
ar
X

iv
:1

00
3.

25
78

v1
  [

m
at

h.
Q

A
] 

 1
2 

M
ar

 2
01

0

ZMP-HH/10-8
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Abstract

We discuss algebraic and representation theoretic structures in braided tensor categories
C which obey certain finiteness conditions. Much interesting structure of such a category
is encoded in a Hopf algebra H in C. In particular, the Hopf algebra H gives rise to rep-
resentations of the modular group SL(2,Z) on various morphism spaces. We also explain
how every symmetric special Frobenius algebra in a semisimple modular category provides
additional structure related to these representations.

1 Braided finite tensor categories

Algebra and representation theory in semisimple ribbon categories has been an active field
over the last decade, having applications to quantum groups, low-dimensional topology and
quantum field theory. More recently, partly in connection with progress in the understanding
of logarithmic conformal field theories, there has been increased interest in tensor categories
that are not semisimple any longer, but still obey certain finiteness conditions [EO].

Owing to the work of various groups (for some recent results see e.g. [GT, NT]), examples
of such categories are by now rather explicitly understood, at least as abelian categories. In this
section we describe a class of categories that has received particular attention. This will allow
us to define the structure of a semisimple modular tensor category. To extend the notion of
modular tensor category to the non-semisimple case requires further categorical constructions
involving Hopf algebras and coends; these will be introduced in section 2. These constructions
also provide representations of the modular group SL(2,Z) on certain morphism spaces. In
section 3 we show that symmetric special Frobenius algebras in semisimple modular tensor
categories give rise to structures related to such SL(2,Z)-representations.

http://arxiv.org/abs/1003.2578v1


Let k be an algebraically closed field of characteristic zero and Vectfin(k) the category of
finite-dimensional k-vector spaces.

Definition 1.1.

A finite category C is an abelian category enriched over Vectfin(k) with the following additional
properties:

1. Every object has finite length.

2. Every object X ∈C has a projective cover P (X)∈C.

3. The set I of isomorphism classes of simple objects is finite.

It can be shown that an abelian category is a finite category if and only if it is equivalent
to the category of (left, say) modules over a finite-dimensional k-algebra.

We will be concerned with finite categories that have additional structure. First, they are
tensor categories, i.e., for our purposes, sovereign monoidal categories:

Definition 1.2.

A tensor category over a field k is a k-linear abelian monoidal category C with simple tensor
unit 1 and with a left and a right duality in the sense of [Ka, Def. XIV.2.1], such that the
category is sovereign, i.e. the two functors

?∨, ∨? : C → Copp

that are induced by the left and right dualities coincide.
Thus for any object V ∈C there exists an object V ∨= ∨V ∈C together with morphisms

bV : 1 → V ⊗V ∨ and dV : V ∨⊗ V → 1

(right duality) and
b̃V : 1 → V ∨⊗ V and d̃V : V ⊗V ∨ → 1

(left duality), obeying the relations

(idV ⊗ dV ) ◦ (bV ⊗ idV ) = idV and (dV ⊗ idV ∨) ◦ (idV ∨ ⊗ bV ) = idV ∨

and analogous relations for the right duality, and the duality functors not only coincide on
objects, but also on morphisms, i.e.

(dV ⊗ idU∨) ◦ (idV ∨ ⊗ f ⊗ idU∨) ◦ (idV ∨ ⊗ bU) = (idU∨ ⊗ d̃V ) ◦ (idU∨ ⊗ f ⊗ idV ∨) ◦ (b̃U ⊗ idV ∨)

for all morphisms f : U→ V .

To give an example, the category of finite-dimensional left modules over any finite-
dimensional complex Hopf algebra H is a finite tensor category. We also note the following
properties of tensor categories which are direct consequences of the definition:

1. The tensor product functor ⊗ is exact in both arguments.

2. For any object U ∈C there is a cyclic trace tr : End(U)→End(1), and thus a dimension
dim(U) = tr(idU).

The categories of our interest have in addition a braiding:
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Definition 1.3.

A braiding on a tensor category C is a natural isomorphism

c : ⊗ → ⊗opp

that is compatible with the tensor product, i.e. satisfies

cU⊗V,W = (cU,W ⊗ idV ) ◦ (idU ⊗ cV,W ) and cU,V⊗W = (idV ⊗ cU,W ) ◦ (cU,V ⊗ idW ) .

