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Abstract: We study a model of a pure Yang Mills theory with gauge group
$U{2) on a lattice in Fuclidean space. We compare it with the model
obtained by restricting variables to 22' An inequality relating expectation
values of the Wilson loop integral in the two theories is established.

It shows that confinement of static quarks is true in our SU(2) model
whenever it holds for the corresponding 22 -model. The SU(2) model is

shown to have high and low temperature phases that are distinguished by

a qualitatively different behavior of the t'Hooft disorder parameter.
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1., Introduction and discussion of results.

We will study Euclidean gauge field theories on a hypercubic lattice
AcZYinvdimensions, v = (2), 3, 4, with gauge groups G = SU(2) or
r = 22. ™ is the center of G, i.,e, its elements commute with all

elements of G. )

We only consider pure Yang Mills theories without charged fields. The
(randem) variables of the theory are the socalled "string bit variables"
uibleG resp. 7' : A configuration U 1s a map which assigns an
element W[bJeq resp. " to every directed link b between nearest neighbour
vertices x,y on the lattice. U[b]—> U[b]-t under reversal of direction of _
the link b,

If (C is an oriented path (with prescribed initial point) comsisting
of links b, ... b, then we write

ulcl = ulb,1..-ulb,I (1.1a)
In particular, a plaquette P (=2-dimensional unit cell) has a boundary
P = SP consisting of four links bf--.bq’ . So

wfs1 = uib,1-- ulh]l (1.1b)
tL{c] is called the parallel transporter around C .Functions taking
values in [ will hence-forth be named y rather than U . The same

notations (1.1) are used for them.

The standard model of an SU(2) lattice gauge theory is specified by the

Fuclidean action [1]

L) =% £ (UDRD) with £0)=AXV) for VeSu@ 1.z

Sum over P  is over all plaquettes p in the lattice A . Their orientation
is immaterial since L(V™') =L (V).
K 1s a character of SU{(2) given by

V) = $r v Ve S
X (Vesu@) (1.3)

*6 is the group of all unitary unimodular complex 2 x 2 matrices, and " may
be considered as a subgroup of G consisting of diagonal matrices * 4 . We shall

not distinguish in notation between matrices y=* 4 and numbers y=t1.



Observables are (real) functions ¥ (L) of the random variables U{b]

Their expectation value in the standard model is"

<F>» = fc}u(u)m‘(u) (1.4a)

du(u) =L "M Tmauibl , z = ["Wraulbl (.
Ju(U) =% e T dul , fe Tdulbl  (.v)

Integrations over LLIb] are always over G; duUlblis normalized Haar
measure on G. [Normalized means‘deﬂb]=1]. The product over b runs
G

over all links in the lattice.

The standard model has the following features:

I ) gauge invariance

II) in the limit ,B-'roo (or lattice spacing-» O) it goes formally over into
the usual SU(2). Yang Mills theory in continuous v- di-mensional Eucli-
dean space time ‘

IIT1)it satisfies Osterwalder Schrader positivity and admits a selfadjoint

transfer matrix T
Condition ITI) guarantees that the model specifies a Euclidean quantum field
theory (QFT). A positive definite Hilbert space of physical states may be

reconstructed and a selfadjoint Hamiltonian can be defined [2].

Here we propose to study a modified model. It can be shown to have the

same features I), II) and III) and is therefore a priori an equally good
candidate for lattice approximation to a theory in continucus space time.
It is obtained by a change in the measure %u which amounts to restricting

the admissible configurations U

Consider a 3-dimensional cell ¢ (=cube) in the lattice A ., Its boundary
dc consists of six plaquettes pedc. We restrict the admissible configura-
. .. *
tions by requiring that

» o

One can interpolate between the standard model and our modiiied model by
using action LA(U)=AZPJ(u[?lykchn%[?+ﬁmh%£2;x{uﬁ])] , 0€X€ 00
and no constraint en the configurations. [ X' can be interpreted as a soliton

decay constant in 3 dimensions. ]
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‘P-I;.TB X(u[p]) vy 0 for all cubes ¢ (1.5)
c

If the Ll[ﬁ] % 1 (as one assumes in the formal discussion of the

continuum limit [11) then x’(u[p] )= +2 and the requirement is satisfied.

The expectation value {¥)= J@}A(U)F(U)of an observable 1is given by

the new measure (with the same action L{U) as before)

du(u) = L e e (T X (uB)] Tauls)
Z = IEL(M) { as anvc} TdU[E] (1.6)

Product over ¢ is over all cubes in the lattice., The definitien of the
modified model also includes a specification of boundary conditions. They
will be described in the text (Sect.2). In w=2 dimensions there are no

cubes ¢ and the modified model is equal te the standard one.

We compare this model with the Z, gauge theory which is cbteined by

restricting all variables to [ (same value of/_?; !} Evidently
¥ (ov) = x (V) for o= %1 e (1.7)
In particular (i 1) = ¥2 . TFor variables B’[b] in 7 one has the
identity
oglpl =t royPl =TT yb] 1.8)
peac ! 17 o bep (

As a result, inequalities (1.5) hold automatically when variables WI[-]

are restricted to T , and the path measure reduces to that of the
standard Z, ~ model [3]

d - LY 7 g b1
Ao (3 e J oY

£
> 2 [p]
= Ly lp

1.9
L) - (1.9)
z,= [ty e
b

O&ﬁ]is normalized Haar measure on [T . Explicitly

jcﬂy[b](“‘) = %Eg55=r1 . (l.10)



Expectation valiies in this Z, model will be denoted by < >,
2

Consider a closed path { which is boundary C =93> of a 2-dimensional
surface = consisting of a certain number of plaquettes pe = . We study the
expectation value of the "Wilson loop integral" ’X(U [C]) . Let us intro-

duce the auxiliary variables

o[pl = agnx (Ulp1) = =1 (1.11)
The following inequalities will be shown to hold for our modified Su(2)-
model
l<x (ulcl)>) € 2< T olpl> s 2<ylcT> (1.12)
pex 2

The express-ion in the middle is independent of the choice of = for a given
C because of (1.5)., The factors 2 arise because ')((1'1)=i'2 .The expression

on the right is (twice) the expectation value of the Wilson lcop integral

in the Z,- theory.

Let | = | = minimal area of = with boundary C . It is known from
Wilsons work that static quarks are confined if
—x Izl
Kx (ulc1)>] € consl-e (x>0) (1.13)

Inequality (1.12) shows that the Wilson criterium for confinement of static

quarks is fulfilled for all values of the parameter /3 for which the same
is true in the Z, gauge theory. |

Tnequalities (1.12) are proved by noting that the SU(2) model may be
_ e , . -
reinterpreted as a Z, gauge theory with fluctuating but positive
coupling constants. Then Griffiths-Kelly-Sherman (GKS) inequalities [4] can

b;a applied (Sects 2,3).

