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SOME PROPERTIES OF LUBIN-TATE COHOMOLOGY FOR

CLASSIFYING SPACES OF FINITE GROUPS

ANDREW BAKER AND BIRGIT RICHTER

Abstract. We consider brave new cochain extensions F (BG+, R) −→ F (EG+, R), where

R is either a Lubin-Tate spectrum En or the related 2-periodic Morava K-theory Kn, and

G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such

an extension is a G-Galois extension in the sense of John Rognes, but not always faithful.

We prove that for En and Kn these extensions are always faithful, but not always dualiz-

able. In particular, for G a non-trivial finite p-group, F (EG+,Kn) ∼ Kn is not dualizable

over F (BG+,Kn) and F (EG+, En) ∼ En is not dualizable over F (BG+, En). Therefore

F (BG+,Kn) −→ F (EG+,Kn) and F (BG+, En) −→ F (EG+, En) are not always Galois ex-

tensions.

Introduction

In the algebraic Galois theory of commutative rings [1, 8], faithful flatness is a property

implied by separability. However, in the topological analogue, the ‘brave new Galois theory’ of

Rognes [27], this is not true. The simplest counterexample, due to Ben Wieland [28], is provided

by the C2-Galois extension

F (BC2+,HF2) −→ F (EC2+,HF2) ∼ HF2

which is not faithful. This example relies on the algebraic fact that

π∗(F (BC2+,HF2)) = H−∗(BC2;F2)

is a polynomial algebra and so has finite global dimension.

In this note we consider this question for a Lubin-Tate spectrum En and the related Morava

K-theory Kn, and show that for any finite group G, the extension

(0.1) EBG
n = F (BG+, En) −→ F (EG+, En) ∼ En

is faithful as an En-module. We also show that the non-commutative extension

(0.2) F (BG+,Kn) −→ F (EG+,Kn) ∼ Kn

is faithful and F (BG+,Kn) is a faithful En-module. A crucial difference from F (BG+,HFp) is

that K∗
nBG is always an Artinian algebra over (Kn)∗, and so if K∗

nBG 6= 0 then it has infinite

global dimension by Proposition 1.2. In the special case of a finite non-trivial p-group G we

can deduce that Kn is not dualizable as an F (BG+,Kn)-module spectrum (see Theorem 4.2).
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In particular, the extension of (0.2) is not a Galois extension in the associative setting. We

demonstrate the failure of (0.1) to be a G-Galois extension in many cases.

Our approach to this involves introducing an analogue of the algebraic socle series for a

module over an Artinian ring, and we show that this behaves well enough to prove our result.

It is not clear how our work is related to that of Hovey and Lockridge [16], this is something

we intend to explore further.

In Section 5 we review some other properties of K∗(BG+), specifically it is a Frobenius

algebra and a zero-dimensional Gorenstein ring.

Notation, etc. In discussing purely algebraic notions we will often use boldface symbols

A,M , . . . to denote rings, modules, etc, while for topological objects such as S-algebras and

their modules we will use italic symbols A,M, . . ., thereby reducing the possibility of confusion

between the two settings. For an associative S-algebra A, we denote by DA the derived category

of A-module spectra.

We follow Lam [20] in using the phrase local ring to indicate a ring with a unique maximal

left ideal (necessarily 2-sided and equal to its Jacobson radical); the quotient of such a ring by

its Jacobson radical is a division ring. For non-commutative rings other terminology is often

encountered such as scalar local ring.

Brave new Galois extensions. The following definition of a Galois extension is due to John

Rognes [27]. Examples noted by Ben Wieland [28] after the publication of [27] show that not

every Galois extension is faithful.

Let A be a commutative S-algebra and let B be a commutative cofibrant A-algebra. Let G be

a finite (discrete) group and suppose that there is an action of G on B by commutative A-algebra

morphisms. Then B/A is a G-Galois extension if it satisfies the following two conditions:

• The natural map

A −→ BhG = F (EG+, B)G

is a weak equivalence of A-algebras.