We choose a set {Ui}i∈I of representatives for the isomorphism classes of simple objects and
take the tensor unit to be the representative of its isomorphism class, writing 1=U0.

We are now ready to formulate the notion of a modular tensor category. Our definition will,
however, still be preliminary, as it has the disadvantage of being sensible only for semisimple
categories.

Definition 1.4.

A semisimple modular tensor category is a semisimple finite braided tensor category such that
the matrix (Sij)i,j∈I with entries

Sij := tr(cUj ,Ui
◦ cUi,Uj

)

is non-degenerate.

Two remarks are in order:

Remarks 1.5.

1. The representation categories of several algebraic structures give examples of semisimple
modular tensor categories:

(a) Left modules over connected factorizable ribbon weak Hopf algebras with Haar integral
over an algebraically closed field [NTV].

(b) Local sectors of a finite µ-index net of von Neumann algebras on R, if the net is strongly
additive and split [KLM].

(c) Representations of selfdual C2-cofinite vertex algebras with an additional finiteness con-
dition on the homogeneous components and which have semisimple representation cat-
egories [Hu].

2. By the results of Reshetikhin and Turaev [RT, T], every C-linear semisimple modular tensor
category C provides a three-dimensional topological field theory, i.e. a tensor functor

tftC : cobordC
3,2 → Vectfin(C) .

Here cobordC
3,2 is a category of three-dimensional cobordisms with embedded ribbon graphs

that are decorated by objects and morphisms of C.
There are also various results for the case of non-semisimple modular categories. We refer
to [He, L1, V] for the construction of three-manifold invariants, to [L1] for the construc-
tion of representations of mapping class groups, and to [KL] for an attempt to unify these
constructions in terms of a topological quantum field theory defined on a double category of
manifolds with corners.
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2 Hopf algebras, coends and modular tensor categories

Our goal is to study some algebraic and representation theoretic structures in tensor categories
of the type introduced above. To simplify the exposition, we suppose that we have replaced the
tensor category C by an equivalent strict tensor category.

Definition 2.1.

A (unital, associative) algebra in a (strict) tensor category C is a triple consisting of an object
A∈C, a multiplication morphism m∈Hom(A⊗A,A) and a unit morphism η∈Hom(1, A),
subject to the relations

m ◦ (m⊗ idA) = m ◦ (idA⊗m) and m ◦ (η⊗ idA) = idA = m ◦ (idA⊗ η) .

which express associativity and unitality.
Analogously, a coalgebra in C is a triple consisting of an object C, a comultiplication
∆: C→C ⊗C and a counit ε : C→ 1 obeying coassociativity and counit conditions.

Similarly one generalizes other basic notions of algebra to the categorical setting and in-
troduces modules, bimodules, comodules, etc. (For a more complete exposition we refer to
[FRS1].)

To proceed we observe that the multiplication of an algebra A endows both A itself and
A⊗A with the structure of an A-bimodule. Further, if the category C is braided, then the
object A⊗A can be endowed with the structure of a unital associative algebra by taking the
morphisms (m⊗m) ◦ (idA⊗ cA,A⊗ idA) as the product and η⊗ η as the counit.

Definition 2.2.

Let C be a tensor category and A∈C an object which is endowed with both the structure
(A,m, η) of a unital associative algebra and the structure (A,∆, ε) of a counital coassociative
coalgebra.

1. (A,m, η,∆, ε) is called a Frobenius algebra iff ∆: A→A⊗A is a morphism of bimodules.

2. (A,m, η,∆, ε) is called a bialgebra iff ∆: A→A⊗A is a morphism of unital algebras.

3. A bialgebra with an antipode S: A→A (with properties analogous to the classical case) is
called a Hopf algebra.

To construct concrete examples of such structures, we recall a few notions from category
theory.

Definition 2.3.

Let C and D be categories and F : Copp ×C→D be a functor.

1. For B an object of D, a dinatural transformation ϕ : F ⇒B is a family of morphisms
ϕX : F (X,X)→B for every object X ∈C such that the diagram

F (Y,X)
F (idY ,f)

//

F (f,idX)

��

F (Y, Y )

ϕ
Y

��

F (X,X)
ϕ
X

// B

commutes for all morphisms X
f
→Y in C.
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2. A coend for the functor F is a dinatural transformation ι : F ⇒A with the universal property
that any dinatural transformation ϕ : F ⇒B uniquely factorizes:

F (Y,X)
F (idY ,f)

//

F (f,idX)

��

F (Y, Y )

ιY

��

ϕY





F (X,X)

ϕX

22

ιX
// A

""F

F

F

F

F

B

If the coend exists, it is unique up to unique isomorphism. It is denoted by
∫ X

F (X,X).