The result may also be expressed by saying that confinement of static
quarks is already obtained by integrating out the variables asscciated
with the center of the gauge group if /3 < ﬂ,co . /3co= critical coupling

constant in the .Z,- model. [It is known [3,6 ] that confinement of static

*Such reinterpretation is also possible for the standard model, but

positivity of coupling constants fails there [5]



quarks fails in Z;models in v = 3,4 dimensions for /3 above some
finite B, . In v =2 dimensions/3c5=m}.1n 2 dimensions this result was
known [7]; for v = 3,4 its validity was suggested by work of Yoneya [8 ]
and later also by Glimm and Jaffe [9] ,see also Foerster [lo] . From now

on we restrict attention to 3 and 4 dimensions.

Next we consider the behavior of the model in the limit of high and low
temperaturegﬂft+cx resp. O . We show that the high temperature phase
and the low temperature phase are distinguished by a qualitatively different
behavior of the t'Hoéft disorder parameter [11]. In 3 dimensions, the
low temperature phase is also distinguished by the appearance of two QFT
superselection sectors associated with solitons.
At high temperatures, the solitons condense into the vacuum; 1.e., conser—

vation of their charge is spontaneously broken.

The t'Hooft disorder parameter is the expectation value of the t'Hooft

operator, It is defined as follows.

The QFT Hilbert space of physical states consists of wave functions

yr({zj[b]}).They depend on variables W [b] with links b in the {Euclidean)

\ *
time t = o plane Z. . Their scalar product is

e - . N oL (UBD)
(fy_r'|'yl) == };g—sz[b] M({UIBJ})YZ({ULD”)_PLIZe (1.14)
The wvacuum state is given by
Q({U[b]}bez\) = de_lodu[b];—iaexpf(u[?]) (1.15)

b>0 resp. P >0 are all links resp. plaquettes in the half space + >0 ,
excluding those in 3. . Note that U[p] may involve variables U[b] for bex
(cp (1.1b)).These are not integrated over; instead () depends on them. Obser-
vables F which are of the form described after Eq. (!.3) and which depend
only on variables U{b] with beX act on states ¥ as multiplication

operators, and one has in this case

<F> = (02,70)

]
A simpler formula for the scalar product is obtained if a factor

=
~ &gxp;%%&?(u[@]) is incorporated in the wave function %. For

our purpose the choice (1.14)is however more convenient



Let S be a set of links b. Then the t'Hooft operator Bls]

is defined by specifying its action on states ¥
(BIsT¥)(uipll) = w({ulblelbl'}) (1.16a)
with

(1.16b)

-1 -FOr be S
c[bl = {

1 otherwise

[For gauge groups with arbitrary center ", an operator 30‘[5] is

defined for every o€ I’ by the same formula, but with o[b] = o {OT beS |
Tts expectation value is defined as

<B{s1> = (n.B[51N) (1.17)

For plaquettes p and links b in the v-1- dimensional lattice X

(or in the v=-diumensionol tatiice A ) we say that
N _ :
pedb r'{ and only Lf be'ap (1.18)
. + o s A
9 1is the boundary operator. The definition of 9 extends to

sets § o{: links (l-chains) in F ete. in a standard way‘. For our
purposes (where " = 2Z, ) a simplified definition may be used: 35
gonsists preeisely of those plaquettes p in Z which contain an odd

number of links beS in their boundary. In applications we are inte-

rested in S, 55 of the form shown in Figs.lb,d.

As a consequence of fts definition, the t'Hooft operator satisfies
the following comm uwtation relations with the multiplication operator
X(u[c]) for closed paths ¢ in X (t'Hooft algebra) [11]
Blsix (ufcl) = & x (Ufcl)BIs] | g==1
(1.19)
Let «C = 9Z,ZC2ZThen § =-1 if T contains an odd number of plaquettes

in 28 and f = +1 otherwise.

*
>

d is the boundary operator on the dual lattice of X ( cp. *’e;' (3a])

footnote p. 12.
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Remark: One may define electric field operators El[b] (i=1,2,3) acting
Loyt Y |
on wave functions ¥ by E'[bIW({ulbl}) - -if3 c%’!{({us[b]})

-LsTt/2 s=0
whare us[b]= et

Ul if b=b%', and Lg[b]=Lﬁb]otherwise [211. In this
language -3[S]==exp-ﬁ@ﬂ52553[b], and the t'Hooft algebra follows from
the canonical commutation relations of El[b'] with U[b]. If 5= 3Y

(hence 8S==¢) then B[S] = 1 on gauge invariant states by a Gauss law [5].

Let [S| be the number of links in S and 0S| the number of plaguettes
in 35. We show that in our modified SU(2) model the t'Hooft disorder

parameter obeys

<B[S]>£consjc-e"°‘1[5| (&, > 0)

(1.20)
in the low temperature phase (3> 00 )

On the other hand, an argument analegous to that leading to inequalities
(1.12) - but applied *o the model obtained after per{orwﬁng a duality

transformation (Sect.4) - implies

<BISI>» <B[s]l>, » o always (1.21)

2

It feollows that

A (1.22)
<B[sl> » Consij- G_O(ZIBSI

in the high temperature phase (f34-0)

if we take it for granted that the same is true in the standard Z,- model,

We are interested in § of the form shown in Figs.lb,d. Tn 4 dimensions,
inequality (1.20) is then an area law while (1.22) implies a perimeter law.
t'Hooft has presented a plausibility argument that inequality (1.22)

together with a mass gap is a sufficient condition for confinement of

static quarks [11] .We see that this condition is not fu-1filled in

the low temperature phase of our model.

We present one more inequality which will help in interpreting our
results, Let T be any collection of |T| plaquettes. Then the probabllity

of finding x (ulpl)< o0 at all plaquettes peT is bounded in the
low temperature phase by

T
' - ‘ € D(B) .
<PTETT9( X (ufp1)) > < (13 (1.23)

with D(P)—) 0 as /3—>oo
In 3 dimensions, the <.h.s. can be interpreted as the probability of

finding solitons at all pe€T . It tends to zero ewven for a single'ﬂoqueﬂe-



Remark: Result (1.23) remains true for the standara 3U(2) model. The
proof is the same. Therefore also the provability that inequality {1.5)

fzils at a given cube ¢ tends to zero.

We will now turn to a discussion of the implications of our results
for the question of confinement of static quarks. One cannot conclude
from (1.20) that static quarks are not confined in the low temperature
phase. Something about possible mechanisms of confinement can be said,

however.

