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Abstract

The observables at short distance in quantum chromodynamics defined
through scaling violations in the moments of the deep inelastic

structure functions are determined here in terms of the single para-

2 . . .
meter A = A{Q , u) to all orders in the loop expaEs1on in the

a : . .
form M = [1og(a2/22)] " ka cp2; [1og(02/42)] [og(10g(62/4%)) 7
. =0 J=0 :
The constants CE’} in terms of the renormalization group functions and

3

the coefficient functions define a set of observables and thus are in-
variant under such changes of renormalization conditions that induce,
for example, the recently discussed mappings ¢ - g' of the coupling
constant plane. The general procedure for deriving these coefficients
to all orders is presented and their implications on the study of the
g-plane mappings and on practical high order calculaticns of scaling

violations at high 02 are briefly discussed.

*) Permanent address



Though the short distance behavior of quantum chromodynamics (QCD) is

well understood 1), perfectly managable and in agreement with existing
experimental data, the study of its large distance behavior has known

only a limited success. Disentangling the large distance properties of

the theory calls for an understanding of its nonperturbative properties.

Thus, the analytic structure of the Green's functions in the coupling

constant plane are of major interest and recently were extensively studied.

As a preliminary step 't Hooft had suggestedzasing mappings g —a g' so

that the description of the singularity structure of the Green's function

can be easily concluded already from the known Tlow order expansien of the
renormalization group functions (e.g. in the case of zero mass fermions).
Though presently much more work is needed along these lines of formulating
convergent resummation for perturbation expansion in various field theories 2),
it 1s interesting to study the implications of such studies on the well under-
stood regime of short distances. Obvicusly, the transformations g —s g'
should not change the physics and thus observables are invariant under such

mappings which reflect a change in the renormalization conditions .

Calculations in QCD, performed while using a certain set of renormalization
conditions, result in quantities whose numerical values are deperdent on
these conditions (see e.g. ref. 4). Only certain combinations of these
quantities are independent of the calculational scheme and form the set

of observables of the theory. The expiicit formulation of these observables
in QCD at short distances, their dependence on the renormalization group

3) parameter A at high orders are presented here.

functions and a single
It is shown that scaling violations in the moments of deep inelastic

structure functions are uniquely given by series of the form
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explicit function of g and /n {the coupling constant and its renormaliza-
tion point). Transformations of the type g —= g' relate different co-
efficients in the ? s U and the coefficient function to form the in-
variant combinations Ck L('(a}c) which are constructed below. Our

low order results reproduc; known relations derived in the past 1’4).
Higher order results present new invariant combinations and the scheme

for deriving them at any order is given below. Their implications on

high order calculations of scaling violations at high Q2 and some practical

approximations in such calculations are briefly discussed.

The coefficient functions in Wilson's operator product expansion 5) satisfy

a renormalization group equation whose solution is

a'(t,a)
» q" " q X '
(Ve g) = €(LTw ) expi-| &L 4,
Ul ¢
Ik
where 4 = i&;("f//‘;) ,/u is the renormalization point, g(t,g) s
. . e = b by
the effective coupling constant and g = g(t = o). Cc m?"’) }) are
measured experimentally through the moments of deep inelastic structure

functions

Mep [ 7T R = Qappdiotis

L
-7 — S

(2)



1:3:4) wept in £q. (2)

Only the Teading twist two operators were usually
and only a single such operator contributes tc the flavor non-singlet

part of the structure functions.

Eq. (2) offers the perfect clean test of QCD at short distances once

n & 0 -
(:‘ ( 17ﬁL} 3') are calculated. They have been calculated up to two-loop
contributions in the renormalization group functions 4) and compared with

the existing data 6). To that order

_xt’:

Miepear = 8 Ligeol  Lie Lyl ar g
-raC-l. La(lva(a‘yx)) )

The parameter /A can be defined in terms of * and g and thus, as it
/

should, QCD is determined in terms of a single parameter 3). The constants
n
i
combinations 4) of the coefficients of the X' and F, functions

and b? associated with two different 02 dependence are certain known

and the first non trivial coefficient of c\ (l » g). These combinations were

shown, explicitly, to be separately independent of the renormalization

conditions 4’7).

The general pattern started in Eg. (3) can be extended to all orders giving

2

the Q2 dependence of Mi(Q ) and thus determining an infinite set of such

invariants as a, and bi' For this to be done consistently and unigquely
the single parameter A = /\(3)/4;) has to be explicitly determined
to all orders in terms of the coupling constant g and the renormalization

point /ﬂ (see e.g. ref. 3 for the first loop calculations). Denote
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As emphasized by 't Hooft 2) our only knowledge and the definition of
quantities 1ike those in Eqs. 4a, 4b come from perturbation theory and its
renormalization scheme. This, however, leaves us with much freedom (e.g. to
choose an appropriate set of renorha]ization conditions}. Thus, only directly
measurable quantities, Tike poles in gauge invariant Green's functions and
other observables, are independent of our renormalization scheme whereas

most of the numerical values for Xd" . c_:'fl‘ are entirely
dependent on a particular definition of g. The certain combinations of

Yd‘) } ™k that form the observables-invariants of the theory

¢
are derived as follows: From Eq. (1) one finds

£y wk —.
C?“‘%g) = A (j‘) L?Z 8 l‘ ‘}k | (5)

kso

B?)k are given by

k
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where c?’1 are defined in Eq. 4b and Dﬁ are given below in terms of the
coefficients in Eq. 4a for k = 0, 1, 2, 3, 4 (listed here for up to 5-

