
(2.19) of Sect.2. For G =SuU(2), ™ has only one nontrivial
element y = -1 . Quarks transform nontrivially under T

Let

i 0= max Bul), (1.62)

Then inequality (1.2) for the expectation value of the Wilson

loop integral is fulfilled for

4
\/(L)-.—,-%__szn-ionh—é-%;_ (1.7)
L
Summation is over all the vortex contamners that can be fitted
around the loop C . 0O« E. <o always since /U(Y)A;,uy="/"(¥)/\-uu
for y=-1 " by definition; the maximum in (1.6a) exists since
the space G x.. x @G of all boundary conditions is compact.

Because of translation invariance, arrangement of vortex con-
tainers can always be made in such a way that the r.h.s. of (1.7)
becomes T- independent for large T .( |.-T is the area enclosed
by C; T>»L ). A possible arrangement of vortex oontainers is

shown in Fig. 2.

Requirement (1.3) will be fulfilled, and static quarks will
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be confined, if an arrangement of vortex containers can be found

such that the sum on the r.h.s. of (1.7) diverges to infinity.

Suppose for instance that we insist on choosing our vortex

containers in such a way that for some constant (0< E<o0)

bty <3

L

(1.8)

for all bounﬂiﬂy conditions U and all containers A; . Let T-N{L) be
the number of ,vortex containers that can be fitted around C for

T L. Then V(L)»x {or lspo if N(L)—vm_[ln particular, if TN{(L)«
Tl ,the area enclesed by C , one would get a linearly rising

potential V(L) ].

The change M in free energy can also be reexpressed in terms
of a ratio of expectation values of an operator;Bx[s] for different
boundary conditions

<B [S]>A- L
) = L A ¥ il
EaR UV St <ByIS15,

| 'FO\' X‘:-‘IEZZ.H.g)
e
S consists of a coclosed set of plaquettes p insude
Ay which winds around the path C 1like A; itself. Other-
wise § is arbitrary and <TBY[S]?> does not actually depend on

S so long as S winds around ( once. The expectation value
=< T { Sy )= L (UPDEY
<1%X[S]>A_“u <P€S<’-XP/3{ (Ulply)- L (ulp )} (1.10)

< bIVT is the expectation value for the system in A; with
L
boundary conditions U on QA .

In Sect. 3 of this paper we will apply our general result
{2.19) to an abelian gauge theory in 3 space time dimensions.
In abelian theories T =G and the parameter yef in (1.5) may
take values close to 1 if G is continuous. As a result, the
effect of thin vortices does not become negligible for large/3,
since the change m of free energy always tends to zero when y-~1.
Put another way, one may compose thick vortices with any y from
thin vortices with y = 1. Upon inserting some elementdry estimates

for thin vortices, inequality (2.19) reproduces the confining
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Coulomb potential V(L) » c(ﬁ)fnLa as a lower bound. For large
ﬂ, c93)~r constj§1. For a special choice of Lagrangean this
result has been derived before in ref.[12] by another method.
Our treatment amounts to generalizing the technique of Dobrushin

and Shlosman's for 2-dimensicnal ferromagnets.

We conclude with some comments and speculations on the pos-
sible uses of our result (1.7). The vortex ccntainers AL have

a certain length (area) given by the minimal number [P | of links

in P, and a certain width dL- The distance of S from the boundary
dA; can be chosen to be x di/2 in (1.9). [One may have different
widthg in different directions. For a moment let us imagine that
they are all egual and call d; the diameter of AL]- We are ready to
accept the possibility that the change of free energy s as defined
by Eq. (1.6) comes out proportional to the length (surface) Pl of
the vortex container, for fixed diameter d; . Suppose one could
show that the effect of the boundary ccnditions in (1.9) decreases

like e~mdgz with the diameter d; of the vortex container, so that

' -mad;/2
max M ¢ const-IRle mel; P}

and ccndition (1.8) is satisfied for dp,%lnl'f?i_l
(m igs some mass). Then Eg. (1.7) produces a confining potential
viL) const{LG%Lyl which rises approximately linearly. A possible
mechanism for producing a mass gap in nconabelian gauge theories
was suggested in refs.[13, 4],