Confinement of static quarks in the high temperature phase of the
standard Zl-model can by explained by a vortex condensation mechanism. This
has been know for some time ; see for instance
Yoneyas paper [8lor ref.[9]. Let us briefly recapitulate. Let T be «
collection of plaguettes in the lattice which is closed in the sense
that 9T is empty - that is, T is a clesed path {v=3) or closed 2-
dimensicnal surf-ace (v=4) in the dual lattice of A {see Fig.2). One
says that there is a Z,- vortex located on T  if y[pl=-i
fer all peT . These vortices are the analog of Bloch walls (=Peierls

countours) in Ising ferromagnets ( ¢p. be-low). One may define a free

energyF(chemical potential) of a vortex of extension [T by

3F =/bE-S (1.24)

with energy E given by e‘jgh = <,gz; @("YI?]) >

and entropy S = Ar. (nunber of vortex configurations T of extension [T1)
(To eliminate translational degrees of freedom, 7 1s required to contain

a given plaquétte Pe ). In the high temperature phase, vortices of large
extension|T| are abundant and confine static quarks. At low temperatures ;37"
however, the tern1/3E dominates, the free energy ¥ increases proportional
to |T| , and the probability of finding a vortex of length !T| in the
Gibbs state decreases exponentially with |IT ! . As a result, these vortices

are no longer able to produce an area law (1.13) for the Wilson loop.

Now we turn to our modified SU(2) model. It can be viewed as a Z, model
with fluctuating coupling constants (Sect 2). The 2, vortices still
exist of course. We will call them thin vortices because they are only

one lattice spacing thick . Thereis such a thin vertex lccated at T
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if cr['P] & Al'gnx(u[‘[ﬂ):-‘l for all plaquettes P in T .Since the
fluctuating coupling constants turn cut to be always smaller than the
fixed coupling constants of the corresponding standard Z,- model

( see Sect 2), the energy E of a vortex is lowered. Consequently one
expects that +thin vortices can confine static quarks in our modified
SU(2) model whenever the same is true in the corresponding Z, model with
which we compare. This matches with our result (1.12) and the discussiecn

following it .

Yoneya has expressed the hope that renormalizationc{Z’a_coupling con-
stants in SU(2) theories could shift the critical peint of the standard
Z, - model to zero temperature and enable the Z, -vortices to confine
static quarks at all temperatures. We see from inequality (1.23) that
this hope does not materialize in our model (not in the standard SuU(2)
‘model since (1.23) is also true there). The number of closed paths Tesp.
surfaces T of extension |7 1is bounded by exp «!T| , ¥ a constant.
Inserting into (1.24) we see that at low temperatures ¥+ still increases

proportional, h’];bence leng and thin vortices are very rare.

In conclusion then, confinement of static quarks in the low temperature
regime by a vortex condensation mechanism would have to invelve thick

. ++ R . . . . ..
vortices . In contrast with thin vortices, thick vortices meed not involve

++There is also another possible attitude that one can take in view of
the different properties of the high and low temperature phase of our
model,

Let /3 be the maximal value of ﬁ such that inequality (1.20) does

not hold. One could try to construct a continuum theory by letting AR
Some trace of asymptotic freedom might be preserved by choosing as a
Lagrangean [5.3 1

.[(u)=/3x(u)+o<3<3{u) (x> 0)

where X= X, and Xzare the characters of the 2-and 3- dimensional representa-
tions of SUEZ) tespectively. The added term cxxa(u)depends on U only through
the coset U= U ¢ G/ . It does not change our results, By

letting o ->00 one could force (j[}S]xi. Hopefully {2} /jc tends

to a critical point of the Z, -theory in this limit. The vector po-

tential could be recovered from U{[b]= U{blr rather than from u[bl

since the Lie algebra of G and of G/F is the same. Such a theory would
appear to have one coupling constant more than expected for QCD; the strength
of the confining force (if it survives at all ') is not fixed by the gluon

gluen coupling constant, Never-the-less the possibility deserves further

investigation.



field configurations with )((U[P]) very different from +2 for any pla-
quette P

The importance of thick vortices is also suggested by analogy with
ferromagnets. In the work of Migdal,Polyakov, Kadanoff, t'Hooft and
others [11,12] the idea is prevalent that one should try to generalize
the mechanism which prevents spontaneous magnetization in 2-dimensional

ferromagnets with a continuous {global) symmetry group G to gauge theories '+

Spentaneous magnetization in ferromagnets is destroyed by the appearance
of Bloch walls. 1In Ising ferromagnets they are the famous Peierls countours
[13].Spontaneous magnetization breaks down when there is a sizable probabiu+g
of very large Bloch walls in the Gibbs state. The difference between ?-
dimensional and » 3~dimensional medels is that in » 3 dimensions Bloch
walls always have a thickness of only few lattice spacings. The free energy
of such thin Block walls always increases with their size at low tempera-

tures, even in two dimensions (In one dimension the situation is different)
In two dimensions, however, the increase in free energy with size

(length L) can be undone by increasing also their thickness d so that

the spin direction votates smoothly across them. (The rate of fallelf

depends on how fast d has to be increased with L ) This is an old idea [14]
A mathematically rigorous prcof that it works has been giWven by Dobrushin

and Shlosman [157 .

*** The analog of the Wilson loop is the 2-point spin correlation function.

An expomential fall off corresponds to confinement, where-as spontaneous
magnetization would correspond to Debye screening i.e. absencaoflong range
forces between quarks due to a screening mechanism.

Analogy between ferromagnets and gauge theories may be a useful guide.
But it is not complete: 1) Consider a classical Heisenberg ferrcmagnet with
4-dimensional unit spins; they may be identified with variables Ulxlesu{2) -
For links b= (xrﬁ) let L1[5]=li&]L”ﬂjjThen QZ%lJ[B]=:1 for every plaquette p
(The product must be taken in the right order.§ The analogous relation (1.8)
is only true for gauge theories with Abelian gauge group.

2) In ferromagnets with continuous symmetry group, a mass gap alone is
sufficient to produce expenential decay of two point spin correlation
functions since the Goldstone theorem asserts that there is nc spontaneous
magnetization. In gauge theories the situation is not so simple. Higgs
models with continucus gauge group & and fundamental scalars that trans-—
form trivially (only) under a discrete subgroup I of G can behave similar

to ferromagnets with discrete symmetry group I° ,rather than G (cp.e.g.[221).
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According to t'Hooft, vortices in gauge theories should be substituted

for Bloch walls in ferromagnets. This suggests again that thick vortices
could b€ essrential at low temperature,

In a mecond paper [23] we will derive a sufficient condition for
confinement of static quarks by a vortex condensation mechanism, Tt
admits vortices that are thick at all times at the cost of constrai~
.ning them to a finite volume A; whose complement is not simply connec-
ted. It estimates the confining potential V(L) in terms of the change
of free energy of a system enclosed in A; which is induced by a change

of vorticity (= singular gauge transformation applied to boundary con-
ditions on 3A;). °

+(-P3)_An n-chain with coefficients in Z, is a formal sum 2  y,a

where a are n-dimensional unit cells, and Yo € 2’2. In this context

it is customary to represent elements y, of 22 by 0,1 rather than
+1, -1 ,and o write group multiplication as + (addition modulo 2).