The universal property implies that a morphism with domain
∫ X

F (X,X) can be specified by
a dinatural family of morphisms X∨ ⊗X → B for each object X ∈C.

We are now ready to formulate the following result.

Theorem 2.4. [L2]
In a finite braided tensor category C, the coend

H :=

∫ X

X∨ ⊗X

of the functor
F : Copp ×C → C

(U, V ) 7→ U∨ ⊗V

exists, and it has a natural structure of a Hopf algebra in C.

Proof:

For a proof we refer e.g. to [V]. Here we only indicate how the structural morphisms of the
Hopf algebra are constructed. Owing to the universal property, the counit εH : H→1 can be
specified by the dinatural family

εH ◦ ιX = dX : X∨⊗X → 1

of morphisms. Similarly, the coproduct is given by the dinatural family

∆H ◦ ιH = (ιX ⊗ ιX) ◦ (idX∨ ⊗ bX ⊗ idX) : X∨⊗X → H⊗H .

It should be appreciated that the braiding does not enter in the coalgebra structure of H.
It does enter in the product, though. We refrain from writing out the product as a for-
mula. Instead, we use the graphical formalism [JS, FRS1] to display all structural morphisms
(mH,∆H, ηH, ǫH, SH) of the Hopf algebra H. More precisely, we display dinatural families of
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morphisms so that the identities apply to all X, Y ∈C:

X∨X

H

mH

Y∨ Y

ι
X

ι
Y

=

γX,Y idY |X

X∨X

H

Y∨ Y

(Y ⊗X)∨ Y ⊗X

H H

X∨X

∆H =

H H

X∨ X

H

ηH

=

H εH

X∨ X

=

X∨ X

SH

H

=

H

X∨∨ X∨

(Here γX,Y is the canonical identification of X∨⊗Y ∨ with (Y⊗X)∨, and idX|Y is the one of
idX ⊗ idY with idX⊗Y .) �

An explicit description of the Hopf algebra H∈C is available in the following specific situ-
ations:

Examples 2.5.

1. For C=H-mod the category of left modules over a finite-dimensional Hopf algebra H, the
coend H =

∫ X
X∨ ⊗X is the dual space H∗=Homk(H, k) endowed with the coadjoint rep-

resentation. The structure morphism for the coend for a module M ∈H-mod is

ιM : M∨ ⊗M → H∗

m̃⊗m 7→ (h 7→ 〈m̃, h.m〉) .

For more details see [V, Sect. 4.5].

2. If the finite tensor category C is semisimple, then the Hopf algebra decomposes as an object
as H=

⊕
i∈I U

∨
i ⊗Ui, see [V, Sect. 3.2].

The Hopf algebra in question has additional structure: it comes with an integral and with
a Hopf pairing.

Definition 2.6.

A left integral of a bialgebra (H,m, η,∆, ε) in C is a non-zero morphism µl ∈Hom(1, H) satis-
fying

m ◦ (idH ⊗µl) = µl ◦ ε .

A right cointegral of H is a non-zero morphism λr ∈Hom(H, 1) satisfying

(λ⊗ idH) ◦∆ = η ◦ λ .

Right integrals µr and left cointegrals λl are defined analogously.
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The Hopf algebra H in any finite braided tensor category has left and right integrals, as can
be shown [L2] by a generalization of the classical argument of Sweedler that an integral exists
for any finite-dimensional Hopf algebra. If C is semisimple, then the integral of H can be given
explicitly [Ke, Sect. 2.5]:

µl = µr =
⊕

i∈I

dim(Ui) bUi
.

Remarks 2.7.

1. If the left and right integrals of H coincide, then the integral can be used as a Kirby el-
ement and provides invariants of three-manifolds [V]. If the category C is the category of
representations of a finite-dimensional Hopf algebra, this is the Lyubashenko [L1] invariant.