One could also attempt computing the relevant partition functions
in a vacuum tunnel-ing aproximation [15] , using transfer matrices
that increase the diameter d; of the vortex container by one unit
step by step, and wave functions depending on variables U[b] attached
to linke b in the boundaries of the growing vortex container. We
are not prepared to discuss any approximation schemes in this paper,
but we note that the treatment of the abelian model shows
some similarity with a wvacuum tunnel-ing appreoach (except that it

produces a rigorous bound instead of an approximation} .



2. Sufficient condition for confinement of static quarks

We consider a theory described by the action (1.4a). The
factor /3 will be absorbed intoc £ in this section.
We will study the expectation value <x (U[])» of the "Wilson’

loop integral" for characters +x that are nontrivial on .

X(VX)= ,X(V)(AJO(Y) -For VEG,XGF, (2.1)
‘with ), a nontrivial (1-dimensional) representatioen of .

We start from the path integral formula for ¢ x (uUlcl)>. we will
rewrite it in another equivalent form, Eg. (2.16) below, by
applying a series of variable transformations. In these variable
transformations, Lnvariance of the Haar measure on G is used

repeatedly
di =duu, =dulu for all UG

Haar measure dy on M has similar invariance properties. Our
results will follow from Eg. (2.16) as a consequence of ele-

mentary inequalities.

Our theory lives on a v —-dimensional hypercubic lattice
ANC ZY, (v=3,4).
We will regard the x' - axis as (Euclidean) time direction.

We write e, for the unit vecter in time direction.

Let C be a rectangular path in the x‘x? ;plane as shown in
Fig. 3.

It encloses the area Z consisting of points

= = {x:(x‘,xl,o...o) ; 0<x'c T o<><2<l.j

We divide our lattice into hyperplanes x'= integer, and open
layers X "= {x ,r-3<x< r++ ] between them, r = tr,t3,
Links beXZ"” point in the time direction, b= (X,x+€,). For such

b we introduce

b = max [x*]

pi=2.9 (2.2)
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{distance to the time axis). We restrict attention to layers
Z_' which intersect the path C , viz. 0<r<T.0One of them is
indicated in Fig.3.

-

To each r let us fix an increasing sequence of integers a _;
i=0..5 %0 with a_=0. Let

5: = {bef_r, b =Cl: }, L= O,4,..-5,.. (2.3)

~

Sy, 1s a single link on the path C. Some of the layers may contain

none of the sets g: with vt 1 .

Every set g{ of links specifies a set S{ of plagquettes as follows.
Plaquette per"” is in S: if it contains a link be §; in its boundarv,
and the other timelike 1link be dp has b= a2+1 (cp. Fig. 4). If
plaguettes p are considered as elements of the dual lattice ’ SE form

closed paths resp. surfaces winding around C

v
Finally we choose vortex containers A, as sublattices = closed

v —dimensional sub-cell complexes of A such that
¥y Y
A 25, (1 = 1...s_) (2.4)

They.are not allowed to intersect each other or the path C
except possibly with their boundaries (i.e. they are allowed to
touch) . They wind around the path C. A possible arrangement is
shown in Fig. 2. The boundary 3/\2 of /\E will be considered as a
v—1 dimensional cell complex so that it contains O-cells, 1-cells

=}links,... (v-1)-cells = plaquettes resp. cubes.

Special case: A thin vortex container is obtained if we take

the smallest v-dimensional cell complex /\E which contains S:.

It is convenient to introduce some further subsets of =",

r r r :
F o= {bez ) ai_dglibll<a;_ } L=1,2,...8,. .

