The Erdős-Pósa property for clique minors in highly connected graphs

Reinhard Diestel Ken-ichi Kawarabayashi ${ }^{\ddagger}$ Paul Wollan ${ }^{\text {§ }}$

Abstract

We prove the existence of a function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that, for all $p, k \in \mathbb{N}$, every $(k(p-3)+14 p+14)$-connected graph either has k disjoint K_{p} minors or contains a set of at most $f(p, k)$ vertices whose deletion kills all its K_{p} minors. For fixed $p \geq 5$, the connectivity bound of about $k(p-3)$ is smallest possible, up to an additive constant: if we assume less connectivity in terms of k, there will be no such function f.

Key Words: Erdős-Pósa, clique minor, packing, disjoint cycles

1 Introduction

A set of graphs \mathcal{C} has the Erdös-Pósa property if there exists a function $f=f(k)$ such that for all $k \geq 1$, any graph G either contains k vertex disjoint subgraphs in \mathcal{C}, or there exists a subset of vertices $X \subseteq V(G)$ with $|X| \leq f(k)$ such that every subgraph of G in \mathcal{C} intersects a vertex of X. The name derives from an article of Erdős and Pósa [6] where they show that the set \mathcal{C} of cycles has this property.

Let G and X be graphs. An extension of X is a graph that can be contracted to X. An instance of an X-minor in G is a subgraph H of G isomorphic to an extension of X. The set \mathcal{C} of cycles can be thought of as the set of extensions of K_{3}, the complete graph of three vertices. Thus the result of Erdős and Pósa can be reformulated as follows: there exists a function $f(k)$ such that any graph G either contains k disjoint instances of K_{3} as a minor, or there exists a subset of vertices $X \subseteq V(G)$ with $|X| \leq f(k)$ such that $G-X$ does not contain K_{3} as a minor. For any graph H, let \mathcal{C}_{H} be the set of extensions of H. Robertson and Seymour [10] have exactly characterized which graphs H have the property that the set \mathcal{C}_{H} has the Erdős-Pósa property: the set \mathcal{C}_{H} has the Erdős-Pósa property if and only if H is planar.

The purpose of this article is to prove the following theorem.
Theorem 1.1 There exists an $\mathbb{N}^{2} \rightarrow \mathbb{N}$ function f such that, for all $p, k \in \mathbb{N}$, every $(k(p-3)+14 p+14)$-connected graph G either contains k disjoint instances of a K_{p}-minor or has a set X of at most $f(p, k)$ vertices such that $G-X$ has no K_{p}-minor.

[^0]We also show that the connectivity bound in Theorem 1.1 is best possible, up to an additive constant, for fixed $p \geq 5$. Indeed for each p we shall find a constant c_{p} such that for all $k, n \in \mathbb{N}$ there are $\left(k(p-3)-c_{p}\right)$-connected graphs that do not contain k disjoint instances of K_{p} as a minor but in which no set of at most n vertices kills all their K_{p} minors. Hence it is not possible to define a function $f(p, k)$ as in Theorem 1.1 that makes the theorem true for all $\left(k(p-3)-c_{p}\right)$-connected graphs.

We will need the following definitions. We write $X \preccurlyeq G$ to express that X is a minor of G. Given an extension H of an X minor in G, a branch set the X minor is a maximal subset of vertices of H which is contracted to a single vertex when contracting H to X. By $k X$ we denote the disjoint union of k copies of a graph X. A path starting in $x \in X$ and ending in $y \in Y$ is an $X-Y$ path if x is its only vertex in X and y is its only vertex in Y. A set \mathcal{P} of disjoint paths is a linkage. If it consists of $X-Y$ paths and these meet all of $X \cup Y$, it is an $X-Y$ linkage. (Then $|X|=|\mathcal{P}|=|Y|$.) Two linkages \mathcal{P} and \mathcal{Q} of the same order are equivalent if for every $P \in \mathcal{P}$ there exists a (corresponding) path $Q \in \mathcal{Q}$ such that P and Q have the same endpoints.

We recall that a tree decomposition of a graph G is a pair (T, \mathcal{W}) where T is a tree and $\mathcal{W}=\left\{W_{t} \subseteq V(G): t \in V(T)\right\}$ is a collection of subsets of the vertices of G indexed by the vertices of T. Moreover, the collection of subsets \mathcal{W} satisfies the following:

- $\bigcup_{t \in V(T)} W_{t}=V(G)$,
- for every edge $e=u v$ in $E(G)$, there exists $t \in V(T)$ such that $v, u \in W_{t}$, and
- for all $v \in V(G)$, the vertices $\left\{t \in V(T): v \in W_{t}\right\}$ induce a connected subtree of T.

The width of the decomposition (T, \mathcal{W}) is $\max _{t \in V(T)}\left|W_{t}\right|-1$, and the tree-width of a graph G is the minimum width of a tree decomposition of G. A path decomposition is simply a tree decomposition where the graph T is a path. Given a path decomposition (P, \mathcal{W}) where the vertices of P are $v_{1}, v_{2}, \ldots, v_{k}$ and occur in that order on the path, we will often simplify the notation and refer to the path decomposition as $\left(W_{1}, W_{2}, \ldots, W_{k}\right)$ where $W_{v_{i}}=: W_{i}$ for $1 \leq i \leq k$.

For any further notions not covered here we refer to [5].
The paper is structured as follows. We begin in Section 2 by proving our theorem for graphs of small tree-width. For graphs of large tree-width we shall use a structure theorem or Robertson and Seymour, although we will follow the notation and statement of 4]; this is explained in Section 3. At the end of Section 3 we give a more detailed overview of how the proof then proceeds until the end of Section 7 In Section 8 we give our construction showing that the connectivity bound in Theorem 1.1 is tight.

2 Proof of Theorem 1.1

The proof of Theorem 1.1 proceeds by considering separately the cases of when the treewidth of the graph is large or small. In this, we follow much of the recent work analyzing the existence of clique minors in large graphs. See [1, 2, 3, 7]. The bounded tree-width case is easy:

Theorem 2.1 For every $w \in \mathbb{N}$ there is a function $f_{w}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that, for all $p, k \in \mathbb{N}$, every graph G of tree-width $<w$ either contains k disjoint instances of a K_{p} minor or has a set X of at most $f_{w}(p, k)$ vertices such that $G-X$ has no K_{p}-minor.

