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1. Intreoduction

Since the diécovery of the /¥ and ¥ in Noverber 1974 1) we all witnessed

3)
>

a dramatic revival of the quark mode] 2). A new quark flavour, ¢ = charm
was added to the hacron spectrosccpy, interpreting the J/¥ and ¥/ as cc
bound states. This new system promised to be describable as nonrelativistic
bound states of ¢ and c: Charmonium 4). Knile the guark model for old mesons
suffered from the fact that the quarks move retativistically (mass differences
of old mesons are of the order of the masses themseives), in charmonium the
relatively heavy (% 1.5 GeV) c-quarks should move relatively slowly,
Pr=(%)* = 02 . A perturbation expansion in A% then converges
rapidly and the well known powerful tools of exploring a nonrelativistic
bound system could be used. This was the source of real excitement.

Meanwhile we learned about the existence of a stil] heavier meson family,
the ¥, 7/ and X %), and interpret it as bound states of the b quark and
B, b being the fifth quark flavour 6), much more massive than charm. We
further hope to discover the sixth quark flavour, t maybe, and its bound
states tt in the new e'e” machines PETRA and PEP. The larger masses of the
b and t quark guarantee that their bound systems bb and tT are nonrelati-
vistic to a much higher degree than ct. In this lecture we will discuss

the dynamics of a nonrelativistic QG bound system, Q = ¢c,b,t. As a title
for this lecture we chose the generic name for a nonrelativistic Q§ system,
QUARKONTIUM.

On the field theory side, Quantumchromodynamics 7), QCD, turned out to be
the most promising key to an understanding of quark dynamics. QCD is a
nonabelian gauge field theory of the interactions of quarks and eight mass-
less vector gauge bosons, the giuons. The coupling constant %5 , renor-
malized at the relevant momentum transfer q2 or the corresponding distance
R, turns out to be a monotonously falling function of q2 {or rising function
of R). It tends logarithmically to zero as q2——$ co Oor R— 0, this is
called asymptotic freedom 8). s becomes Targe for some large R of the
order of one fm, the typical hadron size. Up to today this regime is subject
to speculations only, we believe that the rising coupling provides for the
permanent confinement of quarks. Perturbation theory is useless in this
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case, but lattice gauge thecries 2) or the string model 10) suggest that
the interquark force for larga separations might be independent of the
distance, thus giving rise to a Tinearly rising static potential between
quarks. At shert distances physics is much more pleasant because ®glbe-
comes small. Then perturbation theory is fine and in Born approximation

the quark interaction is just one gluon exchange. The nonabelian seif-
interzction of the colour-charged gluons plays no rOle in lowest order
craphs, and in this approximation gluons are just analogous to photons.

The short Jdistance behaviour of QCD is thus very similar to QED, the static

potential for short distances being of the Coulomb type.

When QCD is in fact the underlying theory for the Quarkcnium systems, we
should he able to probe some QCD features by studying these systems. Khat
can we probe? First we should be able to probe the short distance behaviour.

-

Tha one gluon exchange at short distences leads to a static potential of

o .. .
the form V. (R) = = £ £ The subscript AF denotes the origin of this
AR 3 R

potential "Asymptotic Freedem". -4/3 s a group factor from SU3 (colour)
and ® 1s the effective coupling. One can take two points of view re-
garding ®g . Either ™g is really k-dependent 11) but independent of

the quark Tlavour. Or one defines an effective g as a constant, different
for each guark fiavour mass 8). For simplicity we take the second point of
view. Then the & in a heavy QQ bound state M2 is related to that of a
1ighter one Ml by the approximate formuia

_1 :
g (M) = g (4F) 4= 2o (u2) oy (2 )| (1.1

(N is the number of "light" (= lighter than Q) quarks). The potential
VAF(R) with &g given by (1.1) should be correct for very short distances.
it further gives rise to the spin-spin and spin-orbit interactions known
from positronium, because the quark gluon vertex has the same Dirac struc-
ture as the electron photon vertex ( 37A-coup1ing).

The second feature of QCD we might be able to probe is the 1arge distance
Sehaviocur, R —> eo. The linear potential as suggested by Tattice gauge
theory or string medels should dominate for very large distances R:
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Ve (R)= a R . The subscript C stands for "Confinement”. The
slope & should be flavour independent and alsc somehow related to the
inverse Regge stope of the Tow mass mesons 12). Furthermore this potential

should be essentially spin independent 9).

We now have quesses for the static potential at very shori distances,
VAF(R) = - %{ X » and very Jong distances VC(R) = aR. We have no guess
for intermediate distances. The simplest assumption is to write the com-

R
plete potential as a superposition of these two extremes(E.Eichten et al.,ref.d):
V(R =V, (R) + V_(R) (1.2)

We further assume that all the spin dependence (except the kinematic

Thomas precession) has its crigin in VFF(R) and can be calculated via the
Fermi-Breit Hamiltonian 13). Although fhese Ansdtze have their criticism
they have worked out to be very useful as a first attempt to the problem.

" The first part of this Tecture will try to show how far these Ansitze reach.
In the second part we will discuss decays of Quarkonium and a third test of
QCD, namely of gluon helicities and the glucn self coupling. With the ex-
perimentally accessible regime of c.m. energies of 10 GeV or more, the
g]uons'which govern annihilations in QCD, might show up as hadron jets 1@).
These jets should carry the directed momentum of the initial gluon. In
angular distributions of these jets one should then be able to measure gluon
helicities 14’15). One can further speculate on the existence of glueballs 16)
to be found in Quarkonium decays and on measuring the nonabelian qluon self
coupling by comparing the angular distribution of a 3 gluon decay versus a

Y + 2 gluon decay. The latter two things, however, go beyond the Born
approximation,

2. The Spectrum

Throughout the discussion we will assume that the Quarkonium (QQ) system 1is
essentially nonrelativistic. The perturbative Hamiltonian can then be gb-
tained by solving the Bethe Salpeter equation in nonrelativistic approxima=-
tion or by expanding the exact relativistic scattering amplitude (Born
graph only). One obtains the Schrodinger equation in zeroth order of ﬁz
and the well known Fgrmi—Bréit Hamiltonian terms up to order ﬁz . In



Oth order
¢ B2
H = 2 g g + V(R) + const,

and all states which only differ in their guark spin configurations are

degenerate.

1

Here we can study the rough structure of the spectrus and try to Justify

the choice (1.2} for the potential V(R.). In Fig. 2.1 3%
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Fig. 2.1. Four different potentials for charmonium, normalized to the J/Y
and Y’ binding energies. The solid horizontal 1ines indicate the P wave

of each potential, the experimental c.0.g.{P) is given for comparison.

(2.1
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that the center of gravity of the P waves (which is object of 2.1y can

be well described if the potential lies between a Coulombic and a linear
potential. Also a logarithmic potential is not bad. This may serve

to justify the Ansatz (1.2). We note, however, that doing this comparison
we assume that splittings due to spin-spin interactions are either small

or of the same magnitude in the P and S waves. Calculations of the spectrum
of Eq. (2.1) have to be done numerically because of the complicated nature
of the potential V(R). There are three parameters, Mys K= %‘Ms and a.
The Tevel splitting of the radial excitation and the ground state (473.7)
and J/%¥ (3.1} in Charmonium) determines one of the potential parameters,
say a, if the other, say k , is given. We then can try to determine w from
two independent sources, nemely the ratio of the S wave functions at the
origin

2 2 _ .2
Yy (0) | _ Mw’f;§(qj)__(3j) + 2.2 keV (2.2)
2 7 - — 7 .Z
RETACH M [az (3/4) (3.1)7 4.8 keV
and the relative placement of the center of gravity of the P waves. Both
procedures are almost independent of tha third parameter, mq, and in
Charmonium they give
K= 0.4...0.5
(2.3}
a-= 1 ... 0.9 GeV/fm
One remark on Eq. (2.2) is in order. It is derived from the Van Royen-
Weisskopf formula
2
_ 22 | %]
r'eé_ (V) = 16w xeog 'L (2.4)

M/

This equation is subject to large corrections in the Charmonium system as
we will discuss later but in ratios of rgé’s these corrections cancel.
Therefore (2.2) seems to be quite reliable.
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¢ the large value of « reasonable? Fron the beginning x is just a

free parameter. But with K= /3%  we find O of the magnitude

0.3 ... 0.4. Is this o related to the strong ceunling constant in

annihilationrproceSSes? Or is it related to the streng coupling constant

in deep ineiestic lepton scattering? From the decay formulae'as described

in the second lecture one can derive ol (annihilation at 3 GeV) = G.2.

Rut this o refers to annihilaticn distances which are shorter than the

average interquark distances. From decp inelastic lepton scattering we find
(3 GeV) ™~ ™ (0.07 fm) = 0.4 taking the renormaliz ation point

= 0.5 GeV, as you have learned in this scheol 17). From Fig. 2.2 we see

T T T T ] 1 T T T
V [GeV] |
']— -
VIR)
o5k | .
|
i]= )
|
_[]'5— -
|
-1 Coy o l R[fm]
05 10
< AF [ —=

Fig. 2.2. The shape of the standard potential, eq. (1.2}. VAF dominates
below, VC above R = 0.3 fm.

that 0.07 fm are just in the middle of the range where the asymptotic

freedom potential V,¢ dominates, between 0 and 0.3 fm. The g as ceter-

mined from the spectrum with the simple Ansatz (1.2) for V(R) agrees roughly
with the ©o¢ as measured in scaling violations of deep inelastic Tepton
scattering. This result encourages us 1o ask the next guestion: Is the para-
meter O in VC(R) = aR unigue for ali flavours (quark masses) as QCD suggests?
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The first estimates of the V'-y splittings in Q) systems hesvier than
Charmonium predicted a decrease of this splitting with e 19), At 10 GeV
the mass splitting should be 450 MeV only (compared to 590 MeV in Char-
monium). As soon as the next Quarkonium system, ¥ and T, was found,
this prediction was destroyed. The ¥~ 1" mass splitting was around 600 MeV
again as in Charmonium. The potential to describe this fact is the logarith-
mic potential 19). Here mass splittings are completely independent of the
quark mass. But an overall log potential has no Justification within QCD.
For intermediate distances, on the other hand, it is not worse than the
simple superposition (1.2). An interesting - and phenomenologically success-
ful Ansatz was then proposed with the Tog potential for intermediate

distances only 200,
- KR R < R,
V(R) = ALy 55 for R sReR, (2.5)
o R R >R,

The ambiguities coming in by 6 parameters, R, a, Rl’ RZ’ Ro’ b in this
potential are removed by demanding V(R) to be continuously differentiable
at R1 and RZ' These are four conditions which remove 4 parameters and for
comparison one chooses # and a to be the only independent potential para-
meters. The Charmonium system has been solved with this potential and one
finds a very good fit to all available data with

2l

X = 0775 Gev Lo

Applying the potential (2.5) - with the unique a = 0.775 GeV/fm -
to the L system gives the mass difference T' -1 to 560 MeV.