The boundary of an n-cell is an n-l-chain, e.g. Oc =5p; for a 3-cell
¢, with sum over the six plaguettes ‘P,-_-‘inthe boundary of c. To every
set S of n-cells a unique n-chain 2 a is asscociated, and vice versa

€S
(since ¥,=0,1). Its boundary AZga = X% .
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2. Z,gauge theory with fluctuating coupling constants,

To rewrite our medified SU{2) model, let us hegin by considering
a theory with gauge group "= Z,, and with space time dependent coup-

ling censtants,cn the lattice A -

The action of such a theory is

I

Lo (y) %-(P(‘a’{?]) (2.0)

I

LoF1) =2 Ky 5 K20

The ccupling constants are given by a function K which assigns a
real KP‘»; 0 to every plaquette p . The path measure ciuk(g),partition
function ZK’ and expectation value <F‘>K of an observable TF'(X) are

given by

i

- Lo (y) =—
du () = Z e T ey Lb]

Zy =~ [efe ¥ ardy 6]

<Fyi= [ (9 F ()
{‘Haar measure c[y on 7 is defined by (1.1o}/-

(2. 1)

. . . . N, iy
For lattice A we take a w-dimensional hypercube of side length 2 txox2™

We impose mixed boundary conditicns: cyclic boundary cenditions for
y{f)]szl_a y[b] ,but not for the variables y[blthemselves. Then the

€
varzables y[}is]are constrained only by the requirement that

Tr

Cy[P] = 1 (2.2)

Pe 2

for every 3-cell ¢ . Local“E observables ¥ are gauge invariant and may
be considered as functions T=1—({X[35]D of the gauge (nvariant variables

y[—ﬁ;] + One may therefore write in place of Eqs (2.1)
-4 . ] .

duy (1) = 23] ?ofg[p]{_f;rg(;gc}s’[p])}%]:’% K, ¥ [

Z,= j?dy [p] { as abo\/ej cxp% KPXHD]

<Foe= Jdu O F (B

(2.3)

* Local means here that ¥ depends only on ylb]l with be Xc A , where X does
not meet the boundary of A and may be assumed to be tovologically

triviel.One should think of measurements in a finite region X  whereas

the volume Ial is taken tc infinity.
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Let us now return to our SU(2) model. We make a variable trans-

formation

ufbl = u'rhlylbl

2.4
with U bleG, ylbler. we choose y[b1 such that
yIp1 = agn x (Ulpl) (2.52)
or equivalently (since yx (U[p]) = yIlplyx (U lpI))
X (U'lpT) » o (2.5b)

As a consequenge of the constraint (1.5), yipl defined by (2.5a)
satisfies;g;cyfpl= {1 for all 3-cells. Therefore a suitable function
¥y =yIbl exists.
It need not satisfy cyelic boundary conditions.
We consider the configuration Ll as given. We note that requirement (2.5)
fixes L' and ¥ up to a simultaneous gauge transformation in I
UWIb) = olx1u'(blalyl™; yibl > olxT'ylblolyl with el Jer
for b= ¢ X,y ). As a result, we may sum over y[p] and integrate over
UTb] subject to the constraints (2.2) and (2.5b) instead of integrating
over U[b] subject to the censtraint (1.5)

In the new variables, the Lagrangean {1.2) becomes

L o= % Ky (U)y [p] (2.6a)
with
Ko (W) = px (Upl) » o (2.6b)

Local observables may be reexpressed in terms of the new variables,
Fluy = £, ({331 (2.7)

Eq. (2.6a) is recognized as action of a Z, gauge theory with fluctu-
ating but nonnegative coupling constants kb that depend on the random
variables W' . Partitien function and expectation value of local ob-

servables may therefore by expressed in terms of those of the Z,-theory
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with coupling constants K = x’(u’)

Z = [dp(u" (a)

rz"Jf’ :
<F>=2Z _dp\u}<qir>K(w) (b) (2.8)

do(u’) = T dU' 5] T;'G(x(u[]s]))zﬂu,) ©

As our boundary conditions we choose cyclic boundary conditions for
U'Tbland for X[P] , but not for g[b] themselves. If we use formulae
(2.3 for the 2Z, -theory, variables y{bl do not enter and exact
translation invariance is preserved. In terms of the variables of
the original SU(2) model, these boundary ccnditions mean that we
impose cyelic boundary conditions on cosets U(bl=uUIbIMe&/r and on
signy (Uulpl) only, but not on u/[b] themselves. This is a

mixture of free and cyclic boundary conditions.
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3. Inequalities

In this section we shall derive the inequalities (1.12) between

correlation functions in our modified SU(2) model and the Z, -model,

The Z,- model (1.9) is a special case of the models considered at

the beginning of Sec.2.

Pro (3 = i (1) 5 <F >y = <F> 52,220 (5.
with ,L(}: - 2/_7, for all p

If we compare this with the fluctuating coupling constants KP(u')given

by.Eq. (2.6b) we see that

o]

Q< K.P (u’) € 'KP = Zﬁ (3. 1)

These inequalitieswill translate into inequalities for the correlation

functions by the Griffiths Kelly Sherman (GKS) inequalities [4]

We are interested in the Wilson loop integral. Under the change of
variables (2.4},(2.7)

X (ulel) = x (u'felyylel (3.2)

If C =732 is boundary of the surface (2-chain) = then
(3.3)

C = JT :
v L] *pe.?.y[P]
The expectation value becomes by Eqs (2.8)

<y (ule)> = lf Jdp(ur) ¥ (U'Te1) <1;Tel‘zg[f>1>k(u,)

P is o positive measure, and |x (U')[€x (1)=2. Therefore it follows that

[<x (uleD)>] « 2 [dp(u) <TTABI> ] (3.4)

Now we apply the GKS inequalities to the expectation values < )K.The

first and second Griffiths inequality give respectively

1) <y[c]>K » O (3.5 1)

1y <ylcl>, < <ylcl> o (3.5 1I)

when inequalities (3.1) hold.
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Inserting this in (3.4) gives

1< x (ule)> < = folp(u'x;r;:ms] ey~ 2<TLiRl>

<

-

2 'y = 2 fc1 :
-Z(X[C]>Ko gd&)(u ) <Y >z,_
We used Eq. (3.3) and, in the last equation, Egs. (2.8) and (3.0).

These are the desired inequalities (1.113.

For the benefit of the reader, let us recall the assertions of the
GKS inequalities [3,4] . Consider N sites b with variables o =*1 attached.