Proof. For fixed w and p we define $f_{w}(p, k)$ recursively for $k=1,2, \ldots$ Clearly, $f_{w}(p, 1):=0$ satisfies the theorem for $k=1$. Given $k \geq 2$, let

$$
f_{w}(p, k):=2 f_{w}(p, k-1)+w .
$$

To see that this satisfies the theorem, let G be given, with a tree-decomposition $\left(T,\left(V_{t}\right)_{t \in T}\right)$ of width $<w$. Direct the edges $t_{1} t_{2}$ of T as follows. Let T_{1}, T_{2} be the components of $T-t_{1} t_{2}$ containing t_{1} and t_{2}, respectively, and put

$$
G_{1}:=G\left[\bigcup_{t \in T_{1}}\left(V_{t} \backslash V_{t_{2}}\right)\right] \quad \text { and } \quad G_{2}:=G\left[\bigcup_{t \in T_{2}}\left(V_{t} \backslash V_{t_{1}}\right)\right] .
$$

Direct the edge $t_{1} t_{2}$ towards G_{i} if G_{i} has a K_{p}-minor, thereby giving $t_{1} t_{2}$ either one or both or neither direction.

If every edge of T receives at most one direction, we follow these to a node $t \in T$ such that no edge at t in T is directed away from t. As K_{p} is connected, this implies that V_{t} meets every instance of a K_{p} minor in G [5, Lemma 12.3.1.]. This completes the proof with $X=V_{t}$, since $\left|V_{t}\right| \leq w \leq f_{w}(p, k)$ by the choice of our tree-decomposition.

Suppose now that T has an edge $t_{1} t_{2}$ that received both directions. For each $i=1,2$ let us ask if G_{i} has a set X_{i} of at most $f_{w}(p, k-1)$ vertices such that $G_{i}-X_{i}$ has no K_{p}-minor. If this is the case for both i, then as earlier there is no K_{p}-minor in $G-X$ for $X:=X_{1} \cup X_{2} \cup\left(V_{t_{1}} \cap V_{t_{2}}\right)$.

Suppose then that G_{1}, say, has no such set X_{1} of vertices. By the induction hypothesis, G_{1} contains $(k-1)$ disjoint instances of a K_{p}-minor. Since $t_{1} t_{2}$ was also directed towards t_{2}, there is another such instance in G_{2}. This gives the desired total of k disjoint instances of a K_{p}-minor in G.

The bulk of the work in proving Theorem 1.1 will be the case of large tree-width:
Theorem 2.2 For all $p, k \in \mathbb{N}$ there exists $w=w(p, k) \in \mathbb{N}$ such that every $(k(p-3)+14 p+$ $14)$-connected graph of tree-width at least w contains k disjoint instances of a K_{p} minor.

Proof of Theorem 1.1, assuming Theorems 2.1 and 2.2. Given $p, k \in \mathbb{N}$ define $f(p, k):=f_{w}(p, k)$, where $w=w(p, k)$ is provided by Theorem 2.2 and f_{w} by Theorem 2.1. Let G be a $(k(p-3)+14 p+14)$-connected graph. If G has tree-width $<w$, the assertion which Theorem 1.1 makes about G is tantamount to that of Theorem 2.1. If G has tree-width at least w, the assertion follows from Theorem 2.2.

Given Theorem 2.2, one might ask if a stronger statement might be true: whether there exists a constant c such that every sufficiently large $(k(p-3)+c p)$-connected graph contains k disjoint instances of a K_{p} minor. However, the bound on the connectivity is not sufficient for such a strengthening. Consider the complete bipartite graph $K_{k(p-2)+c p, T}$ for large values of T and some fixed constant c. Such a graph cannot contain k disjoint instances of K_{p} as a minor (assuming k is chosen to be at least $c p+1$). However, the graph has tree-width $k(p-2)+c p$, i.e. the tree-width is bounded with respect to k and p.

The proof of Theorem 2.2 will occupy us until the end of Section 7 Let $p, k \in \mathbb{N}$ be given, and fixed until the end of the proof of Theorem 2.2, Several parameters defined in the course of the proof will depend implicitly on this choice of p and k.

Given positive integers ℓ and n, let us define the ℓ-ladder $L(\ell)$ and the $f a n ~ F(\ell, n)$ as follows. Let $P=u_{1} \ldots u_{\ell}$ and $Q=v_{1} \ldots v_{\ell}$ be disjoint paths, and let $L(\ell)$ be obtained from their union by adding all the edges $u_{i} v_{i}$. To obtain $F(\ell, n)$ from $L(\ell)$, add n independent vertices w_{1}, \ldots, w_{n}, and join each of these to all the vertices of Q.

It is easy to see that $F(p, p-3)$ has a K_{p} minor: with $p-3$ two-vertex branch sets of the form $\left\{v_{i}, w_{i}\right\}$, and three further branch sets $\left\{v_{p-2}\right\},\left\{v_{p-1}\right\}$, and $\left\{v_{p}, u_{p}, u_{p-1}, u_{p-2}\right\}$. Consequently, $F(k p, k(p-3))$ contains k disjoint instances of a K_{p} minor. It will thus suffice for our proof of Theorem 2.2 to find a $F(k p, k(p-3))$-minor in the graph under consideration.

3 The excluded minor theorem

In this section, we present a structure theorem for graphs with no large clique minor of Robertson and Seymour [13]. We follow the notation and exact statement in 4].

A vortex is a pair $V=(G, \Omega)$, where G is a graph and $\Omega=: \Omega(V)$ is a linearly ordered set $\left(w_{1}, \ldots, w_{n}\right)$ of vertices in G. These vertices are the society vertices of the vortex; the number n is its length. We do not always distinguish notationally between a vortex and its underlying graph; for example, a subgraph of V is just a subgraph of G. Also, we will often use Ω to refer both to the linear order of the vertices w_{1}, \ldots, w_{n} as well as the set of vertices $\left\{w_{1}, \ldots, w_{n}\right\}$.

A path-decomposition $\mathcal{D}=\left(X_{1}, \ldots, X_{m}\right)$ of G is a decomposition of V if $m=n$ and $w_{i} \in X_{i}$ for all i. The depth of the vortex V is the minimum width of a path-decomposition of G that is a decomposition of V.

