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Abstract

During boreal winter months mean longitude dependent ozone changes in
the upper troposphere and lower stratosphere are mainly caused through different
ozone transports of planetary waves. The feedback of the changed radiative forc-
ing induced by these ozone changes near the tropopause on the circulation is un-
clear. This feedback is investigated with the general circulation model ECHAMA4
in a sensitivity study.

In the simulation two different mean January realizations of the ozone field
are implemented in ECHAM4. Both ozone fields are estimated on the basis of the
observed mean January planetary wave structure of the 1980s. The first field rep-
resents a 14 year average (reference, 1979-1992) and the second one contains in
addition the mean ozone field change (anomaly, 1988-92) in boreal extra-tropics
during the end of the 1980s. The model runs were carried out pairwise with
identical initial conditions for both ozone fields. Five statistically independent
experiments were performed with different sea surface temperatures of the years
1988 to 1992.

The results support the hypothesis, that the zonally asymmetric 0zone changes
of the 80s triggered a systematic alteration of the circulation over the North At-
lantic - European region. It is suggested that this feedback process is important for
the understanding of the decadal coupling between troposphere and stratosphere
as well as between subtropics and the extra-tropics in winter.
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1 Introduction

The atmosphere is a complex system with interacting processes of dynamics, radiation
and chemistry. For instance the ozone depletion will change the radiative forcing and
therefore the whole behaviour of the atmosphere(e.g. Ramaswamy et al., 2001).
While the dominant ozone depletion in higher latitudes and higher altitudes seems
to be caused by the changed ozone chemistry (WMO, 1999), a large fraction of the
decadal changes of zonal mean ozone in the tropopause region of the extra-tropics is

dynamically caused.

The longitudinal dependence of the decadal ozone changes is mainly caused by the
change of planetary waves as was shown by Hood and Zaff (1995) and Peters et al.
(1996) for January of the 1980s. The decadal changes of the zonally asymmetric fields
of the atmospheric flow are showing a high anti-correlation between total ozone and
tropopause height for mean January (e.g. Schmitz et al., 2000; Steinbrecht et al.,
1998). Over Europe a large area of ozone depletion was observed in January of the
1980s, the magnitude was twice as large in its centre as the trend of the zonal mean
ozone changes (e.g. McPeters et al., 1996 and Bojkov and Fioletov, 1995). By us-
ing a linear transport model, Peters and Entzian (1998) calculated the 3-dimensional
decadal ozone changes of the 80s for all winter months, and found they were related to
the decadal changes of ultra-long waves. The changes were strongest below the ozone

layer maximum (near 70 hPa in mid-latitudes).

Quasi-stationary zonally asymmetric ozone changes may be effected by transport and
through photochemical reactions. Both processes operate on different time scales in
the tropopause region of the extra-tropics. The transport due to the planetary waves
dominates the horizontal ozone distribution in the order of a few days to a month,

while the chemical reaction time is much longer. Therefore, changes in the ultra-long
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waves presumably controlled the large-scale ozone changes (Kurzeja, 1984).

Note, for synoptic waves, Dobson et al. (1929) already knew the connection be-
tween anti-cyclonic (cyclonic) flow and low (high) total ozone caused by convergence

(divergence) of ozone poor (rich) air in the upper troposphere and lower stratosphere.

Near the tropopause region even small radiative heating (cooling) rates are able to
change the radiation balance very efficiently as shown by many model studies using
radiative-convective models (e.g. Ramanathan and Dickinson, 1979; Forster and
Shine, 1997). For instance Forster and Shine (1997) showed, using the fixed dy-
namical heating approximation to adjust the stratospheric temperatures, that the tem-
perature change depends significantly on the vertical distribution of the ozone change.
Further the authors concluded that the ozone near the tropopause has the greatest in-
fluence on the surface temperature. So longitude dependent ozone changes near the
tropopause have the potential of coupling the tropospheric and the stratospheric cir-
culation and the subtropics and extra-tropics during winter, because they are in the
same order as the zonal mean ozone change. The influence of this radiative forcing
over many days or some weeks on the large-scale circulation is not known. Therefore
we examine the influence of longitude dependent ozone changes on the large-scale
dynamics especially over the North Atlantic - European region during January where

these decadal ozone changes were extreme in the 1980s.

