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Solvency II – Considering Risk Dependencies  
 

Abstract 

In April 2009 the European Parliament adopted a directive “on the taking-up and pursuit of 
the business of Insurance and Reinsurance” (Solvency II). According to this Solvency II 
directive the Solvency Capital Requirement (SCR) corresponds to the economic capital 
needed to limit the probability of ruin to 0.5 %. This implies that (re-)insurance undertakings 
will have to identify their overall loss distributions. The standard approach of the mentioned 
Solvency II directive proposes the use of a correlation matrix for the aggregation of the single 
so-called risk modules respectively sub-modules.  

In our paper we will analyze the method of risk aggregation via the proposed application of 
correlations. We will find serious weaknesses, particularly concerning the recognition of 
extreme events, e. g. natural disasters, terrorist attacks etc. The reason for this is that 
correlations compress information about dependencies into a single ratio. Therefore important 
information concerning the tail of a distribution may possibly not be considered. In contrast, 
multivariate distribution functions provide full information with respect to dependencies 
between the relevant risks. However, aggregation of risks through “traditional” multivariate 
modeling causes technical difficulties. A possible solution for this dilemma can be seen in the 
application of copulas.  

We come to the conclusion that it would have been desirable to fix the concept of copulas in 
the new solvency directive. Even though the concept of copulas is not explicitly mentioned in 
the directive, there is still a possibility of applying it. (Re-)insurers will be able to design their 
internal models by using an aggregation method more complex but even more precisely (e. g. 
copulas) than the solely utilization of a correlation matrix. It is clear that modeling 
dependencies with copulas would incur significant costs for smaller companies that might 
outbalance the resulting more precise picture of the risk situation of the insurer. However, 
incentives for those companies who use copulas, e. g. reduced solvency capital requirements 
compared to those who do not use it, could push the deployment of copulas in risk modeling 
in general. 
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1. Introduction 

The Solvency II directive focuses on an economic risk-based approach1 and therefore obliges 

insurance undertakings to determine their overall loss distribution function. The increasing 

complexity of insurance products makes it necessary to consider dependencies between the 

single types of risk to determine this function properly. Neglecting those dependencies may 

have serious consequences underestimating the overall risk an insurer is facing. On the other 

hand, assuming complete dependency between risks may result in an overestimate of capital 

requirements and therefore incur too high capital costs for an insurance company. The 

Solvency II draft directive acknowledges this fact and proposes recognition of dependencies 

by the use of linear correlations. Reason is that correlations are relatively easy to understand 

and to apply. However, the use of correlation requires certain distributional assumptions 

which are invalidated f. ex. by non-linear derivative products and the typical skew and heavy 

tailed insurance claims data.2 Therefore aggregation of insurance risks via correlations may 

neglect important information concerning the tail of a distribution. 

In contrast, copulas provide full information of dependencies between single risks. Therefore 

they have become popular in recent years. As they allow the separate modeling of risks and 

the dependencies between them, it will also be possible to explore the impact of (different) 

dependency structures on the required solvency capital if they are used.3 Different 

dependency structures can be modelled on the one hand through modified parameters of the 

copula function and on the other hand through the choice of a completely different copula 

family. 

Our aim is to give an overview over the concept of copulas, to analyze and discuss their 

possibly application in the context of Solvency II and finally to make them accessible to a 

wider circle of users. In this context we would also like to discuss, if the new Solvency II 

directive forms an accurate concept for considering risk dependencies or if further 

adjustments should be made. Relating to that it will also be necessary to discuss dependency 

ratios like the correlation coefficient but also others (f. ex. Spearman’s rank correlation). 

We will therefore start with an overview over dependency ratios. In section 3 we will 

continue with the introduction of copulas and illustrate different families and types of copulas. 

                                                 
1 See European Commission (Publ.) (2009). 
2 See Embrechts, P./McNeil, A./Straumann, D. (2002), p. 1. 
3 See Tang, A./Valdez, E. A. (2006), p. 1. 
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After that we will briefly describe how copulas and multivariate distributions can be 

determined out of empirical data in section 0. The paper will continue with an assessment of 

the presented dependence concepts in section 5 and end with a description and an assessment 

of the consideration of risk dependencies in the Solvency II framework in section 6. 