Very recently a precise measurement of the ¥ and Qf‘fmasses at DORIS gave
us the experimental value: 560 MeV 5). This coincidence is of course no
prove for the correctness of the potential (2.5) but it shows that - with
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a more sophisticated potential - the assumption of a flavour independent
constant force between quarks at long distances is not in contradiction

with what we observe. It is amusing to note that this value of a = 0.775GeV/tm
is even in agreémenf with what one would expect from the old meson spectro-
scopy 12), ' |

We want to add a remark on quark masses.'Quark masses only slightly influence
the two inputs we used, the ratio of wave functions at the origin and the P
wave location. What they mainly influence is the wave functions themselves,
the dipsle matrix elements and the velocity of the quarks. But here is some
ambiguity. Fitting (o) to the naive V. Royen Weisskopf formula (2.4) gives
a rather small value, m. 1.1 GeV. For the dipcie matrix elements on the
other hand one would like a large quark mass, m_= 2 GeV, In the best known
studies at Cornell 21) the requirement cf sma]lcquark velocities restricts

M. to be mcir 1.6 GeV. To fix m, or mQ resp. is not as easy as to fix Oy

and a,because the decay formulae (2.4) and the dipole formula are subject

to large corrections as we will discuss in the second lecture. We will use
scaling arguments for scale variations of the quark mass. To overcome the
ambiguities of determining the quark masses we will set quark mass ratios
ecual to the corresponding bound state mass ratios. We emphasize that

smailer quark masses like m. = 1.1 GeV do not destroy the nonrelativistic
aoproximation. We have calculated B2 = (v/c)° and find that RZ< 0.3 in /¢
and BZ<ZO.4 in ¥ for m. = 1.16 GeV and X< 0.55. We feel that this justifies
to leave the quark masses themselves an open question.

3, Spin Interactions

In the physical charmonium spectrum the Schrodinger states are split up due
to spin interactions. In this chapter we want to compare the magnitude of
these splittings with the simplest Ansatz we can imagine, the Fermi Breit
Hami]toniaA?)These higher order corrections to (2.1) are relativistic kine-
matic corrections and spin corrections:

o= HO 4 Hrel 4 psPIn (3.1)

The spin corrections have three contributions.
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spin orbit: | H" = —5}1 I:'S[f dRJ(VAF(R)—"i\/(Q))

. T _ -4 - R, 2 = .._\ 2,_:!__
tensor: H = [mz (3 2R G‘,_'R G, Gz')EjR RdR:l\éF(R) (3.
spin-spin: H* = 611@?: G, @2 A\Q\F (R)

—_

Here Ef;/b_ is the guark spin, S = 1/2(5:+-§;) the meson spin, L its
angular momentum, R the interquark distance. For the potential V(R) we

again take the simplest Ansatz (1.2) with only VAF(R) being spin-dependent.

As mentioned in the introduction lattice gauge theories suggest that the
confinement part VC(R) of the potential is spin-independent. Nevertheless
it contributes to the spin orbit interaction due to the relativistic kine-

22) | .174v(R) in HSS

matic effect of the Thomas precession
‘ 3
P

. In Quarkonia
the Thomas precession leads to a decrease of the

5 -*3Pl splitting rela-
. 3 3
tive to the

M(3p, ) -~ M(3pP.)

M (3R, ) = M(3p,) =0.8

the additional Vc(R) in the interquark potential {1.2) leads to a decrease
of (3.3), which experimentally is found to be 0.5 in. Charmonium.

We are confident that the Fermi Breit Hamiltonian (2.2) is not a too bad
approximation. As an example let us consider the part of the relativistic
corrections due to the kinetic energy of the quarks. This correction is
<(BH/d4me > % B < % B> . Up to B2 of 0.4 the
relativistic kinetic energy correction is less than 10 %. The pl one ob-
tains in the Charmonium calculations are 0.2 to 0.3 for J/Y¥ and 0.27 to
0.4 for ¥/ varying m. from 1.6 to 1.16 GeV.

Let us now compare experiment with the predictions from (3.2). We start
considering the experimental states as discussed at this school 23). The
three P waves are quite well established, the X(3.55) as jPC = 2t state,

the P/X(3.51) as §'C = 1™ state and the %(3.41) as 3 = 0** state. For

—

PI - P0 splitting. While in Pesitronium, where V(R) ~ -I/Rﬂ«VAF(R)

(&%)
—
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the pseudoscalar partners of J/ ¥ and W' the experimental situation is not
<o clear. Candidates for the pseudoscalars are X(2.83), X(3.45) and
¥ (3.59 or 3.18).

The P wave splittings can be parametrized as
CH™ = A <L-35»
CH'> = B <T>

(3.4)

h oA A s — ‘ .
where the tensor operator T = 3 Gy R T, R — 0,0, . The expectaticn

values of [+«5 and T can be found in textbocks on Quantum mechanics 24).
For P waves they are displayed in Table 3.1. A Charmonium analysis with the

] <L-5> LT >

2 +1 - 2/5

1 - + 2

0 -2 - 4

Table 3.1

State 3‘P2 3P1 3PO center of gravity
mass [GeV]| 3.552 3.508 3.415 3.522

Table 3.2

experimental masses of Table 3.2 yields for A and B

A = 34 MeV, B =~ 10 MeV (3.5)

On the theoretical side we read off (3.2)

Ao 2 g (@ VR .

—4

B-_-f,gmé <(dé_%dr‘3)vAF(R)>
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including the Thomas precession. With our stendard potential (1.2) this

gives

(s

We see that the spin dependence from the one gluon exchange (V, F) 15 governed
by <R J> whﬂe the Thomas ,JFFCESSQOH is _”ovwncd Ly <;:3"’>
s = 0.4, m <(R ,> ~ 0.07 GeV® and <ﬁ = 0.4 GeV from numerical fite
yields the va]ues of A and B given in Table 3.3 for two diffe

Taking our

rent values

n. [Gev] 1.6 1.1
A [Mev] 35-12 56-32
B [MeV] 6 9

Table 3.3: A and B from numerical fits. In row A the second

number is the contribution from the Thomas precessicn.

+). By comparison of Table 3.3 with eq. (3.5) we see that we are in
the right ball park. We could not have expected a better agreement from our
crude approximation!

m
of c

Let us now try the spin-spin interaction. According to cur philosophy it
arises from the short range one gluon exchange (VAF) atone. The relevant

term in the Fermi-Breit-Hamiltonian (3.2) was

*) The tensor operator T of eq. (3.4) possesses off diagonal matrix elements,
too. They lead to an $-D mixing. Two physical Charmonium states would e.g.

be $'(3.7)=VA<€T 235+ ¢ 13D, and %7 (377) =
-e23%5, +/i-¢r 1%, with
With <2%s,[R3[1M%D, ) =~ A2p [R3143%P) we can evaluate € ~0.3
leading to a  [ga (W' (2.%7)) of 10 % of that of 4{3.7). Experimentally
it is 17 %.

.12 - 32
= 2T% (335 13314p,5 )

-

Ly
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_ 4 = = - |
H®*= G2 G, - o, [_\\/AF(Q) | (3.8)

The eigenvalues of the operator T,-G, = 2 g2 -3 are +1 in a spin
triplet state and -3 in a spin singlet state. Because AVAF(R) ~A(:Q1 )..—_
= 47 §IR) the integral over the wave functions becomes
trivial and we have

(H®S = -go(_g#?r-zf—z (25%-3) Y [? (3.9)
ol

Taking ftP(o)f2' from r;@ via eq. (2.4) and g from eg. (2.3) gives
us for the splittings

M35 y— M(475,) 2 Fo MeV

A

(3.10)
M (235, ) — M{2%s5, )= 35 MeV

Trying to identify Y (1'S.) = X(2.83) means 70 MeV = 250 e,

wz; {2150) = Y(3.45) means 35 MeV = 230 MeV, or LC(Z S ) ){(3;59) means
35 MeV = 80 MeV. Many solutions have been proposed to so]ve this puzzle,

among these are 1nstanton effects 25)

and an anomalous colour magnetic
moment of the c- quark The simplest solution might be that the (Y]t

in eq. (2.4) and in (3.9) are different objects. The next order correction

to |G ? in {2.4) comes in through a transverse gluon exchange between
the two quark lines before annihilation . It has a large factor in
front and the total correction is a factor (4 — 16 s ). 27), which in

Fy
no case is small. But before continuing this discussion let us wait for

estimates of some decay rates involving the pseudoscalars. Then we will
find that we have much more severe problems which question the identifica-
tions above.

4. Scaling the Schridinger Equation

The radial form of the Schridinger equation reads

[-—dfi + ‘ﬂgiﬂ + 2 (V(R) = E)l @ (R)

I

O (4.1)
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For all potentials of the form

- £
we can bring it into the dimensionless form
2 2(e+4) £
— N — —
[d? 7 * 8 E’] ®(g) =0
with the substitutions
- ~2/(2+¢)
€ =L (em)(2ma)
+1/(2+¢)
=R (2nma)
One can now immediately read off the scaling laws for E and R:
— &/(2+c)
E ~ m
-1/ +¢)
R ~ m
(4.5) is also applicable for & = 0, in which case the potential is
VR) = o &9 % We ieave the derivation to the reader.
Let us now consider some aspects of scaling for Quarkonia. We begin with
the level spacing. In a potential like VAF(R) = - %‘)—% alone level spacings
scale like AE ~ g MQ » in a linear potential like VC(R) = aR
they scale like AE ~ m@fq/s - To estimate the intermediate scaling
behaviour in the standard potential we try a very crude approximation:
Let us consider the Tevel spacings given by the linear potential with the
Coulombic part VAF(R) as a first order perturbation. Then
E, = E. (V) +<n-£2[n>
n nive h 3 R

(4.3)

(4.4)

(4.5}

(4.6)
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- . ‘”Vg, . - . . + Y3
and At scales like mg 7 with @ Tirst order correction -~ ™ B g
Because of the mass descndence of ®g , eq. (1.1), this perturbation
procedure starts to break down not before My 2 100 GeV. The curve
is shown in Fig. 4.1 (dashed line). Asymptotically the states fall into

T T T T T T
nt |

630

300 mg [GeVl 7
} 1 { 1 | ]

!
0.3 1.5 kb w30 300

Fig. 4.1. The scaling behaviour of AE in different potentiais.