• There is a natural equivalence of B-algebras

Θ: B ∧A B
∼
−→ F (G+, B)

induced from the action of G on the right hand factor of B.

Furthermore, B/A is a faithful G-Galois extension if it also satisfies

• B is faithful as an A-module, i.e., for an A-module M ,

B ∧A M ∼ ∗ =⇒ M ∼ ∗.

1. Recollections on modules over Artinian algebras

Let D be a division ring. A ring A equipped with homomorphisms of rings η : D −→ A and

ε : A −→D is an augmented D-algebra if the following diagram commutes.

D
=

//

η
  A

AA
AA

AA
A

D

A

ε

>>}}}}}}}}
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The augmentation ε splits the unit η. We also say that A is an Artinian local D-algebra if it

is Artinian and local.

If A is an Artinian local augmented D-algebra, then the Jacobson radical of A is

J = rad(A) = ker ε.

By [19, theorem 4.12], J is nilpotent, say J
e = 0 and J

e−1 6= 0.

Lemma 1.1. Let M be a left A-module. If D ⊗A M = 0 then M = 0.

Proof. Comparing the two horizontal exact sequences

J ⊗A M //

��

A⊗A M //

∼=

��

D ⊗A M //

∼=
��

0

0 // JM // M // M/JM // 0

we see that if D ⊗A M = 0 then

M = JM = . . . = J
e
M = 0. �

Let M be a left A-module. The socle of M is the submodule

soc1M = socM = {x ∈M : Jx = 0},

which can also be characterised as the sum of all the simple A-submodules of M . The socle

series of M is the increasing sequence of submodules

0 = soc0 M ⊆ soc1 M ⊆ . . . ⊆ sock M ⊆ sock+1
M ⊆ . . . ⊆M ,

where for each k the following is a pullback square

sock+1M
//

��

soc(M/ sock M)

��

M // M/ sock M

so we have

sock M = {x ∈M : Jkx = 0},

and

soceM = M .

In fact, for small k

sock M ⊂ sock+1
M ,

until we reach a value k = k0 for which sock0 M = M .

It is also clear that given a homomorphism ϕ : M −→N of A-modules there are compatible

homomorphisms

sock M −→ sock N .

For details on the socle series see [19], especially Ex. 4.18, and [5].

We end this section with a result that supplies an algebraic backdrop for some of our later

work. We give a proof suggested by K. Brown.
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Proposition 1.2. Let A be a local left-Artinian ring which is not a division ring. Then

proj dim(A/ rad(A)) = gl dimA =∞,

where A/ rad(A) is the unique simple left A-module.

Proof. Since A is local, it has only one simple module and therefore

proj dim(A/ rad(A)) = gl dimA.

Also, since A is Artinian it has a left ideal I isomorphic to A/ rad(A). The corresponding exact

sequence

(1.1) 0→ I −→ A −→ A/I → 0

cannot split since A is local and therefore it has no non-trivial idempotents.

If proj dim(A/ rad(A)) = gl dimA <∞, then (1.1) would give

proj dim(A/ rad(A)) + 1 = proj dim(A/I) 6 gl dimA = proj dim(A/ rad(A)),

which is impossible. �

Remark 1.3. We end this section by noting that the above discussion works as well if we assume

that A is graded, provided this is suitably interpreted. In our work below we are interested in

Z-gradings which are also 2-periodic, i.e., for all n ∈ Z, (−)n+2 = (−)n. This can be interpreted

as a Z/2-grading, which allows us to use the framework of [9].

2. Socle series in topology

Let D be an S-algebra for which π∗D is a 2-periodic graded division ring, i.e., π0D = D is

a non-trivial division ring and π1D = 0. Suppose that A is an S-algebra both under and over

D, giving the following diagram of morphisms of S-algebras.