The adhesion of our decomposition \mathcal{D} is the maximum value of $\left|X_{i-1} \cap X_{i}\right|$, taken over all $1<i \leq n$. Write $Z_{i}:=\left(X_{i-1} \cap X_{i}\right) \backslash \Omega$, for all $1<i \leq n$. Then, \mathcal{D} is linked if
i. all these Z_{i} have the same size;
ii. there are $\left|Z_{i}\right|$ disjoint $Z_{i}-Z_{i+1}$ paths in $G\left[X_{i}\right]-\Omega$, for all $1<i<n$;
iii. $X_{i} \cap \Omega=\left\{w_{i}, w_{i+1}\right\}$ for all $i=1, \ldots, n$, where $w_{n+1}:=w_{n}$.

Note that the union of those $Z_{i}-Z_{i+1}$ paths is a disjoint union of $X_{1}-X_{n}$ paths in G; we call the set of these paths a linkage of V with respect to $\left(X_{1}, \ldots, X_{m}\right)$. We define the (linked) adhesion of a vortex to be the minimum adhesion of a (linked) decomposition of that vortex; if it has no linked decomposition, its linked adhesion is infinite.

For a positive integer α, a graph G is α-nearly embeddable in a surface Σ if there is a subset $A \subseteq V(G)$ with $|A| \leq \alpha$ such that there are natural numbers $\alpha^{\prime} \leq \alpha$ and $n \geq \alpha^{\prime}$ for which $G-A$ can be written as the union of $n+1$ graphs G_{0}, \ldots, G_{n} such that the following holds:
i. For all $1 \leq i \leq n$ and $\Omega_{i}:=V\left(G_{i} \cap G_{0}\right)$, the pair $\left(G_{i}, \Omega_{i}\right)=: V_{i}$ is a vortex, and for $1 \leq i<j \leq n, G_{i} \cap G_{j} \subseteq G_{0}$.
ii. The vortices $V_{1}, \ldots, V_{\alpha^{\prime}}$ are disjoint and have adhesion at most α; we denote this set of vortices by \mathcal{V}.
iii. The vortices $V_{\alpha^{\prime}+1}, \ldots, V_{n}$ have length at most 3 ; we denote this set of vortices by \mathcal{W}.
iv. There are closed discs in Σ with disjoint interiors D_{1}, \ldots, D_{n} and an embedding $\sigma: G_{0} \hookrightarrow \Sigma-\bigcup_{i=1}^{n} D_{i}$ such that $\sigma\left(G_{0}\right) \cap \partial D_{i}=\sigma\left(\Omega_{i}\right)$ for all i and the generic linear ordering of Ω_{i} is compatible with the natural cyclic ordering of its image (i.e., coincides with the linear ordering of $\sigma\left(\Omega_{i}\right)$ induced by $[0,1)$ when ∂D_{i} is viewed as a suitable homeomorphic copy of $[0,1] /\{0,1\})$. For $i=1, \ldots, n$ we think of the disc D_{i} as accommodating the (unembedded) vortex V_{i}, and denote D_{i} as $D\left(V_{i}\right)$.

We call $\left(\sigma, G_{0}, A, \mathcal{V}, \mathcal{W}\right)$ an α-near embedding of G in Σ.
Let G_{0}^{\prime} be the graph resulting from G_{0} by joining any two unadjacent vertices $u, v \in G_{0}$ that lie in a common vortex $V \in \mathcal{W}$; the new edge $u v$ of G_{0}^{\prime} will be called a virtual edge. By embedding these virtual edges disjointly in the discs $D(V)$ accommodating their vortex V, we extend our embedding $\sigma: G_{0} \hookrightarrow \Sigma$ to an embedding $\sigma^{\prime}: G_{0}^{\prime} \hookrightarrow \Sigma$. We shall not normally distinguish G_{0}^{\prime} from its image in Σ under σ^{\prime}.

The more widely known version of the excluded minor theorem of Robertson and Seymour ([12], see also [5]) decomposes a graph not containing a fixed H as a minor into a tree-like structure of α-nearly embeddable graphs, where the value of α depends solely on the graph H. We will need a variation of the structure theorem which ensures both that the vortices are linked and that there is a large grid-like graph embedded in the surface when the graph is assumed to have large tree width.

A vortex $\left(G_{i}, \Omega_{i}\right)$ is properly attached to G_{0} if, for every pair of distinct vertices $x, y \in \Omega_{i}$, there is a path $P_{x y}$ in G_{i} with endvertices x and y and all inner vertices in $G_{i}-\Omega_{i}$ and further, for every choice of three distinct vertices $x, y, z \in \Omega_{i}$, the paths $P_{x y}$ and $P_{y z}$ can be chosen internally disjoint.

The distance of two points $x, y \in \Sigma$ is the minimal value of $|G \cap C|$ taken over all curves C in the surface that link x and y and hit the graph in vertices only. The distance of two vortices V and W is the minimal distance of a point $v \in D(V)$ and a point $v^{\prime} \in D(W)$.

When a graph is embedded in a surface, a topological component of the surface minus the graph that is homeomorphic to a disc is a face. The outer cycle of a 2 -connected plane graph is the cycle bounding its infinite face. A cycle C is flat if C bounds a disc $D \subseteq \Sigma$. Let C_{1}, \ldots, C_{n} be flat cycles that bound discs D_{1}, \ldots, D_{n}, respectively. The cycles $\left(C_{1}, \ldots, C_{n}\right)$ are concentric if $D_{i} \supseteq D_{i+1}$ for all $1 \leq i<n$.

For positive integers r, define a graph H_{r} as follows. Let P_{1}, \ldots, P_{r} be r vertex disjoint ('horizontal') paths of length $r-1$, say $P_{i}=v_{1}^{i} \ldots v_{r}^{i}$. Let $V\left(H_{r}\right)=\bigcup_{i=1}^{r} V\left(P_{i}\right)$, and let

$$
\begin{aligned}
& E\left(H_{r}\right)=\bigcup_{i=1}^{r} E\left(P_{i}\right) \cup\left\{v_{j}^{i} v_{j}^{i+1} \mid i, j \text { odd } ; 1 \leq i<r ; 1 \leq j \leq r\right\} \\
& \cup\left\{v_{j}^{i} v_{j}^{i+1} \mid i, j \text { even } ; 1 \leq i<r ; 1 \leq j \leq r\right\}
\end{aligned}
$$

The 6-cycles in H_{r} are its bricks. In the natural plane embedding of H_{r}, these bound its 'finite' faces. The outer cycle of the unique maximal 2-connected subgraph is called the boundary cycle of H_{r}.