2. Dependency ratios 

Using the linear correlation coefficient is a very rudimentary, but also simple way of 

describing risk dependencies in a single number. The linear correlation coefficient is defined 

by the following Formula 1: 
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ρ(X,Y) is the linear correlation coefficient of X and Y, 

Cov(X,Y)=E[XY]-E[X]E[Y] is the covariance of X and Y and 

 and Var(Y) are the finite variances of X and Y. )(XVar

Formula 1: Pearson’s linear correlation coefficient 

In case of multiple dimensions the so called correlation matrix needs to be applied. Formula 2 

shows this symmetric and positive semi-definite correlation matrix: 
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i. e. ρ(X,Y)a,b = ρ(Xa,Yb), 1 ≤ a,b ≤ n 

Formula 2: correlation matrix 

The linear correlation coefficient (also called Pearson’s linear correlation) measures only 

linear stochastic dependency of two random variables. It takes values between -1 and 1, i. e. -

1 ≤ ρ(X,Y) ≤ +1. However, perfectly positive correlated random variables do not necessarily 

feature a linear correlation coefficient of 1 and perfectly negative correlated random variables 

do not necessarily feature a linear correlation coefficient of -1. Random variables that are 

strongly dependent may also feature a linear correlation coefficient which is according to 

amount close to 0. 
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Furthermore, linear correlation does not provide information of differences regarding the 

strength of dependencies across the range of values of the random variables. That means that 

two pairs of random variables with a certain linear correlation coefficient may actually have a 

completely different dependence structure. The following Figure 1, which shows realizations 

of two pairs of random variables (X1 and X2 respectively X1 and X3) that both have the same 

linear correlation, clearly illustrates this: 

 

Figure 1: dependence structure between random variables 

X1 and X2 respectively X1 and X3

The covariance between independent random variables is zero and therefore also the linear 

correlation. The reversal of this statement does not hold: If the linear correlation coefficient 

between two random variables is near zero, it can actually exist a high correlation between 

them.4

Linear correlation is a natural dependency ratio for elliptically distributed risks. However, 

linear correlation can lead to wrong results if used for random variables that are not 

distributed elliptically.5 Especially extreme events with high losses (e. g. catastrophes) can be 

severely underestimated by using the linear correlation as a measure for dependencies 

                                                 
4 See Mummenhoff, A. (2007), p. 35. 
5 See Embrechts, P./McNeil, A./Straumann, D. (2002), p. 1. 
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between risks.6 Furthermore, for modeling major claims one may have to use distributions 

with infinite variances. As the linear correlation coefficient is only defined for distributions 

with finite variances, it is not possible to use it in this case. In addition linear correlation is not 

invariant concerning non-linear (but monotone) transformation which may cause problems 

when an amount of loss is converted into a loss payment.7

There are other ratios that can be used for measuring risk dependencies. Two examples are 

Spearman’s rank correlation and Kendall’s τ. These do not show some of the disadvantages 

that have been mentioned for linear correlations. However, they do also not provide full 

information on dependencies between risks, but compress all information into a single 

number. A further ratio, especially of importance for non-life insurances modeling extreme 

events, is the coefficient of tail dependence. The coefficient of tail dependence for two 

random variables X and Y describes the likelihood of Y taking an extreme value on condition 

that X also takes an extreme value. This description of the coefficient of tail dependence also 

highlights that it does not provide full information of the dependence structure between 

random variables. The following Formula 3, Formula 4 and Formula 5 show how the three 

dependency ratios described in this passage are defined: 

))(),((),( YFXFYX YXS ρρ =  

Formula 3: Spearman’s rank correlation for two continuous random variables 

)0))((()0))(((),( 21212121 <−−−>−−= YYXXPYYXXPYXτ  

Formula 4: Kendall’s τ 
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α
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on condition that this limit exists. 