(2.1) D
=

//

η
  @

@@
@@

@@
D

A

ε

>>~~~~~~~

We assume thatA = π∗A is an Artinian local augmentedD-algebra, so that the augmentation

ideal ker ε is the Jacobson radical of A, rad(A), and also rad(A)e = 0 and rad(A)e−1 6= 0.

Remark 2.1. Let M be a left A-module. Then M = π∗M is a left A-module and its socle

socM is a D-module through both the unit η and the augmentation ε, and these module

structures agree since rad(A) = ker ε.

Theorem 2.2. There are functors sock : DA −→ DA for 0 6 k 6 e such that

(a) for each k, π∗(soc
k M) = sock M ;

(b) there are natural transformations sock M −→ sock+1M giving a commutative diagram

0 // π∗ soc
1 M //

∼=
��

π∗ soc
2M //

∼=
��

. . . // π∗ soc
eM //

∼=

��

0

0 // soc1 M // soc2 M // . . . // soceM // 0

which is natural with respect to morphisms of A-modules.
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Proof. As D is a division ring, socM is a finite dimensional D∗-vector space. Since M is a

D-module via the unit we can find a morphism of D-modules

(2.2)
∨

j

Σs(j)D −→M

to realize an algebraic isomorphism
⊕

j

D∗−s(j)

∼=
−−→ socM .

Now Remark 2.1 implies that the morphism of (2.2) is actually one of A-modules. We set

socM =
∨

j Σ
s(j)D.

Now we can repeat this on the cofibre M/ socM of the map socM −→ M , obtaining

soc(M/ socM) −→ M/ socM . We then define soc2 M using the right hand pullback square

in the diagram

socM //

=

��

soc2M

��

// soc(M/ socM)

��

socM // M // M/ socM

from which we see that π0(soc
2 M) ∼= soc2 M . Continuing in this way we inductively build the

socle tower

∗ → soc1M −→ soc2M −→ . . . −→ soce−1M −→ soceM = M,

using pullback squares

sock+1M

��

// soc(M/ sock M)

��

M // M/ sock M

for each k. These satisfy

π∗(soc
k M) = sock M . �

An important consequence of this construction is that there is a minimal k0 for which

sock0 M = M , so since sock0−1M 6= M , using the fibre sequence

(2.3) sock0−1 M −→M −→M/ sock0−1 M,

we obtain π∗(M/ sock0−1M) 6= 0.

Lemma 2.3. The A-module D satisfies π∗(D ∧A D) 6= 0.

Proof. There is a diagram of left D-modules induced from (2.1)

D ∧D D
=

//

&&LLLLLLLLLL
D ∧D D

D ∧A D

88rrrrrrrrrr

in which D ∧D D ∼= D. Applying π∗(−) we see that π∗(D ∧A D) 6= 0. �

Theorem 2.4. Let M be an A-module for which π∗M 6= 0. Then π∗(D ∧A M) 6= 0, i.e., D is

a faithful A-module.

5



Proof. Using the socle series we can find a fibration sequence as in (2.3),

(2.4) M ′ −→M −→M ′′,

where M
′′ = π∗M

′′ 6= 0, JM ′′ = 0 and there is a short exact sequence

(2.5) 0→ π∗(M
′) −→ π∗(M) −→ π∗(M

′′)→ 0.

As remarked in the proof of Theorem 2.2, M ′′ is weakly equivalent to a wedge of copies of

suspensions of the A-module D. So π∗(M
′′) is a direct sum of copies of suspensions of π∗(D),

hence by Lemma 2.3, π∗(M
′′) 6= 0. The fibre sequence (2.4) induces a commutative diagram

0 // π∗(D ∧D M ′′) //

��

π∗(D ∧D M) // //

��

π∗(D ∧D M ′′)

��
=

zz

π∗(D ∧A M ′′) // π∗(D ∧A M) // // π∗(D ∧A M ′′)

