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Abstract: We calculate in a dynamical model based on coupled channels with
charm-anticharm mesons DD, Db* and D*0* and exchanges of Tight mesons 7,
n, ¢ and w the spectrum of spin-parity states up to d =2 for C =1 =0
and C = 2, I = 0,1. They are compared with experimentally known hidden
charm states.
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1. Introduction

Experimental resuits at SPEAR and DORIS indicate that some of the
structures observed in e'e” annihilation in the energy range 3.7 - 4.4 GeV
are resonances that decay mainly into a pair of charmed mesons DD,
pb* + 0*D or DFD* 1). A number of authors suggested that these peaks are
genuine charmed meson-antimeson resonances 2). In particular, in Ref. 3
the peak at 4.028 GeV was interpreted as a resonance between p* and O
lying just above the D*0* threshold. Such states, which in quark language
are four quark composites (cg)(cq) (with q being the old u, d and s quarks)
are usually referred to as "charmonium molecules" in distinction to the
Tower 1ying cc bound states of y's and x's, also called "charmonium atoms".
Of course, whether such {cq)(cg) mesons really exist is a question of dy-
namics and cannot be answered easily. For example, one could start from a
basic theory, 1ike Quantumchromodynamics, in which the low lying qq, cq
and cc states are generated by the basic color confining mechanism. The re-
maining "Van der Waals" type forces would then produce the molecular bound-
states (ca)(aq) (or any other pairing of the four quarks) at threshold. With-
out an understanding of the confining forces it is not clear how to apply
QCD directly to four quark systems. Therefore one is bound to use more
phenomenological means, for example the bag model 4). Unfortunately the bag
model is suitable only for S-wave molecules. It has been applied to char-

. . 4+ - L s .
5). In connection with e’e annihilation we are

monium molecuies recently
primarily interested in P-wave charmonium molecules. For them we can expect
a more "diatomic" structure than for S-waves, where there is no centrifugal
barrier so that all four quarks overlap. For P and higher waves loosely
bound systems of colorless atoms cq and cq possibly exist also from the
quark dynamics point of view on the basis of qualitative arguments, It has
been suggested by several authors to describe the dynamics of such loosely
bound LD, DB* and DTO¥ (and conceivably FF, FEY and F*F¥) states by the ex-

6). The strong decay 0¥ > Dr has been observed

change of a few 1ight mesons
experimentally. So there is no doubt that pion exchange forces exist in

UB* » D*D and presumably also for D'D¥ >D*0*. In the DD system we can ex-
change p and w instead, Then we have a similar situation as in the nucleon-
nucleon {or nucleon-antinicleon) system which is successfully described

by light meson exchange forces.



So far the molecular states are considered completely distinct from
the quark model cc states, which describe J/y, v', y" etc., and it is
assumed that the cqcq states can be calculated without taking into account
the mixing with the cc states. On the other hand some authors found it
necessary to introduce mixing of DD components with the cc wave function
to account for radiative transitions in the charmonium "atomic" spectrum 7).
In such a theory the problem of the transition potential between cc and
DD states is completely open. Due to our lack of understanding the confine-
ment mechanism to calculate these mixing forces in QCD seems to be as dif-
ficult as the calculation of the four quark states. Furthermore in
Eichten et al. 7)
neglected completely.

the direct forces between the open charm states DD were

At this point one might ask whether it is possible to abandon the QCD
framework completely and describe all J/y and x states above and below the
charm threshold as bound states or resonances of charm-anticharm mesons.
Whether such a framework leads to a reasonable theory of the ¢ and y par-
ticles cannot be decided beforehand. It depends very much which channels
of charm-anticharm mesons are included and whether the approximation of
the binding forces by a small number of meson exchanges is sufficient. For
spin 1/2 constituents with weakly spin-dependent forces the level ordering
clearly is {07, 17}, {0+, 1", 2+}, ..... , which we take as the empirical
ordering although the crucial 0 states are far from being settled. It is
a natural guess that the level ordering with boson constituents 1is comple-
tely different. In a boson-antiboson bound state model the observed level
ordering would not arise naturally and could come about only through com-
plicated dynamics of many coupled channels. In this sense a boson consti-
tuent model, even if it worked, would not look very natural. On the other
hand states near charm production threshold, 1ike the 3.77 and 4.03 reso-
nances certainly’ decay into DD, DO* or D*D* particles with strong coupling
if phase space is available for them. Then the assumption that these states
contain very large components of charm-anticharm mesons is natural.