2. The category C is semisimple if and only if the morphism ε ◦µ∈Hom(1, 1) does not vanish,
i.e. iff the constant D2 of proportionality in

ε ◦ µ = D2 id1

is non-zero. (This generalizes Maschke’s theorem.) This constant, in turn, which in the
semisimple case (with µl=µr normalized as above) has the value D2=

∑
i∈I(dimUi)

2, cru-
cially enters the normalizations in the Reshetikhin-Turaev construction of topological field
theories (see e.g. chapter II of [T]).
Invariants based on nonsemisimple categories, like the Hennings invariant, vanish on many
three-manifolds. This can be traced back to the vanishing of ε ◦µ [CKS].

3. Any Hopf algebra H in C that has a left integral µ and a right cointegral λ with λ ◦µ 6=0 is
naturally also a Frobenius algebra, with the same algebra structure.

Definition 2.8.

A Hopf pairing of a Hopf algebra H in C is a morphism

ωH : H ⊗H → 1

such that

ωH ◦ (m⊗ idH) = (ωH ⊗ωH) ◦ (idH ⊗ cH,H ⊗ idH) ◦ (idH ⊗ idH ⊗∆) ,

ωH ◦ (idH ⊗m) = (ωH ⊗ωH) ◦ (idH ⊗ c−1
H,H ⊗ idH) ◦ (∆⊗ idH ⊗ idH)

and ωH ◦ (η⊗ idH) = ε = ωH ◦ (idH ⊗ η) .

As one easily checks, a non-degenerate Hopf pairing gives an isomorphism H→H∨ of Hopf
algebras.

The dinatural family of morphisms

(dX ⊗ dY ) ◦ [idX∨ ⊗ (cY ∨,X ◦ cX,Y ∨)⊗ idY ]

induces a bilinear pairing ωH : H⊗H→ 1 on the coend H=
∫ X

X∨ ⊗X of a finite braided
tensor category. It endows [L1] the Hopf algebra H with a symmetric Hopf pairing.

We are now finally in a position to give a conceptual definition of a modular finite tensor
category without requiring it to be semisimple:
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Definition 2.9.

A modular finite tensor category is a braided finite tensor category for which the Hopf pairing
ωH is non-degenerate.

Example 2.10.

The category H-mod of left modules over a finite-dimensional factorizable ribbon Hopf algebra
H is a modular finite tensor category [LM, L1].

One can show [L2, Thm. 6.11] that if C is modular in the sense of definition 2.9, then the
left integral and the right integral of H coincide.

As the terminology suggests, there is a relation with the modular group SL(2,Z). To see
this, we will now obtain elements S, T ∈End(H) that satisfy the relations for generators of
SL(2,Z).

Recall the notion of the center Z(C) of a category as the algebra of natural endotransforma-
tions of the identity endofunctor of C [Ma]. Given such a natural transformation (φX)X∈C with
φX ∈End(X), one checks that (ιX ◦ (idX∨ ⊗φX)X∈C is a dinatural family, so that the universal

property of the coend gives us a unique endomorphism φH of H such that the diagram

X∨⊗X
id⊗φ

X
//

ιX

��

X∨ ⊗X

ιX

��

H
φH

//_________ H

commutes, leading to an injective linear map Z(C)→End(H).
Since H has in particular the structure of a coalgebra and 1 the structure of an algebra, the

vector space Hom(H, 1) has a natural structure of a k-algebra. Concatenating with the counit
εH gives a map

Z(C) −→ End(H)
(εH)

∗

−−−→ Hom(H, 1) ,

which can be shown [Ke, Lemma4] to be an isomorphism of k-algebras. The vector space on the
right hand side is dual to the vector space Hom(1,H), of which one can think as the appropriate
substitute for the space of class functions. Hence Hom(1,H) would be a natural starting point
for constructing a vector space assigned to the torus T2 by a topological field theory based on
C.

If the category C is a ribbon category, we have the ribbon element ν ∈Z(C). We set

TH := νH ∈ End(H) .

Pictorially,

νH

X∨ X

H

=

X∨ X

H
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Another morphism Σ : H⊗H→H is obtained from the following family of morphisms which
is dinatural both in X and in Y :

Σ

X∨ X Y∨ Y

H

:=

X∨ X Y∨ Y

H

Composing this endomorphism of H with a left or right integral µ : 1→H one arrives at an
endomorphism

SH := Σ ◦ (idH⊗µ) ∈ End(H) .

For ξ ∈ k
×, denote by kξSL(2,Z) the twisted group algebra of SL(2,Z) with relations S4=1

and (ST )3= ξ S2. The previous construction and the following result are due to Lyubashenko.