—— — — —~ standard potential with o(M") via eq. (1.1)
————————————— standard potential with fixed o4
_——— e — - logarithmic potential

our guess

the Coulombic potentiat VAF and the scaling law becomes AL ~ on Maq

If o/ would be a universal constant, this would happen much earlier
(dotted line in Fig. 4.1). From the Y- mass difference we know that

the simple standard potential is not adopted by nature. Using the ¥'-TJ/¢
mass difference as input, the standard model prediction for the T-r mass
difference is much lower than the experimental cne {(Fig. 4.1). The pre-
diction can be faised to the experimental value by fixing ™¢ to its
Charmonium value everywhere, but this seems not appealing theoretically.

In Ch. 2 we saw that a reasonable description of the ﬁf{*I\ mass difference
was possible by introducing a logarithmic potential for intermediate distan-
ces. In the log potential AE = constant ( £= 0), and an intermeaiate part
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in the potential would tend to 111 up the valley of the dashed curve
in Fig. 4.1, We show & guess for the result, the solid line in Fig. 4.1.
This result means, that we expect no dramatic change of AL for the next
Quarkonium. Only for guark masses well above 100 GeV the states would
sit deeper and deeper in the VAF singuiarity and AE starts to increase.
Asymptotically the scaling hehaviour of AF s mgf Mg ~ n1Q,/Q&§(ux§),

- We now turn to Tevel splittings and begin with the P waves. We have shown
that the Fermi-Breit Hamiltonian (eq. 3.2) gives a reasonable description.
From there we have

T LS

H 7 lL11,4F

4
2 53 (4.7)

—
v

where HE? is the spin orbit term without the Thomas precession. In centrast
the Thomas precession term behaves 1ike

Ls -
HC ~ o < G/R\f"\ ~ mg\z R (6.8)

The scaling behaviour of R (eq. 4.5) is somewhere between that in a log and

in a linear potential, R ~ rndjai..,“ VH@:‘V@ , and we can estimate
the 3P2 - 3PO splitting of more massive Quarkonium P waves shown in Table 4.1.
Quarkonium: cc(3.5 GeV) bb(9.8 GeV) 30 GeV

MP,) - MP,) [ev] 150 (input) 50-70 20-40

Table 4.1: P wave splittings in Quarkonia

A comparisoﬁ of (4.8) with (4.7) shows one more important fact. The ratio of
eq. (3.3) which is 0.5 in Charmonium should increase with My and appreach 0.8
asymptotically!

The spin spin splittings go essentially as cxs-fgg » which can be seen by

combining eq. (3.9) with eq. (2.4). Experimentally fgé s hormalized to the

quark charge, is remarkably constant, Fig. 4.2. In the frame of nonrelativistic
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GE/EQZ
[keV]
20t

W0

Fig. 4.2. Scaling behaviour of r;g /Gé .
——————— Experimental evidence below mQ = b GaV
— — — 1in a pure Coulomb pctential
. . R
— in VAF with o (M) via eq. {1.1)

potential models there is no way to explain this for g)w) Q’ . From J/4
to Y , however, we can use the scaling arguments. Table 4.2 shows the

. . od
Scaling in VF\F(R)N_ES V(R)~TogR VC(R)fv R
of
2 -3 3 3 %
1"‘“(0)1 ~ R e Mg ‘M&z Mg
-3 -2 ) -
fe-—é ~ R Zmg s Mg wig, Mg

Table 4.2: Scaling behaviour of [Wio)(* and ez in different
potentials.

scaling behaviour of (%> % and les via eq. (2.4). |4 @{*and
therefore Feé- should feel more of the short distance potential than

e.g. the level splittings. Numerical calculations indeed show almost
mQ-independence of (L in the range from Charmonium to T 28) . In the
asymptotic Timit My —> o2 Tes ~ st Mg ~ Mg Qag; (ma?) 7

which also gives no net M dependence from Charmonium to X . We are there-
fore led to plot this asymptotic mQ dependence for [,z starting with J/¥.



This is done in Fig. 4.7 &
The constancy of | _§5v4%§ below &/ Y {Fig. 4.2), however, cannot be uncer-
stood with our methods and we want to point out that it challenge to

is a
explain this fact together with the seemingiy constancy ot tevel spacings

below 3 GeV., e.q., M

cerns the number of narrcw Q0
for a Q0 state to lie

or strong decays, can be written as

with the binding energy E = M- - My = Mg The tinding energy of QQ
~ e . 1
<d mass of QG and therefore on the mass of the

fall deeper in the potential well with increasing

¢ Go, however, is in the Tirst approximation inde-
k=

coasm R
SysTel 1

i

the mass of the light

1s of course an idealization, to be more sophisticated cne
wo b? ave to treat the rolativistic biy wding problem of 0q, or at least
take into account the slight changes of the reduced mass u = —%%Liiﬂ
/ a 'ty

with m, and effects of the spin-spin interaction which depend stronaer on

Q P g
mQ {but are small). Taking EQa to be constant fixes the threshold for the
binding energy EQQ The question one may pose then is: How many QQ S wave
states have a binding energy EQQ below this threshold? This question can
be answered by semiclassical metheds independent of the particular potential.
The number n of bound S states below a given energy (r.h.s. of eq. (4.9) 1in

this case) is given by the Bohr-Sommerfeld condition

2,
de Vmg (B, -V(R) = 7 (n-1%) (4.10)
(o]

where &L is the classical turning point, V(R,) = E;+h,, 29). For low

numbers n (4.10) is only approximately valid (but maybe nct worse than our
other approximations) and we find

[~ g .
n ~ const —rqg- (4.1

o
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Quigg and Rosner fixed the constant of (4.11) in the Charmonium sysicm

(mg = mc) and their result is dispiayed in Fig. 4.3. We can read off
Fig. 4.3 that in the ﬁf system 3 5 waves will be bLelow the thresheld

- 03 T
" quntJ?rElu%m-'-.i- 18 -
js,;gug;55.u2//’
LS =
35 7
| ]
_ LIJ' AS 25
T
!
- | |
- ! )
) AT L
] : g 0 @
mﬂ/m{:

Fig. 4.3. Number of bound states below the strong decay threshold

(Ref. 29 ). The Y"will be above the thresold.
of strong decays, the fourth, ’f”( , may be even below Qa(Qc,)”iE threshold.
In any case ¥ " will decay into BB or BEX— BEg-, B = Qg. The qucstion for
the actual threshold energy is not jet answered, to do that we would need
calculations of the B masses, e.g. in a potential model. Unfortunately a
potential model for the B mesons suffers from the relativistic motion of
the 1ight quark q inside the B. However, applying our knowledge about the
number of bound T S waves, it is sufficient for us to know the masses of
Y and T, since we already know the threshold relative tc these. The
latter masses are calculable much more reliably. In Table 4.3 the results
of two orthogonal approaches are shown.
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v /ITI }frr TKTHI
Mass & [aev] | 9.46 (innui) 16,09 10.45 10,72
Mass P) [oev] | 9.45 (input 10.02 10.34 10, 60
Tz ° feev] | 11 0.5 0.35 0.3

i -—l
o)
-t

QT redial excitations in the two
) Ref. 30) and b) Ref. 20).

Teble 4.3: Masses and ce

crthogonal models of

b

The model of Ref, 30) dircctly integrates the Bethe Saipeter equation

for a GO system with a distant- dependent ™ (R). The second modei, Ref. 20),
1s the phenomenologically successful mo gification of the standard mode] as
discussed in Ch. 2. A look ot Fig. and Table 4.3, and slightly rescaling

the first model, convinces us that the BE threshold will be around 10.4

to 10.5 GeV.

itly of the exact location of the thrashold and the exact validity
6f Fig. 4.3 we expect that ths first radial ¥ excitation above the BB
threshold is a "B-factory™, (We think that this wil] be ¥, of course),
The reason is simply that in the decay of 1" to BE or BS *the large
number of radial nmodes in the Y” wave function wil] suppress its decay
width into two slowly moving ground state S vaves like B or B¥. The width
of Y may therefcre be well below the resonance machine width in efe”
production but, on the other hand, the branching fraction into BB {or 88%3
should be substantial.

One comment on our saying "BE or BE* is in order: Either the B-B* splitting
is as large (or larger) as the DD¥ splitting, then B¥ could decay in T 5.
But in this case T"would Tie below the BE * threshold, as can be seen from
Fig. 4.3. Or the BES*sp11tt1ng is less than the D- D*‘sp11tt1ng (in non-
relativistic potential models this splitting goes like l/mQ - but neither
the D nor the B are nonrelativistic), then 8% decays to §*B, which experi-
mentally is almost as clean as a pure BB decay.
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Znd LECTURE

The second lecture covers Quarkonium decays. We will first discuss the

" radiative photon transitions in E1 and M1 approximation and g?uqn'tran—
sitions. These decays have in common that they depend on the medium and
long distance behaviour of the wave function. We then (Ch. 6} turn to
annihilations which are governed by the short distance behaviour of the
wave functions. The annihilation can take place into photons and/or gluons.
The gluors may form hadron jets. This is dealt with in Ch. 7.

5, Radiation

a) Electric Dipole Radiation

For photon or gluon wave lengths long against the bound state dimensions
of Quarkonium one can try a multipole expansion. The widths of different
multipcle orders are typically 31)

K R*® 2(n-1) En
M~ M@; '}\3 m&z } (%E) jfor{ M;—L transitione, (5.1)

up to numerical factors. k is the photon (gluon) wave number, R the bound
state radius in the reduced system (R/2 is the true bound state radius). ke
see that the expansion parameter in (5.1) is (k -R/2)2 which is roughly

1/4 . 3/100 in Charmonium and smaller in heavier Quarkonia. This justifies
a multipole expansicn and we will therefore confine ourselves to the lowest
order transitions, E1 and Ml.

In hydrogen the formula for an electric dipole transition (E1) 13 31)

M - Yy = %o( 1<3/>‘<;£lz (5.2)

where Q}i is the matrix element of the dipole operator. In Quarkonia we
now have three modifications to the case of eq. (5.2). First, both quarks
can radiate, not only just one like the electron in hydrogen. Second, the



relovant mass is the reducerd mrss of the guark, mC/Z, not just the
particie mass like m, in hydro

gen. Third, the charge of the quark Js
only eQ- e. The first Lwo medificeticns cancel each other, so that we

are left with

E1 — Y 2 30 g2 -
[” (@ngb g@_&))z 4w Eq k /ch-/ (5.3

in Quarkonium.