A state-of-the-art general circulation model (GCM) like ECHAM4-CHEM as used for
time-slice experiments (e.g. Steil et al., 1997) with the full coupling of dynamics,
radiation and chemistry involves a high order of complexity. The appearance of many
interacting processes makes it hard to verify feedback processes in the GCM. Fur-
ther, the full coupling of photochemistry and dynamics needs much more computer

resources. In addition, the models have to be run for a long time (many years) to get a
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more realistic and stable climate state.

However the reduction of the complexity from fully coupled models to weakly cou-
pled or un-coupled models (e.g., Austin and Butchard, 1992; Rasch et al., 1995;
Stevenson et al., 2000) or the use of models with parameterised chemistry (e.g.,
Cariolle and Déqué, 1986; Roelofs et al., 1999) are efficient ways to study the link
between ozone and circulation. In sensitivity experiments with ozone photochemistry
Austin and Butchard (1992) found that the planetary wave activity in mid-latitudes
at about 300 hPa strongly modulates the ozone hole variability. Nevertheless, to exam-
ine the feedback mechanisms of longitude dependent ozone changes on the circulation,

carefully designed sensitivity experiments with a GCM seems to be appropriate.

Note many authors (e.g. Ramaswamy et al., 1996; Hansen et al., 1997;
Graf et al., 1998; Langematz, 2000) focused mainly on the climate response of

zonally averaged ozone changes which will be explicitly excluded in this study.

As a first step, we used the GCM ECHAM4 including a modified ozone distribu-
tion with radiative forcing but without chemistry. The decadal changes of zonally
asymmetric ozone in January of the 80s were implemented directly into the radiation
code resulting in a model consistent change of radiative forcing. With the known and
fixed change of longitude dependent ozone profiles, following the calculations of Pe-
ters et al. (1996) (see Appendix) we performed a series of sensitivity experiments.
The ozone field implementation and the radiation effects are described in section 2.
The experiment design is given in section 3. The results presented in section 4 are
focused on the circulation response over the North Atlantic - European region. The re-
sults support the hypothesis that the longitudinal asymmetry of ozone changes induces

a systematic modification of the circulation over the North Atlantic - European region.
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2 Ozone field implementation and the direct radiation
effects

The 3-dimensional dependence of the January “reference” ozone distribution we used
in the sensitivity experiments was calculated on the basis of a simplified continuity
equation as described in detail in the Appendix. From known mean January fields of
geopotential (temperature) and zonal means of zonal velocity (ozone) the longitude
dependent ozone field was constructed. The ozone distribution of January 1979 based
on satellite measurements (McPeters et al., 1984) was used as a zonal mean ozone
distribution of the period 1979-1992. This field includes to some extent the ozone
decrease of the years before the 1980s as known from ground based and satellite mea-
surements (e.g. WMO, 1999). But no decadal changes of the zonal mean ozone field
of the 80s were included as mentioned in the introduction. Furthermore no longitudinal
variability was introduced below 500 hPa and above 70 hPa, and also not in the tropics.
The ozone content in those regions is considered adding 45 DU (Dobson Unit), 15 DU
for the lower troposphere and 30 DU for the upper stratosphere as known from the
estimation of mean ozone profiles. This addition is based on the mean vertical ozone
distribution at the station Lindenberg (Feister et al., 1987). The “reference” January
ozone field has a more realistic geographical distribution in the extra-tropics between
500 and 70 hPa in comparison to the standard ECHAM4 ozone field. The “anomaly”
ozone field is the superposition of the “reference” ozone field and the extra-tropical
longitude dependent ozone change only in latitudes north of 30° N to the end of the
1980s. For the uppermost three layers and for some of the lowest layers no change
was done explicitly, so that the anomaly was concentrated between the ozone layer

maximum and the 500 hPa layer.

The total ozone anomaly as used in the sensitivity experiments is shown in Figure 1a.



Kirchner/Peters, Modelling the wintertime response ... Ozone fields implementation ...