L }

r r r
A {beZ i Ag f (2.5)
r ~ ~ .
:Fi. consists of timelike links "between"” S;; ‘and S:; it in-

~ o
cludes 5;  but not S:(see Fig. & ). The intersection of the

boundary 'a/\; of the vortex container with the open layer X'
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decomposes into two disjoint pieces, each of them winding around
C . They contain sets of links

P = {beZ'ndA] , Hbl<a/|

I

v/

: { as above  ; bt al | (2.6)
L

H

P, is like g: ; except that it consists of links in the boundary
of ,AZ (rather than in its interior).

Let us now return to the Wilson loop. Its expectation value
is given by

<x(ulel)» - %flzl“du[b]x(u[c]) exp Z £ (ulpl)
(2.7}
Here and everywhere,

sums and products over b, p without further

specification run over all links resp. plaquettes of the total
lattice A .

Let A°bethe closure of the complement of all the vortex containers
AE in A. A is again a cell complex and Acr\f\z= BA:
We divide the variables U[b] into those associated with links

in one of the vortex containers, and those in A

.The former ones
will be renamed U'[b]

, the latter ones U [b]. since beBAi are in
both sets, & - functions will appear.(g(u) is defined bySdU{(u)&(u)
= £ (1)) Thus '

<x(UIE)» == /EAcdu,fb?X(UiC]) eXPTEAc L(u, [p7) -

T[T dulblexps’ £ (u'f -WSu[b]u’b"}.
ri {jLeAi L ]exPPEA: OJ[P]) bedA” ( i 1)

(2.9)

Here and in the following, the prime ' on Z:' means that plaguettes

in the boundary BA{ are omitted.

Since the path C does not intersect any of the vortex containers,
X(-) involves only U, -variables.
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Given elements };.Lre r of the center of the gauge group (i=

1___5r)we make a variable substitution as follows

{U[b]y; L-F bcILr

u lbl = , |

1 ulbl i bEUR (2.10)
The path ¢ has one linkn '-F:r for each r ; all other links in
C are outside Uri_r . Therefore

x (u,[c]) = x(ulel) e, (ry)
We may integrate (sum) the g; over [T , using normalized Haar

measure dy on T . As a result

<')((U[C].)>=—1Z—J'J€1—ACdU[b]X(U[C])_ (2.11)

Q____'

-ITOIX: 0, (I_J_¥1r) exPPAE.AC oL (U [’P])

e

rIL

T dulblexp’ LU $ U[b]U’[b]-i)}
{ Jbe/\l PPU\I W )beB/\{ S

In writing the first exp 2 4 as a function of U[‘P] rather
than U, [pl we used the fact that

ulpl = ulpl  for pe A€

This is so because the boundary p of any plaguette Pél\c contains
either none or two links in anyone of the sets :;:I__" . If there are two,
they have opposite direction. Since y," are in the center I© of G

L

they cancel out,

Next we inspect the inner integral. Let A be socme sublattice of A ,
i.e. a closed v - dimensional cell complex. We define the partition-
function of the system in A with boundary conditions U .That is,
the string bit variables take prescribed values ufbl for all 1links
be A’
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‘u)= | T du'lb LU T S(ulbluTer™)
Z(W,u) = [JT dutblexps L(Wp))[T 8 (ule

(2.12)

We note that it is invariant under the action of gauge trans-

formations on the boundary conditions U : Let V{X]eG bedefined for

all vertices (0 -cells) x¢ oA’ and let U[bT=V[xTUlbIVly1" for
b = (x,y Ye an' . Then Z(/\ZU) remains unchanged. To see this,

extend the definition of V tc the interior of A’ by setting
v [x] = 1 for all x #a/\f , and perform a variable transfor-

mation U'[b]~ \,/}_-X]b{I}_'b_]‘/[y]-1 on the variables of integration.