Theorem 2.11. [L2, Sect. 6]
Let C be modular. Then the two-sided integral of H can be normalized in such a way that the
endomorphisms SH and TH of H provide a morphism of algebras

kξSL(2,Z) −→ End(H)

for some ξ ∈ k
×.

Since for every U ∈C the morphism space Hom(U,H) is, by push-forward, a left module
over the algebra End(H), we obtain this way projective representations of SL(2,Z) on all
vector spaces Hom(U,H).

To set the stage for the results in the next section, we consider the map

Obj(C) → Hom(1,H)

U 7→ χU

with
χU : 1

bU−→ U∨ ⊗U
ι
U−→ H .

It factorizes to a morphism of rings

K0(C) → Hom(1,H) = tftC(T
2) .

If the category C is semisimple, then Hom(1,H)∼=
⊕

i∈I Hom(1, U∨
i ⊗Ui), so that {χUi

}i∈I
constitutes a basis of the vector space Hom(1,H). If C is not semisimple, these elements are
still linearly independent, but they do not form a basis any more. Pseudo-characters [Mi, GT]
have been proposed as a (non-canonical) complement of this linearly independent set.

3 Frobenius algebras and braided induction

In this section we show that symmetric special Frobenius algebras (i.e. Frobenius algebras with
two further properties, to be defined below) in a modular tensor category allow one to specify
interesting structure related to the SL(2,Z)-representation that we have just explained.
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Given an algebra A in a braided (strict) tensor category, we consider the two tensor functors

α±
A : C → A-bimod

U 7→ α±
A (U)

which assign to an object U ∈ C the bimodule (A⊗U, ρl, ρr) for which the left action is given
by multiplication and the right action by multiplication composed with a braiding,

ρl = m⊗ idU ∈ Hom(A⊗A⊗U,A⊗U)

and ρr = (m⊗ idU) ◦ (idA⊗ c±1
U,A) .

We call these functors braided induction functors. They have been introduced, under the name
α-induction, in operator algebra theory [LR, X, BE]. For more details in a category-theoretic
framework we refer to [O, Sect. 5.1].

We pause to recall that [VZ] an Azumaya algebra A is an algebra for which the two functors
α±
A are equivalences of tensor categories. This should be compared to the textbook definition

of an Azumaya algebra in the tensor category of modules over a commutative k-algebra A,
requiring in particular the morphism

ψA : A⊗Aopp → End(A)

a⊗ a′ 7→ (x 7→ a ·x · a′)

to be an isomorphism of algebras. Indeed, in this situation for an Azumaya algebra A one has
the following chain of equivalences:

A-bimod
∼

−→ A⊗Aopp-mod
ψA

−−→ End(A)-mod
Morita

−−−−−→ Vect(k) .

We now introduce the properties of an algebra A to be symmetric and special.

Definition 3.1.

Let C be a tensor category.

1. For C enriched over the category of k-vector spaces, a special algebra in C is an object A
of C that is endowed with an algebra structure (A,m, η) and a coalgebra structure (A,∆, ε)
such that

ε ◦ η = β1 id1 and m ◦∆ = βA idA

with invertible elements β1, βA ∈ k
×.

2. A symmetric algebra in C is an algebra (A,m, η) together with a morphism ε∈Hom(A, 1)
such that the two morphisms

Φ1 := [(ε ◦m)⊗ idA∨ ] ◦ (idA⊗ bA) ∈ Hom(A,A∨) and (1)

Φ2 := [idA∨ ⊗ (ε ◦m)] ◦ (b̃A⊗ idA) ∈ Hom(A,A∨) (2)

are identical.

Special algebras are in particular separable, and as a consequence their categories of modules
and bimodules are semisimple. A class of examples of special Frobenius algebras is supplied by
the Frobenius algebra structure on a Hopf algebra H in C, provided H is semisimple.
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We now consider the case of a semisimple modular tensor category C and introduce for any
algebra A in C the square matrix (Zij)i,j∈I with entries

Zij(A) := dimk HomA|A(α
−
A (Ui), α

+
A (U

∨
j )) ,

where HomA|A stands for homomorphisms of bimodules. Identifying A-bimod with the tensor
category of module endofunctors of A-mod, one sees that the non-negative integers Zij(A) only
depend on the Morita class of A.

In this setting, and in case that the algebra A is symmetric and special, we can make the
following statements.