Any subdivision $H=T H_{r}$ of H_{r} will be called an r-wall. The bricks and the boundary cycle of H are its subgraphs that form subdivisions of the bricks and the boundary cycle of H_{r}, respectively. The first n boundary cycles C_{1}, \ldots, C_{n} of H_{r} are defined inductively: C_{n} is the outer cycle (in the induced embedding) of the unique maximal 2-connected subgraph $H_{r}^{-(n-1)}$ of $H_{r}-\left(C_{1} \cup \ldots \cup C_{n-1}\right)$. An embedding of H in a surface Σ is a flat embedding, and H is
flat in Σ, if the boundary cycle C of H bounds a disc that contains a vertex of degree 3 of $H-C$. We refer to the disc bounded by C as $\Delta(\Sigma, H)$.

An α-near embedding of a graph G in some surface Σ is β-rich if the following statements hold:
i. G_{0}^{\prime} contains a flat r-wall H for some $r \geq \beta$.
ii. For every vortex $V \in \mathcal{V}$ there are β disjoint, concentric cycles $\left(C_{1}, \ldots, C_{\beta}\right)$ in G_{0}^{\prime} that bound discs $\left(D_{1}, \ldots, D_{\beta}\right)$, respectively, the innermost disc D_{β} contains $\Omega(V)$ and H does not intersect with D_{1}.
iii. Every two vortices in \mathcal{V} have distance at least β.
iv. Let $V \in \mathcal{V}$ with $\Omega(V)=\left(w_{1}, \ldots, w_{n}\right)$. Then there is a linked decomposition of V of adhesion at most α and a path P in $V \cup \bigcup \mathcal{W}$ with $V\left(P \cap G_{0}\right)=\Omega(V)$, avoiding all the paths of the linkage of V, and traversing w_{1}, \ldots, w_{n} in their order.
v. For every vortex $V \in \mathcal{V}$ the society vertices $\Omega(V)$ are linked in G_{0}^{\prime} to the vertices of H of degree 3 by a path system of β disjoint paths and these paths have no inner vertices in H.
vi. All vortices in \mathcal{W} are properly attached to G_{0}.

Theorem 3.1 For every graph R, there is an integer α such that for every integer β there is an integer $w=w(R, \beta)$ such that the following holds. Every graph G with $t w(G) \geq w$ that does not contain R as a minor has an α-near, β-rich embedding in some surface Σ in which R cannot be embedded.

Here is an outline of how we shall use Theorem 3.1 in our proof of Theorem 2.2. By Euler's formula, a graph embedded in a fixed surface has average degree at most $6+o(1)$ (in terms of its order). The high connectivity we assumed for our graph G thus implies that, when we apply Theorem 3.1 to it, G cannot be entirely embedded in Σ : when the wall $H \subseteq G_{0}^{\prime}$ gets large, the embedded subgraph G_{0}^{\prime} of G must have many vertices of degree at most 6 . These vertices send their remaining edges outside G_{0}^{\prime} : to the apex set A, to components of $G_{0}-G_{0}^{\prime}$, or into the vortices $G_{1}, \ldots, G_{\alpha^{\prime}}$.

Distinguishing vertices of large and small degree in G_{0}^{\prime} will be crucial to our proof. However, we put the threshold a little higher than 6 , at $10 p$. We shall first show, in Section 4 that by carefully choosing a subwall H^{\prime} of H, we can ensure that the vertices of G_{0}^{\prime} in $\Delta\left(\Sigma, H^{\prime}\right)$ have large degree in G_{0}^{\prime}, and have no neighbours outside G_{0}^{\prime} other than in A. In Sections 5 and 6 we then find a large linkage in G_{0}^{\prime} from a cycle deep inside H^{\prime} to vertices that have small degree in G_{0}^{\prime}. These vertices send many edges out of G_{0}^{\prime}. If these edges go directly to A or to components of $G_{0}-G_{0}^{\prime}$ (which in turn sends many edges to A, by the connectivity of G), we can build from this linkage, some cycles in H^{\prime} through which it passes, and many common neighbours in A of the endvertices of our linkage or of those components, an instance of an $F\left(k p, k(p-3)\right.$)-minor which contains our desired $k K_{p}$-minor. Otherwise, most of the endvertices of our linkage send their many edges out of G_{0}^{\prime} into vortices, and many into the same vortex. We shall then find our $k K_{p}$ minor using that vortex (Section 7).

4 Isolating a subwall in a disc with all degrees large

Our aim in this section is to show that when we apply Theorem 3.1 to our highly connected graph G, we can choose a subwall H^{\prime} of the wall H so that the vertices of G_{0}^{\prime} in $\Delta(\Sigma, H)$ have large degree in G_{0}^{\prime}, and have no neighbours outside G_{0}^{\prime} other than in A.

Lemma 4.1 Let $\alpha \in \mathbb{N}$ be as provided by Theorem 3.1 for $R=k K_{p}$. For every $r \in \mathbb{N}$ there exists $w \in \mathbb{N}$ such that every $(k(p-3)+14 p+14)$-connected graph $G \nsucceq k K_{p}$ of tree-width at least w admits an α-near β-rich embedding for some $\beta \geq r$ such that there exists an r-wall H^{\prime} contained in $G_{0}^{\prime} \cap \Delta(\Sigma, H)$ with the property that every vertex in $\Delta\left(\Sigma, H^{\prime}\right)$ has degree at least $10 p$ in G_{0}^{\prime} and has no neighbour in $G-A$ outside G_{0}^{\prime}.

