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Abstract

It has recently been shown that, contrary to common belief, infinite
matroids can be axiomatized in a way very similar to finite matroids.
This should make it possible now to extend much of the theory of finite
matroids to infinite ones: an aim that had previously been thought to be
unattainable, because the popular additional ‘finitary’ axiom believed to
be necessary clearly spoils duality.

We present the five new axiom sets for infinite matroids found in [3].
They come in terms of independent sets, bases, circuits, closure and rank.
We then illustrate them by showing what becomes of the usual cycle and
bond matroids of a graph when this graph is infinite.

1 Introduction

Traditionally, infinite matroids are either ignored entirely or defined like finite
ones,1 with the following additional axiom:

(I4) An infinite set is independent as soon as all its finite subsets are indepen-
dent.

We shall call such set systems finitary matroids.
The additional axiom (I4) reflects the notion of linear independence in vector

spaces, and also the absence of (finite) circuits from a set of edges in a graph.
More generally, it is a direct consequence of (I4) that circuits, defined as minimal
dependent sets, are finite.

An important and regrettable consequence of the additional axiom (I4) is
that it spoils duality, one of the key features of finite matroid theory. For
example, the cocircuits of an infinite uniform matroid of rank k would be the
sets missing exactly k � 1 points; since these sets are infinite, however, they
cannot be the circuits of another finitary matroid. Similarly, every bond of an
infinite graph would be a circuit in any dual of its cycle matroid—a set of edges
minimal with the property of containing an edge from every spanning tree—but
these sets can be infinite and hence will not be the circuits of a finitary matroid.

This situation prompted Rado in 1966 to ask for the development of a theory
of non-finitary infinite matroids with duality [10, Problem P531]. In the late

1The augmentation axiom is required only for finite sets: given independent sets I, I0 with
|I| < |I0| < 1, there is an x 2 I0 r I such that I + x is again independent.

1



1960s and 70s, a number of such theories were proposed; see [3] for references.
One of these, the ‘B-matroids’ proposed by Higgs [8], were later shown by Ox-
ley [9] to identify the models of any theory of infinite matroids that admitted
both duality and minors as we know them. However, Higgs did not present his
‘B-matroids’ in terms of axioms similar to those for finite matroids. As a con-
sequence, theorems about finite matroids whose proofs rested on these axioms
could not be readily extended to infinite matroids, even when this might have
been possible in principle.

With the axioms from [3] presented in the next section, this could now
change: it should be possible now to extend many more results about finite
matroids to infinite matroids, either by

• adapting their proofs based on the finite axioms to the (very similar) new
infinite axioms,

or by

• finding a sequence of finite matroids that has the given infinite matroid
as a limit, and is chosen in such a way that the instances of the theorem
known for those finite matroids imply a corresponding assertion for the
limit matroid.

After presenting our new axioms in Section 2, we apply them in Sections 3
and 4 to see what they mean for graphs. We shall see that, for matroids whose
circuits are the (usual finite) cycles of a graph, our axioms preserve what would
be wrecked by the finitary axiom (I4): that their duals are the matroids whose
circuits are the bonds of our graph – even though these can now be infinite.

The converse is also nice. The dual M⇤ of the (finitary) matroid M whose
circuits are the finite bonds of an infinite graph cannot be finitary; indeed,
trivial exceptions aside, the duals of finitary matroids are never finitary [14, 1];
see also [4]. So M⇤ will have to have infinite circuits.2 Excitingly, these circuits
turn out to be familiar objects: when the graph is locally finite, they are the edge
sets of the topological circles in its Freudenthal compactification, which already
have a fixed place in infinite graph theory quite independently of matroids [6].

We shall see further that, for planar graphs, matroid duality is now fully
compatible with graph duality as explored in [2]. Finally, we shall see that
Whitney’s theorem, that a graph is planar if and only if its cycle matroid has a
graphic dual, now has an infinite version too.

2 Axioms

We now present our five sets of axioms for finite or infinite matroids, in terms
of independent sets, bases, circuits, closure and rank. These axioms were first
stated in [3], and proved to be equivalent to each other in the usual sense. For
finite or finitary matroids they default to the usual finite matroid axioms.