Theorem 3.2. [FRS1, Thm. 5.1(i)]
For C a semisimple modular tensor category and A a special symmetric Frobenius algebra in
C, the morphism ∑

i,j∈I

Zij(A)χi⊗χj ∈ Hom(1,H)⊗k Hom(1,H) (3)

is invariant under the diagonal action of SL(2,Z).

Remarks 3.3.

1. In conformal field theory, the expression (3) has the interpretation of a partition function
for bulk fields.

2. For semisimple tensor categories based on the sl(2) affine Lie algebra, an A-D-E pattern
appears [KO].

We finally summarize a few other results that hold under the assumption that C is a semisim-
ple modular tensor category and A a symmetric special Frobenius algebra in C. To formulate
them, we need the following ingredients: The fusion algebra

RC := K0(C)⊗Z k

is a separable commutative algebra with a natural basis { [Ui] }i∈I given by the isomorphism
classes of simple objects. The matrix S introduced in definition 1.4 provides a natural bijection
from the set of isomorphism classes of irreducible representations of RC to I.

Theorem 3.4. [FRS1, Thm. 5.18]
For any special symmetric Frobenius algebra A the vector space K0(A-mod)⊗Z k is an RC-
module. The multiset Exp(A-mod) that contains the irreducible RC-representations, with their
multiplicities in this RC-module, can be expressed in terms of the matrix Z(A):

Exp(A-mod) = Exp(Z(A)) := {i∈ I with multiplicity Zii(A)} .

The observation that the vector space K0(A-mod)⊗Z k has a natural basis provided by the
classes of simple A-modules gives

Corollary 3.5.

The number of isomorphism classes of simple A-modules equals tr(Z(A)).

The category A-bimod of A-bimodules has the structure of a tensor category. From the fact
that A is a symmetric special Frobenius algebra, it follows [FS] that A-bimod inherits left and
right dualities from C. Hence the tensor product on A-bimod is exact and thus K0(A-bimod)
is a ring. The corresponding k-algebra can again be described in terms of the matrix Z(A):

11



Theorem 3.6. [O, FRS2]
There is an isomorphism

K0(A-bimod)⊗Z k
∼=

⊕

i,j∈I

MatZij(A)(k) ,

of k-algebras, with Matn(k) denoting the algebra of k-valued n×n-matrices.

Corollary 3.7.

The number of isomorphism classes of simple A-bimodules equals tr(ZZt).

Theorem 3.8. [FFRS, Prop. 4.7]
Any A-bimodule is a subquotient of a bimodule of the form α+

A (U)⊗A α
−
A (V ) for some pair of

objects U, V ∈C.

4 Outlook

We conclude this brief review with a few comments. First, all the results about algebra and
representation theory in braided tensor categories that we have presented above are motivated
by a construction of correlation functions of a rational conformal field theory as elements of
vector spaces which are assigned by a topological field theory to a two-manifold. For details of
this construction we refer to [SFR] and the literature given there.

In the conformal field theory context the matrix Z describes the partition function of bulk
fields. The three-dimensional topology involved in the RCFT construction provides in particular
a motivation for using the different braidings which lead to the functors α+

A and α−
A as well as

in the definition of Z(A).
To extend the results obtained in connection with rational conformal field theory to non-

semisimple finite braided tensor categories remains a major challenge. Intriguing first results
include, at the level of chiral data, a generalization of the Verlinde formula (see [GT] and
references given there), and at the level of partition functions, the bulk partition functions for
logarithmic conformal field theories in the (1, p)-series found in [GR].
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[KLM] Y. Kawahigashi, R. Longo, and M. Müger, Multi-interval subfactors and modularity of
representations in conformal field theory, Commun.Math. Phys. 219 (2001) 631–669
[math.OA/9903104]

[Ke] T. Kerler, Genealogy of nonperturbative quantum-invariants of 3-manifolds: The sur-
gical family, in: Quantum Invariants and Low-Dimensional Topology, J.E. Andersen
et al. (Dekker, New York 1997), p. 503–547 [q-alg/9601021]

[KL] T. Kerler and V.V. Lyubashenko, Non-Semisimple Topological Quantum Field The-
ories for 3-Manifolds with Corners [Springer Lecture Notes in Mathematics 1765]
(Springer Verlag, New York 2001)

13



[KO] A.A. Kirillov and V. Ostrik, On a q-analog of McKay correspondence and the
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