Proof. Let r be given. We will choose $\beta=\beta(r)$ below; it must be sufficiently large to guarantee the β wall H in an α-near β-rich embedding contains enough disjoint r-walls so that if none of these can serve as H^{\prime} for our lemma, we can combine them all to find a $k K_{p}$ minor. Given such a β, the existence of w is then implied by Theorem 3.1. Let G be a $(k(p-3)+14 p+14)$-connected graph with an α-near β-rich embedding in Σ. Choose the α-near embedding so that $\left|G_{0}^{\prime}\right|$ is minimum. This implies that for every subwall H^{\prime} of H the graph $G_{0}^{\prime} \cap \Delta\left(\Sigma, H^{\prime}\right)$ is connected: any component other than that containing H^{\prime} could be included in V_{i} for some $V \in \mathcal{W}$, decreasing $\left|G_{0}^{\prime}\right|$.

Consider a component C of $G_{0}-G_{0}^{\prime}$, and pick a vertex $v \in C$. Then C is separated from G_{0}^{\prime} in $G-A$ by the at most 3 vertices in G_{0}^{\prime}. Since G is $(k(p-3)+14 p+14)$-connected, this means that C has at least $k(p-3)$ distinct neighbours in A. Let G^{\prime} be obtained from G by contracting every component C of $G_{0}-G_{0}^{\prime}$ to one vertex; for every vertex $v \in C$ we denote this new vertex contracted from C as v^{\prime}.

Call a vertex u of G_{0}^{\prime} in $\Delta(\Sigma, H)$ bad if it has degree $<10 p$ in G_{0}^{\prime} or has a neighbour in $(G-A)-G_{0}^{\prime}$. If u has a neighbour v in $(G-A)-G_{0}^{\prime}$, then v must lie in $G_{0}-G_{0}^{\prime}$; recall that, by definition a β-rich α-near embedding, the disc $\Delta(\Sigma, H)$ contains no vertex from any vortex $V \in \mathcal{V}$. In G^{\prime}, the contracted vertex v^{\prime} has $k(p-3)$ neighbours in A. Similarly if u has degree <10 in G_{0}^{\prime} but no neighbour in $(G-A)-G_{0}^{\prime}$, then u itself has more than $k(p-3)$ neighbours in A, by the connectivity assumed for G.

By making β large enough in terms of r and ℓ (see below), we can find in H an instance of an $L(\ell)$-minor (an ℓ-ladder) in which every branch set induces a subgraph in H containing an r-wall, and these r-walls H_{i} are sufficiently spaced out in $\Delta(\Sigma, H)$ that the discs $\Delta\left(\Sigma, H_{i}\right)$ are disjoint and not joined by edges of G_{0}^{\prime}. In particular, for any vortex $V \in \mathcal{W}$, the corresponding vertices $\Omega(V)$ meet at most one of these $\Delta\left(\Sigma, H_{i}\right)$. If one of these discs $\Delta\left(\Sigma, H_{i}\right)$ contains no bad vertex, our lemma is proved with $H^{\prime}:=H_{i}$. So assume that each of them contains a bad vertex. Let H_{1}, \ldots, H_{ℓ} be the r-walls from the branch sets of the 'top' row of our ℓ-ladder minor, and put $\Delta_{i}=\Delta\left(\Sigma, H_{i}\right)$ for $i=1, \ldots, \ell$. For each i, pick a bad vertex $u_{i} \in \Delta_{i}$. If u_{i} has a neighbour v_{i} in $(G-A)-G_{0}^{\prime}$, its neighbour v_{i}^{\prime} in G^{\prime} has (in G) at least $k(p-3)$ neighbours in A, and these v_{i}^{\prime} are distinct for different i. Let $G^{\prime \prime}$ be obtained from G^{\prime} by contracting the edge $u_{i} v_{i}^{\prime}$, and call the contracted vertex w_{i}. If u_{i} has no neighbour in $(G-A)-G_{0}^{\prime}$, then u_{i} itself has $k(p-3)$ neighbours in A; let us rename these u_{i} as w_{i}.

For each $i=1, \ldots, \ell$, the vertex w_{i} has, in G^{\prime}, a set A_{i} of $k(p-3)$ neighbours in A. We now choose ℓ large enough that for $k p$ values of i, say those in I, the sets A_{i} coincide. (Notice that ℓ depends only on α, k and p, all of which are constant.) Let A^{\prime} denote this common set A_{i} for all $i \in I$. Together with A^{\prime} and the vertices v_{i}^{\prime} with $i \in I$, our instance of an
$L(\ell)$-minor in H^{\prime} contains an instance of an $F(k p, k(p-3))$-minor in G^{\prime} : the $k(p-3)$ vertices in A^{\prime} form singleton branch sets, their neighbouring branch sets are sets $V\left(G_{0}^{\prime}\right) \cap \Delta_{i}$ for $i \in I$, plus v_{i}^{\prime} as appropriate (recall that these sets are connected by the minimality of $\left|G_{0}^{\prime}\right|$), and the remaining branch sets found in our ladder $L(\ell)$. Thus, $k K_{p} \preccurlyeq F(k p, k(p-3)) \preccurlyeq G^{\prime} \preccurlyeq G$, contradicting our choice of G.

For easier reference later, let us summarize as a formal hypothesis the properties ensured by Lemma 4.1 along with the aspects of a β-rich embedding we will need as we go forward. We will be able to ensure these properties as long as the graph we are interested has sufficiently large tree width. Let Σ and $\alpha \in \mathbb{N}$ be as provided by Theorem 3.1 for $R=k K_{p}$ applied to the graph G be a graph. Let $r>0$ an integer.

Hypothesis $\mathbf{H}(\boldsymbol{G}, \boldsymbol{r})$: The graph G is $(k(p-3)+14 p+14)$-connected graph and has no $k K_{p}$ minor. The graph G has an α-near embedding satisfying the following properties:
i. There is a flat r-wall H in G_{0}^{\prime}.
ii. Every vertex $v \in G_{0}^{\prime} \cap \Delta(\Sigma, H)$ has degree at least $10 p$ in $G_{0}^{\prime} \cap \Delta(\Sigma, H)$ and for every vortex $V \in \mathcal{W}$, the vertices $\Omega(V)$ are disjoint from $G_{0}^{\prime} \cap \Delta(\Sigma, H)$.
iii. Let $V \in \mathcal{V}$ with $\Omega(V)=\left(w_{1}, \ldots, w_{n}\right)$. Then, there is a linked decomposition $\left(X_{1}, \ldots, X_{n}\right)$ of V of adhesion at most α and there is a path P in $V \cup \bigcup \mathcal{W}$ with $V\left(P \cap G_{0}\right)=\Omega(V)$, the path P is disjoint to all paths of the linkage of V and traverses w_{1}, \ldots, w_{n} in their linear order.
iv. All vortices in \mathcal{W} are properly attached to G_{0}.