Formula 5: coefficient of tail dependence 

3. Copulas 

In contrast, copulas provide full information on the dependency structure between risks. The 

concept of copulas is based on separating the joint marginal distribution function into a part 

that describes the dependence structure and multiple parts that describe the marginal 

distribution functions. 
                                                 
6 See Szegö, G. (2002), pp. 1254-1255. 
7 See Embrechts, P./McNeil, A./Straumann, D. (2002), pp. 7-8. 
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The Copula was defined by Sklar.8 The copula itself is a multivariate distribution function 

with margins that are uniformly distributed on [0,1]: 

),...,(),...,( 111 nnn uUuUPuuC ≤≤= , 

where C( ) is the copula, 

(U1,…,Un)T with Ui ~ U(0,1) for all i = 1,…,n a vector of random variables 

and (u1,…,un)T ∈  [0,1]n realizations of (U1,…,Un)T. 

Formula 6: copula 

An alternative definition for copulas is given by any function C: [0,1]n → [0,1] that features 

the following three properties: 

1. C(u1,…,un) is increasing in each component ui with i ∈  {1,…,n}. 

2. C(1,…,1,ui,1,…,1) = ui for all i ∈  {1,…,n}, ui ∈ [0,1]. 

3. For all (a1,…,an), (b1,…,bn) ∈  [0,1]n with ai ≤ bi  

∑∑ =
++

=
≥−

2

1 1
...2

1
0),...,()1(...

1

1

1 n n

n

i nii
ii

i
uuC  applies, 

uj1 = aj and uj2 = bj for all j ∈  {1,…,n}. 

These definitions can be shown to be equivalent.9

Using copulas, the risk modeling process consists of two steps. In a first step one has to 

determine the marginal distribution of every single risk component. Goal of the second step is 

then to determine the dependence structure between these risk components via the copula 

function. To obtain the joint distribution function the n single risks Xi have then to be 

transformed each into a random variable Ui that is uniformly distributed on [0,1]. This can be 

achieved using the corresponding marginal distribution Fi. 

Ui = Fi(Xi) 

Formula 7: transformation of any single risk into a random variable that is uniformly distributed on [0,1] 

We obtain the multivariate distribution function by inserting these transformed random 

variables into the copula function: 

 

                                                 
8 See Sklar, M. (1959). 
9 See Embrechts, P./McNeil, A./Straumann, D. (2002), p. 4. 
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F(x1,…,xn) = C(u1,…,un) = C(F1(x1),…,Fn(xn)) 

Formula 8: multivariate distribution function via copula 

In case of continuous and differentiable marginal distributions and a differentiable copula the 

joint density is: 

f(x1,…,xn) = f1(x1)*…*fn(xn)*c(F1(x1),…,Fn(xn)), 

where fi(xi) is the respective density for distribution function Fi 

and c(u1,…,un) = 
n

n
n

uu
uuC

∂∂
∂

...
),...,(

1

1  the density of the copula. 

Formula 9: density of the multivariate joint distribution derived via copula 

In this way we can derive a multivariate distribution function out of specified marginal 

distributions and a copula that contains information about the dependence structure between 

the single variables. Also the opposite holds: A copula can be determined out of the inverse of 

the marginal distributions and the multivariate distribution function.10

In the following we will describe some of the most important copula families: 

• Elliptical copulas 

o Gaussian copulas 

o Student copulas 

• Archimedian copulas 

o Gumbel copulas 

o Cook-Johnson copulas 

o Frank copulas 

The main differences in these types of copulas are the bands of the resulting distribution in 

which the dependencies are stronger or weaker.11

Gaussian copulas are also called normal copulas since they lead to multivariate normal 

distribution functions if standard normal distributions are chosen as marginal distributions. 

Formula 10 shows the definition of the Gaussian copula: 

                                                 
10 See f. ex. Faivre, F. (2003), p. 5 or Mummenhoff, A. (2007), pp. 38-39. 
11 See Venter, G. G. (2002), p. 68. 
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n
ρΦ  is the distribution function of the n-variate 

standard normal distribution with correlation ρ and 

 is the inverse of the distribution function 

of the univariate standard normal distribtution 

1−Φ

Formula 10: Gaussian copula 

The dependency in the tails of multivariate distributions with a Gaussian copula goes to 

zero12, which means that the single distribution variables of the joint distribution function are 

almost independent in case of high realizations even if there is a strong overall correlation 

between them. Modeling insurance risks means in most cases modeling risks that are 

independent for lower values but strongly dependent for higher realizations. From this 

perspective the Gaussian copula does not provide a proper basis for modeling insurance risks. 