Let W= {-QFS’_“ } be a family of subsets of sites and write o =11 o
R per b
for Re 13 . ':De{ihe

-1
<oy >, = [{Z S, eXp (gzmxso-s il = ckp(g‘_fe‘é(sd'sﬂ(3.6)

o =*1} o =t1]

Then 1f Kg >0 for all R in 13

I) <o,> 20

(3.7)
i) < >
) R Ts >, > <Oy >, <o >,
From the second Inequality it follows that
) (3.8)
'bl(s < O—T-?. >I< 2 0O

In our applicaticn, the sites are links on the lattice A , and 3 con-
sists of all closed paths. The variables ¢ = glelez, . Ke# 0 only 1} 5 s
boundary of a plaquette. Inequality (3.8) implies (3.5 II).
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4. 'Duality transformation

We consider again the Z-theory with coupling_cons!aﬁskﬁ.ﬂcp-ex{brm o
duality transformation on it. In this way we derive new expressions

for the exp ectation values ¢ )K':..They can be used in formulae (2.8)
Therefore they are useful for our SU(2) model.

The duality transformatien for Z, gauge theories has been described
in detail by Balian, Drouffe, and Itzyksom [3,3al. It amounts simply
to a Fourier transformation on the abelian group. The result can there-

fore also be stated (and derived) without having to introduce the dual
lattice first.

The variables of the dual model take values in the dual group I =

group of characters of unitary irreducible representations of I .For
['= Z,there are two such characters y and " = Z, again., We identify
them with numbers w,=*1.The corresponding characters are functions on
given by
- 1 i Wy = o
C‘QQ (X) = { 'FO'" y‘-‘—i'fEr' (4‘1)
¥ *-'1’ W, =-1

A variable wic] is assigned to every 3-cell ¢ of the lattice ., It

takes values wlc]=t1, It is convenient to use the coboundary operator

A

0 which is defined by saying that a 3-cell
Ce dp if and only if pedc ete. (4.2)

P a plaquette. One writes accordingly

w[ép]

- (4.3
M, wlel = 'T;I" wlc]

cedp PE€de

The action of the dually transformed model comes out as

(@) = Z L, (wlepl) (4.43)

Summation is still over all plaquettes of the (original) lattice
A

The new Lagrangean '('P is related to the old one by a Fourier trans-
formation

e Lplwo) Sda’ e Lr(¥) Gy () (4.4b)
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Explicitly, if the Lagrangean [ﬁ of the original model is given by
Eq. (2.0) then

°CP (W,) = MP +'KPLJ° ' W, =51 €7 (4. 4c)

o IT fn coth KP > 0 (4.5)

ﬁﬂp =-i-£n (Ainh Kg cosh KP)
The constants ﬁ\P must be kept since later on they will depend on
other variables W’ . From formula (4.5) one sees that positivity of
couplin% constants i(P? 0 is essential to make the new coupling con-
stants KP come out real. If they were mnot real, the new path measure
would not be positive, and so we would not have a statistical mechanical

system.

To write down the new formula for the partition function Z, of Eq.

(2.1) we introduce a Haar measure cn [ by

(”.) : (4.6)

*1

de () =

&M

In contrast with (1.lo) we do not normalize this measure. This saves
us from having to write many facters of Z.

The new path measure is

Ij'da}&] exp ﬁx () (4.7

-1

%AK(M)= Z,

and the new expression for the partition function is

Zy = | Tdwleclexp L () (4.8)

N
The action L, was given in Eqs (4.4). Product over ¢ runs over all

3-cells in the lattice A

We will also need the dually transformed formula for the expectation
value of a local observable ¥ . Suppose + depends on gauge invariant

variables y[?] associated with plaquettes peYcA. Let us write down

its Fourier expansion

(k) = [FHe, L) T 8,017 e, | e
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Each varaible @, is summed over *1 (cp.(4.6)) and cS(g[f:]) is defined
by (4.1). Since ¥ is only defined for variables y[pl satisfying constraints

(2.2), F is not unique. The following formulae are true for any choice

of ¥ .

The expression for the expectation value of ¥ becomes after the

duality transformation

_ -1 —_ - f EaY ; ~ ¢ ~
<F > T Zy ICI dw[c];;f:/c(cap'—F({QP})expg.CP(wpw[ap]) (4.10)
If p is not in Y , one must put w}; = ] in the argument of .['P , other-
wise w\; is summed over * 1 by (4,6).

To recognize the dual models as something familiar, one interprets

plaquettes p and 3-cells ¢ as elements ot the dual lattice (they become
links and vertices resp. plaquettes and links in 3 resp. 4 dimensions,

cp. [31). This is convenient, since 3 becomes the boundary operator on

the dual lattice.

Then one sees (cp.ref. [3] ) that in v = 3 dimensions the dual mode 1l

is an Ising ferromagnet with space time dependent coupling constants KF’
In v = 4 dimension it is again a Zz gauge theory with new coupling

~ L} . ]
cons tants L(?; the variables wic] are analog to ;[b] since ¢ are links

of the dual lattice, So they are gauge-variant.

A point to watch are the boundary conditions. The dual models have
purely cycle boundary conditions en variables w[c¢] . Thus in v = A
dimensions the dual model differs from the original one not only in the

coupling constants but also in the boundary conditions.

This comes about as follows: Starting point of the duality transformation
is formula (2.3) which has exart translation invariance (and does not involve
variables g[b]). So it lives on a lattice A in which opposite sides of
the boundary may be identified to form a torus. The new variables wlc]

are assigned to cells of this toroidal lattice.

We shall now apply the result (4.10) to find a new expression for the
expectation value <B[SI> = (N, B[STNO )  of the t'Hooft operator.



_2].-

To every link b resp.plaquette p in the +».0 plane . there is
a unique plaquette p, resp. cube Cp in the halfspace t>o which has
b resp.p in its boundary ( p, projects from b in the positive time direc-—

tion, similarly for ¢p , compare Fig. 3 below).

From the definition (1.16) of B[S] and expression (1.15) for the wave

functien of the vacuum state it follows that

<L B[Sl = <F> (4.11a)

where F 1is a multiplication operator given by

F({ulbl] Ve Z {CCulp))- L(uB)] @

We perform the variable transformation (2.4), (2.7), considering ¥ as a

function I’u, of the variables y[bl of the Z, —theory. This gives

ru'({x[b]}bez) = exp {-ZI:ES Kpb(u )X{‘}sb]} (4.12)

TT [cosh 2K, (U - y[p] aink 2k, (UN ]

U

Py
€S

. . . A .
The Fouriertransform of this is F = Tl"[ S‘JP:‘ cosh 2I(P - S“’P"‘ sinh ?_KP]

One inserts this into (4.1o) and carries ocut the f.JF',- summations. Upon

use of Eq. (4.53) relating KP to K’P , the result simplifies to

<7—'ur >K = <JJ_SQ[3Pb] >
But

T wldp 1 =TT T wll = T, wley] (4.13)
beS Po beS cedp, peds F

All other factors wle}(=%1) cancel out, cp. the definition of ‘35 given

in the introduction. Using Eq. (2.8) we obtain our final result

<B[s]> - z"fdp(u’) < T olepd > (4.14)

(CP was defined before Eq. (4.11a))
The expectation value < >

d;“u(‘*”
Mp
KP = t el"l COH'I KP

Kpx K, (UY= AX(U'p1) > ©

() is to be computed with the measure (4.7), viz.