��
π∗(D ∧D M ′′)

in which an non-zero element x ∈ π∗(D ∧D M ′′) lifts to π∗(D ∧D M) and so is in the image of

composition passing through π∗(D ∧A M). Therefore π∗(D ∧A M) 6= 0. �

3. Lubin-Tate cohomology of classifying spaces

We will denote by E any Lubin-Tate spectrum such as En or Enr
n , and then K will denote the

corresponding version of Morava K-theory see [3] for details. The spectrum E is a commutative

S-algebra, while K is an E-algebra in the sense of [11]. The homotopy groups π∗E and π∗K are

2-periodic and π0E is Noetherian; π0K is a field, although K is only homotopy commutative

if p is and odd prime, while when p = 2 it is not even that. Nevertheless, we will view K as a

kind of ‘topological division ring’.

The following lemma will allows us in certain circumstances to relate modules over EBG =

F (BG+, E) to modules over KBG = F (BG+,K).

Lemma 3.1. For any EBG-module M , there is isomorphism of K-modules

K ∧EBG M ∼= (K ∧E E) ∧K∧EEBG (K ∧E M).

In particular, there is an isomorphism of K-modules

K ∧EBG E ∼= K ∧KBG K.

Proof. This follows from an obvious generalization of [11, proposition III.3.10]. Since there are

isomorphisms of E-algebras K ∼= K ∧E E and KBG ∼= K ∧E EBG, for any EBG-module M ,

K ∧EBG M ∼= K ∧E (E ∧EBG M)

∼= (K ∧K K) ∧E (E ∧EBG M)

∼= (K ∧E E) ∧K∧EEBG (K ∧E M). �

Theorem 3.2. Let G be a finite group.

(a) The K-cohomology K∗(BG+) is a finite dimensional K∗-vector space and the E-cohomology

E∗(BG+) is a finitely generated E∗-module.
6



(b) If K∗(BG+) is concentrated in even degrees, then E∗(BG+) is a free E∗-module of finite

rank and

K∗(BG+) = K∗ ⊗E∗ E∗(BG+) = E∗(BG+)/mE∗(BG+).

(c) K∗(BG+) is an augmented Artinian local K∗-algebra whose maximal ideal is nilpotent.

Hence E∗(BG+) is an augmented pro-Artinian local E∗-algebra,

E∗(BG+) = lim
r

E∗(BG+)/m
rE∗(BG+).

Proof. (a) See [14, 15] for example.

(b) See [17, proposition 2.5].

(c) We can reduce to the case where G is a p-group using the transfer Σ∞BG+ −→ Σ∞BG′
+

associated with a p-Sylow subgroup G′ 6 G. The case of a cyclic p-group Cpr is well known and

K∗(BCpr+) = K∗[y]/(yp
r

).

The case of a general p-group G of order pm follows by induction on m since there is always

a normal subgroup N ⊳ G of index p and this permits an argument with the Serre spectral

sequence associated with the fibration

BN −→ BG −→ BCp

as used in [24] to calculate K∗(BG+) from knowledge of K∗(BN+) as input. �

It is known that K∗(BG+) need not be concentrated in even degrees [18].

We are interested in the E-algebras EBG = F (BG+, E) and KBG = F (BG+,K), each of

which is K-local. Of course the diagonal BG −→ BG × BG induces the product on each of

these, but only EBG is strictly commutative, while KBG is homotopy commutative when p 6= 2

and merely associative when p = 2. At the level of homotopy groups, E∗(BG+) = π∗(E
BG)

and K∗(BG+) = π∗(K
BG) are both graded commutative.

Now we can apply our earlier results to give

Theorem 3.3. For any finite group G, E and K are faithful K-local EBG-modules.

Proof. It suffices to show that K is faithful. By Lemma 3.1, for any EBG-module there is an

isomorphism

K ∧EBG M ∼= (K ∧E E) ∧K∧EEBG (K ∧E M).