Lemma 4.1 says that, for every $r \in \mathbb{N}$, every $(k(p-3)+14 p+14)$-connected graph $G \nsucceq k K_{p}$ of large enough tree-width satisfies Hypothesis $\mathrm{H}(G, r)$. Note that if G satisfies $\mathrm{H}(G, r)$ then it also satisfies $\mathrm{H}\left(G, r^{\prime}\right)$ for every $r^{\prime} \leq r$: just take an r^{\prime}-wall H^{\prime} inside the given r-wall H.

5 Optimizing linkages

In this section we prove three lemmas about linkages, which may also be of use elsewhere.
An $X-Y$ linkage \mathcal{P} in a graph G is singular if $V(\bigcup \mathcal{P})=V(G)$ and G does not contain any other $X-Y$ linkage.

Lemma 5.1 If a graph G contains a singular linkage \mathcal{P}, then G has path-width at most $|\mathcal{P}|$.
Proof. Let \mathcal{P} be a singular $X-Y$ linkage in G. Applying induction on $|G|$, we show that G has a path-decomposition $\left(X_{0}, \ldots, X_{n}\right)$ of width at most $|\mathcal{P}|$ such that $X \subseteq X_{0}$. Suppose first that every $x \in X$ has a neighbour $y(x)$ in G that is not its neighbour on the path $P(x) \in \mathcal{P}$ containing x. Then $y(x) \notin P(x)$ by the uniqueness of \mathcal{P}. The digraph on \mathcal{P} obtained by joining for every $x \in X$ the 'vertex' $P(x)$ to the 'vertex' $P(y(x))$ contains a directed cycle D. Let us replace in \mathcal{P} for each $x \in X$ with $P(x) \in D$ the path $P(x)$ by the $X-Y$ path that starts in x, jumps to $y(x)$, and then continues along $P(y(x))$. Since every 'vertex' of D has in- and outdegree both 1 there, this yields an $X-Y$ linkage with the same endpoints as \mathcal{P} but
different from \mathcal{P}. This contradicts our assumption that \mathcal{P} is singular. Thus, there exists an $x \in X$ without any neighbours in G other than (possibly) its neighbour on $P(x)$. Consider this x.

If $P(x)$ is trivial, then x is isolated in G and $x \in X \cap Y$. By induction, $G-x$ has a path-decomposition $\left(X_{1}, \ldots, X_{n}\right)$ of width at most $|\mathcal{P}|-1$ with $X \backslash\{x\} \subseteq X_{1}$. Add $X_{0}:=X$ to obtain the desired path-decomposition of G. If $P(x)$ is not trivial, let x^{\prime} be its second vertex, and replace x in X by x^{\prime} to obtain X^{\prime}. By induction, $G-x$ has a path-decomposition $\left(X_{1}, \ldots, X_{n}\right)$ of width at most $|\mathcal{P}|$ with $X^{\prime} \subseteq X_{1}$. Add $X_{0}:=X \cup\left\{x^{\prime}\right\}$ to obtain the desired path-decomposition of G.

Our next lemma will help us re-route segments of an $X-Y$ linkage \mathcal{P} in G through a subgraph $H \subseteq G$, which may or may not intersect $\bigcup \mathcal{P}$. Let \mathcal{Q} be a set of disjoint paths that start in H, have no further vertices in H, and end in $\bigcup \mathcal{P}$. (They may have earlier vertices on \mathcal{P}.) The (\mathcal{Q}, H)-segment of a path $P \in \mathcal{P}$ is the unique maximal subpath of P that starts and ends in a vertex of $\bigcup \mathcal{Q} \cup H$; this subpath may be trivial, or even empty. We call \mathcal{Q} an $H-\mathcal{P}$ comb if the set of endvertices of (\mathcal{Q}, H)-segments of paths in \mathcal{P} equals the set of final vertices of paths in \mathcal{Q}.

Lemma 5.2 Let t be an integer, let \mathcal{P} be an $X-Y$ linkage in a graph G, and let $H \subseteq G$. If G contains t disjoint $H-(X \cup Y)$ paths, then G contains an $H-\mathcal{P}$ comb consisting of at least t paths.

Proof. Let \mathcal{Q} be a set of as many disjoint $H-(X \cup Y)$ paths as possible, chosen with the least possible number of edges not in $\bigcup \mathcal{P}$. By the maximality of \mathcal{Q}, every endvertex v of a (\mathcal{Q}, H)-segment of a path $P \in \mathcal{P}$ lies on a path $Q \in \mathcal{Q}$. By our choice of \mathcal{Q}, the final segment $v Q$ of Q then lies in P. Deleting the final segments $\dot{v} Q$ after v for each such endvertex of a (\mathcal{Q}, H)-segment turns \mathcal{Q} into an $H-\mathcal{P}$ comb.

While it is not typically true that a subset of a comb will again be a comb, the following is true. We omit the straightforward proof.

Observation 5.3 Let \mathcal{P} be a linkage and H a subgraph in a graph G. Let \mathcal{R} be an $H-\mathcal{P}$ comb. Then for any sublinkage \mathcal{P}^{\prime} of \mathcal{P}, the linkage

$$
\mathcal{R}^{\prime}:=\left\{R \in \mathcal{R}: \text { there exists a }(\mathcal{R}, H) \text {-segment in } \mathcal{P}^{\prime} \text { sharing an endpoint with } R\right\}
$$

is a $H-\mathcal{P}^{\prime}$ comb.
We finally turn to linkages in graphs that are, for the most part, embedded in a cylinder. Let C_{1}, \ldots, C_{s} be disjoint cycles. A linkage \mathcal{P} is orthogonal to C_{1}, \ldots, C_{s} if for all $P \in \mathcal{P}$, $V(P) \cap V\left(C_{i}\right) \neq \emptyset$ for all $1 \leq i \leq s$ and P intersects the cycles $C_{1}, C_{2}, \ldots, C_{s}$ in that order when traversing P from one endpoint to the other. Moreover, each of the graphs $P \cap C_{i}$ is a path (possibly consisting of a single vertex). The next lemma is a weaker version of Theorem 10.1 of [3]. We include its proof for completeness.