2We are using here that every dependent set contains a minimal such. This is indeed true.
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Let E be any non-empty set, finite or infinite; it will be the default ground
set for all matroids considered in this paper. We write 2E for its power set. The
set of all pairs (A,B) such that B ✓ A ✓ E will be denoted by (2E⇥2E)✓; for its
elements we usually write (A|B) instead of (A,B). Unless otherwise mentioned,
the terms ‘minimal’ and ‘maximal’ refer to set inclusion. Given E ✓ 2E , we
write Emax for the set of maximal elements of E , and dEe for the down-closure
of E , the set of subsets of elements of E . For F ✓ E and x 2 E, we abbreviate
F r{x} to F �x and F [{x} to F +x. We shall not distinguish between infinite
cardinalities and denote all these by 1; in particular, we shall write |A| = |B|
for any two infinite sets A and B. The set N contains 0.

One central axiom that features in all our axiom systems is that every in-
dependent set extends to a maximal one, even inside any restriction X ✓ E.3
The notion of what constitutes an independent set, however, will depend on the
type of axioms under consideration. We therefore state this extension axiom in
more general form first, without reference to independence, so as to be able to
refer to it later from within di↵erent contexts.

Let I ✓ 2E . The following statement describes a possible property of I.

(M) Whenever I ✓ X ✓ E and I 2 I, the set { I 0 2 I | I ✓ I 0 ✓ X } has a
maximal element.

Note that the maximal superset of I in I\2X whose existence is asserted in (M)
need not lie in Imax.

2.1 Independence axioms

The following statements about a set I ✓ 2E are our independence axioms:

(I1) ; 2 I.

(I2) dIe = I, i.e., I is closed under taking subsets.

(I3) For all I 2 IrImax and I 0 2 Imax there is an x 2 I 0rI such that I+x 2 I.

(IM) I satisfies (M).

When a set I ✓ 2E satisfies the independence axioms, we call the pair (E, I)
a matroid on E. We call every element of I an independent set, every element
of 2E rI a dependent set, the maximal independent sets bases, and the minimal
dependent sets circuits. This matroid is finitary if it also satisfies (I4) from the
Introduction, which is equivalent to requiring that every circuit be finite [3].

The 2E ! 2E function mapping a set X ✓ E to the set

cl(X) := X [ {x | 9 I ✓ X : I 2 I but I + x /2 I }

will be called the closure operator on 2E associated with I.
3Interestingly, we shall not need to require that every dependent set contains a minimal

one. We need that too, but it follows [3].
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The (2E ⇥ 2E)✓ ! N [ {1} function r that maps a pair A ◆ B of subsets
of E to

r(A|B) := max { |I r J | : I ◆ J, I 2 I \ 2A, J maximal in I \ 2B}

will be called the relative rank function on the subsets of E associated with I.
This maximum is always attained, and independent of the choice of J [3].

2.2 Basis axioms

The following statements about a set B ✓ 2E are our basis axioms:

(B1) B 6= ;.

(B2) Whenever B1, B2 2 B and x 2 B1 r B2, there is an element y of B2 r B1

such that (B1 � x) + y 2 B.

(BM) The set I := dBe of all B-independent sets satisfies (M).

2.3 Closure axioms

The following statements about a function cl : 2E ! 2E are our closure axioms:

(CL1) For all X ✓ E we have X ✓ cl(X).

(CL2) For all X ✓ Y ✓ E we have cl(X) ✓ cl(Y ).

(CL3) For all X ✓ E we have cl(cl(X)) = cl(X).

(CL4) For all Z ✓ E and x, y 2 E, if y 2 cl(Z + x) r cl(Z) then x 2 cl(Z + y).

(CLM) The set I of all cl-independent sets satisfies (M). These are the sets I ✓ E
such that x /2 cl(I � x) for all x 2 I.

2.4 Circuit axioms

The following statements about a set C ✓ 2E are our circuit axioms:

(C1) ; /2 C.

(C2) No element of C is a subset of another.