In this paper we shall investigate two separate problems. First we ask
the question, whether all known J/y and y states, usually interpreted as
cc bound states, can be obtained as bound states of charm-anticharm mesons.



We shall call this our strong coupling model. Then we consider a weak
coupling model. Here the states J/¢ and ¢' are interpreted as "atomic"

cc states. The resonances 3.77 and 4.03 GeV, which decay strongly into DD
etc. final states are described as bound states of DD etc. mesons. Actually
the forces between the charmed meson are fixed in such a way that the 3.77
and 4.03 levels are the Towest molecular states. Of course, here we make
the assumption that there is negligible mixing between "molecular" and
"atomic" states. This assumption of no mixing between cc and mesonic bound
states is not investigated further in our framework. It might be justified
sincethe 3.77 and 4.03 states are very close to the DD, D*D and D*D* thres-
holds. We consider our work as a first step and mixing should be taken into
account in an improved version.

The basic assumptions for both models are as follows. We consider only
the three channels DD, DE* + D*D and D*D*, where D and D¥ are the 07 and 1~
mesons with C = 1. As forces we take all one particle exchanges with spins
0" and 17 Tighter than 1 GeV. Bound states and resonances are calculated

with the Blankenbecler-Sugar approximation to the Bethe-Salpeter equation,

After the forces have been determined from the C
calculate the states with C =0, I =1land C =2, I
such states are directly related to the forces in the C = I = 0 channel

0, T = 0 states we

0,1. The forces for

using the known isotopic spins and G parities of the exchanged bosons.

The concept of the two modeis is very similar to the familiar nucleon-
antinucleon boson exchange models which are often used to interpret re-

8). Of course, in this case, one is able

cently found baryonium resonances
to use the information on couplings of exchanged bosons from the nucleon-
nucleon analysis. We go more the opposite way and try to use information
about the C = 0 system to predict the C = 2 system. Naturally the formal
aspects of our model are very similar to the well-known NN and NN treat-

ment 9).

The Tayout of our paper is as follows. In section 2 we give the dynami-
cal equations and describe the structure of the exchanges used as input.
The results are presented and discussed in section 3.



2. Une Boson Exchange Potentials (OBEP) in Momentum Space

The definition of the one boson exchange potential is very similar to
equivalent descriptions of the low energy nucleon-nucleon system. The chan-
nels DD, DO, D*D and D'G* are considered on equal footing. We include the
exchange of all mesons lighter than 1 GeV with spins 0 and 1°. These are
the non-strange members of the SU(3)nonets of pseudoscalar (w, n, n') and
vector mesons {p, w, ¢). We leave out the scalar mesons (8, ¢, S*), since
their experimental verification as resonances is rather unclear. The ex-
change of mesons with higher spins (J>2) and other parity (1+), such as
f, AZ’ f'y g, Al and B are expected to have 1ittle influence because of
the snort range of the corresponding forces.

The potential of the DD etc. interaction is determined by identifying
it with the off-energy-shell Born term of the Feynman amplitude in the
center-of-mass system. The corresponding diagram, as a representative the
graph for DD - DD, is shown in Fig. 1. Here B and 3' are initial and final
state three momenta and Po and p0 the correspond1ng energies in the c.m.
system. The notation for the other channels DD and 0*B* is ana]ogous To
calculate the complete list of Fenyman graphs for DD - DD, DD > ¥ D,

Db - DB*, 0*D* » DO* and D*B* > D*D* we need the couplings of the D and
D¥ with the pseudoscalar and vector meson fields w, n, ¢ and w. These
couplings are:
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Writing down these couplings we assumed SU{4) invariance and ideal mixing
in the couplings and for w, ¢, 1 and n'. Then the ¢ does not couple to the
D and D¥ mesons and the n in (2.1) to (2.3) stands for the Yz (vt +dd)= O
component of the true n and n'. To use these couplings for the latter
particles one has to multiply with the amount of ng component in the n or

f

n respective1y.