Z: Trdwic] exp% {P:\tp+ épwfépl}

i £n [ Ainh k, cosh kp ] (4.15)
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with Z,, from Eq. (4.8). We used Eqs. (4.4a,c) and (4,5).

For a choice of S as in Fig. I, the r.h.s of (4.14) is the spin
correlation function of the Ising model (v=23) respfteexpectation
value of the Wilson loop integral of the Z, gauge theory (v=14 ) with
fluctuating coupling constants inte which our model goes by the duality
transformations.

Inequalities (3.1} for the old coupling constants KP imply
~ a ~ '
0% Kk, ¢ K.P(U) (4.16)

A o
where i-<P = i—fn co#xZ[s (for allp ) is the coupling constant for the
dually transformed Z,-model (1.9). Inequalities (1.21) follow from
(4.16) by applying GKS inequalities to expressions (4.14). (Note that the

duality transformation has reversed the direction of the inequalities).

The wave functions 'g.f in the QFT Hilbert space of physical states of
the dually transformed model are related to wave functions ¥ of the

eriginal model by a Fourier transformation .

(4.17)
p&[(iu’[b], 3’[}5]}) = J‘;L{dw? ES‘P(V[P])}'@“({ u’[!;;]; wp}b,PEz)

~

For the ground state wave function {2 an explicit formula analogous
to Bg.(1.15) can be given, but it will not be used in this paper.
ﬁdepends on variables Ulfb],wpz w[cPI with links b and plaquettes p in
the t =0 plane 2. .



- 23 =

5. Osterwalder Schrader positivity

OQur model satisfies Osterwalder Schrader (08 ) positivity for
reflections in v-1 - dimensional hyperplanes Z of the lattice just
like the standard model. The proof is the same in both cases (see
e.g. [21)

OS-positivity implies chessboard estimates for correlation functions.
They will be used in the next section to prove convergence of cluster

expansions, and later on in the proof of inequalities (1.23),

We consider time reflections 8, «.e. reflections by the "t=0 plane’s

With periodic boundary conditions it ronsists of the union ¥ of the

v-1- dimensional hyperplanes x"=0 and x"a= 2 Ny

Ox = (x'..x™" -x¥)  for x = (x'..x") (5.1

We consider gauge invariant observables ¥ . In the language of Sect.2

( Z,~theory with fluctuating coupling constants) they are (real) func-

tions

F = ¥ ({u'lhl, yIp1}) (5.2)

Time reflections act on them according to
oF ({u'el, y[$1}) = ¥ ({u'leb1, y[0p1}) 5.3)

Osterwalder Schrader positivity is the statement that

< (eF)F> 3 0 (5.4)

"for all real observables F that depend only on variables Y '[b] ,)’[ﬁ]
with b and p in the halfspace t » 0 (viz 0¢x”¢ 2™ ' ). The half-

space contains X .
0S -positivity (5.4) implies a Schwartz inequality
Va Ya,
1<{OF)G > | <« <(OF)F > < (86)6 > (5.5)

provided ¥, & only depend on variables in one halfspace , e.g. t >0

OF , @ will then depend on the variables in the other halfspace.
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Because of invariance under lattice translations and rotations by
) , . . .
90" one can use reflections @ in any v - | dimensional hyperplane

( x"= integer constant) in the lattice.

Let K, be the set of all plaquettes in the lattice A which lie in
an "even horizontal" 2-"dimensional plane ( x 2n?, (resp. x%=2n?, x*.2n%)
n, = integer,for v = 3(resp. 4)). We consider products of observa-

bles of the following special form ( cp. Eq. (1.1b))

Pcp T A(WR, g [p1) (5.6)
Choosing a ¥ - 1 dimensional hyperplane of the form xj j (je(1-») ,njooH
ij—3or4)by which to reflect, such an expression is of the form (8F)gG

where ¥, G meet the requirements stated after (5.4). Therefore one
can apply inequality (5.5).Repeating the procedure with different
hyperplangs_ of the form jpst mentioned, one arrives at the following

socalled chessboard estimates

T < 7T 1Py
[< ™ w, (UTplylpl) > < ) T T (Wipl plpl)> (57)
zh PeR, Py P
I‘%}Ii is the number of plaguettes in -%h ['pzhl= Ipf/lv—3v(v—1) if |1®P) is
the number of all plaquettes in A ]

For a comprehensive introduction to Osterwalder Schrader positivdy »
chessbeoard estimates and their uses, the reader is referred to ref, [16] .

A nice and readable outline is also found in []7] .
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6. Cluster expansions

We are interested in the behavior of the expectation value
of the t'Hooft operator in the $U(2) model at low temperatures, 1-¢.
whern F.--oo.

For this purpose we use the model in the form obtained after
the duality transformation. The random variables are then U'[blea |
wicle r they are associated with links b resp. 3-dimensional
cubes c.

For any set X of such cubes, let

w[x] = T wle] ‘ (6. 1)

ceX

With this notation we have according to Eq.(4.14)

BIS] = < w[3ds]> (6. 1b)

where
<w[X]> = —‘Z—Jdp[u’)<w[x}>k(u,) (6,2a)
(6.25b)

<wixly, = [du (o) ©lx]

Measures and coupling constants are given by Eqs (4.15), (2.8c) and

(4.8).

We note that as ﬁ—-‘!oo , the coupling constants KP(u')—:v o for
almost all values of u’[]';] (These are subject to constraints (2.5b).

This suggests to use cluster expansions.

They are based on writing

eKP(u)[&)o+1]

= -FP(L.JD)+1 ‘For' w, =1 «r

(6.3)
and expanding in products of f's. also depends on U!['] ; we will
xp . P

not indicate this dependence explicitly.

Our strategy is as follows: We use cluster expansions for <m[x'_[>K
on a finite lattice A . They are finite sums and no convergence pro-
blem arises therefore. Then we integrate over the fluctuating coupling

constants (+1.e. over W' ) term by term. The result is an expansion feor



- 26 -

<wi{X]y and still a finite sum. By using chessboard estimates we
derive bounds on the individual terms in this sum which are uniform in
the volume |A} . They show that the expansion continues to converge
in the infinite volume limit, for large enough /3 . andT;yIso allow to
estimate < B[S]>. This produces the bound (1.2c).