Of course, there ere corrections to this naive formula. The first onoe are
. - . - a a, ]

higher muitipoles. In Y decays they amount to al most 5 % if present

(compare oq. (5.1)). The second one is an intorfercnce of the Tinite wave

, . . +k-P - .
Tength of the photon field e with the bound state wave function. In
-3
atomic and nuclear transitions this interference is neg?igib1e,-E'R &1
k. . . . .
= e" R > 1 But in Quarkonium transitions higher

7E

. £ N /2, . . .
terms of the expansion of € will partly contribute to dipole tran-
siticns and tend to recuce the trarsition rate. However, Okun and Yoloshin 32

have shown that this interfer rection amounts to at most 5 %4 in

D
3
0
g3
C)

Charmonium. The third but most imperiant corrections are of relativistic
ature. They consist of a) recoil corrections, b) relativistic corrections
to the wave functions and c) the interaction of the quark magnetic moments

with the electric vector of the photon field. The corrections of type ¢)

32)

have been studied by Okun and Voloshin They find correction factors

between essentiaily 1.0 and 0.6.

The radiative widths of the standard model withcut corrections of the last
type are given in Fig. 5.1 and Table 5.2. An exemple for the corrections
of this type is shown in Table 5.1, The remaining discrepancy between theory

, 3 3 3 3
rgodel (q Fg ) PZ P1 P0
without corr. [keV] 36 50 58
with corr. type c) 36 40 41

Table 5.1. Example for the magnitude of relativistic corrections to the

naive dipole widths. ¢)
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MeV .
6500 $' @37 |
' 36 KeV- :
; L
L e
: [P (17+ B} KeV = : X 13.55)
X351
L0+ -
X(3.41)
300 _
200 model T
100+ _
0 _

Fig. 5.1: E1 transitions in Charmonium, Model widths are calculated
via eqs. (5.8) and (5.9) and do not include corrections,

(Table 5.1) and experiment (Fig. 5.1) might be due to relativistic correc-
tions of type a) and b). The recoil corrections have been found to be

33). In any case this indicates that

~ + 20 % in a relativistic model
also the model numbers for [(P/¥X — ¢ J/¢)  are only good within

a factor 2.
b) E1 Sum Rules.

A very powerful tool for the discussion of electric dipole transitions
has been rediscovered for Charmonium, namely the dipole sum rules 34).
We know two kfnds of dipole sum rules, the so called Thomas~Reiche-Kuhn
(TRK) sum rule and the Wigner (W) sum rule. Both apply to the dipole
matrix element (eq. (5.3)) and any corrections like those discussed have
to be done afterwards. The starting point for the dipole sum rules is

Heisenberg's uncertainty relation



e
) D i TIo ,\-’} /L ({) . 4)
N -
(we set 4 = ¢ = 1j. In a static potential for QO without velocity dependent

terms, ¢.¢. no spin-orbit inleraction, we can replace 5 via the equation

of motion

—
(o]
(8.5

o

where {7 1s the Hamilton operator of the static potential, eg. (2.1). After
taking the expectation value in a state 11> and inserting a complete set
£t ; T S e )
of states [0 this replacement of 7 Teads to
A — — —l 2
R (i‘“ Q S & \I i 1 — mzpﬂ ([:3 G)
JAN IR S S A RO oy o
¥ 4 34 a
. -0 : PR B : :
Here E y gigenvalues of H'. The nuwber of final states (2 i¢ re-
. . . : - : ‘ : , + .
stricted by selection rules. In an arbitrary static polential al=T7 for
dinole mitions. I narmenic csciilator potentiad, however, the number

ed Ly the oscillator selection rule:

of Tinal states is
The chenge of the number of vadial modes AT s either 0 or — a0 . It
follows that from the S wave ground state one can only reach the P wave
ground state, from this 1 P wave one can reach the radially excited S wave,
2 S, the ground state, 1 S, and the D wave 1 [, Thesc are all possible final
states. We call this fact the saturation of the sum rufe by the harmonic
oscillator. To write down the first sum rules it is convenient to express

the dipole operator )_C‘:&' through the radial operator Rg; 35)

m} I<ry et RIT, 2> (2 _
(5.7)

o+ A 2
Zm,l<7,€—4,mi><]'f}€,m>l :{ £ € +1

where m is the magnetic quantum number. We can now write some rates (5.3)
as

3 2
P(’1P-——->@*45)2 % oZe; Kk \RHI (5.8)



and _
3 2 ‘
(2%, p1") = %We;[‘ | P;gl (5.9a)
3 3. 241 213
(2P, 7)) = 3 S eteg kI R (5.90)

The TRK sum rule (5.6) gives us a bound

o o 2 3 .
(Er = Es) IRy s 1™ < 7 (5.10)

M a

which implies an upper bound on 1P —15

3
4 2k 3
1P —> < Toteg 2 |
[((1P—715) < 5 eq o ey (5.11)
: ]
We can obtain more bounds with the help of the Wigner sum rule. Recall
eq. (5.4). As an expectation value in state !i> it can be written as
Z§<L|>?‘(§><§\$1i>—<,;,|$r§><§xs?zx;>=34; (5.12)
The angular selection rule now enables us to project out the final states
with A £ =+ 1 and those with A €= - 1. We thus arrive at two sum rules
after some elaborate algebra 35)
0 - 2 ~K{2€~1
'S,Q“\ ZEC+1 Mg

O LoV R, [Fe @2e43) 1 -
Z:F,QH(EJ E; )% 2eir g (5.14)
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which of course add up to (5.0). lle have gained two things: first, the
number of final states on the 1.h.s. of (5.13) and (5.14) ic smaller
than in the TRK sum ruie, and second, (5.13) is negative, which is very
helpful. For £ =1 in the m1t1d1 state tne Tirst two terms of (5.13)
give (using (5.7))

0 ) Lo 2 -
(Ege—E7,)1 251,,1 + (&, ,,P)[Rs,,,,/ ¢ =L (5.15

S—

An upper bound for the second term on the 1.h.s. is known from (5.10). This
Teaves us with

o 2 |
(E-'-)-AS /ﬁ ) 2349 S MO\ {5.18)

and we can deduce an upper bound on transition (5.9):

a3 in. 2444 2 j?% 2
2%, —p 17P) < § =5 e il (5.17)

Next we will make use of the nayative sign in eq. {5.13) with f = 1, the
initial state being the 1P wave. The only contribution to (5.13) or (5.19)
which is indeed negative is the transition to the 1S ground state. Its mag-
nitude must be larger than the sum of all others! Therefore the knowledge
of one of the other transitions, e.g. 25 — 3"1{3 » gives us a lower

limit on 1P~ 9 15 ! We write (5.15) as
o - 2 1 ) o 2
(E»;p — E4 )| R1s,1p{ 7 ,T,,‘Q + (Ezs_Em )/ st.m/ (5.18)

and obtain by "inverting" (5.17)

(o

3 3
3 3 4, 2k~ 3 ki kas
rl(/! P,}“"> 3-1 54) > —3'0(€'Q ‘1??) e + .27#1 k; 3 (J: [_1(235 138) (5.19)

13,1 4p 15
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)

N N oo
The W sum rule gave us b upper bBound o7 - —= Y Av

Tower bound en AP —— Q-A_f

. Tiie TRK zum vuls

and @

Cave us an

upper 1imit on the letter fransition. We conbine 211 our information in

Table 5.2. Combining the bounds of Tsble 5.2 and tie experimeataliy

transition TR SR ‘ W SR . mode]

3 3 . .

2>~ 7 1P, < A9 36

035,y 19p < 56 50
177

3 3 -

275, — 1P, < 64 58

3 3 .

1°P, —> 7175, £ 490 > 160 + 140 460

3 3 . .

1%, — 175 <370 S125 + 75 350

13 a1 < 180 > 60 + 30 170
0 1

Table 5.2: Upper and lower Timits on F1 +wransitions from the Thomas-
Reiche-Kuhn (TRK) and Wigner (W) sum rules (SR). All widths
in keV. The second numbers in the Tower half of the W SR

column arise from the second term v.h.s. of (5.19). The

quark mass is taken to be m. = 1.6 GeV.

measured BRe for B /X —> 7 I/ ¥

one can deduce bounds for the

total widths of the P states in Charmonium. This is shown in Table 5.3.

P states BRYEENE ot" P /X(3.51) = 1"t y(3.55) = 2
BR{ /%), exp. [ %]| 373 3557 1456

[t (P, bounds [revl 3 ... 6 0.57...1.05 2.15...3.5

Table 5.3: Bounds on r;Gt{PP/XQ derived from the sum rules, Table 5.2,
and the experimental BRs of E /N — 7 U/‘f’. The sum rules

correspond to an uncorrected E1 transition, this gives an addi-

tional theoretical uncertainty of a factor 2.
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The total widths of the Pcfxistaies shoutd be calculable as the sum of
the raciative widihs plus the glucn annihilatior widths., A compariscn of
these total widths with the bounds of Tatle 5.3 will be a comparison of
theery with “"experiment". We will do that in a forthcoming chapter.

¢) Magnetic Dipole Transitions.

M1 decays arise from an interaction of the magnetic photon field vector
—_

m=KxZ and the quark magnetic moment Mo = €€q /-2"”62 . The
matrix eiement. therefore reads

<{[/JQ€"-(EX€) L4 > ' (5.20)

and acts on the spin part of the states |i>» and {f> only. Again we have
two graphs for the emission of a photon and therefore 4 times the rate as
in atomic M1 transitions 31)

. 3z 17 K4 ¢
My—pps) = L W2 k78 - Lue X 67

5 3 N

d
[M(PS—pV) = B[ (V— yPS)

i

i
2
—
e

3

An M1 transition requires A £ =0 and the spatial overlap between the

two states |1 and [f > with number of radial nodes r and r' is either
{r=r") or O(r # r', forbidden M1) in this approximation. Relativistic
corrections of course modify the rate (5.21) and lead to small transitions
also between orthogoral (r # r') states. In allowed M1 transitions (r=r")
the spatial overlap of 1 cannct be changed much by relativistic corrections.

d) Scaling of E1 and MI.

Before we now discuss the Ml transitions in charmonium, let us lock a% the
scaling behaviour of both kinds of dipole transiticns. For E1 transitions
the scaling behaviour is most easily obtained from the sum rules.

I S Y &

k(O) ma m@
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M1 transitions, on the other hand, scale like

3 .3 :
M~ g kK~ ;/{(;2 | (5.23)

ie. TH(MA) ~ '(E1) -k /mg.Since in the next heavy Quarkonia k does noct
increass with my the relative magnitude of M1 compared to E1 goes down at
teast like l/mQ. A comparison of related radiative transitions in different
Quarkonia can thus help to distinguish E1 from Ml transitions!

e) Preblems with ML in Charmonium.