For the coupling h@vvof three vector mesons we use the decomposition
introduced in Ref. 10. It contains three independent coupling constants
fl, f, and fa. In the analogous electromagnetic case the three constants

fl’ f, and f3 are related to the charge fb,the magnetic moment fm and the
electric quadrupole form factor fq respect{ve1y 10)

fo

. The connections are:

N

fo+ Y34 N e 2L
‘fl f"‘t
3= (20a-p) T [(1-2sp)]ty - fo +1n]

The evaluation of the OBEP matfix elements is conveniently carried out in
momentum space. This way we have the option to take into account relativis-
tic and meson retardation effects on a later stage. The spin properties of
the potentials are worked out in the helicity basis. The expressions for the

five transition potentials are rather lengthy and will be given in a sepa-
11)

(2.4)

rate publication . The next step is the angular momentum decomposition

of the UBE potentials. We choose the incident direction P along the z-axis
and the outgoing momentum B' in the xz-plane. Then the expansion is:

CAFIVIZAE) « S50 dfple) CAZp 1 V104, p>

(2.5)



with A = A,-A, and A'= 21 - 2, . The potentials for fixed J are ob-
tained by inverting (2,5):

X
<AL pl y?],zﬂ,z“p x 4/2'/-49 564 © dﬁ,(g) <A PV {,1,’,1” P>
° (2.6)

The same expansion (2.5) is used for the whole amplitude <1;4L,F/7'll")uﬁ>
The basic integral which occurs in (2.6) is

17
4

4/2’ fd(case) P;(coas) (i - ¢t) = },TPT QJ(Z«,) (2.7)
~1 "

with
4 I r2 2 2 2
2, = o (2pp —(p2-p") - (p-p) + mi) (2.8)

and (see Fig. 1)
2

L= (p-pl) (2.9)

The completely off-shell partial wave projettions of the various poten-
tials have been calculated. The expressions are too lengthy to be repro-

duced here, They will be given elsewhere 11).

As is familiar from Tow energy nucleon-nucleon dynamics based on OBE po-
tentials most exchange amplitudes are too singular for p' or p - « to gua-
rantee a solution of the dynamical equations. Therefore we modify the OBEP
by form factors which represent the combined effect of vertex and propaga-
tor corrections. We multiply every potential term by an universal form fac-
tor of monopole type

2
A
) = ————
F(t) Sy T (2.10)
with a form factor mass A to be fixed later. The same form factor is
used to modify the two propagators in the Bethe-Salpeter equation. The
bound and resonance states are calculated on the basis of the Blankenbecler-



Sugar approximation 12) to the Bethe-Salpeter equation.

In the case of equal masses m it has the following form:

i J i ./ dp' p'* I T
7‘._‘]‘ (P'P) = J(FJF) + ‘ZEJZJ (m&*P")ﬁ"' (P'z"&‘t) V‘J’(P,P) ’(Z;j](.f;lp)
Here k2 =5/4 - m2 and Tfj(p,ﬁ) is the partial wave projected off-shell

amplitude taken as relative energy = 0 limit of the Bjorken-Drell 13) in-
variant amplitude (divided by 4m). In the calculation the momentum p is
also chosen off-shell in order to avoid left-hand cut singularities in
VJ(p, p). The indices i, j refer to both different particle combinations
as well as different helicity states. The equation was solved only for a
fixed j (e.g. the DD state for o= oTe = (-l)J). For the unequal mass
state DD¥ we replaced m by twice the reduced mass. In (2.11) the additional
form factors coming with the D-propagators are left out for convenience.

