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BRAUER GROUPS FOR COMMUTATIVE S-ALGEBRAS

ANDREW BAKER AND BIRGIT RICHTER

Abstract. We investigate a notion of Azumaya algebras in the context of structured ring

spectra and give a definition of Brauer groups. We investigate their Galois theoretic properties

and discuss examples of Azumaya algebras arising from Galois descent. We construct examples

that are related to topological Hochschild cohomology of group ring spectra and we present a

K(n)-local variant of the notion of Brauer groups.

Introduction

The investigation of Brauer groups of commutative S-algebras is one aspect of the attempt

to understand arithmetic properties of structured ring spectra.

In classical algebraic settings, Brauer groups are defined in terms of Azumaya algebras over

fields or more generally over commutative rings [3, 2, 32] and are closely involved in Galois

theoretic considerations. In this paper we discuss some ideas on Brauer groups for commutative

S-algebras and in Section 3 we investigate their behaviour with respect to Galois extensions

of commutative S-algebras in the sense of John Rognes [30]. In earlier work, the first named

author and Andrey Lazarev discussed notions of Azumaya algebras, but these appear to be

technically problematic; see [4], especially sections 2 and 4. Niles Johnson [19] discusses Azu-

maya objects in the general context of closed autonomous symmetric monoidal bicategories,

and his characterization of Azumaya objects in the case of ring spectra resembles ours (see [19,

§2]).

We present our definition of topological Azumaya algebras in Section 1 and show that such

algebras are always homotopically central (in the sense of Definition 1.2) and separable, and

also that the Azumaya property is preserved under base change.

Section 2 we define Brauer groups of commutative S-algebras and in Section 3 we prove

a version of Galois descent for topological Azumaya algebras. We use this to construct an

example of an Azumaya algebra over real topological K-theory, KO, which can be thought of

as a KO-version of the quaternions.

In the case of Eilenberg-Mac Lane spectra we show in Section 4 that an extensionHR −→ HA

is topologically Azumaya if and only if the extension of commutative rings R −→ A is an

algebraic Azumaya extension. Furthermore, using recent work of Bertrand Toën [35], we can

deduce that the Brauer group Br(Hk) is trivial if k is an algebraically closed field.
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Classically, the center of an associative algebra A over a commutative ring R can be described

as endomorphisms of A in the category of modules over the enveloping algebra Ae = A⊗R Ao.

For structured ring spectra, the direct analogue of this definition does not yield a homotopy

invariant notion. Instead one has to replace A by a cofibrant object in the category of module

spectra over the enveloping algebra spectrum, so the center of an associative R-algebra spectrum

A is given by the topological Hochschild cohomology spectrum THHR(A,A). But this spectrum

is not strictly commutative in general, but due to the affirmatively solved Deligne conjecture [27]

it is an E2-spectrum. There are however exceptions and in Section 6 we discuss some examples

arising from group ring spectra and their homotopy fixed point spectra.

As usual, when generalizing arguments from ordinary algebra to brave new algebra, technical

difficulties are encountered. In the context of Brauer groups one such problem is that we do

not know any general argument why an Azumaya algebra spectrum that is trivial with respect

to the Brauer relation is itself weakly equivalent to an endomorphism object. In Section 7 we

offer a variant of the construction of Brauer groups in the K(n)-local context where it appears

that the technical difficulties are minimized and we discuss some examples related to EO2 in

Section 8.

1. Azumaya algebras over commutative S-algebras

Throughout, let R be a commutative S-algebra. We work in the categories of R-modules,

MR, and associative R-algebras, AR. Following [5, 30], we will say that an R-module W is

faithful if for an R-module X, W ∧R X ∼ ∗ implies that X ∼ ∗.

We recall some ideas from [4]. If A is an R-algebra, we have the topological Hochschild

cohomology spectrum

THHR(A) = THHR(A,A) = FA∧RAo(Ã, Ã),

where Ã is a cofibrant replacement for A in the category of left A∧R Ao-modules MA∧RAo . We

write η : R −→ THHR(A) for the canonical map into the R-algebra THHR(A); we also write

µ : A∧R Ao −→ FR(A,A) for the R-algebra map induced by the left and right actions of A and

Ao on A.

Definition 1.1. Let A be an R-algebra. Then A is a weak (topological) Azumaya algebra over

R if and only if the first two of following conditions hold, while A is a (topological) Azumaya

algebra over R if and only if all three of them hold.

(1) A is a dualizable R-module.

(2) µ : A ∧R Ao −→ FR(A,A) is a weak equivalence.

(3) A is faithful as an R-module.

Note that this definition of Azumaya algebras over R differs from that in [4] since we demand

faithfulness of A over R and not just A-locality of R as an R-module.

If T is an ordinary commutative ring with unit and if B is an associative T -algebra, then the

center of B can be identified with the endomorphisms of B as an B ⊗T Bo-module. Therefore

THHR(A) can be viewed as a homotopy invariant version of the center of A.

Definition 1.2. An R-algebra A is said to be homotopically central if the canonical map

η : R −→ THHR(A) is a weak equivalence.
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For the following we recall a special case of the Morita theory developed in [4, section 1].

For a topological Azumaya algebra A over R we consider the category of left modules over the

endomorphism spectrum FR(A,A), MFR(A,A) and we take a cofibrant replacement A of A in

this category. The functor

F : MR −→MFR(A,A)

that sends X to X ∧R A has an adjoint

G : MFR(A,A) −→MR

with G(Y ) = FFR(A,A)(A,Y ). Then [4, theorem 1.2] implies that this adjoint pair of functors

passes to an adjoint pair of equivalences between the corresponding derived categories

DR

F̃
//
DFR(A,A)

G
oo

and as a direct consequence we obtain the following result.

Proposition 1.3 ([4, proposition 2.3]). Every topological Azumaya algebra A over R is homo-

topically central.

By proposition 2.3 and definition 2.1 of [4] we also see that any A topological Azumaya

algebra over R is dualizable as an A∧RAo-module and A∧RAo is A-local as a left module over

itself.

In classical algebra, Azumaya algebras are in particular separable. Using Morita theory we

can deduce the analogous statement for topological Azumaya algebras. Here an R-algebra is

separable in the sense of [30, definition 9.1.1] if the multiplication m : A∧RA −→ A has a section

in the derived category of left A ∧R Ao-modules, DA∧RAo .

Proposition 1.4. Let A be a topological Azumaya R-algebra. Then A is separable.