This anomaly is representing the difference between the ozone field at the end of the
1980s and the “reference” field. The total ozone anomaly shows a wave like pattern.
The highest positive anomaly was found over the North Atlantic with values up to
10 DU and over Central Europe the value goes down to -10 DU. Secondary ozone
maxima exist over North America and around the Kaspian Sea and secondary minima
are placed over East Siberia, the Pacific and the western North Atlantic. The height-
longitude cross section (not shown) at 50° N indicates that the ozone change in the
1980s is concentrated between the tropopause and the ozone layer maximum at about

70 hPa in mid-latitudes.

Note, that the amount of the anomaly is nearly half as large as the observed zon-
ally asymmetric ozone change during the whole decade, especially over Europe (Pe-
ters et al., 1996), with other words the introduced total ozone anomaly covers about

50% of the zonally asymmetric observed trend in the 80s.

In order to study the direct net effect of ozone forcing, the solar and thermal heat-
ing rates have been estimated simultaneously. This was done by running the radiation
code twice, first, with the “reference” ozone field for January, and then including the
ozone anomaly. The difference of the heating rates measures the instantaneous (direct)
radiative forcing of the ozone anomaly without any feedback. In Figure 1b(c) the so-
lar (thermal) radiation forcing in the layer of it’s maximum is shown based on a ten
day average. The solar forcing shows a weak cooling over Europe and a heating over
the North Atlantic ocean at 150 hPa. The thermal forcing shows a weak heating over
Europe and a cooling over the North Atlantic at 70 hPa. For both a large-scale struc-
ture with zonal wave-numbers 3 to 4 dominates, consistent with the ozone difference

(anomaly) field shown in Figure 1a.

Furthermore, to examine the vertical structure of the forcing, the height-latitude cross
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section of positive (negative) ozone anomaly over the North Atlantic (European) sector
is shown representing a zonal average between 40° W and 10° W (Fig 2) (0° and 30° E
(Fig 3). In part (a) of Figures 2 and 3 the ozone anomaly and in part (b) of Figures 2
and 3 the net heating rate change are plotted from level 13 near 700 hPa to the model
top. The solar heating change is given in part (c) of Figures 2 and 3 and the thermal

heating rate change in part (d) of Figures 2 and 3, respectively.

Over the eastern North Atlantic (Fig 2), the positive ozone anomaly centered at about
150 hPa in mid-latitudes causes a narrow net heating slightly shifted to the equator. It
is reduced poleward due to the missing solar radiation over the winter pole. The solar
radiation and the thermal radiation rate contribute both to the net forcing below the
100 hPa layer. But the cooling due to the thermal radiation dominates in mid-latitudes
above the 100 hPa layer. Both effects together tend to decrease the lapse rate near the

tropopause region.

In the European sector (Fig 3) the negative ozone anomaly is shifted northward in
comparison to the location of the positive ozone anomaly over the North Atlantic (see
Fig 2). A narrow net cooling follows in mid-latitudes below the 100 hPa layer (domi-
nated by the solar radiation) and heating above (thermal radiation dominates). There-
fore, over Europe, the vertical structure of the forcing tends to increase the lapse rate

in the tropopause region.

Both examples demonstrate the regional and altitude dependent change of sign of the
ozone anomaly forcing: Heating (cooling) in the upper troposphere corresponds to
cooling (heating) in the lower stratosphere over the North Atlantic (Europe). Such
weak forcing of locally only up to 0.01 K/day can have a strong effect on the stability
near the tropopause (e.g. Forster and Shine, 1997). This forcing systematically re-

duces the thermal stability in the upper troposphere near the tropopause over the North
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Atlantic and increases the stability over Europe. The magnitude of the heating/cooling
is weak, but the induced three dimensional stability changes could amplify the net heat-
ing/cooling of the atmosphere due to feedback processes. These feedbacks can only be
investigated by model simulations as discussed in the following. Note the meridional
gradient between subtropical and middle latitudes near the tropopause (below 100 hPa)
is weakened over the North Atlantic and enhanced over Europe (not shown). Also the
heating (cooling) causes upper level divergence (convergence), leading a tendency of

the surface pressure to decrease (increase).

3 Sensitivity experiments

The sensitivity experiments were performed with the GCM ECHAM4 using T42 hor-
izontal resolution and 19 vertical levels up to 10 hPa. A detailed description of the
model physics was given by Roeckner et al. (1996). The starting conditions of the
GCM experiments are taken from the standard ECHAM4 AMIP run (see Stendel and
Bengtsson, 1997) for five different years (1988, 1989, 1990, 1991, 1992) at the first
of October. For each pair the sea surface temperature field was also taken from the

AMIP2 data set of the corresponding winter.