The natural morphism of E-algebras

K ∧E F (BG+, E) −→ F (BG+,K ∧E E)

is a weak equivalence since K is a finite cell E-module, so by [11, theorem III.4.2] it is enough

to know that

(K ∧E E) ∧KBG (K ∧E M) ∼= K ∧KBG (K ∧E M) ≁ ∗.

If M is K-local and non-trivial, then K∧KBG (K∧EM) ≁ ∗, because we know from Theorem 2.4

that K is faithful as a KBG-module. �
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4. Dualizability of EBG-modules

In [27, proposition 5.6.3], it was shown that the extension

F (BG+,HFp) −→ F (EG+,HFp) ∼ HFp

is a G-Galois extension for any prime p and any finite group G acting nilpotently on Fp[G] by

conjugation. In this section we discuss the analogous situation for the extensions of E-algebras

F (BG+, E) −→ F (EG+, E) ∼ E, F (BG+,K) −→ F (EG+,K) ∼ K.

First we note that by a standard argument making use of the transfer [4], after p-localization,

Σ∞BG+ is a retract of Σ∞BG′
+ where G′ is any p-Sylow subgroup of G. When p ∤ |G|, we have

F (BG+, E) ∼ E, F (BG+,K) ∼ K.

If p | |G| we might still have that one or both of the restriction maps

EBG
∗ −→ EBG′

∗ , KBG
∗ −→ KBG′

∗

has a trivial image. We are interested in the case where these images are not trivial. We start

by considering the case of a p-group.

Proposition 4.1. Suppose that G = Cpr is cyclic of order pr where r > 1. Then the EBCpr -

algebra F (ECpr+, E) ∼ E is not dualizable as an EBCpr -module.

Proof. We recall ([15, lemma 5.1]) that

(EBCpr )∗ = E∗[[y]]/([pr]y),

where the pr-series has the form

[pr]y ≡ yp
rn

mod m.

By the Weierstrass preparation theorem, there is a polynomial

〈pr〉 y = pr + · · ·+ yp
rn−1 ≡ yp

rn−1 mod m

for which

(EBCpr )∗ = E∗[[y]]/(y 〈pr〉 y).

Now the (EBCpr )∗-module E∗ admits the periodic minimal free resolution

(4.1)

0← E∗ ←− (EBCpr )∗
y
←− (EBCpr )∗

〈pr〉y
←−−− (EBCpr )∗

y
←− (EBCpr )∗

〈pr〉y
←−−− (EBCpr )∗ ←− . . . ,

so for s > 0 we have

(4.2) Tor
(E

BCpr )∗
s,∗ (K∗, E∗) = K∗.

The Künneth spectral sequence

(4.3) E2
s,t(Cpr) = Tor

(E
BCpr )∗

s,∗ (K∗, E∗) =⇒ πs+t(K ∧EBCpr E)

is multiplicative. It is standard (compare for instance [25, lemma 6.6]) that for odd primes

p, Tor
(E

BCpr )∗
∗,∗ (K∗, E∗) is the tensor product of a divided power algebra on the generator in

bidegree (2, 0) and an exterior algebra on the generator in bidegree (1, 0), while for p = 2 it is

an exterior algebra on the generators in bidegrees (s, 0) with s > 1. From this we see that the
8



spectral sequence collapses from the E2-term, and so π∗(K ∧EBCpr E) is an infinite dimensional

K∗-vector space.

If F (ECpr+, E) ∼ E were dualizable as an E-module, then it would be a retract of a finite

cell E-module, and so π∗(K ∧EBCpr E) would be a finite dimensional K∗-vector space. The

above calculation shows that this is false. �

Theorem 4.2. Let G be a non-trivial p-group. Then

proj dimK∗BG K∗ =∞.