(C3) Whenever X ✓ C 2 C and (Cx | x 2 X) is a family of elements of C such
that x 2 Cy , x = y for all x, y 2 X, then for every z 2 C r

�S
x2X Cx

�
there exists an element C0 2 C such that z 2 C0 ✓

�
C [

S
x2X Cx

�
r X.

(CM) The set I of all C-independent sets satisfies (M). These are the sets I ✓ E
such that C 6✓ I for all C 2 C.
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Axiom (C3) defaults for |X| = 1 to the usual (‘strong’) circuit elimination axiom
for finite matroids. In particular, it implies that adding an element to a basis
creates at most one circuit; the fact that it does create such a (fundamental)
circuit is trivial when bases are defined from these circuit axioms (as maximal
sets not containing a circuit), while if we start from the independence axioms
it follows from the fact, mentioned before, that every dependent set contains a
minimal one [3]. We remark that the usual finite circuit elimination axiom is
too weak to guarantee a matroid [3].

2.5 Rank axioms

The following statements about a function r : (2E ⇥ 2E)✓ ! N [ {1} are our
(relative) rank axioms:

(R1) For all B ✓ A ✓ E we have r(A|B)  |A r B|.

(R2) For all A,B ✓ E we have r(A|A \B) � r(A [B|B).

(R3) For all C ✓ B ✓ A ✓ E we have r(A|C) = r(A|B) + r(B|C).

(R4) For all families (A�) and B such that B ✓ A� ✓ E and r(A� |B) = 0 for
all �, we have r(A|B) = 0 for A :=

S
� A� .

(RM) The set I of all r-independent sets satisfies (M). These are the sets I ✓ E
such that r(I|I � x) > 0 for all x 2 I.

For finite matroids, these axioms (with (R4) and (RM) becoming redundant)
are easily seen to be tantamount to the usual axioms for an absolute rank func-
tion R derived as R(A) := r(A|;), or conversely with r(A|B) := R(A)�R(B)
for B ✓ A.

3 Bond and cycle matroids

In this section we develop the theory of our axioms to see what it yields for the
usual matroids for graphs when these are infinite. See [3] for applications to
other structures than graphs. All our graphs may have parallel edges and loops.

A well-known matroid associated with a finite graph G is its cycle matroid:
the matroid whose circuits are the edge sets of the cycles in G. The bases of
this matroid are the edge sets of the spanning forests of G, the sets that form
a spanning tree in every component of G. This construction works in infinite
graphs too: the edge sets of the finite cycles in G form the circuits of a finitary
matroid MFC(G), whose bases are the edge sets of the spanning forests of G. We
shall call MFC(G) the finite-cycle matroid of G. Similarly, we let the finite-bond
matroid MFB(G) of G be the matroid whose circuits are the finite bonds of G.
(A bond is a minimal non-empty cut.) This, too, is a finitary matroid.

If G is finite, then MFC(G) and MFB(G) are dual to each other. For infi-
nite G, however, things are di↵erent. As remarked earlier, the duals of finitary
matroids are not normally finitary [4], so the duals of MFC(G) and MFB(G) will
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in general have infinite circuits. In the case of MFC(G), its cocircuits are the
expected ones, the (finite or infinite) bonds:

Theorem 1. Let G be any graph.

(i) The bonds of G, finite or infinite, are the circuits of a matroid MB(G),
the bond matroid of G.

(ii) The bond matroid of G is the dual of its finite-cycle matroid MFC(G).

We defer the proof of Theorem 1 to Section 4; it is essentially the same as for
finite graphs, although now the bonds can be infinite.

Similarly, the dual of MFB(G) will in general have infinite circuits. Ideally,
these would form some sort of ‘infinite cycles’ in G. ‘Infinite cycles’ have indeed
been considered before for graphs, though in a purely graph-theoretic context:
there is a topological such notion that makes it possible to extend classical
results about cycles in finite graphs (such as Hamilton cycles) to infinite graphs,
see [6] and [12] in this issue. Rather strikingly, it turns out that these ‘infinite
cycles’ are the solution also to our problem: their edge sets are precisely the
(possibly infinite) cocircuits of MFB(G).