In the experiments the ozone field implementation was changed in comparison to the
standard ECHAMA4 version (see section 2). With the two reconstructed ozone distri-
butions pairwise wintertime experiments were performed. Both ozone fields were ini-
tially preprocessed on pressure levels and on a 5 x 5° grid followed by an interpolation
onto the horizontal grid of ECHAM during the initialisation. At every time step the
vertical interpolation to the hybrid levels of the model was performed. During this ver-
tical transformation the ozone column integral was conserved. First of all we adjusted

the model dynamics to the “reference” ozone field and ran the model from the begin-
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ning of October until the end of November for each of the five statistically independent
time slices. After the first of December we ran the model twice. In the so called “refer-
ence” experiment we continued the free ECHAMA4 run over two months until the end
of January without any further alterations of the ozone. In the so called “anomaly”
experiment we are using the “anomaly” ozone field without any further changes. The
difference between the “reference” and the “anomaly” ozone field is relatively small
and exists per definition only in middle and high northern latitudes. Hence a 30 day
adjustment of the dynamics is sufficient. Both data pools (“reference” and “anomaly”
experiment) with 5 independent Januaries were analysed and the results are presented
in the next section. The observed longitude dependent decadal ozone changes in De-
cember and January are quite similar (Peters and Entzian, 1998). Therefore the

composed January ozone fields can be used also for the full experiment period.

4 Dynamical response

First of all we are interested in a possible global response, visible in the fields of hy-
drodynamics and thermodynamics which are caused by the large-scale ozone anomaly
in extra-tropics of the Northern Hemisphere in January. For our diagnostics the merid-
ional velocity as an indicator of the planetary wave structure in combination with tem-
perature were chosen. The difference between the ensemble means (“anomaly’” minus
“reference” experiment) of the meridional velocity and the temperature at the 200 hPa
layer are shown in Figure 4. The amplitudes are in the order of + 5 m/sand + 1.5 K
respectively. The difference pattern shows a large-scale wave like structure (with wave

number 1-6) on both hemispheres organised as wave tracks.

One track appears in northern mid-Ilatitudes, beginning over the western North At-

lantic, passing Europe and ending over Asia. An other track is starting at the same

10
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region but is moving southwards to Africa. A third wave track occurs in the Southern
Hemisphere. It starts over the subtropical eastern South Pacific ocean, passing South
America, the South Atlantic and Africa, and ending over the Indic. A comparison of
significant changes of meridional velocity with temperature changes shows that signif-

icance in both fields only appears in the extra-tropics.

By including also the 100 hPa layer results and the vorticity and divergence of 500 hPa,
200 hPa, 100 hPa, 70 hPa (not shown) we find three regions of significant (local T-test)
changes. The first one is the North Atlantic-European region, the second area the North
Polar region and the third one a is band from South America to South Africa (SA2
region for short). The larger areas of significance over the SA2 region are connected to
a weaker large-scale wave variability during the austral summer as known from global

analysis (e.g. Randel, 1992).

We focus on the North Atlantic-European region where the ozone anomaly dominates
(Fig 1) and examine the dynamics in more detail. There exists a strong Rossby wave
track also in the difference field of geopotential height, relative vorticity and zonal
wind at 200 hPa (Fig 5). The track starts over the subtropical middle North Atlantic
indicated by a trough and follows a curvature in an anti-cyclonic sense. That means
a course given further by an high pressure system northwards of the Azores and a
Black Sea low. Consistent with that, the changes of vorticity (Fig 5b) and zonal wind
(Fig 5c), showing positive (negative) values on the northward (southward) side of the

anti-cyclone, are also statistically significant (95%).

The temperature difference field in 200 hPa (see Fig 5c) shows a strong cooling of
about —1.5 K in connection with the high northwards of the Azores and an increase of
about 1.5 K northwards of the Faroyer Islands, as well as over the Black Sea region in

connection with low pressure systems. The significant temperature change is mainly

11
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linked to adiabatic cooling in the upper troposphere (heating in the lower stratosphere)

of ascent (descent) air.