In contrast, the Student copulas do not feature independency in the tails of a distribution.13 

They can be defined by the following Formula 11: 

))(),...,((),...,( 1
1

1
,1, n

n
n

Stu ututtuuC −−= ννρνρν , 

ν is the number of degrees of freedom, 

 the distribution function of the n-variate Student distribution 

with ν degrees of freedom and a correlation of ρ and 

 the inverse of the distribution function of the univariate 

Student distribution with ν degrees of freedom. 

nt ρν ,

1−
νt

Formula 11: Student copula 

In the bivariate case Student copula feature asymptotical dependency as long as the 

correlation between the two random variables is higher than -1 (even if the correlation ρ is 0 

or negative). The strength of the dependence in the tail of the distribution increases with 

decreasing degrees of freedom ν and with an increasing correlation ρ.14

                                                 
12 See f. ex. Embrechts, P./McNeil, A./Straumann, D. (2002), p. 19 or Tang, A./Valdez, E. A. (2006), p. 6. 

This does not hold if the correlation equals 1 or -1. 
13 See f. ex. Faivre, F. (2003), p. 6 oder Tang, A./Valdez, E. A. (2006), p. 6. 
14 If the number of degrees of freedom is ν = 1, we obtain the so called Cauchy copulas. See 

Tang, A./Valdez, E. A. (2006), p. 6. 
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The following figures show the densities for both the bivariate Gaussian and the bivariate 

Student copula. 

 
Figure 2: density of a Gaussian copula (correlation ρ von 0.7) 

 
Figure 3: density of a Student copula (correlation ρ von 0.7) 

Another class of copulas is given by the Archimedian copulas to which among others belong 

the Gumbel copulas. Similarly to the Student copulas they are tail dependent, however not in 
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both the upper and the lower tail, but only in the upper one (see Figure 4). In the lower tail 

they feature independency. Therefore they are adequate for modeling extreme events: On the 

one hand stress scenarios15 (with high losses) and high dependence can be captured and on 

the other hand common (lower) losses which in general appear independent can be modelled. 

Formula 12 shows how Gumbel copulas can be defined:16

))))ln((((
1

1

1

),...,( ∑= =
−−

n

i iu
n

Gum euuC
ββ

β , 

β ≥ 1 is a structural parameter. 

Formula 12: Gumbel copula 

Another Archimedian copula family is represented by the Cook-Johnson copulas.17 Contrary 

to the Gumbel copulas they are tail dependent only in the lower tail (see Figure 5). Therefore 

they perform good results if used for modelling yields on shares.18 The following formula 

describes the Cook-Johnson copulas: 

βββ
β

1

11 )1...(),...,(
−

−−− +−++= nuuuuC nn
JC , 

β > 0 is a structural parameter. 

Formula 13: Cook-Johnson copula 

The third type of Archimedian copulas presented in this paper is the Frank copula.19 This type 

of copulas features tail dependence neither in the upper tail nor in the lower tail. The 

dependence structure given by a copula of this type is similar to one represented by a Normal 

copula even though the dependence in the tail is even lower (see Figure 6). Formula 14 shows 

the definition of Frank copulas: 

)
)1(

)1)...(1(1ln(1),...,( 11
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β > 0 is a structural parameter. 

Formula 14: Frank copula 

                                                 
15 We have a stress scenario if the actual situation deviates highly to the disadvantage of the insurer 

compared to the expected situation. See Zwiesler, H.-J. (2005), pp. 125-126. 
16 β = 1 leads to a multivariate distribution of independent random variables. Only in this case the Gumbel 

copula is independent in the upper tail. 
17 In the literature the Cook-Johnson copulas are also called Pareto copulas or Clayton copulas. See 

Nelsen, R. B. (2006), p. 118 and Tang, A./Valdez, E. A. (2006), p. 6. 
18 See Ané, T./Kharoubi, C. (2003), p. 429. 
19 See Ané, T./Kharoubi, C. (2003), p. 417, Junker, M./May, A. (2005), p. 432 and Venter, G. G. (2002), 

pp. 84-85. 
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The following figures show bivariate examples for densities for each of the three types of 