Before solving the T-matrix equations we did some further approximations.
Since we neglected the retardation in the propagators in the Bethe-Salpeter
equation we consequently do the same with the retardation in the meson pro-
pators (including the form factor (2.10)). Furthermore we replace all ener-
gies on- and off-shell by their masses. Py = pé = mp = 1.87 GeV, as one
would do in a nonrelativistic approximation. Then z, in eqn.{2.8) reduces
to

1
2, =

= o (PP (2.12)

In channels with D and D present we use the average of my and mp* s
m=1.95 GeV and use this value for Py = Po = M. In matrix elements with
Tongitudinal polarization of the vector mesons (kl, Aos Ai or Aé = 0)
we must renormalize the polarization vectors accordingly. In the matrix
elements with only D* mesons in the initial and final state we also use the
average mass m for simplicity.

Of course the equations used reduce to the familiar Lippman~Schwinger
equation in the non-relativistic approximation. Equations of the form (2.11)

9)

have also been used in low energy NN scattering theory ~/.



To obtain the energies of the bound states and the resonance positions
we proceed as follows. Bound states and resonances manifest themselves as
poles in the T-matrix. The T-matrix equation {2.11) is solved by iteration
with subsequent application of Pad€ approximants. Then bound states or
resonances appear as poles in these Padé approximants.

3. Results

As advertised in section 1 we first tried to describe all existing
hidden charm states as bound states of DB, DB* + D*D and D*D*. In the
following we call this the strong coupling model. We have calculated the
Tevels up to J = 2 and for the three cases C=1 =0, I =0, C =2 and
I=1,C=2, For C =0, I =1 no bound states or resonances are possible,
as will be seen later. Obviously the results depend on the coupling con-
stants of the charmed mesons on the various particies exchanged in the
crossed channel. We have chosen our coupling constants in such a way that
they are roughly compatible with relations following from SU(4) symmetry
and ideal mixing. Whereas masses are badly broken in SU(4) it is usually

assumed that coupling constants are impaired much less by SU(4) breaking 14).

For the coupling constants gypp these symmetry relations are 15):

"

§wd'p) = - g(g°0°07) = —3(2)’”?6. D7) - $9(27n° D)

- ‘f/z g(foﬂ+n~) (3.1)

H

and for Yyyp
g(Duer;-Zs) - - 3(\D*+.D*‘7I°)= g(b*-w Df) - _g(D*'fn D*)

= % g (pon) (3.2)

The coupling constants for VVV fulfill the same symmetry relations as
the VPP coupling constants in (3.1) with appropriate change of notation.
For fl(p°p+p') we expect that it is roughly equal to g(p% =) if the elec-
tromagnetic form factor of the p+ is dominated by po exchange as the 7 form
factor is. The particle s = i,?(uﬁ, +ad) is the ideal mixed n. The re-

Tation of the physical n and n' to n, are well known. fz(VVV) is fixed



in such a way, so that approximately fz(VVV) =2 fl(VVV). This relation
is obtained in the quark model or in current algebra for the p meson 16).
f3(VVV) will be neglected throughout. For simplicity we take mn.'= m, = m
and of course mp =m.. In the following we shall not assume the symmetry
relations (3.1) and (3.2) to be correct in all details, but consider them
as a basis for orientation. However we have always assumed that p and w ex-
change are still related to each other by (3.1) and {3.2). The same is as-
sumed for m and n exchange. Actually symmetry breaking of coupling con-
stants can be connected with the symmetry breaking of masses in the frame-
work of dual resonance amplitudes. This has been investigated by several
authors. For example, Kuroda and Young find that g(D*+D'w°) is larger than
the SU(4) symmetry value by the factor (&) /KL.)'/" = 1.15 17), whereas
Thews findiggor this increase, using finite energy sum rules the factor

1.2 - 1.5 .

In the strong coupling model we varied the coupling constants in the vi-
cinity of the symmetry values (3.1) and (3.2) with g{pmn) = 6 and g{wom)
= 17.5 GeV™! until we obtained 1”7 states at 3.1 and 3.6 GeV and a 0 state
at 2.82 GeV. The energies of all the other levels for all three cases
C=1=0; C=2,1=20,1are shown in Table 1. The corresponding coupling
constants are presented in Table 2.

The symmetry values for the VPP coupling, first line in Table 2,is 3.0,
for the VVP coupling, the second Tline in Table 2 is 8.75 Ge‘.a'“1 and for the
VVV coupling fl = f,/2 = 3.0. We see that the values in Table 2 do not
differ very much from these values and that the 50% increase of the D*rD
coupling can be justified with the work of Thews 18).