We continue the large-scale diagnostics by a calculation of the longitude extended
Eliassen-Palm flux vector changes as suggested by Plumb (1985) (for short called
Plumb flux). The stationary wave difference of the sample averages (“anomaly” minus
“reference”) was calculated and then the corresponding Plumb flux was estimated. In
250 hPa (Fig 6a) for the extra-tropics of the North Atlantic, an upward flux mainly di-
rected eastward is found, and over Europe a stronger southeastward component occurs.
The strong flux changes over the subtropical North Atlantic are not considered because

the used geostrophic approximation for flux calculation is only valid in extra-tropics.

To study the height-longitude behaviour, an average over the latitude band 40° N —
60° N was calculated. It shows (Fig 6b) a feature which is concentrated over the
North Atlantic-European region with a strong upward-eastward component over the
eastern North Atlantic and a strong downward-eastward component over Europe. The
convergence near the surface between 40°W and 20°W is dominated by a strong dif-
ferential vertical heat flux. In the tropopause region (near 300 hPa), also in the same
longitude band, a convergence is found as a result of strong differential vertical heat
flux and meridionally momentum flux. A large divergent area occurs over Europe
at about 300 hPa with higher wave activity which could decelerate the zonal mean
wind (Plumb, 1985). The projection of 3-dimensional Plumb flux structure onto the

200 hPa layer is in good agreement with the planetary wave track described above.

For the propagation as well as for the reflection of ultra-long waves in a basic stream
the wave-wave interaction between quasi-stationary waves plays an important role. But
transient eddies are also known to have an important effect on the longitude dependent

circulation (e.g. Trenberth, 1986; Hoskins et al., 1983; Fraedrich et al., 1993).

12
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A 2-6 days filter of daily values (deviation from the monthly mean) is used for the
analyses of transient eddies. The high-pass structure change of these eddies is studied
by estimating the extended Eliassen Palm flux after Trenberth (1986) as a difference

of the ensemble means of both experiment pools.

In 250 hPa (Fig 7a) a strong upward-eastward flux contribution is found over East
Canada and western North Atlantic. The lower track orbits to the south and is ori-
ented downwards over the middle subtropical North Atlantic. The upper track is more
zonally and passes Europe. A latitude band average (40° N — 60° N) shows clearly
an height-longitude structure concentrated over the North Atlantic- European region.
Strong upward-eastward eddy heat flux occurs westwards of 40° W with a strong mo-
mentum flux in the tropopause region which extends eastwards over Europe. The hor-
izontal divergence of the eddy flux vector shows three centres of possible longitude
dependent basic stream deceleration 90° W — 50° W, 30° W — 15° W, 3° E — 13°E

and two larger regions of acceleration 50° W — 30° W and 15° W — 3° E.

The storm-track activity (2-6 days bandpass filtered 500 hPa geopotential height field)
defined as the standard deviation of the bandpass filtered field is correlated to the mean
cyclone tracks (e.g. Trenberth, 1991). In Figure 8 the January average of the storm-
track variability for the “reference” and the “anomaly” experiment are shown and
agrees well with eddy flux estimations of Figure 7. The difference (Fig 8c) shows
a clear signal which is linked to the northward shift of the jet stream over the Atlantic

(see Fig 5¢).

In the ozone “anomaly” runs the cyclonic activity is enhanced on the north-western
and northern flank of its centre and over the south-eastern area of the North Atlantic
storm-track. In addition on the eastern side (over East Europe) the cyclone activity

will be less spread and reduced. This stronger barrier effect is expected from 200 hPa

13
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geopotential height field change over the North Atlantic (centred at eastern side) and

over northern Russia where anti-cyclonic disturbances occur (Fig 5a).

The enhanced geopotential height variance in 500 hPa occurs in a band over the North
Atlantic, over a line between negative and positive geopotential height (1000 hPa)
changes (Fig 9a). This fact is known from observations of North Atlantic variability
like the North Atlantic oscillation (NAO) (e.g. Hurrel, 1995; Hastenrath and Greis-
char, 2001). The positive mean geopotential height anomaly (at 1000 hPa) whose
centre is placed over a region northwards of the Azores Islands (about 40 gpm) cor-
relates on its northern flank with more cloud cover percentage and more liquid water
content (Fig 9b and c), but on its southern flank with less in both quantities. The
precipitation (Fig 9d) decreases over the region of the anti-cyclonic disturbances. All
these patterns agree quite well with observations of positive NAO phase realisations

(Thompson and Wallace, 2001).