In order to define those ‘infinite cycles’, we need to endow our given graph G
with a topology. A ray is a one-way infinite path. Two rays are edge-equivalent
if for any finite set F of edges there is a component of G � F that contains
subrays of both rays. The equivalence classes of this relation are the edge-ends
of G, whose set we denote by E(G).

Let us view the edges of G as disjoint topological copies of [0, 1], and let
XG be the quotient space obtained by identifying these copies in their common
vertices. We now define a topological space kGk on the point set of XG[E(G) by
taking as our open sets the unions of sets eC, where C is a connected component
of XG�Z for some finite set Z ⇢ XG of inner points of edges, and eC is obtained
from C by adding all the edge-ends represented by a ray in C.

When G is connected then kGk is a compact topological space [11], although
in general it need not be Hausdor↵: the common starting vertex of infinitely
many otherwise disjoint equivalent rays, for example, cannot be distinguished
topologically from the edge-end which those rays represent. However if G is
locally finite, then kGk coincides with the (Hausdor↵) Freudenthal compactifi-
cation of G. See Section 4 for more properties of kGk.

For any set X ✓ kGk we call

E(X) := {e 2 E(G) : e̊ ✓ X}
the edge set of X. A subspace C of kGk that is homeomorphic to S1 is a circle
in kGk. One can show that

S
E(C) is dense in C, so C lies in the closure of the

subgraph formed by its edges [11]. In particular, there are no circles consisting
only of edge-ends.

A subspace X ✓ kGk is a standard subspace if it is the closure in kGk of
a subgraph of G. A topological spanning tree of G is a standard subspace T
of kGk that is path-connected and contains V (G) but contains no circle. Note
that, since standard subspaces are closed, T will also contain E(G).
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Theorem 2. Let G be any connected4 graph.

(i) The edge sets of the circles in kGk are the circuits of a matroid MC(G),
the cycle matroid of G.

(ii) The bases of MC(G) are the edge sets of the topological spanning trees of G.

(iii) The cycle matroid MC(G) is the dual of the finite-bond matroid MFB(G).

We shall prove Theorem 2 in Section 4.

In the finite world, matroid duality is compatible with graph duality in that
the dual of the cycle matroid of a finite planar graph G is the cycle matroid of
its (geometric or algebraic) dual G⇤. Duality for infinite graphs has come to be
properly understood only recently [2]. But now that we have matroid duality
as well, it turns out that the two are again compatible. In the remainder of this
section we briefly explain how infinite graph duality is defined, and then show
its compatiblity with matroid duality.

When one tries to define abstract graph duality so that it satisfies the min-
imum requirement of capturing the geometric duality of locally finite graphs in
the plane (where one has a dual vertex for every face and a dual edge between
vertices representing two faces for every edge that lies on the boundary of both
these faces), the first thing one realizes is that by taking duals one will leave
the class of locally finite graphs: the dual of a ray, for example, is a vertex
with infinitely many loops. On the other hand, Thomassen [13] showed that
any class of graphs for which duality can be reasonably defined cannot be much
larger: these graphs have to be finitely separable in that every two vertices can
be separated by finitely many edges.5

It was finally shown in [2] that the class of finitely separable graphs is indeed
the right setting for infinite graph duality, defined as follows. Let G be a finitely
separable graph. A graph G⇤ is called a dual of G if there is a bijection

⇤ : E(G) ! E(G⇤)

such that a set F ✓ E(G) is the edge set of a circle in kGk if and only if
F ⇤ := {e⇤ | e 2 F} is a bond of G⇤.6 Duals defined in this way behave just as
for finite graphs:

Theorem 3. [2] Let G be a countable finitely separable graph.

(i) G has a dual if and only if G is planar.

(ii) If G⇤ is a dual of G, then G⇤ is finitely separable, G is a dual of G⇤, and
this is witnessed by the inverse bijection of ⇤.

(iii) Duals of 3-connected graphs are unique, up to isomorphism.