A further input is the form factor mass A in (2.10). We have chosen AZ
=2 GeV2 as is suggested by other studies of hadron properties with the

19) 2 was used in the form

Bethe-Salpeter equation . The same value for A
factor for the propagators in the Bethe-Salpeter equation. All three factors
are necessary to correct the singular high energy behaviour of the poten-
tials due to the vector meson exchange. The value for the form factor mass
and the magnitude of the coupling constants are not independent. We have

checked that the spectrum is changed very little when AZ is varied in the
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vicinity of 2 Geve by + 1 GeVz. The overall strength of the potential
had to be lowered if A? was increased. We now shall look into the isospin

and charm ccntent of the potentials.

For C = 0, I =1 the potential vanishes because we have my = M, =M.

Even if we relax this constraint the potential is so weak so that no

bound states or resonances are formed. One would need a very strong breaking
" of the relations of 7 and n and of p and w couplings respectively as given
in (3.1) and (3.2) to produce bound states for C = 0, I = 1. From this we
conclude that charm molecules with C = 0 and I = 1 are very unlikely. In the
four channels C =0, 2, I = 0, 1 the contributions of w, p, mand n, '
(which is the Ng) appear in V(C,I) with the following factors: |

Vie,0) = (g r3n) + (w+3F)

Vio,4) = (%% -7) +* (@~ (3.3)
V(2,0) = (% -37) + (-w+3p)
V(2,1) = (5 + )+ (-2~ §)

Clearly the C = 1 = 0 potential is the most attractive. For C = 2 the re-
lative magnitude of pseudoscalar versus vector exchange determines whether
the potentials are attractive or not. Of course these remarks, based on
(3.3) do not hold without exceptions since the sign of the potential de- .
pends also on the spin-parity state and the influence of nondiagonal versus
diagonal terms in the potential. From (3.4) we expect the strongest binding
for C =1 = 0 and less binding for C =2, I = 0,1.

From Table 1 we observe that for I = C
have bound states or resonances. Since My

0 almost all states up to J = 2
1.87 GeV all states above

3.74 GeV are resonances. It was not difficult to find coupling constants
reproducing almost perfectly the spectrum of 1~ states (of course J/u =

3.1 GeV served as input). Also the 0~" states are reasonable. But the states
0++, 1** and 2%* 1ie lower than the measured states (see first column of
Table 1) on the basis of the usual assignments 20) . 1n particular the Towest
0** state has a very small mass. This feature, too strong binding in the

n
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states 0++, 17" and 2++, presumably is characteristic for this model based
on boson constituents. For 07" states in DD and D*D* channels contribute

in s-waves and similarly for 17~ do the DE* + D*D and D*B* and also 2% has
s-wave contributions in D*D¥. The fact that the 2% state has a much targer
mass than the 07" state is caused by the tensor forces. We conclude from the
results in Table 1 that for an understanding of the Tow mass part of the
charmonium spectrum spin 1/2 constituents are essential. Nevertheless we have
computed also the exotic C = 2 states which are produced by the couplings

in Table 2. We see that the I = 0 states are in average more strongly bound
than the I = 1 states. In I = 0 we have stable molecules with charm equal
two in 177 at 3.7 GeV, 177 at 3.61 GeV, in 1** at 3.67 GeV. The prediction
for 0" 4s unreliable, since here in C = 0 the forces are already much too
strong. We also mention that states with "wrong" C parity, which cannot be
generated by cc states are possible in this model. In 2"~ we have a bound
state at 3.55 GeV. The first 177 and 27~ occur in the channels DBY and D*D*
as p- and d-waves respectively.

In the second model the forces are reduced in such a way that the lowest
177 state is generated at 3.77 GeV. A second 17~ state is obtained at
4.04 GeV which we identify with the experimentally found state at 4.03 GeV.
For the couplings we assumed the symmetry relations (3.1) and (3.2) and took
the values given in Table 4.