Archimedian copulas presented in this paper: 

 

Figure 4: Gumbel copula with structural parameter β = 2 

 

 

Figure 5: Cook-Johnson copula with structural parameter β = 2 
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Figure 6: Frank copula with structural parameter β = 2 

 

4. Determination of copulas and multivariate distributions 

Using the concept of copulas for capturing dependencies between risks in an insurance 

company, first of all the corresponding copulas have to be determined. Two alternative 

approaches for achieving this are parametric and non-parametric approaches. Using a 

parametric approach means to first determine the respective type of copula.20 As shown above 

the various types of copulas describe a different type of dependence structure each. Therefore 

it is necessary to choose that type of copulas that best fits the actual dependence structure. We 

can follow a procedure for the bivariate case established by Genest, C./Rivest, L.-P. (1993) 

which uses the dependency ratios for identifying a type of Archimedian copula that fits the 

observations. The procedure is carried out in 3 steps:21

1. Estimation of Kendall’s τ out of the observations (X11, X21), …, (X1n, X2n). 

2. Define an intermediate random variable Zi = F(X1i, X2i) with distribution function K. 

Genest, C./Rivest, L.-P. (1993) showed that the following statement holds: 

                                                 
20 See Szegö, G. (2002), p. 1268. 
21 See Frees, E. W./Valdez, E. A. (1998), pp. 9-10. 
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K(z) = z – 
)(
)(

z
z

φ
φ
′

 

)(zφ  is the generator of (and therefore determines) an Archimedian copula. 

Formula 15: relation between distribution function and generator of Archimedian copula 

Construct a non-parametric estimate of K: 

a. Define pseudo observations Zi = {number of (X1j, X2j) such that X1j < X1i and 

X2j < X2i} / (n – 1) for i = 1, …, n 

b. Estimate of K is Kn(z) = {number of Zi ≤ z} / {number of Zi}. 

3. Construct parametric estimate of K using the relationship of Formula 15: Use the 

estimate of Kendall’s τ from step 1 and the given relation between Kendall’s τ and the 

generator of a specific type of a copula )(zφ  to come to a parametric estimate of K. 

4. Repeat step three with generators for different types of copulas. At the end choose that 

type of copula where the parametric estimate of K most closely resembles the non-

parametric estimate of K calculated in step 2. 

Once the type of copula is chosen, the parameters of the copula have to be estimated in such a 

way that the dependence structure given by the copula fits to the observations at the best. This 

can be achieved in course of the estimation of the parameters of the marginal distribution by 

using the maximum likelihood method.22 Since one of the advantages of using copulas is the 

separate estimation of the marginal distributions and the dependence structure also a two-step 

approach can be applied: in the first step the parameters of the marginal distributions are 

estimated and in a second step those of the copula.23

Using the non-parametric approach means determining an empirical copula out of the 

empirical data and therefore not determining a specific copula type in advance.24 In the same 

way in which the actual multivariate distribution function is determined by the actual copula 

and the actual marginal distribution functions, the empirical multivariate distribution function 

is determined by the empirical copula function and the empirical marginal distribution 

                                                 
22 See Junker, M./May, A. (2005), p. 437. 
23 See Junker, M./May, A. (2005), p. 437. 
24 See Szegö, G. (2002), p. 1268. 
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functions. Furthermore it is given that the empirical copula converges to the actual copula as 

the number of observations increases.25

The requisites of multivariate modeling are similar to those of univariate modeling.26 

However, in contrast to univariate modeling only few experience could be gained in 

multivariate modeling. Furthermore, the estimation of a copula is highly dependent on the 

result of the estimation of the marginal distribution functions.27 Taking a parametric approach 

this could be avoided by passing onto a semi-parametric approach. This means that the copula 

itself is determined using a parametric approach, whereas the marginal distribution functions 

used to do this are non-parametric, empirical functions.28

5. Assessment 

In the previous sections we provided an overview of two – very different – concepts for 

describing dependencies between risks. On the one hand the linear correlation coefficient, 

Spearman’s rank correlation and Kendall’s τ describe dependencies between risks by a single 

ratio, on the other hand copulas can be used to build multivariate distributions that capture the 

whole dependence structure. Both of these concepts will be assessed in the following. 