5 Summary and discussion

In this sensitivity study a simple estimation of the large-scale three dimensional ozone
change of the 1980s during January was introduced. The ozone fields describe the
right phase locations and vertical ozone profiles in the extra-tropics of the Northern
Hemisphere as observed. The sensitivity experiments show that the zonally asymmet-
ric ozone changes in the upper troposphere and lower stratosphere (north of 30° N)

induced a systematic modification of the circulation.

Three significant wave tracks were found, two occur over the North Atlantic and one
over the South Atlantic. Further the results show a statistically significant response
over three large regions, namely over the North Atlantic-European, Arctic and SA2

region.

14
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It can be concluded that the ozone changes with related relative weak radiative forcing
near the tropopause are important for the coupling between troposphere and strato-
sphere and also between the subtropics and the extra-tropics during boreal winter

decades.

We looked for a very efficient feedback mechanism including planetary waves, storm
tracks, convective activity and water vapour. The instantaneous radiative forcing due
to the ozone anomaly (see Figures 1, 2 and 3) alone can not explain the strong re-
sponse over the North Atlantic. Therefore we analysed the difference of the radiative
forcing terms of the temperature tendency equation for mean January conditions. In
the heating rate difference of the dynamically balanced state the signature of the ozone
anomaly was found in the solar part near 150 hPa (Fig 10a) and upward (c). The
heating area agrees well with more ozone in this height region over the North Atlantic.
This additional ozone causes a primary decreasing of the lapse rate near the tropopause
(Fig 2), the convection will reach higher levels, and more water vapour will cause ad-
ditional solar heating. Note without dynamics this heating would be balanced due to
the counteracting emission of long wave radiation and the thermal heating increases

too.

The model results at 150 and 100 hPa show a different large-scale distribution of mean
January difference in thermal forcing (Fig 10b and d) dependent on the action of dy-
namics, but also a factor of 10 larger than the direct thermal forcing induced by the
ozone change. Both forcings together described the total radiative forcing for mean
January conditions and this is one order larger than the total instantaneous radiative

forcing through the ozone change.

In summary the sensitivity study confirms that small ozone anomalies near the

tropopause result in a stronger effect on the stability as expected from instantan forcing

15
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due to positive feedbacks. This steered the cyclonic activity over the North Atlantic as

shown in our results and induced the reported planetary wave structure changes.

To focus on the North Atlantic-European region where the ozone changes are largest
the model results show a realistic physical picture of atmospheric circulation changes
as known from many observational studies of decadal circulation changes especially

in the 1980s (e.g. Hurrel, 1995).

The mean ozone anomaly structure, typical for the end of the 1980s, is correlated with
an enhanced NAO positive phase with a stronger Azores high and weaker Icelandic
low at the surface. The mean ozone anomaly induced in the model a similar pattern
near the surface (Fig 9a) and that could enhance the dynamical variability in the North
Atlantic-European region especially. The location of the storm tracks is shifted to the
north and they intensify. Therefore the divergence of the induced transient eddies will

force the jet stream shift and produce quasi-stationary waves changes too.

Over the Arctic region also a statistical significant dynamical response is found. This
can be explained by an intensification of transient wave activity in mid-latitudes which
forces quasi-stationary waves propagating upward and northward into the polar strato-
sphere. The waves are filtered and reflected by the polar jet so that a large-scale wave

with wavenumber one is dominant.