In Fig. 5.2 possible candidates for the pseudoscalarsand the corvesponding
M1 transitions are shown. If the second 7, is not at 3.59 GeV but at
3.18 GeV {second experimental soluticn) 1t can hardly be explained as a

pseudoscalar. In Fig. 5.2 the calculated M1 widths are shown, They have

B -2 AL
(232011% Bi<2%
[1<5keV
(D,St[}.[z)vc
e

, kel B<17%
~14 107 X(2.83):m,.~ < 1keV

B2

2y
Fig. 5.2: Ml transitions in Charmonium. Theoretical widths, eq. (5.21)

are indicated at the transition lines. Bj{[7) and By*B, are
from experiment, Ref. 1)+ 36).
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at first to be contrasted with the experimental bound on these transitions
as indicated. Together with the experimental procduct of branching ratios

these bouﬁds allow to derive lower limits on the decay branching fractions
of these states. This is shown in Table 5.4, There is no way of assigm‘hg

State X(3.59) X(3.45) X(2.83)

BB, (Bxp.) [#] | 0.3%o01 0.8 0.4 0.014 * 0.004
By (Exp.)  [%] <2 - <2 <17

B, (theory)  [%] x0.5 ~ g ~ 45

B, (Exp.) [%] >10 > 20 >0.7

B, (Theory)  [¢] <1 <1 0.1

Table 5.4: Experimental upper bounds on B1 and lower bounds on 82 via
By Byjand comparison with theory. The kind of transition
for Bl’ 82 is indicated in Fig. 5.2. The theoretical rumbers
arise from allowed and "forbidden" M1 transitions and the
ratio of 24 versus 2 gluon annihilation. For the latter see
Chapter 6. The forbidden M1 transition should lead to a B,
not bigger than a few 10 keV/a few MeV ~ 1072,

one of the experimental states to a pseudoscalar state without coming

in trouble with a) absolute Ml widths, b) branching fractions for the
decay of this state. Considering M and n. in context leads to even
larger discrepancies, e.g. take %(3.59) as 4(6" and X({2.83) as Y .
Then the M1 transition J/¢ — '{"Zcis down by a factor of 30 compared to
the naive theory. The same factor must work in 4/ — T ¥c' leading to
"y = 1/30 keV and consequently to B, > 30! For ML widths only one un-
pleasant way out seems possible: to give the quarks a vanishing magnetic
moment /“a in this 1imit of a static interaction 37).

A much more pleasant way out would be finding the true pseudoscalars much
nearer to J/4 and <’ respectively. Experimentally this is in no way ruled
out. Then the X and X states are either not real or at least no simple
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- 2 '
QO states 3 ). Pemember that QCD is consistent with a possible existenacs

, . - = 393
of multiquark or multiquark-gluon states different from 0§ /. Howevar.

theiy properties are not accessible in our simplc Quarkonium model.
f) Gluon Radiation

Radiative qgluor transitions c
as e]ectromagna'wc rzdiation,
the expansion in ol /& needs not
of the order of the wave fTuncti
gssential reason why we do not expect

glucn radiation. But we might be

sucihr rediation. The processes

are tynicaily

e

ke emitted stoites must be

or tho vadiation of

s

Manis
an I W2 behaviour ¢r
~
r‘ 3~ 3( g . .
(2 S,— 178, +E) o~~~ T Phese space (5.25)
RO,

If this scaling law is already valid in the Charmonium system, .
Wt — 5y I/ = 100 keV implies ¥ ' — TH Y = 10 keV. In

a 30 CeV=QQ system this width would be no more than 1 keV. Transitions via
gluon radiaticn will be fmportant for a search for QQ states which are not
accessible directly or via photon transitions, 1ike the 11P1 state. In the
v or higher QQ systems the 3381 state (ff”e.g.) will be narrow and under-
go such a transition to the 11P1 state. |

3%5,..—1"P. 4+, e (5.26)

The finding of a 11P1 state via (5.26) would be very interesting because
the knowledge of the 11P1 mass allows to determine, whether there are long
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range spin spin correlstions or net. In our Ansatz for the Hamiltonian

and pctential we only had short range spin spin forces. They do not

act on P waves and therefore the 11P1 state is degererate with the c.c.g.
of the 13P states. A long range spin spin force, however, would act on the
P waves and would 1ift this dégenéracy. '

6. Annihi]ation

Quarkonium states may annihilate inte photons and/or gluons. Since annihi-
lation is a pointlike process (the quarks must come together) not only the
annihilation into photons is governed by a small coupling X= 1/137, but
hopefully also that into gluons by We(small R} . We can apply the
'minimal gluon scheme', i.e. approximaté the decay by the lowest order
(Born-) graph *}), This wil1 be justified by Finding that indeed the
us(annihilation) is small, even in Charmonium it is much smaller than the
effective o¢g for the bound state description (see Chapter 2). We proceed
in the following way. First we ccllect well known formulae for annihilations
in Born approximation. In this approximation there is no gluon seifinter-
~action yet, so that the conversion from photon annihilations to gluon anni-
hilations is just done by redefining the charge. We will then discuss ratios
of these widths as an application in Quarkonia. Our results will also be
fundamental for the next chapter on jets.

a) Annihilation Formulae.

The vector 351 ground state u, 8
can decay via one photon 35 .

into lepton or quark pairs ]

(hadrons). The corresponding B

graph is din]ayed in Fig.
6.1 and the formula is known Fig. 6.1: Leptonic decay of 3SI(QQ). The

as V.Royen-Weisskopf electrons may be replaced by B
formu1a42) (including colour Ts or quarks Tighter than Q.
and for 4me%zMV2):

| Reo>[?
2

w22 Wof* 2 2
feg (V) =167 oleg vy 2ol o2

(6.1)
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-where MV is the V = 351 bound state mass and rﬂQ’—' 172 Mv the quark mass.
Y (o) is the spatial and ®R(o) the radial wave function at the origin.
Quarks couple in the same way to the photon as leptens, so that (6.1) is
understood for each lepton or quark flavour separately: F.,ﬁ =?Je;,"‘L l_'eg .

a

The decay of 351 into two photons as well
as two gluons is impossible. In the two 35.
photon case this is just the photon C ]
parity. Also twc gluons, as long as they

are in a colour singlet state (which is Fig. 6.2: 3y decay of SSI(QQ)'
3

symmeiric), have even C. But the S1 can When the photons are replaced
decay into three photons as well as three by gluons, this denotes the
gluons, Fig. €.2. The three photon decay "direct" hadronic decay.

has been calculated by Ore and Powell 43)
(here including the statistical colour factor)

32 6 -9 [R(o)/)*?

«”e (6.2)

G#”“%

The conversion factor to the three gluon decay i3 44)

z , U 2 ' '. "
Se /R, = e gza,e,c [T*@"f‘zﬁs,m} (e

so that we have

A0 3 - IR0y [

Bg) = 5% T (6.4

The parts of (6.3) have t-he following origin. 0(53/()(3 e&"’ Jjust converts
the charges together with Ty (ka/a }}'G/,g )“c/_z, )gym TheEabc'counts the
number of coloured graphs in the 3g case, while the 3" 2 counts the number
of coloured graphs in the 3 7~ case. We do not consider decays of the S1
into more (2 5) photons or (24) gluons.

The pseudoscalar 1
Fig. 6.3. The two photon decay was first calculated by Pomeranchuk

S0 ground state can decay into two photons or two gluons,
45)
and
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is (including colour)

' _ 4 [OZ(oaIZ
e (PS) = 3042te o

(6.5)

With the conversion factor

2 /A 2 |
- g _i 1 _&Q _/'{_ _ ,

whose compenents are described in the case of eq.(6.3) one obtains

G, (ps)= % o 180 (6.7)
24 5 mq2
We do not discuss the decay of 1S0
in more (24) photons or (23) gluons. 3p 15 —
Assuming, that the 2g decay is the 02’ "0
basic process for the dominant
hadronic decay of the pseudoscalar, Fig. 6.3: 27 decay of QQ. For the
allows to derive the branching hadronic decay the photons
fraction for the 23‘decay (Table 5.4) are replaced by gluons.
from eq.(6.6).
9, We now turn to P wave annihilation, Fig.6.3
-|P 3F’ g and  6.4. Here life is more complicated
117 2

because the wave function of a P wave
at the origin is zero. That means that
the quarks do not like to come together
Bﬁ .:(<m 9 to annihilate: The annihilation widths
rwf%gz of leaves will be smaller than that of
3 the S0 wave! The P waves, however, can
annihilate when the two quarks come near

3F.; :( 2‘ each other ard simultaneously have a
¢) mx<

relative velocity #0. This is a higher

C—l order process in terms of an expansion
. _ in [32=(v/c_)2. It is governed by the
Fig. 6.4: The gluonic decay dia- spatial derivative of the wave function.

grams of spin 1 P waves. In this approximation the widths of the
spin 0 and spin 2 P waves of Positronium
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46)

have first been calculated by Alekseev . The same calculation for

Charmonium has been done by Barbieri, Gatto and Kogerier 47). They yieid

2 |® (O)J

B% (3P) = b o T (6.8)
| R 01 %

Mg

The 2 ¢~ widths of 3PO 5 can be obtained from (6.8} and (6.9) by the con-

version factor given in eq. (6.6).

~ The decays of the j = 1 P waves are more complicated. A spin 1 state cannot
decay into two massless vector bosons, either photons or gluors in a colour
singlet 48). We therefore have to consider the next order (in &g ) diagrams,
which for gluon annihilation are shown in Fig. 6.4. They bring up another
complication. We now have a three body phase space and have to integrate
over all possible energies of, say, gluen 1. Gluon 1 is allowed to be soft.
1t further is allowed to carry away the angular momentum of the P wave. So
it has all characteristics of a bremsstrahlungs gluon. The same is true for
photon annihilation, except that in this case diagram b) of Fig. 6.4 is
absent. A bremsstrahlungs gluon or photon in the annihilation of a free

QQ pair with £= 1 leads to the typical bremsstraklungs singularity. The
cross section factorizes into the bremsstrahlungs part and the annihilation
of an £=0 Qf pair into two photons or gluons. For a bound state, however,
the annihilation amplitude cannot be singular, because the quarks are not
on shell. Their virtuality is of the order of the bcund state dimensions.
For a bound state annihilation we therefore may cut the amplitude at

momenta of the soft (bremsstrahlungs) photon or gluon which correspond

to the bound state radius. In diagram Tanguage, the singularity will be
cancelled:by higher order graphs like vertex corrections. For QED this
procedure-is well defined 49)‘ We hope that it will work parallel for

QCD. As a cutoff momentum for QCD annihi]étion we take the typical momen-
tum for a soft "confinement" gluon, 400 MeV, since in a QCD process higher
order graphs will involve such "confinement" gluons. We will express the

cutoff in~terms of a parameter A= 2M.400 MeV 50) . M being the Quarkonium
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bound state mass. Let us first discuss the 1P1 decay. This state has
jPC =17 and therefore only diagram a) of Fig. 6.4 can contribute,
in either photon or gluon annihilaticn. Its decay has been calculated

by Barbieri, Gatto and Remiddi 49); They find

I——| ( A ~ 20 0(3 “Q/(O)fzﬁ M _

where the log arises from the bremsstrahiungs singularity of the diagram.