Let us now consider one vortex container /\: .Let ocerlr .
Given U omn ’b/\: we define a configuration Uy on the boundary
3A. by

Ulble if be _er
u, bl = (2.13)
U [b] otherwise

The substitution U-—» U, is a "singular gauge transformation"”
if o # 1 . Since any plaquette pe 8/\: has none or two links
of opposite direction in TD; , it follows that U [p] = U[p] for
all placuettes pe ’B/’\r-L . More generally, let Abeany topologically
trivial part of the surface a/\[ .Then the substitution U-—v-uo. agrees
with the action of a gauge transformation Vix1 on A . However it
is not an ordinary gauge transformation; Uy b1 £ vix] u[f:;]\/[y]_1
for any V  that is defined everywhere on ’a,f\".L

r

The S- function in (2.9) involves variables ujbl for be BAL

Since DA, intersects ¥ in ‘P; and J—",L:* in ‘PL"’ ’
Eg. (2.10) specializes to
r R [ o
ulbly, if be™®;
r . r/
u [bT = ufbly. if bem
U[b] otherwise (2.10")

We note that U, (b7 aiffers only by an ordinary gauge transformation

from Uo.[b] as defined by Eg. (2.13), for o= Xir(yi; )-1

[Explici.tly Ug[b]= \/[ﬂ:]{_J{[f:f_l\/[y']-1 for V[x]=yr if xea/\:,x'w-)
L+t



and Vix] =1 otherwise:] Consequently, the integral in {}
in Eg. (2.11) is egual to a partition function Z (Ar, uc\,
r roo-t
= , ; is defined by Eg. (2.12).
c':_y,t(ym) Z is defin y Eg. ( )

We introduce new variables

r r r -1 :
0--i. = \JL (X‘L+1) ;oor= s

. r
with yr =1 . It follows that Y, = ;

-
9. . Thus
]

Sr
[

r “1

Yo (_”_a’r> = Wy (ITG‘LP) = Ewo(o‘;’)

Because of invariance of Haar measure on I Tdy"” = TTde.”
¥ 1 L

Putting everything together into Bg. (2.11) we obtain

1 ' .
<x(ule)> - & J}I’Acdu[mx(u[C])expPchi{u[pl)

3

i 1 &dctr‘*’o("f) Z(AL u"f)}

Ly

(2.14)

It is convenient to introduce normalized probability distributions

P(y) on T by

PA'{,u (y) = Z(Ai’uy)/qu-Z(Ailuu-) (2.15)

This gives finally
= - bl (Ufc) exp = L (Ulp]
<x(ulel)> = <4 Jg;r/\cauf]x( e exp Z . £ (ulp])

i { 13Ay g (@) Jdcz (/\;rvuc)} (2.16)

L. r
r

F

Here ﬁ_‘ is the Fourier transform of p... It is defined by

Pau (o) = | dy pe () ot (2.17)
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for any character w of ™ . p. (¢y) was defined in Eq.(2.15).
Eg.{2.16) is exact. We use it to derive a bound.

We note the identity

¢ = L[ dulblez z(u[p])irr{jdaz(/\{,u,)}.
“ TheN per’ v (2.18)

This is derived in the same way as (2.76). In place of X(U[C]) one
puts 1 in (2.7) and later formulae. As a result w, gets replaced
by the trivial character 1 everywhere later on. But fD (1=
since Pp is normalized, Edg .. {(¥) -1

Now we can write down the bound. We have |x (U{c])| ¢ x (1) and

H\D,\r . ()¢ SUP]];Ar y (wo)l . Therefore, using (2.18)
L’ u L !

l< x (ufcl)>»] < x(i):W SEP\ﬁA[,u("’o”} (2.19)

The product goes over all vortex containers; they are labelled by

L, ¢ here . Inequality (2.1%) has been derived without any approximations
or extra assumptions. It is an inequality for the (confining) potential,
. Eg. (1.2}, p.. 1is defined in Egs.(2.15), (2.17).