Upon inserting decomposition (6.3), the expectation value < w{x] ‘>K

becomes

<wlx]>, =ZL—K de{cl ©ix] T;HP(Q[SP])H} 6.4)

Y A

~ N - -
Zy = 5?"’““?5&(@8}:1)“} : ZKWCMP T s

The cluster expansion for EK<Q[X]>K igs derived in the standard manner
by expanding the product over o cof 7CT-’ + | and then partially resum—
ming by using factorization properties of the integrals that arise
(CP.e.j‘nan.?.J‘lS).The result is as follows:
z <wx]> =¥ Z [/\‘K]J'Tr_doc w[X]TT w[d

K ] K A K CeA [] [ ]peA{P( { Pl) (6.6)

Summation is over all sets A of plaquettes with the following property,

Let A be the union: of all open 3-cells ¢ which contain a plaquette ped

in their boundary. Then A is required to contain X , and each connected
component of A UA must intersect X . Ek [/\\K] is the partition
function for the lattice A~RA . It is defined by Eq. (5.5), but with

product over ¢ restricted to cubes not in A , and product over P

—

A , .
restricted to plaquettes p such that none of the cubes Cedp s In A

We will now carry ocut the integration over fluctuating coupling
constants. In order to get rid of the & -function in expression (2.8c)

it is convenient to adopt the convention

Mo (U

- 03

. ! } f x(ulpl) < o
u
Kg (U) 0
Otherwise they remain given by Eqs. (4.15). This convenlion preserves

lh< 0. From (6.2a)
P (6.7)

<wfxI> = }E‘ —"Z—I'Fbrdu’[b]expg ] MP,(u’)- ko (U} :
{ekp(u’)(o[ap1+4)_1}

' zk(u’)[/\‘z] Xlrzdm[c] C.J[X];—é.x



- 27 -

We have inserted the explicit expressions (2.8c), (6,3) for dQ(u')and
.F? .We also used relation (6.5) between Z,, and EK .

Next we will derive a bound on the individual terms in the sum (6.7)

over A . Let us write it as
<wlx]> = % T, | (6.8)

We will show that

fal
[T, < Cm (6.9)

with C([}) independent of JAl and

C(P)"’ o as /3_>'-’° (6.]0)

Inserting the integral representation of Z_in (6.7), the indi-

vidual terms in the sum may be written in the form
- L (rdu'th1 T :
T,- 4 ng u'th Cdm[c]w[x]_

1

T‘Pr[ I_‘: (w[ép] , u'[p]) exp [ fqp(u’)-;- %P(u')w[a‘,]} j

(6.11)
= < XTI (w3l upl)>
with
1—&xp{-(m[§P]+1);<P(u')'} .Fo.- ped
, _ (6.12)
'F"P = 1 for peA~A

exP{-— (u[ ép] v 1 );(P (u’)} otherwise

For future use we define
F(ULpl) = 1-exp(-2Kp)
~ . P . fr - ’
KP depends on U [-P] by(4.15). We have O0¢ F (u (p1) 2 :FP -For peA
We note furthermore that |w{x}| =1 and 0O¢ '-pr' <1 for all p

Therefore we may estimate

< b
1T, | < <PE2:(L‘[P])> (6.13)
A2h=An'%his the set of even horizontal plaquettes in A , c¢p. end of

Sect.5, We have the freedom of choice what we call even and what we call
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horizontal. Therefore we may assume that the number 8,51 of

plaquettes in A satisfies

FALe b2 181 /272 (v-1) (f.14)

We note that ¥ depends only on variables U which are unaffected
by the duality transformation. Therefore it does not matter whether
one computes the expectation value of the r.h.s. of Eq. {A.13) with
the measure cbtain-ed after the duality transformation, or with the
original measure.Consequen-tly, the chessboard estimates (5.7) of
sect. 5 apply. They give

; FOTR VAR -
T, € < T T (Up])y (5.15)

PeR,

It remains to estimate the expectation value

' i [ s g

Y = b] T4 ZiM_+K_wla]l .

Spepy ()77 JTdu”c wlelepZ (Mo o [i)]
T F (upl) (6.16)
pe'ch

L = (Sarne Lmtegml with the last factor in fhe tniegrand omidted )

To boundZ{rom below, we restrict the variables wfe] to ! and the
u'[i:] - integrations to a region in 4§ sueh that ’X(UIEP])?ZQ_S- .
Let Tg-bethe volume of the subset of SU{2) such that this is true
(T,
From Eqs (4.15)

<1)_

exp (/C‘P+ F(P) = COSJ’I/}X (u’[}':]) ‘5.
Therefore

1P
Z = ["f_"s_ cosh 2/36"‘9’] (6.18)

+rom ]
for any &> 0 . To bound the numerator, above we determine the maximum

of the integrand. For pe'ch we have

A

exp ('f":1P+ KowéP]> £ exp (Ic]P+ I~A<P) £ cosh 2ﬁ
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from (6.17), For pe 'ch

A A ; f:1 +-:< —1‘2
exp(MP+l-<P}F(U[15])=e A A TR
~-/3%
= coshpax, [1-tanhAx T = e BXe o
by (4.15). Thus .

Ipl 11:’5"192-]_.! -2
numerator < 2 [cosh 2/3] . on= 2%

The factors of 2 come because each w[c¢] is summed over 2 values, nirl

. . . v-3
is the number of 3 dimensional cubes in the lattice. Since lPZhl=I‘P1/r,r=2 v(v-1)

niPl slPl

numerator € 2 [COSL’ 2/3] 5 ( s=-1—-17 <1, r= 2" 3 (v-1))
(6.18")
Let us define
s
- } Zrl[cos]m?.p] >
C(P) B m,SL-n (-r& cosh(Z/_’;e‘&) (6.19)

Since s<1 ,C(P)satisfies condirion (6.9). Estimate (6.9) follows from
inequalities (6.18) and (6.18).

Convergence of the cluster expansion in the infinitein\ﬂsélgﬂmi (léén)ir
follows now from an estimate on the number N(‘IAL).OF-ECrms A with given
number |A! of plaquettes in & . The estimate obtains as a corellary
to the solution of the Kdnigsberg bridge p:coblem+ [19] in essentially
the same way as in ref. [18] . One finds that there exists a constant
¢ such that

N (1al) € ¢ ate ] (6.20)

To estimate (B[S]):(c.g[ésb we need to find the first nonvanishing

term in its expansion. For this it is sufficient to find the first

nonvanishing term in expansion (6.6) for <w[5SJ)K )

In four resp. three dimensions this amounts to the same mathematical
problem alreddy solved in determining the leading term in the high
temperature expansion for the Wilson loop of a 2, gauge theory 27,
resp. spin correlation function of anIsing ferromagnet,cp. end of Sect.4.
The result is that JA{» |S! if § has minimal extension for given 3s
(as in Fig. 1).