Proof. By the remark following [30, definition 9.1.1], it suffices to prove that the induced map

m∗ : THHR(A,A ∧R A) −→ THHR(A,A)

is surjective on π0(−). Denote by Ã a cofibrant replacement of A in the category of A ∧R Ao-

modules. Morita equivalence yields the two weak equivalences

G̃ ◦ F̃ (R) ≃ THHR(A,A),

G̃ ◦ F̃ (A) ≃ THHR(A,A ∧R A).

The functoriality of G̃ ◦ F̃ ensures that the unit η : R −→ A induces a map G̃ ◦ F̃ (η) with

R
≃

//G̃ ◦ F̃ (R)
G̃◦F̃ (η)

//G̃ ◦ F̃ (A) A.
≃

oo

This is given by sending the coefficient module of THH, Ã ≃ R∧RÃ ≃ R∧RA, to A∧RA ≃ A∧RÃ

using η. Therefore

π0(m∗) ◦ π0(G̃ ◦ F̃ (η)) = id,

and so π0(m∗) is surjective. �

We now describe the behaviour of Azumaya algebras under base change.

Proposition 1.5. Let A,B,C be R-algebras.
3



(1) If A is an Azumaya algebra over R and if C is a commutative R-algebra, then A ∧R C

is an Azumaya algebra over C.

(2) Conversely, let C be a commutative R-algebra such that C is dualizable and faithful as

an R-module. If A∧R C is an Azumaya algebra over C, then A is an Azumaya algebra

over R.

(3) If A and B are Azumaya algebras over R, then A ∧R B is also Azumaya over R.

Proof. If A is an Azumaya algebra over R, then it is formal to verify that A ∧R C is dualizable

and faithful over C (compare [30, 4.3.3,6.2.3]). It remains to show that

µA∧RC : (A ∧R C) ∧C (A ∧R C)o −→ FC(A ∧R C,A ∧R C)

is a weak equivalence. Note that since the multiplication in A ∧R C is defined componentwise,

(A ∧R C)o = Ao ∧R Co.

The diagram

(1.1) (A ∧R C) ∧C (A ∧R C)o

≃

��

µA∧RC

// FC(A ∧R C,A ∧R C)

≃

��

A ∧R Ao ∧R C
µA∧RC

))TTTTTTTTTTTTTTTT

FR(A,A ∧R C)

FR(A,A) ∧R C

ν
55kkkkkkkkkkkkkkk

commutes. Here ν : FR(A,A) ∧R C −→ FR(A,A ∧R C) denotes the duality map. As A is

Azumaya over R we know that ν and µA are equivalences, and thus we obtain that the top map

is an equivalence as well.

For the converse we assume that A∧R C is Azumaya over C and C is faithful and dualizable

as an R-module. If M is an R-module, then A ∧R M ≃ ∗ implies that

(A ∧R C) ∧R M ≃ (A ∧R C) ∧C (C ∧R M) ≃ ∗.

Also, the faithfulness of A ∧R C over C ensures that C ∧R M ≃ ∗. But as we assumed that C

is faithful over R, we can conclude that M was trivial.

The fact that A is dualizable over R follows from [30, lemma 6.2.4]. Making use of dia-

gram (1.1) we see that µA is also a weak equivalence.

The proof of the third claim is straightforward. �

Later we will consider Azumaya algebras in a Bousfield local setting. Let L be a cofibrant

R-module.

Definition 1.6. An L-local R-algebra A is an (L-local) Azumaya algebra if

(1) A is a dualizable L-local R-module,

(2) the natural morphism of R-algebras A ∧R Ao −→ FR(A,A) is an L-local equivalence.

(3) A is faithful as an L-local R-module.
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2. Brauer groups

Now suppose that M is a dualizable R-module as discussed in [30, 5]; a more detailed dis-

cussion of dualizability can be found in [13]. Let ER(M) = FR(M,M) be its endomorphism

R-algebra. Then there is a weak equivalence

(2.1) ER(M) ≃ FR(M,R) ∧R M.

In order to identify endomorphism spectra of faithful and dualizable R-modules as trivial Azu-

maya algebras we need the following auxiliary result.

Lemma 2.1. Let M be a dualizable R-module.

(1) If M is a faithful R-module, then the dual FR(M,R) is also faithful.

(2) If M is L-local with respect to a cofibrant R-module L, then FR(M,R) is L-local.

Proof. (1) Dualizability of M implies that the composition

M ≃ R ∧R M
δ∧id
−−−→M ∧R FR(M,R) ∧R M

id∧ε
−−−→M ∧R R ≃M

is the identity on M . Here δ : R −→M∧RFR(M,R) is the counit, and ε : FR(M,R)∧RM −→ R

is the evaluation map. Now if N is an R-module for which FR(M,R)∧RN ≃ ∗, then the identity

of M ∧R N factors through the trivial map, hence N ≃ ∗ by faithfulness of M .

(2) A similar argument with the functor FR(W,−) shows that if L∧R W ∼ ∗, then the identity

map on FR(W,FR(M,R)) factors through

FR(W,FR(M,R) ∧R M ∧R FR(M,R)) ∼ FR(W ∧R M ∧R M,M) ∼ ∗. �

It was shown in [4, proposition 2.11] that if M is a dualizable, cofibrant R-module, then

ER(M) is a weak topological Azumaya algebra in the sense of [4, definition 2.1].

Proposition 2.2. If M is a faithful, dualizable, cofibrant R-module, then ER(M) is an Azumaya

R-algebra.

Proof. As ER(M) is a weak Azumaya algebra, it suffices to show that ER(M) is a faithful

R-module. Dualizability of M ensures that

ER(M) ≃ FR(M,R) ∧R M,

and this is a smash product of two faithful R-modules which is also faithful. �

This result shows that we can take the R-algebras of the form ER(M) with M faithful,

dualizable and cofibrant, to be trivial Azumaya algebras when defining a topological version of

a Brauer group which we now do.

First we note that every Azumaya algebra is weakly equivalent to a retract of a cell R-module,

so the following construction yield a set of equivalence classes. Define Az(R) to be the collection

of all Azumaya algebras. Now we introduce our version of the Brauer equivalence relation ≈ on

Az(R).

Definition 2.3. If A1, A2 ∈ Az(R), then A1 ≈ A2 if and only if there are faithful, dualizable,

cofibrant R-modules M1,M2 for which

A1 ∧R FR(M1,M1) ∼ A2 ∧R FR(M2,M2)

as R-algebras. We denote the sets of equivalence classes of these by Br(R).
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Theorem 2.4. The set Br(R) is an abelian group with multiplication induced by the smash

product ∧R. Furthermore, Br is a functor from the category of commutative S-algebras to

abelian groups.

Proof. The details involve routine modifications of the approach used in the case of Brauer

groups of commutative rings in [2, theorem 5.2]. Note in particular that we need faithfulness in

order to ensure the existence of inverses.