In particular, for all s > 0,

TorK
∗BG

2s,∗ (K∗,K∗) 6= 0

and π∗(K ∧KBG K) is an infinite dimensional K∗-vector space. Therefore K is not dualizable

as a KBG-module.

Proof. The first statement is a consequence of Proposition 1.2, while the second requires the

collapsing Künneth spectral sequence (4.3). To see this, we note that there is a non-trivial

epimorphism G −→ Cp, and for some k > 1 a factorisation

Cpk
// //

(( ((
G // // Cp

inducing a homomorphism of K∗-algebras K∗BCp −→ K∗BCpk . There are associated mor-

phisms between the associated Künneth spectral sequences:

(4.4) Er
∗∗(Cp) −→ Er

∗∗(G) −→ Er
∗∗(Cpk).

To understand this, we will produce an explicit map between resolutions for K∗BCp and

K∗BCpk .

To ease notation we set q = pn. The canonical surjection Cpk −→ Cp induces the ring

monomorphism

K∗[[y]]/(y
q) −→ K∗[[y]]/(y

qk ); y 7→ yq
k−1

.

Then K∗BCpk is a free K∗BCp-module of rank qk−1, with basis 1, y, . . . , yq
r−1−1. There are

resolutions similar to (4.1), and a chain map between them:

(4.5)

0← K∗ (KBCp)∗a0oo

ρ0

��

(KBCp)∗a1
y

oo

ρ1

��

(KBCp)∗a2
yq−1

oo

ρ2

��

(KBCp)∗a3
y

oo

ρ3

��

. . .
yq−1

oo

0← K∗ (K
BC

pk )∗b0
oo (K

BC
pk )∗b1

y
oo (K

BC
pk )∗b2

yq
k
−1

oo (K
BC

pk )∗b3
y

oo . . . ,yq
k
−1

oo

where for each s > 1,

ρ2s(f(y)a2s) = f(yq
k−1

)b2s, ρ2s−1(g(y)a2s−1) = g(yq
k−1

)yq
k−1−1b2s−1.

On tensoring these with K∗ we obtain the map of chain complexes

(4.6) 0 K∗a0oo

ρ′
0

��

K∗a1
0

oo

ρ′
1

��

K∗a2
0

oo

ρ′
2

��

K∗a3
0

oo

ρ′
3

��

. . .
yq−1

oo

0 K∗b0oo K∗b1
0

oo K∗b2
0

oo K∗b3
0

oo . . . ,0
oo

where

ρ′2s(a2s) = b2s, ρ′2s−1(a2s−1) = 0.
9



From this it follows that the chain map ρ induces isomorphisms

ρ∗ : Tor
K∗BCp

2s,∗ (K∗,K∗) −→ Tor
K∗BC

pk

2s,∗ (K∗,K∗)

for s > 0, and trivial maps in odd degrees. So

E2
2s,∗(Cp) −→ E2

2s,∗(Cpk)

is an isomorphism for each s > 0, and therefore E2
2s,∗(G)) contains a summand which survives

to E∞
2s,∗(G)). Since every dualizable KBG-module is a retract of a finite cell module, this shows

that K cannot be a dualizable KBG-module. �

Theorem 4.3. Suppose that G is a non-trivial p-group. Then E is not dualizable as an EBG-

module.

Proof. By Lemma 3.1,

K ∧EBG E ∼ K ∧KBG K,

so

π∗(K ∧EBG E) ∼= π∗(K ∧KBG K)

is an infinite dimensional K∗-vector space. �

Using this we can also see that EBG −→ F (EG+, E) ∼ E is not a Galois extension since if

it were then the unramified condition would give

E ∧EBG E ∼
∏

G

E

and so

K ∧EBG E ∼
∏

G

K,

making π∗(K ∧EBG E) a finite dimensional K∗-vector space.

Of course, an obvious conjecture is that these results also hold for every finite group G

with K∗(BG+) non-trivial. The topological content of Theorem 4.2 that K ∧EBG K is infinite

dimensional seems hard to verify, even though Proposition 1.2 applies to K∗(BG+).