However, first we will introduce 5 criteria that dependency ratios should meet. 

a. Criteria for dependency ratios 

The following five criteria are desirable for a dependency ratio. Therefore we will first 

explain the criteria and afterwards match the introduced dependency ratios with them. If δ( ) 

is a dependency ratio, the criteria can be described as the following: 

1. symmetry: δ(X,Y) = δ(Y,X) 

2. standardization: -1 ≤ δ(X,Y) ≤ 1 

3. conclusion based on and on co- and countermonotonity 

a. δ(X,Y) = 1 ⇔  X,Y are comonotone 

b. δ(X,Y) = -1 ⇔  X,Y are countermonotone 

                                                 
25 See Ané, T./Kharoubi, C. (2003), p. 425. 
26 See Pfeifer, D. (2003), p. 681. 
27 See Pfeifer, D. (2003), p. 681. 
28 See Junker, M./May, A. (2005), p. 437.This approach is also used for identifying a specific Cook-

Johnson copula as the parametric copula that best describes the dependencies between the yields of 
different stock indexes. See Ané, T./Kharoubi, C. (2003), pp. 424-431. 
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4. Invariance with regard to strictly monotone transformations: For a transformation 

T:  strictly monotone on the codomain of X the following holds: ℜ→ℜ

a. δ(T(X),Y) = δ(X,Y), if T is strictly monotonic increasing 

b. δ(T(X),Y) = -δ(X,Y), if T is strictly monotonic decreasing 

5. conclusion based on and on independence 

δ(X,Y) = 0  X,Y are independent ⇔

However, a dependency ratio can never fulfill all of those criteria, as criterion 4 contradicts 

criterion 5 and the other way around.29

The first criterion is desirable for dependency ratios because otherwise the resulting 

dependency ratio would depend on the order of the considered risks. If a dependency ratio 

fulfils the second criterion, this will lead to an unique measure which makes dependencies 

between pairs of random variables comparable. Conclusion based on and on co- and 

countermonotonity helps to immediately detect strongly dependent random variables. 

Invariance with regard to strictly monotone transformations is mainly important if the 

dependency ratio is used for practical applications. If a random variable X is transformed into 

another variable T(X) using a strictly monotone function T, the dependence structure between 

X and a second random variable Y will be the same as the dependence structure between T(X) 

and Y. Therefore also the dependency ratio should take on the same value for T(X) and Y as 

for X and Y. The last criterion makes sure that also independency between random variables 

can be detected. 

b. Assessment of the introduced concepts 

First, we want to assess the dependency ratios. The most popular of those – the Pearson linear 

correlation coefficient – only fulfils the first two criteria of the above mentioned five.30 From 

this point of view it is inferior compared to Spearman’s rank correlation and Kendall’s τ 

which fulfil the first four of the mentioned five criteria. Furthermore, the Pearson linear 

correlation coefficient is defined only if the variances of the random variables are finite. 

Another advantage of both Spearman’s rank correlation and Kendall’s τ is that they do not 

only measure the linear dependency between random variables, but also the monotone 

                                                 
29 For a proof see Embrechts, P./McNeil, A./Straumann, D. (2002), p. 15. 
30 See Embrechts, P./McNeil, A./Straumann, D. (2002), p. 15. 
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dependence in common.31 Their calculation may be sometimes easier, but sometimes more 

difficult than the calculation of the Pearson linear correlation coefficient.32

The coefficient of tail dependence introduced in section 2 should not be compared to one of 

the above mentioned three dependency ratios, since it focuses only on the dependency in the 

tails of a distribution. It should therefore be applied if it is required by the respective problem. 

This is the case mainly if extreme events are modelled. Therefore we think that matching the 

five criteria with the coefficient of tail dependence is not reasonable. 