Functoriality for morphisms of commutative S-algebras R −→ R′ is achieved by sending an

R-algebra A to the R′-algebra R′ ∧R A. �

For a cofibrant R-module L, we can similarly define the sets of L-local Azumaya algebras

AzL(R) and the associated L-local Brauer group BrL(R).

In order to relate Azumaya algebras to Galois theory, we require the following notions mod-

elled on algebraic analogues.

Definition 2.5. Let R −→ R′ be an extension of commutative S-algebras. Then the Azumaya

algebra R −→ A is split by R −→ R′ (or just by R′) if R′ ∧R A ≈ R′, or equivalently if

A ∈ Ker(Br(R) −→ Br(R′)). We define the relative Brauer group

Br(R′/R) = Ker(Br(R) −→ Br(R′)).

Similarly we can define a relative L-local Brauer group

BrL(R
′/R) = Ker(BrL(R) −→ BrL(R

′)).

In practise, we will use this when R −→ R′ is a faithful G-Galois extension for some finite

group G.

3. Galois extensions and Azumaya algebras

Consider a map of commutative S-algebras A −→ B, which we often denote by B/A. If A is

cofibrant as a commutative S-algebra, B is cofibrant as a commutative A-algebra, and if G is

a finite group which acts on B by morphisms of commutative A-algebras, then following John

Rognes [30], then we call B/A a G-Galois extension if the canonical maps i : A −→ BhG and

h : B ∧A B −→ F (G+, B) are weak equivalences.

In addition to these conditions, we will assume that B is faithful as an A-module spectrum.

This is a further restriction as there are examples of Galois extensions which are not faithful.

The following example is due to Ben Wieland (see [31]).

Remark 3.1. Let p be a prime. Then the Z/p-Galois extension

F (BZ/p+,HFp) −→ F (EZ/p+,HFp) ∼ HFp

is not faithful. To its eyes the Z/p-Tate spectrum of HFp appears trivial, but it is not.
6



Let B 〈G〉 be the twisted group algebra over B, i.e., the A-algebra whose underlyingA-module

is B ∧G+ whose multiplication is the composition µ̃

B ∧G+ ∧B ∧G+
id∧∆∧id

//

µ̃

..

B ∧G+ ∧G+ ∧B ∧G+
id∧ν∧id

// B ∧G+ ∧B ∧G+

(23)
��

B ∧B ∧G+ ∧G+

µB∧µG

��

B ∧G+

where ∆ is the diagonal, ν denotes the G-action on B, µB is the multiplication of B and µG

the multiplication in G. Then µ̃ factors through (B ∧ G+) ∧A (B ∧ G+) and turns B 〈G〉 into

an A-algebra. Note that B 〈G〉 is an associative algebra but in general it lacks commutativity.

More precisely, we know that the morphism j : B 〈G〉 −→ FA(B,B) is a weak equivalence of

A-algebras for every G-Galois extension A −→ B. In particular, B 〈G〉 gives rise to a trivial

element in the Brauer group of A.

Lemma 3.2. Let B/A be a faithful G-Galois extension and let M be a B 〈G〉-module which is

of the form B ∧A N for some A-module N , where the B 〈G〉-module structure is given by the

B-factor of B ∧A N . Then there is a weak equivalence of A-modules N ≃MhG.

Proof. Consider B∧AM = B∧AB∧AN . As B is G-Galois over A, the latter term is equivalent

to F (G+, B)∧AN and this in turn is equivalent to F (G+, B∧AN) because G+ is finite. As B is

dualizable over A, the homotopy fixed point spectrum (B ∧A M)hG is equivalent to B ∧AMhG.

There is a chain of equivalences of B-modules

B ∧A N
≃
−−→ F (G+, B ∧A N)hG

≃
−−→ (B ∧A B ∧A N)hG = (B ∧A M)hG

≃
←−− B ∧A MhG,

and the result follows by faithfulness of B over A. �

The following two results give analogues of Galois descent of algebraic Azumaya algebras as

in [32, proposition 6.11].

Proposition 3.3. Suppose that C is an Azumaya algebra over B for which the natural mor-

phism B ∧AChG −→ C is a weak equivalence of B 〈G〉-modules. Then ChG is also an Azumaya

algebra over A.

Proof. We know from [30, lemma 6.2.4] that the A-algebra ChG is dualizable as an A-module.

As C is Azumaya over B, we know that C ∧B Co ≃ FB(C,C). Also, dualizability of ChG

over A guarantees that

B ∧A FA(C
hG, ChG) ≃ FA(C

hG, B ∧A ChG)

∼= FB(B ∧A ChG, B ∧A ChG)

≃ FB(C,C) ≃ C ∧B Co,

and so

C ∧B Co ≃ (B ∧A ChG) ∧B (B ∧A (ChG)o)

≃ B ∧A (ChG ∧A (ChG)o).

7



As B is faithful over A, this shows that

ChG ∧A (ChG)o ≃ FA(C
hG, ChG).

Since C is faithful as a B-module and B is faithful as an A-module, we know that C is faithful

as an A-module. Assume that for an A-module M we have ChG ∧A M ≃ ∗. This is the case if

and only if

B ∧A ChG ∧A M ≃ C ∧A M ≃ ∗

because B is a faithful A-module. Now faithfulness of C over A implies that ChG is also faithful

over A. �

Suppose that B/A is a faithful G-Galois extension in the sense of Rognes [30], where G is a

finite group. Now let H ⊳K 6 G so that B/BhH is a faithful H-Galois extension, K acts on

BhH by BhK-algebra maps and BhK −→ BhH is a faithful K/H-Galois extension, in particular,

(3.1) BhK ∼ (BhH)h(K/H).

By [30, lemma 6.1.2(b)], the twisted group ring B 〈H〉 ∼ FBhH (B,B) is an Azumaya algebra

over BhH , and K acts on B 〈H〉 by extending the action on B by conjugation on H, so we will

write B 〈Hc〉 to emphasize this.

If K = Q ⋉ H is a semi-direct product or H is abelian, the quotient Q = K/H acts by

conjugation on H.

Note that as in algebra, there is an isomorphism of A[K]-modules

A[K] ∼=
∏

K

A.

The algebraic version of this isomorphism is given by
∑

k∈K

akk ↔ (ak−1)k∈K

and we will use the topological analogue of this.

Our next result is based on [32, proposition 6.11(b)].

Proposition 3.4. Suppose that K = Q ⋉ H is a semi-direct product, or that H is abelian.

Then the BhK-algebra B 〈Hc〉
hQ

is Azumaya, and

BhH ∧BhK B 〈Hc〉
hQ ∼ B 〈Hc〉 .