4The theorem extends to disconnected graphs in the obvious way.
5Christian, Richter and Rooney [5] define certain dual objects for arbitrary planar graphs;

however these objects are “graph-like spaces”, not graphs.
6We are cheating a bit here, but only slightly. In [2], these circles are taken not in kGk

but in a slightly di↵erent space G̃. However, while the circles in G̃ may di↵er slightly from
those in kGk, their edge sets are the same. This is not hard to see directly; it also follows
from Theorems 6.3 and 6.5 in [7] in conjunction with Satz 4.3 and 4.5 in [11].
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At the time, the reason for defining graph duality as above was purely graph-
theoretic: it appeared (and still appears) to be the unique way to make all
three statements of Theorem 3 true for infinite graphs. As matroid duality was
developed independently of graph duality, it is thus remarkable—and adds to
the justification of both notions—that the two are once more compatible, as far
as remains possible in an infinite setup:

Theorem 4. Let G and G⇤ be a pair of countable dual graphs, each finitely
separable, and defined on the same edge set E. Then

MFB(G) = (MC(G))⇤ = (MB(G⇤))⇤ = MFC(G⇤).

Proof. The first equality is Theorem 2 (iii). The last equality is Theorem 1 (ii)
(after dualizing). The middle equality follows from MC(G) = MB(G⇤), which
is a direct consequence of the definition of a dual graph.

Finally, we obtain an infinite analogue of Whitney’s theorem that a finite
graph is planar if and only if the dual of its cycle matroid is ‘graphic’, ie., is the
cycle matroid of another finite graph. Let us call a matroid finitely graphic if it
is isomorphic to the finite-cycle matroid of a graph.

Theorem 5. A countable finitely separable graph is planar if and only if its
cycle matroid has a finitely graphic dual.

Proof. Let G be a countable finitely separable graph. If G is planar it has a
dual G⇤, and (MC(G))⇤ = MFC(G⇤) by Theorem 4.

For the converse direction, assume that (MC(G))⇤ is finitely graphic. Then
there exists a graph H with the same edge set as G such that (MC(G))⇤ =
MFC(H). As (MFC(H))⇤ = MB(H) by Theorem 1 and matroid duals are
unique, we obtain MC(G) = MB(H). Hence the edge sets of the circles in kGk,
which by Theorem 2 (i) are the circuits of MC(G), are precisely the bonds of H.
So H is a dual of G, and G is planar by Theorem 3 (i).

We remark that Theorem 5 would remain valid if we strengthened the notion
of ‘finitely graphic’ by requiring that the graph referred to in its definition be
finitely separable. Indeed, if G is planar then its dual G⇤, which we used in
the forward implication of Theorem 5 as a witness that (MC(G))⇤ is graphic, is
finitely separable by Theorem 3 (ii).

We believe, but have been unable to prove, that in Theorem 5 one can shift
the finiteness assumption from the dual to the primal matroid, as follows. Call
a matroid graphic if it is isomorphic to the cycle matroid of a graph.

Conjecture 6. A countable finitely separable graph is planar if and only if its
finite-cycle matroid has a graphic dual.

Conjecture 6 can be proved, by similar methods as above, if we strengthen
the notion of ‘graphic’ so as to require that the graph referred to is finitely
separable.
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4 Proof of Theorems 1 and 2

We begin with the easy proof of Theorem 1, which we restate:

Theorem 1. Let G be any graph.

(i) The bonds of G, finite or infinite, are the circuits of a matroid MB(G),
the bond matroid of G.

(ii) The bond matroid of G is the dual of its finite-cycle matroid MFC(G).

Proof. For simplicity we assume that G is connected; the general case is very
similar. From [3] we know that MFC(G) has a dual; let us call this dual MB(G),
and show that its circuits are the bonds of G. By definition of matroid duality,
the circuits of MB(G) are the minimal edges sets that meet every spanning tree
of G.

We show first that every bond B of G is a circuit of MB(G), a minimal set
of edges meeting every spanning tree. Since B is a non-empty cut, it is the set
of edges across some partition of the vertex set of G. Every spanning tree meets
both sides of this partition, so it has an edge in B. On the other hand, we can
extend any edge e 2 B to a spanning tree of G that contains no further from B,
since by the minimality of B as a cut its two sides are connected in G. Hence
B is minimal with the property of meeting every spanning tree.