For the decay of the 3P1 state, jPC

= 1++, only diagram c¢) can contribute
to the photon annihiltation while in principle all three diagrams can con-
tribute to the gluon annihilation. Barbieri, Gatto and Remiddi 49) found
that the singular parts of the diagrams a) and b) cancel each other. Okun
and Voloshin 32) gave the general argument for this: The amplitudes a)
and b) interfere, since they lecad to the same final state. Since they can
both be factorized into the bremsstrahlungs part times the corresponding
annihilation diagram for the 2 gluon annihilation of a coloured 351 state,
also their sum can be factorized in this way. This sdm, however, contains
all graphs to this order for 381 (coloured)— 2g, which must be zero 32).
Neglecting the non-singular parts of amplitudes a) and b) against the
singular c) means that also for the gluon annihilation the calculation of

graph c¢) is sufficient. It gives 49,50)
Ny
34y L N ot /62@/( M2 4 |
1o (Be) = 3 5 Mg 4 %?A .z) (6.11)

where N is the number of 1ight flavours q. The photon versions of (6.10)
and (6.11) can be found in Ref. 32).

For completeness we note the formula for the decay of the spin 2 D wave
into 2 gluons which is given by the second derivative of the wave function,
this is the second order in an expansion of [LL== (?@)Zand therefore even

less reliable. Okun and Voloshin 32) calculated
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b} Ratios and Applications.

The ratio of egs. (6.4) and (6.1) gives

[((35,—3q) 40 m*g o3 4 3 .
2 - = e . 2 2—-444 S (6'13)
[(3s,—e&) &1 T oPeg Jel |
If we interpret as usual the 3g annihilation as the total direct hadronic
annihilation then this is a measurable wuantity and we have e.g. in
Charmenium
J/U*"‘“> hady

From which follows that the (¢ at annihilation distances is o(¢ =0.19.

Because of the third power of s in (0.13) this value is quite stable

even against large corrections on the widths. The kinds of corrections we
have discussed to eq. (6.1) at the end of Ch. 3 and diffcrent ones for

f?s will not be able to achieve an agreement between oX{g{spectrum) = 0.4
and otc{annihilation) =~ 0.2 in the Charmonium system. But this discrepancy
does not surprise, as we have discussed in Chapter 1.

A very interesting ratioc is that of eq. (6.8) to eq. (6.10) to eq. (6.9):

G‘} (3PO+*') . qu (3P4++ ) l’_;;‘3 (szﬂ—') (6.15)

_ 15 ) o?ogN o(s(geﬁ ): L]L |

1

It leads to ratios of
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15 : 77 : ¥ . 30 GeV QR

We can of course calculate more than these ratios, namely the total widths
of the P waves, assuming that these are given by the gluon annihilation width
and radiative transition width essentially. The result s shown in Table 6.1

3 ] 3 ey
tot( ) [Mev] Mot (P10 [ev] Meor (P, [y
theory 4 0.5 | 1.5
cc
"quasiexp." | 6 z 6. 1% 0.2 3.2 1.6
o = 0.15 0.35 0.05 0.15
bb
o = 0.2 0.6 0.08 _ 0.2

Table 6.1: Comparison of "experiment" and thecry for the P wave total widths,
including the radiative transitions. The "experiment" line is
taken from Tables 5.2 and 5.3. The prospects of the L system
are also given.

for charmonium and the Y system, and compared to the quasiexperimental
bounds of Table 5.3. For the calculation of eqs. (6.8) ... (6.10) we need
[R5 1% Numerical calculations give IR - 0)[? m. % = 415 HeV and
[QLL— (o)} % mb""* = 2.5 MeV. These guantities are relatively quark mass
independent. We conclude that although the widths of Table 6.1 are very
model dependent, the pattern of (6.16) agrees very well with the observed
branching ratios of the Charmonium P waves. This is one of the successful
predictions of QCD within Charmonium.

We complete our discussion of ratios of widths with a discussion of the 35
decays. The decay channels of the vector ground state are: i) into lepton
pairs, ee, uu , TT , i) into hadrons,) qq, the ratio of i1) against

1
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i) is essentially given by the famous R, 111} the three gluon dnnihﬁ1ation,
and ivi the annihilation into one photon and two gluons. The only ratio
missing so far is that of iv) to iii). We can estimateiit by comparing the
electromagnetic and strong cbup]ing for one fermion-boson vertex and by
taking into account the different coupling of the colours of two versus
three gluons '

M(3s,— ¢43) _ 3¢ xeq

(6.17)

F(s,— 3g) 5 o
cC decay channel: |eetup : Y qq ¢ 3g : ¥ 29
5 w*-9 o3 3 i-9 «*
= 2/3 2 : R = Lo = 1 o —
°q / 18 7 x? ] T o=
a) ™g= 0.19 2 : 2.5 : 10 : 1.2
bb decay chamnel: [ee+mpr @y qa:+'t'_f: 3g : 3"2%
_ . . 20 w9 s> . & 79 2
=13 12 ¢ R 8T =z g T«
b) os= 0,15 2 : 5 : 20 : 0.8
= 0.18 2 : 5 : 34 : 1.1
tt (30 GeY) o o
decay channel @ jee+pp :qu-r’t't’: 3g : w29
] . 5 %8 &3, & 129 ol
eq = 2/3 2 : R P73 w7 2 ' g = =
c) oc=10.12 2 : 5 : 2.5 : 0.5
= 0.15 2 : 5 : 5 : 0.8
Table 6.2: Ratios of the ground state decay channels a) in Charmonium,
b} in the ¥ system, ¢) in a 30 GeV tt System. For Charmonium
o = 0.19 agrees with experiment (lowest order formulae). For
52)

Y decaysthe value of o/ best compatible with exper_iment,BrF
seems to be 0.18 at present.

!’
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For Charmonium three exclusive contributions to SSl—éajgg have been seen
so far. namely J/4 ~— Yo, f o' ¢Ff 51), Together with eq. {6.13) this
is all we need to put up Table 6.2.

7. Jets

The exploration of QCD suffers from the fact that its constituents, the
quarks and gluons,cannot exist as free particles because of the confinement.
Their properties cannot be investigated directly. But there is a surrogate
for the observation of the free constituents, that are the jets. Experimentally
jéts are cbserved not only in deep ?ne]astﬁc hadron-hadron and lepton-hadron
scattering but especialiy in ete” annihiiation, once the c.m. energy of 5 GeV
is exceeded. The angular distribution of these jets ie completely consistent
with the production of two spin 1/2 {almost) massless particles 53), the
quarks, via photon vacuum polarisation. Thz fraguentation of guarks into
hadrons is imagined as a nonperturbative confinement effect, which conserves
the original directed momenta.
At present there is no way of calculating this process, but there exists a
very suggestive picture: Inside a small space region of =1/2 fm colour can
exist and within this region the qq pair (or gluon) production is a short
distance effect (see Fig. 7.1). When hard coloured quanta {quarks or gluons)
with momenta Py reach the con-

varks . finement sphere they must frag-
43’/ _ \ﬁb ment into white hadrons since
. // 'Y* \@. colour fields cannot exist ocut-
JEt]'-45’ \ jet2 side this sphere. The coloured
-— |e— — HQ uanta break up into hadrons
PTG b e w e ¢
\\ _ with a finite perpendicular
qéi>\\\h ’,,1§§° momentum Py. This breaking up
qu fE};: qF° is energetically much favoured

over a further existence as
coloured quanta. When the
perpendicular momenta are small compared to the longitudinal hadron momenta,
which add up to the momentum of the original quantum, we see hadron jets. The
confinement effects, however, are assumed to be soft, carried by tong wave-
length quarks and/or gluons. The wavelength corresponds to the colour bag of
1/2 fm. Therefore the jet momenta equal the original quantum momenta up to

Fig. 7.1. Quark jets.
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the ordéréof 400 MeV. This picture demands the production of the original
jet quanta to be a short distance effect («1/2 fm). This is certainly true
for the (electromagnetic) quark pair production in ete”™. It is also true

5 -
4). Resonance decays, however, are

for a hard gluon bremsstrahlung process
not pointlike but involve propagators (Fig. 7.2 and 6.2). Here it is not so
' clear, how well the jet

picture will work. However,

jet 2 because the propagators are

4éfﬁi:”' mass dependent the picture
will work the better the

higher the mass of the

decaying QQ resonance is.

For a Q-mass of 5 GeV the
jct3 - propagator length in Fig. 7.2

is probably already short

_ enough to apply the jet
Fig. 7.2. Q3 — 3 gluon jets. picture and for the next

new flavour (higher) Q0Q
resonance it will definitely be so.

The quark jets in e*e” annihilation became visible above s = (pl+p2)25(5 GeV)z,
i.e. a massless quark needs 2 2.5 GeV of energy against the c.m. to be able

to form a jet. For gluons the jet threshold certainly is not lower. But a gluon
carries the colour indices of a quark antiquark pair and each index may frag-
ment separately. Then the multiplicity of the jet may be higher and the longi-
tudinal hadron momenta may be lower. In the limit of asymptotic cnergies the
gluon may just fragment like a qq pair, each quark carrying half the gluon
momen tum 55). From this picture follows that a gluon jet of a certain longi-
tudinal momentum will have a higher multiplicity and a larger opening angle
than a quark jet of the same momentum. The threshold for gluon jet production
will be higher than that for quark jet production with an upper bound of two
times the quark threshold +). |

Some possible sources of gluon jets are shown in Fig. 7.3, the pseudoscalars

+) Speaking of a jet threshold we refer to the energy of a single quark
or gluon versus the center of mass of the colour bag. '
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235, (00)
3p
3 i 2
L £3
g Q\l
g g 0
g g
1%, { Q0)
g g gory.