Hence the Azumaya algebra B 〈Hc〉
hQ

over BhK is split by BhH .

Proof. Note that we can assume that G = K and BhK = A. Making use of a faithful base

change, it suffices to assume that B is the trivial K-Galois extension, B =
∏

K A.

There are isomorphisms of A[K]-modules

B 〈Hc〉 ∼= diag(
∏

K

A ∧A A[Hc])

∼= left(
∏

K

A ∧A A[H])

∼= left(A[K] ∧A A[H])

∼= left(A[K ×H]),(3.2)

8



where diag(−) and left(−) indicate the diagonal and left K-actions respectively, the second

isomorphism is the standard equivariant shear map similar to the map sh of [30, section 3.5],

and K × H is viewed as a K-set through the action on the left hand factor. As a Q-set, K

decomposes into free orbits indexed on H. On taking Q-homotopy fixed points we obtain an

equivalence of A-modules

(3.3) B 〈Hc〉
hQ ∼= A[H ×H].

There is a map of A-modules

BhH unit
−−−→ BhH ∧A B 〈Hc〉

hQ −→ B 〈Hc〉

which is also a map of BhH 〈Q〉-modules. Applying π∗(−) and working algebraically with

π∗(A)-modules, using [32, proposition 6.11(b)] it follows that we have an isomorphism

π∗(B
hH ∧A B 〈Hc〉

hQ) ∼= π∗(B 〈Hc〉),

and therefore a weak equivalence

BhH ∧A B 〈Hc〉
hQ ∼
−−→ B 〈Hc〉

of BhH 〈Q〉-modules. Now Proposition 3.3 shows that B 〈Hc〉
hQ is Azumaya over BhK . �

Here is an example which is analogous to the quaternions viewed as a real Azumaya algebra

which splits over the complex numbers. Recall that the quaternions can be generated as a real

algebra by the two complex matrices
(
i 0

0 −i

)
,

(
0 1

−1 0

)
.

Example 3.5. Let 4 = {1, 2, 3, 4}, and let C = F (4+,KU), which is equivalent to four copies

of the complex K-theory spectrumKU . We view this as a KU -algebra by imposing 2×2-matrix

multiplication on C. Then

C ∼ FKU (KU ∨KU,KU ∨KU),

so C is a trivial Azumaya algebra over KU . Consider the group homomorphism

κ : Z/2 −→ Σ4; κ(τ) = (14)(23),

and let Z/2 act on C by

τ•(f)(i) = τf(κ(τ)(i)),

where Σ4 acts on 4 through its defining action and Z/2 acts on KU via maps of commuta-

tive KO-algebras. The homotopy fixed point spectrum ChZ/2 is a KO-algebra spectrum, and

furthermore we claim that

KU ∧KO ChZ/2 ≃ C.

As KU is dualizable over KO and 4 is finite, we have

KU ∧KO F (4+,KU)hZ/2 ≃ (KU ∧KO F (4+,KU))hZ/2

≃ F (4+,KU ∧KO KU)hZ/2.

Since KU is Z/2-Galois over KO,

KU ∧KO KU ≃ F (Z/2Z+,KU)
9



and thus the above term is weakly equivalent to

F (4+, F (Z/2+,KU))hZ/2 ≃ F ((4 × Z/2))+,KU)hZ/2.

Here the Z/2-action on 4× Z/2 is given by

τ(i, x) = (κ(τ)(i), τ(x))

for i ∈ 4, x ∈ Z/2. Thus the homotopy fixed point spectrum is equivalent to C = F (4+,KU).

Using the homotopy fixed point spectral sequence we can calculate the algebra structure on

F (4+,KU)hZ/2. This spectral sequence has the form

(3.4) Es,t
2 = H−s(Z/2, πt(F (4+,KU))) =⇒ πt+s(F (4+,KU)hZ/2).

The homotopy groups of F (4+,KU) give KU4
∗ with the multiplicative structure of the 2 × 2-

matrices over KU∗. Here the action of τ on (λ1u
r, λ2u

r, λ3u
r, λ4u

r) with λi ∈ Z is given by

τ(λ1u
r, λ2u

r, λ3u
r, λ4u

r) = ((−1)rλ4u
r, (−1)rλ3u

r, (−1)rλ2u
r, (−1)rλ1u

r).

We consider the standard resolution for calculating the cohomology of Z/2. The cocycles

with respect to the coboundary that is induced by (id − τ) are given by elements of the form

(λur, µur, (−1)rµur, (−1)rλur) for integers λ and µ and such 4-tuples are equal to the image of

(λur, µur, 0, 0) under the coboundary that is induced by (id + τ). Similarly, the cocycles with

respect to the norm (id + τ) can be seen to be coboundaries.

Thus the E2-term is trivial in positive cohomological degrees, so we only have to determine

the invariants in KU4
∗ under the Z/2-action. Here, additively two copies of KU∗ remain, but

the multiplication arises from matrix multiplication:

(
aun bun

(−1)nbun (−1)naun

)
·

(
cum dum

(−1)mdum (−1)mcum

)

=

(
(ac+ (−1)mbd)un+m (ad+ (−1)mbc)un+m

((−1)nbc+ (−1)n+mad)un+m ((−1)nbd+ (−1)n+mac)un+m

)
.

4. Azumaya algebras over Eilenberg-Mac Lane spectra

In this section we consider the case of Azumaya algebras over the Eilenberg-Mac Lane spec-

trum of a commutative ring. In Toën [35], the algebraic notion of a derived Azumaya algebra

over a commutative ring is introduced as a special case of the more general notion for simplicial

rings. First we explain how the topological and algebraic notions are related.

In [15, section IV.2], an equivalence of categories

(4.1) Ψ: DHR −→ DR

is constructed, where Ψ is defined on a CW HR-module M to be the cellular chain complex

C∗(M). By [15, proposition IV.2.5], for CW HR-modules M,N there are isomorphisms of chain

complexes of R-modules

C∗(M ∧HR N) ∼= C∗(M)⊗R C∗(N),

C∗(FHR(M,N)) ∼= HomR(C∗(M), C∗(N)).

The inverse functor Φ = Ψ−1 also preserves the monoidal structure, this is an equivalence of

symmetric monoidal categories.
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Following Toën [35], see remark 1.2, we find that an Azumaya algebra A over HR, corresponds

to a derived Azumaya algebra over R. Note that as we are working with associative (but not

commutative) HR-algebras, a cofibrant HR-algebra is a retract of a cell HR-module relative

to HR by [15, theorem VII.6.2].

We get the following correspondence.