To use it one has to know something about -}3 (w,) . Let us
consider the case G= SU(2) ,C= Z, as an example, with X(u)=+u-u

so that mo(tﬂ)=f4 . Since jr'dy (...)zég ()
=z -1
A 4 4
-PA’U(QO)=(1_ ___’Li@'.')(‘lq-_!_‘_'iv) |
) ZA’,u Za'y (2.20)
with ¢ = ~1. In terms of the change of free energy, M,

that was introduced in Eg. (1.6) of the introduction this is

(/5:-.1 in this section}.
A . .l.. " r
PA:,u(wo) = +tanh ZF:M ( i)/\';,u ¢ +anh &,

if (2.21)

Bl e R0,y

L
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Inserting this intc inequality (2.18) and comparing with (1.2)
we obtain the result (1.7) (cp. remark after Egq. (1.7)).

It remains to verity Eq. (1.9). We show that

Z (A, ug) =Z(A{,u)<:3<,[s[]>,\:'u (2. 22)

for o=-1 . This will ke true for any U . Taking the same
equation with U replaced by U, and dividing the two equations

we obtain Eg. (1.9).

Z (A, u,)  is defined by Eq. (2.12) with U replaced by U,

We make a variable transformation

o u'tble o beF/
u'sd -
u"b1 otherwise
Then
Ve ((u'lple i pes/
LT = { P fr

u’” [P] otherwise

Inserting this into Eg. (2.12) produces the desired result (2.22).
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3 Abelian gauge theories in 3 dimensions.

In this section we will discuss application of our result (2.19)
to an abelian gauge theory in 3 dimensions. To be specific, let
us choose a gauge group G = U(1) =T . Its elements are complex
numbers of mod-ulus 1
v:equ , go:O.Z?F s d\/=-1—d§a
We assume that I(Vﬂ is twice continuocusly differentiable. Hence

we may define the coupling constant /3" in the action (1.4a)

by requiring

max { -.ai_z o((e"‘f’)} = 1

¥ 0% (3.1)

We consider the Wilson loop for a static quark of unit charge,

x(U) = w,(u)=u #1

@, lsthe character of a 1-di-mensional unitary irreducible repre-

¢}
sentation of " (=G) .

r
We consider thin vortex containers AL as were described after

Eq. (2.4). We let them be densely packed, i.e. we choose ai =i,

i=0...L~1 in (2.3), r = %, % g ee s T—% . There are then T

identical layers Z:rcontaining L.-1 vortex containers each.

r .
There are then no links in the interior of A, , and the set
(cp. Fig. 4). There-

of plaguettes in AZ‘\SAZ is exhausted by 8

fore

Z(ALuy) - e PELLWE L G

There are 4{2j+1) plaguettes in S; . Let
A} = max 2. raC(U.[‘F]eLcP)
¥4 ’PE.SJ
and let the maximum be reached for @ =<€’ . Then, by Taylor
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exXpansion in @ with Lagrange”s estimate of the remainder R1
one deduces from (3.1) that

J

> ra((uu'a]eit”) > A} - 2(25+ 1) (¢-4)°
It follows that

¢ G+
+ ( )
(2'”' EO/(P expﬂz -C(U[P]elﬁp)) eﬁ J(Q'rr) fd@ 2/5(2_1 1) {(¢-G,
p,-
A

> c493)(%+1) eﬂi

3

with ¢, (/3)'" (8-,‘-/3)-1/2 for faoroo .

Therefore

: z(/\;,ue@,) [fz(/\;, Uiy ) v for |
Jr
C, (ﬂa Y’ (2J'+4)ﬁ2

n

[/

(3.3)
In Appendix A it will be shown that inequalities (3.3) together
with the normalization condition SF) (e Ydp/am =1 imply that
‘ x* 2 . -1
Par oy (0,) € exp -Fa (2/+1) (3.4)
Jl

We insert this into our general result {2.19)

L. 1
X (ylcT)> ¢ x (1)exp —T-—c(ﬁ) Z (2]+4)

This gives

<

< X(ﬂ)exP—T1193)L&1L +const. ] (3.5)

with ¢ (/3) ———c /3)~Consfﬁ

as /3 -»o0
inegquality (1. 2)

. This shows that
is satisfied Ffor

VL) = 2 (/3) [ AnL + const. ] . (3.6)

Acknowledgement: The anthors are indebted to M. Liischer and H. Jcos

for discussions, and to the Deutsche Forschungsgemeinschaft for
financial support.
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Appendix A. A bound for Fourier coefficients of probability

distributions on the circle group.