There are open questions which should be studied in the future. So the robustness
of this result should be checked in other model configurations. Further, the locally
significant area over SA2 region could be forced directly over the Atlantic by Rosshy
wave propagation through a westerly wind guide (“westerly ducts”) over the tropical
West Atlantic (not shown). The frequency of such Rossby wave breaking events is
highest during the northern winter (Waugh and Polvani, 2000). On the other hand,

in the southern summer, the large scale variability over the Southern Hemisphere mid-

16
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latitudes is relatively weak so that a significant response would be easier to detect.
Some similar experiments with linear enhanced ozone anomaly show an amplified re-
sponse but a different structure with high variability in the North Atlantic-European re-
gion. That means carefully designed experiments are necessary to detect some thresh-
old values. Further studies should also include the effect of the zonal mean ozone trend

and the middle atmosphere.
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A Estimation of 3D ozone fields

The linearised stationary equation for the mass mixing ratio of a zonally asymmetric
tracer n* neglecting source terms reads (following Peters et al., 1996)

W] o~ _ v o] O
=————w'— 1
acosp O\ a O0p Y @)

g wP
Z=-HI (ps) (2)

where Z is the vertical coordinate, A the longitude and ¢ the latitude. p is the pressure
and p, = 1000 hPa. (U,v,w) represents the velocity components. [...] means zonally
averaged values and a star deviations from them.

In the extra-tropics quasi-geostrophic relations holds:

. 1 09
Y ~ afcosp 0N ®)
w=2= N? (chosgp OX  acosp O\ @

¢ is the geopotential, f the Coriolisparameter, a the earth radius and T the temperature.
(4) is the linearised version of the stationary energy equation but without a diabatic
heat source term. The thermal wind equation, T,R =-a H U , was introduced; ¢ and
Z indices are derivatives. N2 was height and latitude dependent. The used constants
are H = 7.321 km, a = 6.37 - 10% km, p = ppe=%/H with p, = 1.225 kg/m?, R = 287
m?/K/s%. (3) and (4) inserted in (1) gives the continuity equation in a form where the
geopotential and temperature appear explicitly. The zonally asymmetric resolution was
realised by a Fourier decomposition and calculated numerically as vertical profiles at
14 layers from 500 hPa to 10 hPa.

The observed amplitudes and phases of the geopotential, temperature and zonal mean
fields were taken from the mean January values of Randel (1992). The zonal mean
ozone distribution of January 1979 is based on data from McPeters et al. (1984) for
NIMBUS7 SBUV instrument. A check and discussion of the model results are also
given in Peters et al. (1996).
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Figure 1:
Ozone anomaly and direct radiation forcing estimated under January conditions aver-
aged over 10 days:

a) Vertically integrated ozone difference
b) Solar radiation forcing due to the ozone difference at 150 hPa (model level 6)

c) Same as b) but for the thermal radiation at 70 hPa (model level 4)
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Figure 2:
Zonally averaged (40°W - 10°W) vertical distribution of the ozone anomaly and radi-
ation forcing of January averaged over 10 days

a) Ozone difference
b) Net radiation heating due to the ozone difference
c) Same as b) but only solar radiation heating

d) Same as b) but only thermal radiation heating
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Figure 3:
Same as in Figure 2, but zonally averaged (0 - 30°E)
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Figure 4.
Mean meridional wind (a) and temperature (b) response at 200 hPa, regions inside a
significance level of 80% (light), 90% (middle) and 95% (dark) are shaded
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Figure 5:
Mean geopotential height (a), vorticity (b) and zonal wind (c) response at 200 hPa for
the North Atlantic-European region, shading as in Figure 4
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Figure 6:
Stationary flux changes (Plumb, 1985) over the North Atlantic due to the ozone
anomaly
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Figure 7:
Transient flux changes (Trenberth, 1986) over the North Atlantic due to the ozone
anomaly for a high pass filtered flow (2-6 days)
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Figure 8:
Storm track variability at the 500 hPa layer for mean January

a) Variance of the band pass filtered (2-6 days) geopotential height at the 500 hPa for

the “reference” experiment
b) Same as a) but for the “anomaly” experiment

c) Difference between “anomaly” and “reference” experiment
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Figure 9:
The ozone anomaly response for mean January as difference field (regions inside a
significance level of 80% are shaded)

a) For geopotential height at 1000 hPa
b) For total cloud cover
c) For vertical integrated liquid water
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Figure 10:
Mean January forcing difference due to ozone anomaly including dynamical feedbacks
(positive values light shaded, negative values dark shaded)

a) For solar radiation at level 5 (near 100 hPa)
b) For thermal radiation same level as a)
c) For solar radiation at level 6 (near 150 hPa)

d) For thermal radiation same level as c)
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