In this model the width of the 17 state at 3.77 GeV is T = 23 MeV
wnich has to be compared with I' = (24 + §5) MeV, measured by DELCO 21)
and T = (28 + 5) MeV, measured by SLAC-LBL 22). For the width of the
4.04 resonance we obtain '~ 60 MeV. This number could not be determined
better because of computational problems which appear above the p*D*
threshold, Its value agrees well with the Pexp(4.04) = (52 + 10) MeV
as measured by the DASP Group at DORIS 23). It is clear that the 3.77 re-
sonance can decay only into DD states as experimentally observed 20). The
4.03 resonance can decay in all three channels DD, 0b* + D*D and D*D*.

The measured fractions are 0.09 + 0.05 : 0.58 + 0.06 : 0.33 + 0.08 2%,

We obtain:
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0.15 : 0.48 : 0.37, which agrees quite well with the experimentally
determined ratios.

The other spin-parity states are located where one has states also in
the charmonium model, in particular for 0"t the né in charmonium, 1+,
0** and 1**. This means that for these states the cc component and the DD
component will mix strongly. For the 2** the mixing seems to be less im-
portant. Certainly a complete treatment of these states requires a model
incorporating these two components with realistic forces in all channels.

We notice that we still predict a "wrong" C-parity state 27" resonance
but now high above threshold. The resonance energies of the C = 2 exotic
states are also rather high except a 0** state with I = 0 at 3.44 GeV.

From our analysis we can draw two conclusions. The use of spin 1/2-
constituents to explain the lower part of the charmonium spectrum is es-
sential. On the other hand we showed that OBE-potentials in the DD,

DB" + O0F and O5° channels are capable of forming bound states and narrow
resonances. Our approach provides a quite natural way to understand the
widths and branching ratios of ¥(3.77) and (4.03). Higher 1~ resonances
are possible and might be due to the coupling of D- to F-meson channels via
K-exchanges.
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TABLE 1
g Pe t=1=0 C=1=0 ¢ =2 c =2
Experiment 1 =0 I =1
-
2 3.55 none none
415
1T > 4, none 3.50
2 § .01 none none
A 3,550 3.05 3.92 none
§ 5 3.80 05
17 3.505 3.78 3.67 3.89
a1l
0™ ! very Tow 2.10 2.90
|
3.413 | 2.75 3. 10 4,30
| 2,60 3.85
1 3.096 3.10 3.61 4.20
3.685 3.64 4.00
3.772 3,88
2"t f none none none
1t ! 2.84 4.01
3.71 370 4.30
o 2.83 2.82 3.25
3.455 LV 3.71 none 3.95
TABLE 2:
VPP a(p°0°07y = 4.0 (0™ %07y = 6.0
yop g0 0% = 8.7 gev | g(DDTL0) = 12.4 GeyT!
vy fl(gon*+n") = 6.0 f2{900’+0") = 10.7
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TABLE 3:
JPC C:I:U C:I 4] C = C.—_Z
Experiment I-= 1 =1
-
2 4,15 4.37 none
-+
1 none none 3.87
27" > 4.30 none none
2t 3.55 3.81 4.18 none
4.10
A 3.505 3.68 none 4.15
o** 3.413 3.40 3.44 4.05
3.80 3.95
17 3.77 3.77 4.00 none
4.02 4.04
-+
4 nche none none
.-
1 3.52 none 4.10
4.30
ot 3.455 3.71 none 3.99
3.10
|
TABLE 4:
ypp a(:%0'D7y = 3.5 g(0*:°07) = 3.5
vwp (0¥ D750 = 7.3 Gev™] g{D** D%+ = 7.3Gev"
YWy f,(o%0" D7) = 3.5 £,(e°0"0"7) = 11.5
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Figure Captions:

Fig. 1 . Diagram for DD scattering with p and w exchange

Table Captions:

Table 1

Table 2

Table 3

Table 4

Calculated mass values for various spin-parity states for the
strong coupling model. In the second row are the experimental

masses 20).

Coupling constants for the results in Tabie 1.

Calculated mass values for various spin-parity states for the
weak coupling model. In the second row we have given the ex-
perimental mass values of the charmonium spectrum 20) and the

measured excited states in the 1~ state.

Coupling constants for the results in Table 3.
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