Conversely, let B be any set of edges that is minimal with the property
of meeting every spanning tree. We show that B contains a bond; by the
implication already shown, and its minimality, it will then be that bond. Since
G has a spanning tree, we have B 6= ;; let e 2 B. If B contains no bond, then
every bond has an edge not in B. The subgraph H formed by all these edges is
connected and spanning in G, as otherwise the edges of G from the component
C of H containing e to any fixed component of G�C would form a bond of G
with no edge in H, contradicting its definition. So H contains a spanning tree.
This misses B, contradicting the choice of B.

We prove Theorem 2 for countable graphs; the proof for arbitrary graphs can
be deduced from this by considering a quotient space of kGk as explained in [11].
For the remainder of this section, let G be a fixed countable connected graph.

We shall call two points in kGk (topologically) indistinguishable if they have
the same open neighbourhoods. Clearly two vertices or edge-ends x, y 2 kGk
are indistinguishable if they cannot be separated by finitely many edges. (If
both are edge-ends, then x = y.) On the other hand, two such points that can
be separated by finitely many edges have disjoint open neighbourhoods. Inner
points of edges are always distinguishable from all other points.

We shall need a few lemmas. Some of these are quoted from Schulz [11];
the others are adaptations of results proved in [7] for the special case that G
is finitely separable. We remark that it is also possible to reduce Theorem 2
formally to that case by replacing G with a quotient graph as explained in [11].

Lemma 7. [11] kGk is a compact space.
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Lemma 8. Let X ✓ kGk be a closed subspace. Suppose there are disjoint non-
empty open subsets O1, O2 of X such that X = O1 [ O2. Then the set F of
edges with one endvertex in O1 \ V (G) and the other in O2 \ V (G) is finite.

Proof. Suppose that F is infinite. As a closed subspace of kGk, the set X\O1 is
compact. It therefore contains an accumulation point x of endvertices of edges in
F . Then x is also an accumulation point of their neighbours in X\O2, and thus
lies in X \O2 as well. This contradicts our assumption that O1 \O2 = ;.

In a Hausdor↵ space, every topological x–y path contains an injective such
path, an x–y arc. Since kGk is not necessarily Hausdor↵ we cannot assume this
shortcut lemma in general, but it holds in the relevant case:

Lemma 9. [11] If two points x, y 2 V (G) [ E(G) are separated by a finite set
of edges, then every topological x–y path contains an x–y arc.

Lemma 10. [11] Let x, y 2 V (G) [ E(G), and let (A�)�<� be a transfinite
sequence of x–y arcs in kGk. Then there exists a topological x–y path P and a
dense subset P ⇤ of P so that for all p 2 P ⇤ the arcs A� containing p form a
cofinal subsequence.

Lemma 11. Every closed connected subspace X of kGk is path-connected.

Proof. Suppose X is connected but not path-connected. Then there are x, y 2
V (G) [ E(G) contained in di↵erent path-components. In particular, x and y
are topologically distinguishable, so they are separated by finitely many edges.
Let e1, e2, . . . be a (possibly finite) enumeration of the edges in E(G) r E(X),
let Fi := {e1, . . . , ei} for all i. If there exists an i such that x and y lie in the
closures of di↵erent graph-theoretical components of G � Fi, then picking an
inner point outside X from every edge in Fi we obtain a finite set Z ✓ kGkrX
witnessing that x and y lie in distinct open sets of X whose union is all of X,
contradicting our assumption that X is connected.

Hence for every i the points x and y lie in the closure Ci of the same com-
ponent Ci of G� Fi. So for each i there is a path, ray or double ray connecting
x to y in Ci, and with Lemma 9 we then obtain an x–y arc Ai in Ci. . By
Lemma 10 this implies that there is a topological x–y path P and a dense sub-
set P ⇤ ✓ P such that for every p 2 P ⇤ the arcs Ai containing p form a cofinal
subsequence. Suppose there exists a j such that e̊j ✓ P . Then there must be
a point p 2 e̊j \ P ⇤. However, none of the Ai with i � j contains e̊j . Thus, P
does not use any edge outside X. As X is closed, this implies that P ✓ X. The
required x–y arc in X can be found inside P by Lemma 9.