Proposition 4.1. Let R be a commutative ring such that for any finitely presented R-module

M with TorRk (M,M) = 0 for k > 0 we can deduce that M is flat over R.

Let T be an R-algebra. Then the HR-algebra HT is a topological Azumaya algebra if and

only if T is an algebraic Azumaya R-algebra.

Proof. One direction is easy to see: if R −→ T is an algebraic Azumaya extension, then HR −→

HT is topologically Azumaya without any additional assumptions on R.

For the converse, from [15, theorem IV.2.1] we have

πn(HT ∧HR HT o) = TorRn (T, T
o),(4.2)

πn(FHR(HT,HT )) = Ext−n
R (T, T ).(4.3)

Because TorRs = 0 = ExtsR when s < 0, the Azumaya condition

µ : HT ∧HR HT o ≃
−−→ FHR(HT,HT )

implies that for n 6= 0,

(4.4) πn(HT ∧HR HT o) = TorRn (T, T
o) = 0 = ExtnR(T, T ) = πn(FHR(HT,HT )).

In particular,

(4.5) T ⊗R T o = π0(HT ∧HR HT o) ∼= π0(FHR(HT,HT )) = HomR(T, T ).

According to [35, remark 1.2], the R-module T is finitely presented and flat by assumption,

therefore it is finitely generated and projective by the corollary to [25, theorem 7.12].

For faithfulness, suppose that M is a non-trivial R-module. Since HT is a faithful HR-

module, HT ∧HR HM ≁ ∗. Flatness of T over R together with [15, theorem IV.2.1] yields the

isomorphisms

π∗(HT ∧HR HM) ∼= π0(HT ∧HR HM) ∼= T ⊗R M,

and therefore T ⊗R M is not trivial. �

Proposition 4.2. For any commutative ring with unit R there is a functor

H : Br(R) −→ Br(HR)

induced by the functor which sends a ring to its Eilenberg-Mac Lane spectrum.

Proof. Let [A] be an element of Br(R), then Proposition 4.1 identifies HA as an HR-Azumaya

algebra. If [A] = 0, i.e., if there is a finitely generated faithful projective R-module M with

A ∼= HomR(M,M), then

HA ∼ H HomR(M,M) ≃ FHR(HM,HM)

and therefore HA is trivial in Br(HR). �

11



For instance, the assumptions of Proposition 4.1 are satisfied if R is a principal ideal domain.

The situation is drastically different if we consider arbitrary HR-algebra spectra A. For

instance, for every R, every R-module spectrum ΣnHR is faithful and dualizable, and therefore

FHR(HR∨ΣnHR,HR∨ΣnHR) is a trivial topological Azumaya HR-algebra whose homotopy

groups spread over positive and negative degrees. This indicates that the Eilenberg-Mac Lane

functor of Proposition 4.2 will not induce an isomorphism in general.

We will discuss this for the case of a field k. If A is Azumaya over Hk, then as A is dualizable

over Hk we know that the homotopy groups of A are concentrated in finitely many degrees,

say πr(A) 6= 0 only when −m < r < n for some m,n > 0. As k is a field, we have

π∗(A ∧Hk Ao) ∼= π∗(A)⊗k π∗(A)
o.

Using the fact that µ induces an isomorphism, we can deduce that n = m because otherwise

the kernel of π∗(µ) would be nontrivial.

A derived Azumaya algebra over the field k is a differential graded k-algebra B∗ whose

underlying chain complex is a compact generator of the derived category of chain complexes of

k-vector spaces Dk and the natural map

µB∗
: B∗ ⊗k Bo

∗ −→ Homk(B∗, B∗)

is an isomorphism in Dk. Here B∗ ⊗k Bo
∗ agrees with the derived tensor product because we

are working over a field, and similarly, Homk(B∗, B∗) is the graded k-vector space of derived

endomorphisms of B∗. Now we can relate topological Hk-Azumaya algebras to derived Azumaya

algebras over k.

Proposition 4.3. If A is a topological Azumaya algebra over Hk, then π∗(A) is a derived

Azumaya algebra over k.

Proof. As A is dualizable over Hk, its homotopy groups build a finite dimensional graded

k-vector space and hence π∗(A) is a compact generator of Dk. The weak equivalence

µ : A ∧Hk Ao −→ FHk(A,A)

yields isomorphisms

µπ∗(A) : π∗(A) ⊗k π∗(A)
o ∼= π∗(A ∧Hk Ao) ∼= π∗FHk(A,A) ∼= Homk(A∗, A∗)

and so π∗(A) is a derived Azumaya algebra over k. �

Using Proposition 4.3 together with Toën’s results of [35, section 1] we obtain the following.

Theorem 4.4. For any algebraically closed field k, the Brauer group of Hk is trivial.

Proof. Let A be a derived Azumaya algebra over k. We know from [35, corollary 1.11] that

every derived Azumaya algebra over an algebraically closed field k, in particular π∗(A), is quasi-

isomorphic to a graded k-vector space Homk(V, V ) for some finite dimensional graded k-vector

space V .

Let

M = HV =
n∨

i=1

ΣmiHk
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be the Hk-module spectrum such that π∗M ∼= V as graded k-vector spaces. Then A is weakly

equivalent to FHk(A,A) since there are isomorphisms

π∗(A) ∼= Homk(V, V ) ∼= π∗(FHk(M,M)).

Therefore [A] is trivial in the Brauer group Br(Hk). �

5. Realizability of algebraic Azumaya extensions

Using Vigleik Angeltveit’s obstruction theory [1, theorem 3.5], we can import algebraic Azu-

maya algebra extensions into topology. Let R be a commutative S-algebra and let π0R −→ A0

be an algebraic Azumaya extension. Then

A∗ := π∗R⊗π0R A0

is a projective module over R∗ = π∗R and there is an R-module spectrum A′ with π∗(A
′) ∼= A∗

which can be built as a mapping telescope of an idempotent corresponding to viewing A∗ as

a direct summand of a free R∗-module. The methods of [5] carry over to give a homotopy

associative R-ring spectrum A that realises A∗ as the homotopy ring π∗A.

Angeltveit’s obstruction theory [1] then yields the following.

Theorem 5.1. There is an A∞ R-algebra structure on A, i.e., there is a unique rigidification

r(A) of A to an associative R-algebra. The resulting extension R −→ r(A) is an Azumaya

algebra.

Proof. The existence of the A∞ structure on A is given by [1, theorem 3.5], because π∗(A∧RAo)

is separable over A∗ and hence the possible obstructions to an A∞-structure on A (which

live in Hochschild cohomology groups of π∗(A ∧R Ao) over A∗) are trivial. The possibility of

rigidification follows from [15, II.4]. Uniqueness also follows from the vanishing of all higher

Hochschild cohomology groups.