Fig. 7.3. Possible sources of gluon jets in heavy Quarkonia.

are omitted, they may also form 2 jets out of the 2 decay gluons. We
begin with the 351 decay into 3 gluons. The three gluons of this decay
will form a plane. The angular distribution of the normal R of this
plane against the beam is
A o~ 3 = cos?Ope (7.1)
dcos G, .
For these decays one defines a variable T "Thrust", which is just the
scaled enengy of the most energetic gluon, T = Xy = 2p31/MQQ . The direc-
tion of 9y defines the Thrust axis. The differential rate of the 3 gluon
decay together with the angular distribution of this Thrust axis is shown
in Fig. 7.4. While off resonance the coefficient of the cos2 term, & , is

uniquely 1, it shows a T dependence for Q3 decays. The average of &(T)} for
QQ—>3g is 0.39. A much more detailed discussion is given in Ref. 56).
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Fig. 7.4. The differential rate of (QQ)-—a3g and the thrust angular
distribution W ~ 1 +otl(T) mle.,.,_ as functions of T. 6y, is
the angle between the thrust axis and the beam.

Once the 3 gluon jet decay and the 7+ 2 gluon Jet decay is found. we can
start to compare deviations from the lowest order angular distributions,
which arise through different interactions between two gluon jets, Fig. 7.5.
The lowest order (Born- approxmatwn) graph gwes for the opening angle of
the second and third energetic gluon 8,3 (compare Fig. 7.6) the distribu-
tion displayed in Fig. 7.7. The deviations from this distribution will be
different in case a) and b) of Fig. 7.5 because in case a) the interaction
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between the two gluon jets happens in
a colour octet (they should repel)
whereas in case b) it is in a colour
singlet (they should attract).

We will remain at the 3%23 decay for
another while. The kinematics of this
process differ from the 3g decay because
the 4" can be identified for all photon
momenta between 0 and MQQ/Z. The distri-
butions corresponding to Fig. 7.4 are

g given in Fig. 7.8. One notices that the
angular correlation drops very fast to

Q |
& minimum if one goes away from the
b) kinematical limit E = Hag/2- For the
Q Timit Ey=1/2 MQQ the coefficient & in

front of the cos®® term is + 1. This is
easy to understand. In this limit the two
gluons have to go parallel. Their helici-
ties (transverse polarisation) have to
add up to either 0 or ¥ 2 (For scalar
gluons it is 0). Since the photon on the
other side is also transverse, the decay-
' ing helicity state is the

A =11 state. This leads to
14+ c0529 . One can show
further, that the helicities
of the parallel gluons are

y

Fig. 7.5. Possible next order
(%) interactions be-
tween gluon jets.

opposite. If we give the gluon
pair a small angle, the net

Fig. 7.6. Definition of 923.“ 3 helicity remains zero most of
the time. But now we can
Lorentz transform to the c.m.s. of the gluon pair and find Aems = T 2! This

means: If low mass hadrons are produced in the process QQ — v+ 29 —¢+ hadron,
the gluon mechanism favours spin2 2 hadrons over spin 1 or spin O hadrons. By
this spin argument we can understand the rate for J/4—9gf, which is of the
same magnitude as Jf¢ — 7‘41 and 7% although the % and '»l’should couple
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2?5 a7 - 08 09 1
Fig. 77 The mean value of 9 23 s ‘as deﬁned in Fig. 7.6. as a functwn
of T. The dashed Tines show the kinematic boundaries.
wr_*"l"‘l“'_"'_‘:I_r“
F“;;}E. j to two gluons much stronger because
[ ] of their large’ v1o1at1on of the 2we1q
o8- 1 rule. The whole arquitlent can of course
i ] be made quantitatﬁve. The ratios of
W 9 the helicity amplitudes for
0 1"(351)—>7"+ gg =+ 2++(3P2) will
f : depend on the two gluon (or hadron)
'11'8. L ]  mass. This is shown in Fig. 7.9 57).
a[?::_ At the point, J/‘{’;pyﬁ these ratics
! “have been measured and agree with
s 1 this QCD estimate, see Fig. 7.10.
M:_ i They also agree with the tensor |
Z ] meson dominance (TMD) model studied
02 4  here at Karlsruhe 58 |
n_gt.l....”,.ll;... ..U.'j_ L
0.0 02 04 66 T Yy 10 " From our short excursion we now
d("" _ return to two Jets from P wave

Fig. 7.8. D1fferent1a1 rate F(x,s-

and angular distribution
4'+0<€x3'r)coszeﬁ. as a. function

~ decays. The first P wave of Quarko-
" nium can be reached from the first
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radially exc1ted S wave e gi.ﬁf [, v1a an €1 tran51t1on. Exper1menta11y _

it will be necessary to tr1gger on. th1s monochromatic, photon to identify '“;5
the P wave. The P state theh- can decay 1nto 2 g]uons in case of the 3P |
and P2 states We: w1ﬂ1 d1scuss the Jet decay of the: 3P1 state Tater.

These two g]uons have a d1st1nct energy of ha]f the: P state mass. This

is the essentla] d1fference to the 3 jet decay of Quarkon1um Here we _
have monochromatac Jets' In ﬂf the Jet energy is. a]most 5 ‘GeV, this should
be sufficient’ ‘o determine: the ‘original gluon d1rect1on via'the jet direction.
A measurement of the gluon angular d1str1but1ons becomes feasible! For the
decay of. the 3P state th1s angu]ar distribution is tr1v1a] no matter, what
the dyriamics are, there is on1y one: helicity amplltude which can contr1bute
But in the 3P2 decays there are two 1ndependent helicity amplitudes for mass-
less gluons. The QCD matr1x e]ement for the 3P2-¢ gg decay reads w1th q= k1 k2

ew(l)[lrk Er* *o —e-E q_q + lk,l-_s,_g qQ’ —2%,¢, s_,~ q J (7.2)

| | — . e 4
‘and it turns out that the decay is 1in the-he11c1ty.2.= - 2 state. Eq. (7.2)
with €0 (0) just vanishes for transverse &,, €, . The formula for the |
kinematics gives us, 1ntegrated ‘the distribution

Wjﬁ (QT'f) ~ A+ ceos _-@ﬁ | - (7.3) -

where G%ﬁj is the angle between the trigger photon and one of the- Jets,
measured in the c.m.s. of the jets (Fig. 7. 11) If the P2 would decay 1nto

Fig. 7.11. 2%5,(QQ) ——
T4 13Po’2(Qﬁ)*69*+ 2 g jets,
as imagined within the
colour bag.
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two quark jets by some arbitrary mechanism, the helicity of the two quarks
can at most add up to A= I 1. The kinematic formula then gives

\/\/2* (93“1' )

43 a2 Qﬂ ) (7.4)

where A gives the weight of helicities A= 1 over helicity 0. The sign
difference between (7.4) and (7.3) allows a clear test of the QCD mechanism,
The rate for this process will be around 5 % of a1l T 'decays 19),

As we have discussed in Chapter &) the 3P1 decay proceeds via the compli-
cated graph c) of Fig. 6.4, The decay is displayed again in Fig. 7.12.

kiy)

Fig. 7.12. 2%, (QQ) =7 + 1%, (QQ) 7 + 2 quark jets. Here a soft gluon
recoils against the two quark jets. '

We will see two quark jets and a hadron cloud from the soft gluon from this
decay. The quark jets should be easy to detect. Their angular distribution is
given by '

W

A+

, (7.5)
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already smeared over the important kinematic regime of small gluon moman-

tum 50’59). 'Qﬂ' is the same arigle as before, 97-3 is the angle between the
trigger photon and the beam, say e , and éﬁ@ is the angle between the same
jet arm as for @, and e . Epeis measured in the lab frame, but Oje as
well as f?yé are in the c.m.s. of the jets. As_an alternative process, the

decay into two massless quarks would give 59)
A+t .
‘ - cen O i 00, : 7.
Wqﬁ ~ 4 - Q'Te | ri @Y | (7.6)

L4

Here the COSZGTE term is missing and the term linear in the cosines

has a different sign. But the most important difference between

the two alternatives (7.5) and (7.6) is the recoil of the soft gluon in

the gqq decay of the 3P1 state. This recoil will be much larger than the
recoil of the trigger photon alone which of course is always present. But
with the recoil of the trigger photon alone, the 2 jetsawou1d be collirear

up to a 10% deviation at most. From the recoil of the soft gluon in the

decay of the 3P1 state, however, the angle between the two quark Jjets may

be as small as 110%. This is true for the Y system. For a heavier Quarkonium
the "soft" gluon may even form a third jet in a small subset of all events.

3. Conclusions

The simplest ansatz for the QQ potential, which is possible using the hints
from QCD, works astonishingly well. The short distance spin dependent part
of the potential describes the spin orbit splittings reasonably welll If it
is correct, heavier Quarkonia should show i) a decrease of the LS splittings
~ Vg roughly, i) a tendency of R= M(arr) = MUZT) 5 0,8 from 0.5

_ M{AT) = M (0t*)
in cc. The confinement part of the potential may be spin-independent, as

suggested bylattice gauge theories. Its strength depends on the ansatz for
the potentiai at intermediate distances, it is, however, very close to the
value suggested by the higher orbital excitations of 1ight mesons {Regge
slope). Many details depend on the proper choice for the intermediate distance
potential. QCD gives us no hint here. To speculate a little, level spacings
might remain almost the same for the next Quarkonium while FLE /ééj might
increase very slightly. The number of narrow (=bound) states below the new
flavour threshold will increase for the next Quarkonia.T?Wnﬁght turn out as

a perfect B meson factory (M(T")=10.6 GeV). |
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We seem to understand perity changing photon transitions in terms of £l

~ radiation. This means that we understand the "size" of Charmonium. We also
seem to understand the branching fractions of P wave decays via the snecisld
QCD annihilation mechanism into gluons. This ic a short distance phenomenon .
We further seem to understand the relative magnitude of J/¥— yf and 3”1 via
a simple gluon spin argument.

Up to now we do not know any Quarkon%um pseudoscalar state definitely. The
experimental candidates X(2.83), %(3.45), %Igzig) cannot be understood
in terms of QCD. Especially their M1 transitions and gluon annihilation
properties should be much different from what is observed for these states.

Our hopes for the future are that gluen jets show up. Then we can measyre
the gluon spin and verify certain QCD processes like 3P1—a 0q9G. In the
381 decay we can study the glucn selfinteraction by comparing'fﬂg vs.i%g
decays. Finding the glucns is most interesting and important, since they-
are the gauge bosons of the+supposed nonabeliar gauge theory of strong
interactions, QCB, as the W s L, and X—in weak and eclectromagnetic inter-
actions.