However, copulas can be used to model multivariate distributions which – in contrast to the 

above mentioned dependency ratios that compress the whole dependence structure into a 

single ratio – fully describe the dependence structure. In this way a whole picture of the risks 

in an insurance company and their dependencies can be provided, whereas the solely use of a 

dependency ratio reduces the dependencies between risks into a single number and valuable 

information might get lost. The fact that a given copula implies a certain value for the 

correlation, but in general not the other way around,33 also makes clear that a copula contains 

much more information than a dependency ratio. Particularly, if we have multivariate 

distributions where the dependencies are not linear, but are located in the tails, risk could be 

significantly underestimated if f. ex. the linear correlation coefficient is used. 

From a technical point of view copulas offer the opportunity to first model the marginal 

distribution functions representing the single risks and considering the respective conditions 

separately and in a second step modelling the dependence structure independently from the 

single risks. Furthermore, similar to Spearman’s rank correlation and Kendall’s τ copulas are 

invariant with regard to strictly monotone transformations.34 An advantage of using copulas 

instead of directly modeling multivariate distributions is that the marginal distribution 

function can be of any type, whereas if the multivariate distribution function was directly 

modelled, each of the marginal distribution functions would have to be of the same type. 

Besides, directly modeling the multivariate distribution function presumes that a dependency 

ratio is given. 

                                                 
31 See Embrechts, P./McNeil, A./Straumann, D. (2002), p. 16. 
32 Using f. ex. multivariate normal distributions or multivariate Student distributions the calculation of the 

momentum based linear correlation coefficient is easier. However, if we consider multivariate 
distributions that have a dependence structure represented by a Gumbel copula, the calculation of 
Spearman’s rank correlation and Kendall’s τ might be easier. 

33 See f. ex. Figure 1. 
34 See Pfeifer, D. (2003), p. 679. 
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All in all, we can say that the concept of copulas is clearly superior with regard to the quality 

of estimating dependencies between risks. Dependency ratios have advantages in their 

practical usage as they are much easier to calculate, require less effort and much more 

experience exists with regard to their application in insurance companies. However, if the 

usage of copulas becomes more popular in future, these advantages of dependency ratios will 

be likely to disappear. 

Copulas do not provide information on whether the random variables are dependent one on 

another each or only one affects the others. Therefore copulas may indeed fully describe 

dependencies between risks, however, they do not help us to understand cause-and-effect 

chains. Further problems of the application of copulas can be seen in the high amount of data 

required for modelling – especially complex types of – copulas. Particularly for the tails of 

distributions such observations are not available in sufficient quantities. 

However, all in all we can say that since dependency ratios do not provide a complete picture 

of the actual situation with regard to risk dependencies, therefore provide significant less 

information and finally may lead to an underestimation of the actual risk of an insurance 

company, copulas should be used to describe dependencies between risks in an insurance 

company if possible. Particularly for the option of introducing an internal risk model the 

application of copulas seems to be suitable. 

6. Solvency II 

a. Consideration of risk dependencies in Solvency II 

According to the new European solvency system (Solvency II) insurance undertakings will 

have to determine the so called Solvency Capital Requirement (SCR) which reflects the 

amount of capital that is necessary to limit the probability of ruin to 0.5 %. That implies that 

they will also have to determine their overall loss distribution function. Hereby at least the 

following risks have to be considered:35

• non-life underwriting risk 

• life underwriting risk 

• health underwriting risk 

• market risk 
                                                 
35 See European Commission (Publ.) (2009), Article 101, Section 4. 
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• credit risk 

• operational risk 

Insurers will be able to either use a standard approach or to determine the Solvency Capital 

Requirement or parts thereof by the use of an internal model. In the latter case the internal 

model has to be approved by the supervisory authorities. Using the standard approach, the 

SCR is the sum of the Basic Solvency Capital Requirement, the capital requirement for 

operational risk and the adjustment for the loss-absorbing capacity of technical provisions and 

deferred taxes. 