As A0 is finitely generated projective and faithful over π0R, r(A) is dualizable and faithful

as an R-module spectrum. The Azumaya condition

µ : A0 ⊗π0R Ao
0
∼= Homπ0R(A0, A0)

for A0 guarantees that the µ-map

µ : r(A) ∧R r(A)o −→ FR(r(A), r(A))

is a weak equivalence. �

Corollary 5.2. There is a natural group homomorphism

r : Br(R0) −→ Br(R); [A] 7→ [r(A)].

For instance in the presence of enough roots of one, we can build generalized quaternionic

extensions of ring spectra or consider cyclic extensions.
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6. Topological Hochschild cohomology of group rings

We will consider Azumaya algebra extensions that arise as follows. For a finite discrete group

G and a commutative S-algebra A, we consider the group A-algebra spectrum A[G] = A∧G+.

Note, that if G is not abelian, then A[G] is not commutative. We want to identify the extension

THHA(A[G]) −→ A[G] as an Azumaya extension in good cases. To that end we document a well-

known identification of topological Hochschild cohomology of group rings, see for instance [24,

6.3]. This can we viewed as a topological version of Mac Lane’s isomorphisms [23, 7.4.2].

Lemma 6.1. For A and G as above we have

THHA(A[G], A[G]) ≃ (A[G]c)hG = FG(EG+, A[G]c).

Here A[G]c denotes the naive G-spectrum A[G], where G acts by conjugation on G.

Proof. Topological Hochschild cohomology of A[G] can be described as the totalization of the

cosimplicial spectrum that has

FA(A[G]q , A[G]) ∼= F (Gq
+, A[G])

as q-cosimplices [27]. First, we mimic the identification that is used in the Mac Lane isomor-

phism for usual Hochschild cohomology in order to identify this cosimplicial spectrum with the

one that has F (Gq, A[G]c) as q-cosimplices. In algebra this identification is given by f 7→ f ′

where

f ′(g1, . . . , gq) = f(g1, . . . , gq)g
−1
q . . . g−1

1 .

An analogous identification works on spectrum level. The coface maps in the cosimplicial

structure in F (G•, A[G]c) are given by

d0(f)(g1, . . . , gq) = g1f(g2, . . . , gq)g
−1
1 ,

di(f)(g1, . . . , gq) = f(g1, . . . , gigi+1, . . . , gq), (0 < i < q)

dq(f)(g1, . . . , gq = f(g1, . . . , gq−1).

Consider the simplicial model of EG with q-simplices Gq+1, with diagonal G-action, and

where the i-th face map in EG is given by omitting the i-th group element. We can write the

homotopy fixed point spectrum FG(EG+, A[G]c) as

FG(EG+, A[G]c) ∼= Tot([q] 7→ FG(G
q+1, A[G]c)).

Let ϕ : F (G•, A[G]c) −→ FG(EG+, A[G]c) be the map that we can describe symbolically as

(ϕf)(g0, . . . , gq) = g0f(g
−1
0 g1, . . . , g

−1
q−1gq)g

−1
0 .

It is then straightforward to check that ϕ in fact respects the cosimplicial structure. �

Now fix a prime p. Let k be an algebraically closed field of characteristic p and let Hk be

the corresponding Eilenberg-Mac Lane spectrum realised as a commutative S-algebra. We also

adopt the notation of [7]. Thus En is the Lubin-Tate spectrum associated with the prime p and

the Honda formal group of height n and Enr
n is its maximal unramified Galois extension. These

commutative S-algebras have ‘residue fields’ in the sense of [5, 6], namely Kn and Knr
n respec-

tively, and these are algebras over En and Enr
n respectively, but only homotopy commutative

when p 6= 2 and not even that when p = 2.
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Theorem 6.2. Let G be a non-trivial finite discrete group whose order is not divisible by p.

Suppose that A is either Hk or Enr
n .

(1) If G is abelian, then (A[G]c)hG −→ A[G] and the trivial extension id : A[G] −→ A[G]

are equivalent.

(2) If G is non-abelian, then A[G] is a non-trivial (A[G])hG-Azumaya algebra.

Proof. In all cases, we will consider the homotopy fixed point spectral sequence

Es,t
2 = H−s(G;At[G]c) =⇒ πs+t((A[G]c)hG).

If p does not divide the order of the group G, then this spectral sequence collapses and the only

surviving non-trivial terms are the G-invariants

E0,t
2 = (At[G]c)G

which can be identified with the center of the group ring Z(A∗[G]). In particular, π∗((A[G]c)hG)

is a graded commutative A∗-algebra.

If G is abelian, then the conjugation action is trivial and as p does not divide |G| we obtain

(A[G]c)hG = F (BG+, A[G]) ∼ A[G],

so we have the trivial Azumaya extension. If G is not abelian, then the center of the group ring

A∗[G] is a proper subring of A∗[G].

For A = Hk we can use Artin-Wedderburn theory to obtain a splitting of the semisimple

ring k[G] into a product of matrix algebras over the algebraically closed field k,

k[G] ∼=

r∏

i=1

Mmi
(k),

where r agrees with the number of conjugacy classes in G. Thus the center of k[G] is a product

of copies of k and is therefore an étale k-algebra. By the obstruction theory of Robinson or

Goerss-Hopkins [29, 16], there is a unique E∞ Hk-algebra spectrum that is weakly equivalent

to (A[G]c)hG. By abuse of notation we denote the corresponding commutative Hk-algebra by

(A[G]c)hG.

We have to describe A[G] as an associative (A[G]c)hG-algebra. For this we use [1, theorem 3.5]

again. Starting with our commutative model of (A[G]c)hG we can build a homotopy associative

ring spectrum B with π∗(B) ∼= A∗[G], and as G is finite and discrete this extension is of the

form

π∗(B) ∼= π∗(A[G]c)hG ⊗π0(A[G]c)hG B0,

with π0(A[G]c)hG −→ B0 being algebraically Azumaya. Thus we can apply Theorem 5.1 to

see that there is an associative (A[G]c)hG-algebra B which models A[G] and such that B is

Azumaya over (A[G]c)hG.

For Enr
n we pass to the residue field Knr

n . The homotopy fixed point spectral sequence gives

π∗((E
nr
n [G]c)hG) ∼= Z((Enr

n )∗[G])

∼= Z(WFp[[u1, . . . , un−1]][G])[u±1].