Toop contributions)

o _ (. a, L8 ! a'-
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where

ke
bt = et

The solution of g%‘-' %(5) with the initial condition 3(— 7‘,,/.‘1),; a,

results in an implicit equation for g(t)

OLd(bT?L) -+ CC? = '—;L_'j-z'- ’%.ﬂa}"' + F(}) (8)

k .

where F"P = Z_ é‘a j" is regular at ¢ = o0 and c(g) equals to the
kel ©7

R.H.S. of Eq. (8) at g = g. Denote
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then Eq. (8) can be written in the form

3;1.:3-&"‘1" ﬁgj.__ % %‘ gzl«c -

where {’k are given by (up to 5 lToop contributions)

;nt L~ Ao, 4;""&:‘&; "/Z's"(’,l

J

‘3-_- LL,}-J - /Cv" -3 fvﬁé‘_ + ,@:wﬁ," (11)

g'; - 2.@,,&' " 3"6':-'65 * #’gxs'ai- - '&r'!':- +2 .(;,_ Ls_ ﬂ,s"'&'s

and N dis then given by
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Eg. (12) is the generalization 8) to all orders of Eq. 2.4 in ref. 3}.
The solution of Eq. (10) for g(g,) is:
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When Q(QZ/A}) is inserted in Eq. {(5) one has

n anif 2k
(S y) - C(%)—A(g) ZZC 3
:Q 1"

Ak AL AR O

[r%(a‘) (14)

"
Since (:7; (Q;;) is measured through the moments in Eg. (2) and each

Ck’j are associated with different 02 behavior they form a set of.observab]es

that are each independent of the specific scheme in which they had been

calculated 9).

The first two orders in g02 give the coefficients

h‘l'. ., ~®
- — h
COJO = | G = ?‘

(15)



which only reproduce the known results 10) that %o Q' ) KW and 4)
’ n

Iz ;-lglm ") are invariants. Higher orders in Eq.(14)
]

produce new results; but let us first note the structure of Eg. (14) implied

by Egs. (5) and (13). All Cn’1 and C" namely, the "leading" and "next to
k,k K, k 1

leading" Togarithms of 902 at a given order of 902k

, are exactly determined
by the calculations up to two loops in the renormalization group functions
and are therefore known for all k. In general CE,’;_m for k)m?,l is fully
determined by contributions from up to m + 1 loops in %(3) ) 6(}) and
C (1, 3) . Thus, going from an m-loop to an m + 1 loop calculation there
is only one new C :3 that has to be calculated in the coefficient of gOZm
in Eq. (14). This is C 0’ whereas all C j with m»j>o are known already

from the m-Toop ca]cu]atmns.

Thus, at each order in the loop expansion we find only one new invariant

n Cn ; and all Cn j] with m 33 » 0 are functions only of the invariants of

the lower loops calculations 11). For example, at the three Toop level we

have

CM, v - ,B“zl- - f xnp)
= . f (lba)
which determines a new invariant of the theory ld). But
L]
" 4
= {F ‘.

| s
S S T

(16b)

w
define no new invariant since (5 r” and I C ! r . {Eg. 15)
: o Ks,

]



have been known already to be invariants from the two loop calculations.

Similarly at the 4-loop and 5-ioop level the new invariants are contained

LN, n,i 13)
in C3,o and C4,o only. They are

15= ) Fg ['B (|+ £ KF)EH (17a)

and

I;"Bc .’B”’g (LT‘-*—?)-B (1+ ‘ (.(

(17b)
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It is easy to see now how to derive higher such combinations but the expressions
become pretty Tong and we will stop here at the 5-Toop level. Indeed also here

3 7 e
one finds that 63’3 (33’2 and C3’1 are functions only of F"FE’K“ ) [, and

i Similarly all Cy j with 423 » 0 are functions of these invariants and

3 -
of 14.

In detailed m-loop <calculations, certain renormalization conditions can be
shown to ease one piece of the calculation or other, but the existence of
the invariants CE’} » which are independent of the scheme used, restrict ones

ability to simplify the exact calculation.

The two-loop calculations 4) are sufficient for accommodating 6) the presently

available data while more accurate future experiments may test higher Toop
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corrections. The structure of Eq. (14) enables one, as discussed above,
to extract certain approximations for the m loop results from the known
m-1 calculations. For example, from the already available two-loop cal-

culations &) one has the exact values for the "leading" pieces

4 2, 2 2
9, [62,2 Tog™(gg) + €, 1 Tog{g,

)] (Eq. 16b) while only in ggcz,o there

is a missing contribution that has to be evaluated by detailed three-loop
calculations. An estimate of the 4-locop contributicon can be obtained once
the 3-loop calculations are done and so on. In view of the complexity of

such calculations an approximate result is certainly of some use for a

comparison with future data.

[ wish to thank A. De RUjula and C. Sachrajda for several useful discussions

and the theory group at DESY for its hospitality.
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This confirms the remark in 9) above.

As in the case of C?’; also Cg’; contains pieces that are known to be
invariant from the lower loop (2-loops) result. When these pieces are
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subtracted off one finds the new invariant

) !:;’ . Lmﬂm
Ia ’-t(_-., E‘;(s'f

X(') *
- (2:__.. + Oy
y >

£

13) One can further subtract from 14 (and 15) pieces that depend only

)
on E" , (31 , r‘ » Ins I3 (and I,).
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