Lemma 12. Let F ✓ E(G) be a set of edges whose closure in kGk contains no
circle. Then G has a topological spanning tree whose edge set contains F .

Proof. Let G = (V,E), let e1, e2, . . . be an enumeration of the edges in E r F ,
and set T0 := E. Inductively, if the closure of (V, Ti�1� ei) is connected in kGk
then set Ti := Ti�1� ei; otherwise put Ti := Ti�1. Finally, we set T :=

T1
i=0 Ti.
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In order to show that T is the edge set of a topological spanning tree, let
us first check that the closure X of (V, T ) is connected. Suppose there are two
disjoint non-empty open sets O1 and O2 of X with X = O1[O2. Then Lemma 8
implies that the cut S consisting of the edges with one endvertex in O1 and the
other in O2 is finite. If j is the largest integer with ej 2 S then, however, the
closure of (V, Tj) is not connected, a contradiction. Thus, T = X is connected
and therefore spanning. Moreover, T is path-connected, by Lemma 11.

Secondly, we need to show that T is acirclic. So, suppose that T contains a
circle C. Since every circle lies in the closure of its edges but the closure of

S
F

contains no circle, E(C)rF is non-empty. Pick j minimal with ej 2 E(C)rF .
Since ej was not deleted from Tj�1 when Tj was formed, the closure Y of
(V, Tj�1�ej) is disconnected. So there are two disjoint non-empty open subsets
O1, O2 of Y such that Y = O1 [ O2. The endvertices of ej do not lie in the
same Oi, since adding ej to that Oi would then yield a similar decomposition of
the closure of (V, Tj�1), contradicting its connectedness. But now the connected
subset C r e̊j of Y meets both O1 and O2, a contradiction. Thus, T does not
contain any circle and is therefore a topological spanning tree.

Lemma 13. Let C1 and C2 be two circles in kGk. Then E(C2) ✓ E(C1) implies
that E(C1) = E(C2).

Proof. We first prove the following:

For every point x 2 C1 r C1 there is a point y 2 C1 such that x
and y are indistinguishable.

(1)

Indeed, consider a z 2 kGk that is distinguishable from all points in C1. Thus,
we may pick for every p 2 C1 two disjoint open neighbourhoods Op

z and Op of z
and p, respectively. Note that C1 is compact, being a continuous image of the
compact space S1. Thus, there is a finite subcover Op1 [ . . .[Opn of C1. Then,
the open set \n

i=1O
pi
z is disjoint from C1 and contains z. Hence, z does not lie

in the closure of C1. This proves (1).
Next, suppose that E(C2) is a proper subset of E(C1), and pick e 2 E(C2)

and f 2 E(C1) r E(C2). Since X := C1 r (̊e [ f̊) is disconnected there exist
two disjoint non-empty open sets O0

1 and O0
2 of X with X = O0

1 [ O0
2. For

j = 1, 2, denote by Ij the set of points x in kGk for which there is a y 2 O0
j

such that x and y are indistinguishable. Then O1 := O0
1 [ I1 and O2 := O0

2 [ I2

are disjoint and open subsets of X [ I1 [ I2. Moreover, it follows from (1) that
C1 r (̊e [ f̊) = X [ I1 [ I2. Therefore, O1 and O2 are two disjoint non-empty
open sets of C1 r (̊e [ f̊) with C1 r (̊e [ f̊) = O1 [O2.

As C2 r e̊ is a connected subset of C1 r (̊e [ f̊) it lies in O1 or in O2, let
us say in O1. Then Õ1 := O1 [ e̊ and O2 are two disjoint non-empty open
subsets of C1 r f̊ with C1 r f̊ = Õ1 [O2. By (1), this means that also C1 r f̊
is disconnected. But C1 r f̊ is a continuous image of a connected space, and
hence connected.
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Lemma 14. Let T be a standard subspace of kGk. Then the following state-
ments are equivalent:

(i) T is a topological spanning tree of kGk.

(ii) T is maximally acirclic, that is, it does not contain a circle but adding any
edge in E(G) r E(T ) creates one.

(iii) E(T ) meets every finite bond, and is minimal with this property.