Reducing modulo the maximal ideal m = (p, u1, . . . , un−1) gives the homotopy groups of the

G-homotopy fixed points of Knr
n [G] with respect to the conjugation action, Z(Fp[G])[u±1] and

again we can identify this term as
∏r

i=1 Fp where r denotes the number of conjugacy classes

in G. The idempotents that give rise to these splittings can be lifted to idempotents for
15



Z(WFp[[u1, . . . , un−1]][G]) and WFp[[u1, . . . , un−1]][G] and therefore these two algebras also

split into products with r factors:

WFp[[u1, . . . , un−1]][G] ∼=

r∏

i=1

Bi,

Z(WFp[[u1, . . . , un−1]][G]) ∼=

r∏

i=1

Ci,

where

Bi/m ∼= Mmi
(Fp),

while for 1 6 i 6 r, the Ci are commutative and satisfy

Ci/mCi
∼= Fp.

Additively we know that Z(WFp[[u1, . . . , un−1]][G]) is the free module on the conjugacy

classes and so we can conclude that (Enr
n [G]c)hG is weakly equivalent to

∏r
i=1 E

nr
n and the latter

spectrum can be modelled by a commutative Enr
n -algebra spectrum and Enr

n [G] is dualizable

over
∏r

i=1E
nr
n .

Artin-Wedderburn theory gives a semisimple decomposition

Fp[G] ∼=

r∏

i=1

Mdi(Fp),

and the centre Z(Fp[G]) can be identified with the product of the centres of the matrix ring

factors. There are associated central idempotents of Fp[G] accomplishing this splitting. By the

theory of idempotent lifting described in [21, section 21] for example, these idempotents lift to

give an associated splitting

WFp[[u1, . . . , un−1]][G] ∼=

r∏

i=1

Mdi(WFp[[u1, . . . , un−1]]),

and again the centre ofWFp[[u1, . . . , un−1]][G] can be identified with the product of the centres of

the matrix factors. Notice that Mdi(WFp[[u1, . . . , un−1]]) is Azumaya over WFp[[u1, . . . , un−1]].

The rest of the proof involves realising the central idempotents as morphisms of S-algebras, but

this is well known to be possible since the projections are Bousfield localisations, see [33]. �

Remark 6.3. For A = HFp and G = Cp the extension F (BCp+,HFp) −→ HFp is not always

Azumaya: Wieland’s example of Remark 3.1 shows that HFp is not faithful over F (BCp+,HFp).

7. Azumaya algebras over Lubin-Tate spectra

From now on will use E to denote En, Enr
n or any commutative Galois extension of En

obtained as a homotopy fixed point algebra E = (Enr
n )hΓ for some closed normal subgroup

Γ⊳Gal(Fp/Fpn). Similarly, K will denote the corresponding residue field of E, so when E = En

or Enr
n we have K = Kn or Knr

n .

We will work with dualizableK-local E-modules. By [7, section 7] we know that such modules

are retracts of finite cell E-modules. If W ∈ME,K, then since π∗(K ∧E W ) is a graded vector

space over the graded field K∗ = π∗(K), it follows that

K ∧E W ∼ LK

∨

i

Σd(i)K,
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where the right hand wedge is non-trivial if and only if W is non-trivial in DE,K . In particular,

if W is dualizable this wedge is finite and

K ∧E W ∼
∨

i

Σd(i)K

since W is K-local. For any X ∈ME,K ,

K ∧E (W ∧E X) ∼ LK

∨

i

Σd(i)K ∧E X,

so W ∧E X is trivial in DE,K if and only if both of W and X are trivial in DE,K. Thus every

E-module W which is non-trivial as an element of DE,K is faithful and cofibrant as a K-local

E-module; furthermore, every X ∈ME,K is W -local.

By [1], there are many examples of K-local Azumaya algebras over E which have K as their

underlying E ring spectrum. These examples have no analogue in the algebraic context since

they are not projective E-modules, nor do they split over suitable Galois extensions. Instead we

focus on split examples. A good source of these can be found in the situation of [30, section 5.4.3],

based on work of Devinatz and Hopkins [12] and we will discuss these in Section 8.

For background ideas on Azumaya algebras graded on a finite abelian group, we follow [9].

We will only consider the case where the grading group is Z/2 with the non-trivial symmetric

bilinear map Z/2 −→ {±1} determining the relevant signs.

Over a field k, an (ungraded) Azumaya algebra A is a central simple algebra, so by Wedder-

burn’s theorem, there is an isomorphism of k-algebras

A ∼= Mr(D),

where D is a central division algebra over k. If d = dimkD, then

dimk A = (rd)2,

so dimk A is a square. In the graded case, such restrictions do not always apply, and this has

consequences for the topological situation.

Theorem 7.1. Suppose that p is an odd prime and let A be a K-local Azumaya algebra over

E. Then π∗(K ∧E A) is an Azumaya algebra over K∗.

Proof. The ringK∗ is a 2-periodic graded field which we will view as Z/2-graded, and π∗(K∧EA)

will also be viewed as a Z/2-graded K∗-algebra.

Now we have isomorphisms of K∗-algebras

π∗(K ∧E A)⊗K∗
π∗(K ∧E A)o ∼= π∗(K ∧E A)⊗K∗

π∗(K
o ∧E Ao)

∼= π∗(K ∧E (A ∧E Ao))

∼= π∗(K ∧E FE(A,A)).

Since A and K are strongly dualizable, using results of [15] we have

K ∧E FE(A,A) ∼ FK(K ∧E A,K ∧E A),

so the universal coefficient spectral sequence over K yields

π∗(K ∧E FE(A,A)) ∼= EndK∗
(π∗(K ∧E A)).

Therefore π∗(K ∧E A) is a K∗-Azumaya algebra. �
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Corollary 7.2. If π∗(K ∧E A) is concentrated in even degrees then its dimension is a square,

i.e., for some natural number m,

dimK∗
π∗(K ∧E A) = m2.

In fact we have

Proposition 7.3. If π∗(K ∧E A) is concentrated in even degrees then π∗(A) is a Z/2-graded

algebra Azumaya algebra over E0. In particular, as an E-module A is equivalent to a wedge of

m2 copies of E, where

m2 = dimK∗
π∗(K ∧E A) = rankE∗

π∗(A).

Proof. By [7] (see section 7 and the proof of theorem 5.1), the E∗-module π∗(A) is finitely

generated, free and concentrated in even degrees, hence

π∗(A)⊗E∗
π∗(A)

o ∼= π∗(A ∧E Ao) ∼= π∗(FE(A,A)) ∼= HomE∗
(π∗(A), π∗(A)),

where the last isomorphism follows from the collapsing of the universal coefficient spectral

sequence. �

We define AzK(E) to be the collection of all cofibrant K-local topological Azumaya algebras

over E, and introduce the following equivalence relation ≈ on AzK(E).