A class of groups for which this conjecture does hold is that of p-nilpotent groups, which are

finite groups G for which a p-Sylow subgroup P 6 G has a normal p-complement, i.e., there is

a normal subgroup N ⊳ G with p ∤ |N | and G = PN = P ⋉ N . A convenient summary of the

properties of such groups can be found in [22, section 7], see also [26]. By a result of Tate [30],

G being p-nilpotent is equivalent to the restriction homomorphism being an isomorphism

resGP : H∗(BG;Fp)
∼=
−−→ H∗(BP ;Fp),

and in fact it is sufficient that this holds in degree 1. Comparison of the Serre spectral sequences

for K∗
n(BG+) and K∗

n(BP+) shows that

K∗
n(BG+)

∼=
−−→ K∗

n(BP+).

10



5. Frobenius algebra and Gorenstein properties of K∗(BG+)

In this section we will discuss some other properties enjoyed by KBG for a finite group G.

These are consequences of work by Greenlees, May and Sadofsky on generalized Tate cohomology

spectra and Gorenstein conditions.

According to [12, corollary 1.2], there is a weak equivalence of K-modules given by the

composite of the adjoint of the transfer with the inclusion into the homotopy fixed points

(5.1) δ : K ∧BG+ −→ F (BG+,K) = KBG.

That this is an equivalence follows from the triviality of the corresponding Tate spectrum tGK.

In the following, a ring spectrum is a spectrum with a ring structure in the homotopy category

and a module spectrum over such a ring spectrum is a module in the homotopy category.

Lemma 5.1. The map δ : K ∧BG+ −→ KBG is a morphism of KBG-module spectra over the

ring spectrum KBG.

Proof. The module structure is defined using the composition

F (BG+,K) ∧K ∧BG+
id∧id∧diag

// F (BG+,K) ∧K ∧BG+ ∧BG+

��
K ∧K ∧BG+

mult∧id
// K ∧BG+

in which the vertical arrow is the evaluation map. The fact that δ is a module map follows from

the fact that the transfer is also one. �

Note that the last statement amounts to working up to homotopy; it is unclear whether the

module structure can be rigidified to one over KBG as an S-algebra.

This result has the algebraic consequence that (KBG)∗ is a Frobenius algebra, hence it is

self-injective, see [20, section 1.3B].

Corollary 5.2. The map δ : K ∧BG+ −→ KBG induces an isomorphism of (KBG)∗-modules

(5.2) Hom(KBG)∗((K
BG)∗,K∗) ∼= (KBG)∗,

so (KBG)∗ is a Frobenius K∗-algebra. Hence (KBG)∗ is self-injective, and satisfies the Goren-

stein condition

Exts,∗
(KBG)∗

(K∗, (K
BG)∗) =







(KBG)−∗ if s = 0,

0 if s 6= 0.

Proof. Since (KBG)∗ and K∗(BG+) are finite dimensional K∗-modules, there are duality iso-

morphisms

(KBG)∗ ∼= Hom−∗
K∗

(K∗(BG+),K∗), K∗(BG+) ∼= Hom−∗
K∗

((KBG)∗,K∗).

The map induced by δ gives the isomorphism of (5.2). �

When G is abelian, (KBG)∗ is a bicommutative finite dimensional Hopf algebra over K∗,

therefore by the Larson-Sweedler theorem [23, theorem 2.1.3] it is a Frobenius algebra. The

last result show that this holds in full generality. More generally, for any r > 1, there is an

isomorphism of (E/mr)∗(BG+)-modules

(E/mr)∗(BG+) ∼= (E/mr)∗(BG+),
11



and an isomorphism of E∗(BG+)-modules

E∨
∗ (BG+) = π∗(LK(n)(E ∧BG+)) ∼= E∗(BG+).

For more on these ideas, see [13, 29].
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