Proof. Let us first prove a part of (iii)!(i) before dealing with all the other
implications.

If E(T ) meets every finite bond then T is spanning and path-
connected.

(2)

Suppose that the closure X of (V (G), E(T )) is not connected. Then there are
two disjoint non-empty open sets O1 and O2 of X with X = O1 [ O2. From
Lemma 8 we get that the cut consisting of the edges with one endvertex in
O1 and the other in O2 is finite. Since each of O1 and O2 needs to contain a
vertex, this cut is non-empty. Hence, E(T ) misses a finite bond, a contradiction.
Therefore, T = X is connected and then, by Lemma 11, path-connected.

(i) ! (ii) Consider any edge e /2 E(G) r E(T ). If the endvertices u and v
of e cannot be separated by finitely many edges then e � u (and also e � v) is
a circle in kGk. Otherwise, any topological u–v path contains an u–v arc by
Lemma 9. In particular, T contains an u–v arc that together with e forms a
circle.

(ii) ! (iii) Suppose that E(T ) misses a finite bond F . Pick e 2 F , and let
C be a circle in T [ e through e̊. Pick an inner point of every edge in F and
denote the set of these points by Z. Then the two components of kGkrZ, each
of which contains an endvertex of e, form two disjoint open sets containing T .
However, C r e̊ ✓ T is a connected set that meets both of these disjoint open
sets, which is impossible. Thus, E(T ) meets every finite bond. In particular, T
is spanning and path-connected, by (2).

Let f be any edge in E(T ), and let us show that E(T )�f misses some finite
bond. Denote the endvertices of f by r and s, and observe that r and s can
be separated by finitely many edges as T is acirclic. Denote by Kr and Ks the
path-components of T r f̊ containing r and s, respectively. By Lemma 9 and
as T does not contain any circle, Kr and Ks are distinct, and thus disjoint. As
T is path-connected, it follows that T r f̊ is the disjoint union of the open sets
Kr and Ks. Now Lemma 8 yields that there are only finitely many edges with
one endvertex in Kr and the other in Ks. As T is spanning this means that
E(T )� f misses a finite cut.

(iii) ! (i) By (2), we only need to check that T does not contain any circle.
Suppose there exists a circle C ✓ T , and pick some e 2 E(C). By the minimality
of E(T ) there exists a finite bond F so that F is disjoint from T r e̊. Then,
however, picking inner points from the edges in F yields a set Z, so that the
connected set C r e̊ is contained in kGk r Z but meets two components of
kGkr Z, which is impossible.

12



We can finally prove our main theorem, which we restate:

Theorem 2.

(i) The edge sets of the circles in kGk are the circuits of a matroid MC(G),
the cycle matroid of G.

(ii) The bases of MC(G) are the edge sets of the topological spanning trees of G.

(iii) The cycle matroid MC(G) is the dual of the finite-bond matroid MFB(G).

Proof. To bypass the need to verify any matroid axioms, we define MC(G) as
the dual of MFB(G) (which we know exists [3]), ie., as the matroid whose bases
B are the complements of the bases of MFB(G). These latter are the maximal
edge sets not containing a finite bond, so the bases B of MC(G) are the minimal
edge sets meeting every finite bond. By Lemma 14 below, this is equivalent to
B being the edge set of a topological spanning tree of kGk.

We have defined MC(G) so as to make (iii) true, and shown (ii). It remains
to show (i): that the circuits of MC(G) are the edge sets of the circles in kGk.
Since no circuit of a matroid contains another circuit, and since by Lemma 13
no edge set of a circle contains another such set, it su�ces to show that every
circuit contains the edge set of a circle, and conversely every edge set of a circle
contains a circuit.

For the first of these statements note that, by assertion (ii), a circuit D
of MC(G) does not extend to the edge set of a topological spanning tree. Hence
by Lemma 12 its closure

S
D in kGk contains a circle C. For the second state-

ment, note that the edge set D of a circle C is not contained in the edge set of
a topological spanning tree T , because T is closed and would therefore containS

D ◆ C, contradicting its definition. Hence D is dependent in MC(G), and
therefore contains a circuit [3].
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