The Basic Solvency Capital Requirement consists at least of a risk module for non-life 

underwriting risk, for life underwriting risk, for health underwriting risk, for market risk and 

for counterparty default risk each.36 After having been determined, the risk modules have to 

be aggregated. The Solvency II directive clearly states that for the standard approach this has 

to be done by using correlations (see Table 1) and the following Formula 16:37

∑ ∗∗=
ji jiji SCRSCRBSCR

, ,ρ , 

BSCR is the Basic Solvency Capital Requirement, 

SCRi bzw. SCRj are risk-modules i respectively j and 

ρi,j is the correlation between them.38

Formula 16: aggregation of risk modules in the Solvency II standard approach 

 j=1: market risk 
j=2: 
counterparty 
default risk 

j=3: life 
underwriting 
risk 

j=4: health 
underwriting 
risk 

j=5: non-life 
underwriting 
risk 

i=1: market risk 1 0.25 0.25 0.25 0.25 

i=2: counterparty 
default risk 0.25 1 0.25 0.25 0.5 

i=3: life 
underwriting risk 0.25 0.25 1 0.25 0 

i=4: health 
underwriting risk 0.25 0.25 0.25 1 0 

i=5: non-life 
underwriting risk 0.25 0.5 0 0 1 

Table 1: correlation matrix for aggregating risk modules in Solvency II 

                                                 
36 See European Commission (Publ.) (2009), Article 104, Section 1. These risk modules have to be split 

into sub-modules. See European Commission (Publ.) (2009), Article 105. The sub-modules shall be 
aggregated using the same approach as for the aggregation of the risk modules that is described in the 
following. 

37 See European Commission (Publ.) (2009), Annex IV, Item 1. 
38 i,j=1: risk module for market risk, i,j=2: risk module for counterparty default risk, i,j=3: risk module for 

life underwriting risk, i,j=4: risk module for health underwriting risk, i,j=5: risk module for non-life 
underwriting risk. 
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b. Assessment of the Solvency II rules with regard to risk dependencies 

On a first level the Basic Solvency Capital Requirement, the capital requirement for 

operational risk and the adjustment for the loss-absorbing capacity of technical provisions and 

deferred taxes have to be aggregated. This is done simply by adding the capital requirements 

which assumes that those risks are fully dependent. However, the assumption that full 

dependence between e. g. the operational risk and the risks covered by the BSCR is not 

realistic and therefore the result for the SCR will be too high.39 At the moment there is not 

sufficient data for a reliable estimation of the operational risk. Against this background it 

would be sensible to only consider the operational risk qualitatively like Switzerland has 

decided in the Swiss Solvency Test instead of simply adding an amount of capital to the Basic 

Solvency Capital Requirement. 

In contrast to other solvency systems that are currently in place, in the Solvency II framework 

dependencies are closely recognized at least in the calculation of the BSCR. However, the 

given values for the correlations which are shown in Table 1 seem to be highhanded and do 

not reflect the specific situation of an insurance company. Moreover, we have shown in 

section 5 that some serious problems may appear if linear correlations are used for measuring 

dependencies and that other dependency ratios should be preferred. 

However, insurance companies are able to apply a more precise and sophisticated way of 

capturing dependencies if they use an internal model. In this case the company can decide to 

measure dependencies between risks by the use of copulas or at least by the use of other 

dependency ratios than the linear correlation coefficient. The supervisory authorities may 

even require the companies to apply an internal model for calculating the Solvency Capital 

Requirement, or a part thereof, if it is inappropriate to calculate the Solvency Capital 

Requirement using the standard approach.40 That means that if the approach for considering 

dependencies that is given in the standard model does not lead to a realistic picture of the 

actual risk situation of the company, the supervisory authorities may oblige the company to 

use a more sophisticated way for capturing dependencies. The problem for the supervisory 

authorities thereby is to obtain an indication that it is not appropriate for a specific insurance 

company to use the standard approach. 

For these reasons we recommend that the Solvency II framework should reward insurers 

which measure the dependencies between their risks in a more sophisticated way by reducing 

                                                 
39 However, the amount of solvency capital for the operational risk is limited. See European Commission 

(Publ.) (2009), Article 106, Section 3. 
40 See European Commission (Publ.) (2009), Article 117. 
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the SCR or the other way around by imposing higher requirements on companies which use 

the rudimental standard approach. It would also make sense and give additional incentives to 

explicitly mention the concept of copulas in the directive. Moreover, we have discovered that 

the given correlations do not seem to reflect an actual average of the insurance industry. So, if 

correlations are used, they should at least be actually measured in the insurance industry. 
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