Lemma 5.4 Let s, s^{\prime}, and t be positive integers with $s \geq s^{\prime}+t$. Let G^{\prime} be a graph embedded in the plane and let $\left(C_{1}, \ldots, C_{s}\right)$ be concentric cycles in G^{\prime}. Let $G^{\prime \prime}$ be another graph, with $V\left(G^{\prime}\right) \cap V\left(G^{\prime \prime}\right) \subseteq V\left(C_{1}\right)$. Assume that $G^{\prime} \cup G^{\prime \prime}$ contains an $X-Y$ linkage $\mathcal{P}=\left\{P_{1}, \ldots, P_{t}\right\}$ with $X \subseteq C_{s}$ and $Y \subseteq C_{1}$. Then there exist concentric cycles $\left(C_{1}^{\prime}, \ldots, C_{s^{\prime}}^{\prime}\right)$ in G^{\prime}, a set $X^{\prime} \subseteq V\left(C_{s}^{\prime}\right)$, and an $X^{\prime}-Y$ linkage \mathcal{P}^{\prime} in $G^{\prime} \cup G^{\prime \prime}$ such that \mathcal{P}^{\prime} is orthogonal to $C_{1}^{\prime}, \ldots, C_{s^{\prime}}^{\prime}$.

Proof. Assume the lemma is false, and let $G^{\prime}, G^{\prime \prime}, \mathcal{P}$, and $\left(C_{1}, \ldots, C_{s}\right)$ form a counterexample containing a minimal number of edges. To simplify the notation, we let $G=G^{\prime} \cup G^{\prime \prime}$. By minimality, it follows that the graph $G=\bigcup_{1}^{s} C_{i} \cup \mathcal{P}$. Also, for all $P \in \mathcal{P}$ and for all $1 \leq i \leq s$, every component of $P \cap C_{i}$ is a single vertex. If $P \cap C_{i}$ had a component that was a nontrivial path containing an edge e, then G^{\prime} / e would form a counterexample with fewer edges. Similarly, we conclude that $V(G)=V(\mathcal{P})$.

Note that no subpath $Q \subseteq \mathcal{P} \cap G^{\prime}$ that is internally disjoint from $\bigcup_{1}^{s} C_{i}$ has both endpoints contained in C_{j} for some $1 \leq j \leq s$. There are two cases to consider. If $Q \subseteq \Delta\left(C_{s}\right)$, we violate our choice of a minimal counterexample by restricting the \mathcal{P} path containing Q to a subpath from Y to $V\left(C_{s}\right)$ avoiding the edges of Q. If $Q \nsubseteq \Delta\left(C_{s}\right)$, we could reroute C_{j} through the path Q to find s concentric cycles in G^{\prime} and again contradict our choice of a counterexample containing a minimal number of edges. We claim:

The graph G consists of a singular linkage.
To see that the claim is true, observe that $E(\mathcal{P})$ is disjoint from $E\left(\bigcup_{1}^{s} C_{i}\right)$. It follows that if there exists a linkage $\overline{\mathcal{P}}$ from X to Y distinct from \mathcal{P}, then at least one of the edges of \mathcal{P} is not contained in $\overline{\mathcal{P}}$. We conclude that the subgraph $\bigcup_{1}^{s} C_{i} \cup \overline{\mathcal{P}}$ forms a counterexample to the claim with fewer edges, a contradiction. This proves (1).

A local peak of the linkage \mathcal{P} is a subpath $Q \subseteq \mathcal{P}$ such that Q has both endpoints on C_{j} for some $j>1$ and every internal vertex of $Q \cap\left(\bigcup_{i \neq j} V\left(C_{i}\right)\right) \subseteq V\left(C_{j-1}\right)$. As we have seen above, it must then be the case that $V(Q) \cap V\left(C_{j-1}\right) \neq \emptyset$ when $j>1$.

We claim the following.

$$
\begin{equation*}
\text { For all } j>1 \text {, there does not exist a local peak with endpoints in } C_{j} \text {. } \tag{2}
\end{equation*}
$$

Fix Q to be a local peak with endpoints in C_{j} with Q chosen over all such local peaks so that j is maximal. Assume Q is a subpath of $P \in \mathcal{P}$. Let the endpoints of Q be x and y. Lest we re-route P through C_{j} and find a counter-example containing fewer edges, there exists a component $P^{\prime} \in \mathcal{P}$ intersecting the subpath of C_{j} linking x and y. By planarity, P^{\prime} either contains a subpath internally disjoint from the union of the C_{i} with both endpoints in C_{s}, or P^{\prime} contains a subpath forming a local peak with endpoints in C_{j-1}. Either is a contradiction to our choice of a minimal counterexample. This proves (2).

An immediate consequence of (11) and (2) is the following. For every $P \in \mathcal{P}$, let x be the endpoint of P in X and let y be the vertex of $V\left(C_{1}\right) \cap V(P)$ closest to x on P. Define the path \bar{P} be the subpath $x P y$ of P. The path \bar{P} is orthogonal to the cycles C_{1}, \ldots, C_{s}. In fact, $\bar{P} \cap C_{i}$ is a single vertex for each $1 \leq i \leq s$. The final claim will complete the proof.

$$
\begin{equation*}
\text { For all } P \in \mathcal{P} \text {, the path } P-\bar{P} \text { does not intersect } C_{t+1} \tag{3}
\end{equation*}
$$

To see (3) is true, fix $P \in \mathcal{P}$ such that $(P-\bar{P}) \cap C_{t+1} \neq \emptyset$. It follows now from (2) that $P-\bar{P}$ contains a subpath Q with one endpoint in C_{t+1} and one endpoint in C_{1} such that Q is orthogonal to the cycles $C_{t+1}, C_{t} \ldots, C_{1}$. By the planarity of G^{\prime}, we see that G contains a subgraph isomorphic to the subdivision of the $(t+1) \times(t+1)$ grid. This contradicts (11) and Lemma 5.1, proving (3).

We conclude that \mathcal{P} is orthogonal to the s^{\prime} disjoint cycles $C_{s}, C_{s-1}, \ldots, C_{t+1}$. This contradicts our choice of G, and the lemma is proven.