- 5] -
References

1) J.J. Aubert et al., Phys., Rev. Lett. 33 {1974) 1404;
J.E. Augustin et al., Phys. Rev. Lett. 33 (1974) 1406;
G.S. Abrams et al., Phys. Rev. Lett. 33 (1974) 1453;
For reviews see: :

B.H. Wiik and G. Wolf, DESY 78/23 (May 1978);
G.J. Feldman and M.L. Perl, Phys. Rep. 33C (1977) 285.
2) M. Gell-Mann, Phys. Lett. 8 (1964) 214,
G. Zweig, CERN Preprints TH 401, 412 (1964).
~3) J.D. Bjorken and S.L. Glashow, Phys. Lett. 11 (1964) 255;
S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. Dz (1970) 1285;

—_—
T

1.K. Gaillard, B.W. Lee and J.L. Rosner, Rev. Mod. Phys. 47 (1975) 277.

Appelquist and H.D. Politzer, Phys. Rev. Lett, 34 (1875) 43;
De Rujula and S.L. Glashow, Phys. Rev. Lett. 34 (1975) 46;

. Appelquist et al., Phys. Rev. Lett. 34 (1375) 365,

Eichten et al., Phys. Rev. Lett. 34 (1975} 369,

m— > —

5) S.W. Herb et al., Phys. Rev. Lett. 39 (1977) 252; .,
W.R. Innes et al.; Phys. Rev. Lett. 39 (1977) 1240;
Ch. Berger et al., Phys. Lett. 76B (1978} 243;

C.W. Darden et al., Phys. Lett. 768 (1878} 240:
J.K. Bienlein et al., Phys. Lett. 788 (1978) 360;
C.W. Darden et al., Phys. Lett. 788 (1978) 364.

6) M. Kobayashi and K. Maskawa, Progr. Theor. Phys. 49 (1373} 652Z;
Y. Achiman, K. Koller and T.F. Walsh, Phys. Lett. 598 (1975) 26i;
For a review see:

J. E1lis et al., Nucl. Phys. B131 (1977) 28%.

7) H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B47 (1973) 365;
D.J. Gross and F. Wilczek, Phys. Rev. D8 (1973) 3497,
S. Weinberg, Phys. Rev. Lett. 31 (1973) 494.

8) G. 't Hooft, unpublished;
D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343;
H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346. '

9) K.G. Wilson, Phys. Rev. D10 (1874) 2445;
J. Kogut and L. Susskind, Phys. Rev. D1l (1975) 395;
For a review see:
H. Joos, in "Proc. of the International Summer Institute on Theoretical
Particle Physics in Hamburg 1975" (J.G. Kigrner et al., eds. , Springer,
Berlin, 1976) and DESY 76/36 (July 1976).
10) H. Nielsen and P. Olesen, Nucl. Phys. B61 (1973) 45;
J. Kogut and L. Susskind, Phys. Rev. DS (1973) 2273;
Y. Nambu, Phys. Rev. D10 (1974) 4262;
B. Brout, F. Englert and W. Fischler, Phys. Rev. Lett. 36 (1975) 649;
For a review see: '
M. Bohm and H. Joos, DESY 78/27 (May 1978).



11)
12)
13)

14)

18)
19)
20)
21)
22)

23)
24)

25)
26)

- 52 -

V.B. Berestetski, Sov. Phys. Uspekhi 19 (1576) $34.
W. Celmaster, H. Georgi and M. Machocok, Phys. Rev. D17 (1878) 879.

L.D. Landay and E.M, Lifshitz, Relativistic Quantum Theory

(Pergamon Press, 1971); A.I. Achieser and W.B. Berestezki, Quantenelektro-
dynamik (Teubner, Leipzig, 1962}; J. Pumplin, W. Repko and A. Sato,

Phys. Rev. Lett. 35 (1975) 1538 and references therein; D. Gromes,

Nucl. Phys. BI31 (1977) &0.

J. E1lis, M.K. Gaillard and G.G. Ress, Nucl. Phys. BIll (1976) 253,

T.A. DeGrand, Y.J. Ng and S.H.H. Tye, Phys. Rev. D16 (1877) 3251;

K. Koller and T.F. Walsh, Phys. Lett. 72B (1977) 227 and 73B (1978) 504,
S.J. Brodsky, D.G. Coyne, T.A. DeGrand and.R.R. Horgan, Phys. Lett.733
(1878) 203; .

H. Fritzsch and I.H. Streng, Phys. Lett. 748 (1978) 90,

K. Hagiwara, hucl. Phys. BI37 (1G73) 154,

A. De RGjula et al., Nucl. Phys. B133 (1673) 387,

K. Koller and T.F. Walsh, Hucl. Phys. B140 (1878) 445,

K. Koller, H. Krasemann and T.F. Walsh, DESY 78/37 (1578).

- Krammer and H. Krasemann, Phys. Lett. 73B (1978) 58;

M
H. Krasemann, DESY 78/46 (Sept. 1978), +*o appear in "Zeitschrift fir
P

hysik C".

D. Robson, NucT.'Phys. B130 (1577) 328 and references therein;
P. Roy and T.F. Walsh, Phys. Lett. 7803 (1978) 62.

Sce the lectures by
F. Dydak and W. Williams, this school.

E. Eichten and K. Gottfried, Phys. Lett. 668 (1977) 286.

C. Quigg and J.L. Rosner, Phys. Lett. 71B (1977) 153,

G. Bhanot and S. Rudaz, Phys. Lett. 788 (1978) 119.

E. Eichten et al., Phys. Rev. D17 (1978) 3090.

For a derivation on the classical level see the text books, e.g.

A. Sommerfeld, Atombau und Spektrallinien (Vieweg, Braunschweig, 1950)

or J.D. Jackson, Classical Electrodynamics (J. Wiley and Sons, New York
1962). In the framework of the Bethe Salpeter equation for Charmonium see
A.B. Henriques, B.H. Kellett and R.G. Moorhouse, Phys. Lett. 648 (1976) 85.

G. Buschhorn, this school.

See e.g.: A.I. Achieser and W.B. Berestezki, ref, 13, § 39.

F. Wilczek and A. Zee, Phys. Rev. Lett. 40 (1978) 83.
H.J. Schnitzer, Phys. Lett. 658 (1976) 239.



27)

28)
29)
30)
31)

38)
39)
40)

41)
42)

43)
44)
45)

- 53 -
R. Barbieri, R. Gattc, R. Kogerler and Z. Kunszt, Phys. Lett. 57B
(1975) 455.
J.L. Rosner, C. Quiga and H.B. Thacker, Phys. Lett. 74B (1978) 350.
C. Guigg and J.L. Rosner, Phys. Lett. 728 (1978) 462.
P. Ditsas, N.A. McDougall and R.G, Moorhouse, Glasgow preprint (1978).
See the text books, e.g. W. Heitler, The Quantum Theory of Radiation
(Oxford Univ. Press, London, 1947},

J.M. Blatt and V.F. Weisskopf, Thecretical HucTear Physics (J. Wiley and
Sons, New York, 1952), or

S.A. Moszkowski in Reta and Gamma Ray Spectroscopy, K. Siegbanhn ed.
(North Holland, Amsterdam, 1955). -

L.B. Okun and M.B. Vo1oshin; preprint ITEP 152 (Moscow 1976});
V.A. Novikov et al., Phys. Rep. 41C (1978) 1.

H. Krasemann, Thesis, Hamburg 1978.

J.D. Jackson, Phys. Rev. Lett. 37 (1976) 1107;

H.A. Bethe and E.E. Salpeter, Quantum Mechanics of Cne- and Two-Electron
Atoms, Springer Verlag (Berlin, Gottingen, Heidelberg, 1957).

See e.g.: Bethe and Salpeter, ref. 34.

. Bartel et al., DESY 78/49 (September 1978);
see also the lecture of Prof. Buschhorn at this school.

A. De ROjula, in "Current Induced Reactions", Int. Sumer Institute on
Theoretical Particle Physics in Hamburg 1975 (Springer Verlag, Eds.
J.G. Kdrner, G. Kramer and D. Schildknecht}.

K. Gottfried, in "Proc. 1977 International Symposium on Lepton and Photon
Interactions at High Energies" (DESY, F. Gutbrod ed.).

R.L. Jaffe, in "Quark Spectroscopy and Hadron Dynamics", Proc. of Summer
Institute on Particle Physics, 1977 (SLAC, M.C. Zipf ed.).

K. Gottfried, Phys. Rev. Lett. 40 (1978} 598 and ref. 38.

T. Appelquist and H.D. Politzer, Phys. Rev. D12 (1975) 1404.
H. Pietschmann and W. Thirring, Phys. Lett. 21 (1966) 713;
R. Van Royen and V.F. Weisskopf, Nuovo Cim. 50 (1967) 617;
ibid. 51 (1967) 583.

A. Ore and J.L. Powell, Phys. Rev. 75 (1949) 1696.

These conversion factors are reviewed in ref. 32.

I. Ya. Pomeranchuk, Doklady Akademii Nauk SSSR 60 (1948) 263.



46)
47)
48)

49)
50)
51)

54)
55)
56)
57)
58)
59)

- 54 -

A.T. Alekseev, Sov. Phys. JETP 34 (1958) B82€, .

R. Barbieri, R. Gatto and R. Kigerler, Phys. Lett. 60B (1976) 183,
C.N. Yang, Phys. Rev. 77 (1950) 242; compare also L.D. Landauy and

E.M. Lifshitz, ref. 13.

R. Barbieri, R. Gatto and E. Remiddi, Fhys. Lett. 61B (1976) 465.

H. Krasemann, ref. 15,

W. Braunschweig et al., Phys. Lett. 678 (1977) 243,

W. Bartel et al., Phys. Lett. 64B {1976) 483,

G. Aléxander et al. » Phys. Lett. 72B (1978) 493
R. Brandelik et al., Phys. Lett. 768 (1978) 361.

DASP-II-Collaboration, Internal Report DESY F15-78/01 (August 1978).

R.F. Schwitters et al. s Phys. Rev. Lett. 35 (1975) 1320;
G. Hanson et al., Phys Rev., Lett., 35 (1975) 1609,

G. Hanson, SLAC PYB 2118 (1978);

PLUTO- Co]]aborat1on Phys. Lett. 788 (197¢) 176.

J. Ellis, M.K. Gaillard and G.G. Ross, ref, 14.

K. Koller and T.F. Walsh, ref. 14.

K. Koller, H. Krasemann and T.F. Walsh, ref. 14.

M. Krammer, Phys. Lett. 74B (1978) 361.

W. Gampp and H. Genz, Phys. Lett. 76B (1978) 319.

A. De Rijula et al., ref. 14,

T ——



	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57