• If A,B ∈ AzK(E), then A ≈ B if and only if there are faithful, dualizable, cofibrant

E-modules U, V for which there is an equivalence in the derived category of K-local

E-algebras

A ∧E FE(U,U) ∼ B ∧E FE(V, V ).

We will denote the set of equivalence classes of ≈ by BrK(E); this is indeed a set since every

dualizable K-local E-module is a retract of a finite cell E-module. We could equally well require

that

A ∧E FE(U,U)′ ∼ B ∧E FE(V, V )′,

where FE(U,U)′
∼

։ FE(U,U) and FE(V, V )′
∼

։ FE(V, V ) are cofibrant replacements.

The following lemma is a topological analogue of a standard algebraic result, see [2] for

example.

Proposition 7.4. If A,B ∈ AzK(E) and A ≈ B, then there is a faithful, dualizable cofibrant

E-module W for which

A ∧E Bo ∼ FE(W,W ).

In particular, if A ∈ AzK(E) and A ≈ E, then there is a faithful, dualizable, cofibrant E-

module W for which A ∼ FE(W,W ).

Proof. It is easy to reduce this the second case, so we will assume that as E-algebras,

A ∧E FE(U,U) ∼ FE(V, V ).

This means that given a cofibrant replacement

FE(U,U)′
∼

։ FE(U,U)

in the category of E-algebras, there is a weak equivalence of E-algebras

α : A ∧E FE(U,U)′
∼
−−→ FE(V, V ).
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Let α′ : FE(U,U)′ −→ FE(V, V ) be the induced morphism. Then we can consider V as a module

over A ∧E FE(U,U)′, denoted α∗V in the notation of [15, theorem III.4.2], where

α∗ : DFE(V,V ),K −→ DA∧EFE(U,U)′,K

is the pullback functor.

If Ũ is a cofibrant replacement of U as an FE(U,U)′-module, we set W = FE(Ũ , V ). Then

by [4, theorem 1.2], there is a Morita equivalence between the derived categories DE,K and

DFE(U,U)′,K , and under this equivalence we have

W ∧E Ũ ∼ V

as FE(U,U)′-modules. Now applying KE
∗ (−) we find that

KE
∗ A⊗K∗

KE
∗ (FE(U,U)) ∼= EndK∗

(
KE

∗ W ⊗K∗
KE

∗ Ũ

)
.

Since KE
∗ (FE(U,U)) ∼= EndK∗

KE
∗ Ũ and there is a monomorphism KE

∗ A −→ EndK∗
KE

∗ W , we

have

KE
∗ A ∼= EndK∗

KE
∗ W

by [9, lemma 2.9]. Using this we see that the morphism of E-algebras A −→ FE(W,W ) is a

K-equivalence and hence an equivalence since A is K-local. �

8. Some examples of Kn-local Azumaya algebras

We now recall Proposition 3.4. By work of Devinatz and Hopkins [12], and subsequently

Davis [10], as explained in [30, theorem 5.4.4], for each pair of closed subgroups

H 6 G 6 Gn = Gal(Fpn/Fp)⋉ Sn

of the Morava stabilizer group, there is an associated pair of homotopy fixed point spectra

EhG −→ EhH , and if H ⊳G then this is a K-local G/H-Galois extension. In particular, when

H 6 Gn is finite, EhH −→ E is a K-local H-Galois extension.

A particularly interesting source of examples is provided by taking G to be a maximal finite

subgroup of Gn. If p is odd and n = (p − 1)k with p ∤ k, or p = 2 and n = 2k with k odd,

then such maximal subgroups are unique up to conjugation and then the homotopy fixed point

spectrum EhG is denoted EOn. Here is an example, studied in [30, section 5.4.3].

Example 8.1. At the prime p = 2, G2 has a maximal finite subgroup G48 = C2 ⋉ Â4, where

Â4
∼= C3 ⋉ Q8 is the binary tetrahedral group. Therefore E2/EO2 is a G48-Galois extension.

Applying Proposition 3.4 we see that there are Azumaya algebras over EO2 of the form

(E2〈Â4〉)
hC2 , (E2〈Q8〉)

h(C2×C3), (E2〈C2〉)
h(C2⋉A4).
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[20] Max-Albert Knus, Algèbres d’Azumaya et modules projectifs, Comment. Math. Helv. 45 (1970), 372–383.

[21] Tsit Yuen Lam, A First Course in Noncommutative Rings, 2nd edition, Graduate Texts in Mathematics

131, Springer-Verlag New York (2001).

[22] Andrey Lazarev, Homotopy theory of A∞ ring spectra and applications to MU-modules, K-Theory 24

(2001), 243–281.

[23] Jean-Louis Loday, Cyclic homology, 2nd edition, Grundlehren der Mathematischen Wissenschaften 301

Springer-Verlag, Berlin (1998).

[24] Eric J. Malm, String topology and the Hochschild cohomology of the based loop space,

http://math.stanford.edu/~emalm/.

[25] Hideyuki Matsumura, Commutative ring theory, Cambridge University Press (1986).

[26] J. Peter May, What precisely are E∞ ring spaces and E∞ ring spectra? Geometry & Topology Monographs

16 (2009), 215–282.

[27] James E. McClure & Jeffrey H. Smith, A solution of Deligne’s Hochschild cohomology conjecture, Recent

progress in homotopy theory (Baltimore, MD, 2000), Contemp. Math. 293, Amer. Math. Soc. (2002), 153–

193.

[28] Charles Rezk, Notes on the Hopkins-Miller theorem, Contemp. Math. 220 (1998), 313–366.

[29] Alan Robinson, Gamma homology, Lie representations and E∞ multiplications, Invent. Math. 152 (2003),

331–348.

[30] John Rognes, Galois extensions of structured ring spectra, Mem. Amer. Math. Soc. 192 no. 898 (2008),

1–97.

[31] , A Galois extension that is not faithful, http://folk.uio.no/rognes/papers/unfaithful.pdf

[32] David J. Saltman, Lectures on division algebras, CBMS Regional Conference Series in Mathematics 94,

Published by American Mathematical Society, on behalf of Conference Board of the Mathematical Sciences

(1999).

20

http://arxiv.org/abs/1005.4878
http://math.stanford.edu/~emalm/
http://folk.uio.no/rognes/papers/unfaithful.pdf


[33] Roland Schwänzl, Rainer M. Vogt & Friedhelm Waldhausen, Adjoining roots of unity to E∞ ring spectra in

good cases – a remark, Contemp. Math. 239 (1999), 245–249.

[34] Neil P. Strickland, Products on MU -modules, Trans. Amer. Math. Soc. 351 (1999), 2569–2606.
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