We consider the compact abelian group = U{1). It consists of
elements z = el¢, -T< @< T . Normalized Haar measure is dg/2m .
Probability distributions p(z) are (measurable) functions satis-

fying

_
p@Yz 0 [p(eydg/am -1 (a.1)

-

They possess Fourier transforms

- .
A . 14
PH) = j'p(etqo)elqugo/:m ;o f=0,%21,. . (A.2)
-
Because of Eg. (A.1}, ﬁ(O) = 1. Suppose that
p(z) € A for all =z (A.3)

- We will show that this implies

| D ()] ¢ exp-T A for £+ 0 . (3.5)

[Remark: In applications, this result serves as a substitute for
the central limit theorem on the circle group. For instance, by
using it, the results of ref.{5] can be sharpened so that they
imply a power law decay of the 2-point spin correlation function
(as was proven by ancther method in ref.[16]). Consider a sequence
pn(z), n=1,2,... of probability distributions, and the convo-

lution products .
N i, i
P(N)(z) =P, _..*‘PN (z) = (Zﬂiwfjdﬁﬁd‘;ﬂ” S(ZTIE QOk)'];{"Pk (e ‘Pk)

{ The § -function with suppeort at 1 is defined by jé{z){@zﬁﬂ@&r=fﬁ)).
Suppose that pn(z)£ A for all z. Then

2

N N
315('”({)] - T 1]3k(g” < exp _"_g_ZA": for €+ 0
1

k=1
As a consequence, p(N)(z) -~ 1 as N-—-> = 1in an appropriate

x -2
topology if X A, =+ - ]
. k=1
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Proof: We want to find the maximum of ]ﬁ(f)\ subject tc constraints (4.1)
First we note that » ({) changes by a phase factor if we
substitute ple'¥ %) for p(?). Therefore we may assume without

loss of generality that ‘}3(63 is nonnegative real. In this

case P )= fCos lop (e'?)dp/am.Consider first the case £ =1

It is evident that the maximum of '}3 (1) is reached for

. A for i(pi.{'lTA-"
P(e¥) - {

0 otherwise (A6)
This gives

f)(f) < ?A‘__ Stn TrAd {AT)

for £=1 . For general {+0 the maximum is reached for a
function which remains invariant under - @+ onr/¢. A variable
substitution ¢'= {¢ then reduces the problem to the case £=4
As a result, inequality (A7) is generally true for {+ 0.

The inequality (elq’):fA can only be true for A 21 . We

can thereforeuse the inequality

. 2
- dn L plnx > X -lfoy- 0L x4 T
X 3!

Setting x=TA = we deduce (A.5) from (A7),
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Figure captions.

Figs. 1. Vortex containers A; winding around the path C.
(a) 3-dimensional case.

(a), (b)), (c) 4-dimensional case.

Fig. 2. A possible arrangement of vortex containers winding
around the path C. The figure shows their intersection with the

1.2
X X =-plane.

Fig. 3. Path C and one of the layers L'.

Fig. 4. Set S’ of links in Zf.(heavy lines) and plaguettes

L

PE S: attached to them (squares). Drawing fcr 3 dimensions.

Fig. 5. Relative positicn of variocus subsets of a layer‘Zr. Fi
consists of the timelike links between qu and ga , including

~ o~ r

those in 5. ,, but not those in S, . Fs,+#1 1s cutside Ss,

(sr = 3 in the drawing). Dotted areas are in the interior of

vortex containers A, . Superscripts r are dropped.
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