*One considers plaquettes p as islands, andcubesc ascollections of 5!
bridges joining pairs of plaquettes in the boundary of c. In addition

one imagines a set I of |X] extra islands which provide for a closed

path of bridges consisting of one bridge out of every cube c in X . Then
the set TyA of islands is connected by bridges.
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An alternative proof goes as follows. Let Z a union of 3-dimensional
cubes. Its boundary 92 consists of plaquettes. Let it be chosen so that
9Z "winds around" 35 in the sense that 3Z contains precisely one of
the plaquettes P, , be S ( p, projects from link be$ in time direction)
To every Pp there is a suitable Z such that 9Z contains Py - An example
for a 3-dimensional lattice is shown in Fig. 3. We make a variable trans-
formation wlel=»-wic] for ¢ inZ . Then m[’Sp] - - w{ép] if -peaZ,
otherwise Qﬂgp] remains unchanged. Thus ca[ég]=§§;o[§Pb](sae Eq. (4.13))
changes sign, since exactly cne factor has P, € 9Z . Suppose now that A
does not have any plaquette in common with DZ . Then the integrandofIAis odd
under the change of variables and so the integral vanishes. If A has
fewer plaquettes than (the minimal choice of) S one can alwavs find a sui-
table Z such that 9Z does not interesect A . For S as shown in Fig. 1 this
is obvioﬁs. Therefore all integrals I, with {Al < {8 are zero

In the analogous argument for the high temperature expansion of the
Wilson lcop the analog of 3Z is the location of a thin vortex as des-

cribed in the introduction.

We are only interested in sets S such thatr )3815 S . The bound (1.20)
cr < B{s1> follows then immediately from the identification of the
leading term in its expansion, together with the bounds (6.20) and (6.9).

3 X1 .
One has (95| € [S] £ IAl hence 1At ¢ 24l in (6.20), anc convergence

of the cluster expansion holds for a range of values of /3 which is indepen-

dent of 8§ ( SOIOnj as]ﬁSIéISJ).
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7. Solitons in three dimensions

Gauge invariant wave functions of QFT states depend on Z;variables

y[b] only through gauge invariant "field strengths" y[p] ,gTs 3161
&

Let us define operators aﬂ)acting on such states according to i

oy e (fu'lel, yipl}) = ¥ ({ uthl, plple})

o, = -1 of P= PI and + | otherwise

In terms of the original variables lj[b]zljtb]a[bft this means that
X(U[P])—)“Q((U[‘P]) . We say that configuration U contains a (bare)
soliton at p 1f v (u[?})-<o . Thus , creates or destroys a soli-
ton. Soliton number is conserved modulo 2 because of constraint (1.5).
If a soliton enters a cube ¢ through plaquette p , it has to leave

it again through another plaquette.

From the definition (1.16a) of B[S] it follows that
sl = T, w
;B{ ) peds T A
This is so because every plaquette p not in 2§ contains an even number

of links in 8 and so the substitution (1.16) dees not affect X[?] .

We see that BIS] is a product of two soliton creation-annihilation

operators if S is of the form Fig. 1b.

Under tHe duality transformation of Sect.4, the model goes over into
an Ising ferromagnet with fluctuating coupling constants. Operators Wy
become multiplication with spin variables co[cP] of this ferromagnet and
<RB[s]y is a 2-point spin correlation function. Convergence of cluster
expansion of Sect. 6 shows that the model will behave like an ordinary
Ising model at high temperatures when our 3 —> oo . Thus there is no brea-
king of the symmetry under reversal of all spins. The QFT Hilbert space
of states decomposes therefore into superselection sectors thiat are even
or odd under the reversal of all spins wic]— -wlc] .The multipli-
cation operatOISiu[CP] = (soliton creation operators aﬁ,) make transi-

tions between them.

Conversely, if /3= 0 the model has spontaneous magnetization. i.e.
‘in the pure Phases of the sysiem L
<chP§»# 0 A.Thls follows from inequalities (1.21) and the fact that
the ordinary 3 dimensional Ising model has spontaneaus magnetization

at low temperatures. In other words, the solitons condense into the vacuum.

Ld N ”» N .
Thin vortices may be interpreted as world lines of soliton pairs
in Euclidean space time .

fs Am}mm’;ﬁé
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8. Inequalities (1.23)

In this section we want to prove inequalities (1.23). The argument
will be the same as used in the modern version of the Peijerls argument
for ferromagnets [16,17,20] . Let A- be any set of plaquettes and
./_\.2h the set of even horizontal ones among them, as in Sect, 6., We may

assume that inequality (6.14) holds. Then we have

<PT€TAQ(~)<P)> < <;FA%9(- X ) >
< <:2’p1h9(-xpﬁ>l&2h’/]ah‘ (8.1)
by chessboard estimates (5.7) We wrote X, = y(u[?])=x(u'[15ﬂy[1>1 .
It remains to estimate ’
< 80> = [‘gdu’[bl ay[b];tﬁ{e (x (ufprye 1O¥PL

- T - ; .
T 0 Cvi) (8.2)
We have used definition (2.5a) and the form of the path measure derived

in Sect.?2. Z is given by the same integral without the last factor.

The partition function is bounded below by restricting all g[b'l to +1
and integrations over W’ such that x(u’[p] 3 Ze_'&- as in Sect. 6,

This gives

~-nlPl s 117!

Z > [Ty exp(2pe™) ] (8.3)
#IPl = No. of links in A. The numerator is estimated by estimating the
maximum of the integrand. If Pe Py

. Ko (uhylp] .
Q(“b’[?])e P §-p £ 1 Since I<P?O
Lf pd B, 'y L3
Kp (L) ylp]
e P it 4 32/3
This gives
2 1Pi- 17,1 ¥ ] s]Pl
numerator < |e /3] = [e , (s<1) (8.4)

with s as in (6.19). Let

. e){!.s 2" ]
Dgﬂ) = m‘é..n [

o
Ty €xp (2/3 e™)
Since A can be made small, 'D([&)—* 0 as /3—-».50

(8.5)

.
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It follows ' from inequalities (8.3), (8.4) that TT. @(_,X Y« Dgﬁ)ﬂ’l.
pe P id

Since JAzhl/Ipzkl ¥ 1Al /1P) [by (6.14), and expression for |®B, |

following Eq.(5.7)] , the estimate (1.23) follows then from (8.1).
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Figure captions.

Fig.1. Argument S of t'Hooft operator.
Sets S of links (heavy lines), and plaguettes in 33 (squares)
Figs. la,b are for a v-1=2 dimensional lattice

Figs., lc,d are for a v-1«3 dimensional lattice

Fig.2. Support T of a thin vortex.
A set T of plaguettes in a 3-dimensional lattice A which is c¢losed
in the sense that BT = ¢ . That is, every 3-cell in the lattice

has an even number of plaquettes P€T in its boundary.

Tig.3. Illustration to Sect.4 (before (4,11)) and end of Sect.b.
Links be § (heavy lines), plaquettes Py, projecting from them in

time direction, plaguettes in 35 (pl and P, in the figure), cubes
projecting from them (c and 5 in the figure; c; P;)' In addition,
a closed surface 37 is shown which contains exactly one plaguette

(hatched) with be S. Drawing for 3 dimensions.
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