6 Linking the wall to a vortex

Consider a graph G satisfying Hypothesis $\mathrm{H}(G, r)$. Our first aim in this section is to find a large linkage from a cycle deep inside H to vertices of small degree in G_{0}^{\prime}. By Lemma 5.4 we shall be able to assume that this linkage is orthogonal to a pair of cycles C and C^{\prime}. If the many of the last vertices of our linkage send many edges to A, or an edge to a component of $G_{0}-G_{0}^{\prime}$ (which in turn sends many edges to A, by the connectivity of G), we shall be able to convert the cycles C and C^{\prime}, the linkage, and those neighbours into an $F(k p, k(p-3))$-minor, completing the proof. If not, then most of those last vertices send many edges into vortices. As we have only a bounded number of vortices, many send their edges to the same vortex. That case we shall treat in Section 7

Lemma 6.1 For all positive integers t and sthere exists an integer $R=R(s, t)$ such for every graph G satisfying Hypothesis $\mathrm{H}(G, r)$ with $r \geq R$ there are t disjoint $X-Y$ paths in G_{0}^{\prime}, where X is the vertex set of the s 'th boundary cycle C_{s} of H, and $Y:=\left\{v \in V\left(G_{0}^{\prime}\right): d_{G_{0}^{\prime}}(v)<10 p\right\}$.

Proof. If the desired paths do not exist then, by Menger's theorem, G_{0}^{\prime} has a separation (A, B) of order less than t with $X \subseteq A$ and $Y \subseteq B$. By the choice of Y, every vertex in $A \backslash B$ has degree at least $10 p$ in G_{0}^{\prime}. The sum of all these degrees is at least $10 p|A \backslash B|$, so $G_{0}^{\prime}[A]$ has at least $5 p|A \backslash B|$ edges. As $|A| \geq|X| \geq r-4 s$, and Σ is determined by our constants p and k, choosing R sufficiently large in terms of s and t yields

$$
5 p|A \backslash B| \geq 5 p(|A|-t)>3|A|-3 \chi(\Sigma)
$$

which is the maximum number of edges a graph of order $|A|$ embedded in Σ can have (by Euler's formula). As $G_{0}^{\prime}[A]$ is such a graph, this is a contradiction.

Our next lemma says that by rerouting the paths if necessary we can make the linkage from Lemma 6.1 orthogonal to two concentric cycles. Recall that the wall H in Hypothesis $\mathrm{H}(G, r)$ is flat; we think of the topological disc $\Delta(\Sigma, H) \subseteq \Sigma$, which contains H and is bounded by its outer cycle C_{1}, as a disc in \mathbb{R}^{2}.

Lemma 6.2 Let t be an integer. Let G be a graph satisfying Hypothesis $\mathrm{H}(G, r)$ for some r large enough that H has boundary cycles C_{1}, \ldots, C_{t+2}. Suppose further that G_{0}^{\prime} contains an $X-Y$ linkage \mathcal{P} of order t, where $X \subseteq V\left(C_{t+2}\right)$ and $Y \subseteq V\left(G_{0}^{\prime}\right) \backslash \Delta(\Sigma, H)$. Then $\bigcup \mathcal{P} \cup C_{1} \cup \ldots \cup C_{t+2} \subseteq G_{0}^{\prime}$ contains disjoint cycles $C_{1}^{\prime}, C_{2}^{\prime}$ in $G_{0}^{\prime} \cap \Delta(\Sigma, H)$, and an $X^{\prime}-Y$ linkage orthogonal to $C_{1}^{\prime}, C_{2}^{\prime}$ with $X^{\prime} \subseteq V\left(C_{t+2}\right)$.

Proof. Let Y^{\prime} be the set of the last vertices in $\Delta\left(C_{1}\right)$ of paths in \mathcal{P}; this is a subset of $V\left(C_{1}\right)$. Let \mathcal{P}^{\prime} be the set of $X-Y^{\prime}$ paths contained in the paths in \mathcal{P} (one in each). Let G^{\prime} be the union of all the cycles C_{1}, \ldots, C_{t+2} and the subpaths in $\Delta\left(C_{1}\right)$ of paths in \mathcal{P}^{\prime}. Then G^{\prime} is planar and $\left(C_{1}, \ldots, C_{t+2}\right)$ form a set of concentric cycles. Let $G^{\prime \prime}$ be the union of the remaining segments of paths in \mathcal{P}^{\prime}; then $G^{\prime} \cup G^{\prime \prime}=\bigcup \mathcal{P}^{\prime} \cup C_{1} \cup \ldots \cup C_{t+2}$, and $V\left(G^{\prime}\right) \cap V\left(G^{\prime \prime}\right) \subseteq V\left(C_{1}\right)$. Applying Lemma 5.4 to the linkage \mathcal{P}^{\prime} in $G^{\prime} \cup G^{\prime \prime}$, we obtain a two disjoint cycles C_{1}^{\prime} and C_{2}^{\prime} contained in $\Delta\left(C_{1}\right)$ and a set $X^{\prime} \subseteq\left(C_{2}^{\prime}\right)$ such that the cycles are orthogonal to an $X^{\prime}-Y^{\prime}$ linkage $\mathcal{P}^{\prime \prime}$ in $G^{\prime} \cup G^{\prime \prime}$. Append to this linkage the $Y^{\prime}-Y$ paths contained in the paths from \mathcal{P} (which meet $G^{\prime} \cup G^{\prime \prime}$ only in Y^{\prime}, by the choice of Y^{\prime}) to obtain the desired linkage for the lemma.

Note that the linkage obtained in Lemma 6.2 has the same order as \mathcal{P}, since the target set Y remained unchanged. The proof of the lemma could clearly be modified to provide a set of s cycles orthogonal to the linkage, for arbitrary s, rather than just two, but we shall only need two in the following arguments.

We return now to the linkage provided by Lemma 6.1 Using Lemma 6.2, we show that all but a bounded number of the paths of that linkage lie in G (that is, contain no virtual edges) and end in vortices.

Lemma 6.3 Let $t \geq 3 k p\binom{\alpha}{k(p-3)}$, and let G be a graph satisfying Hypothesis $\mathrm{H}(G, r)$, for some r large enough that the $(t+2)$ th boundary cycle C_{t+2} of H exists. Then G_{0}^{\prime} contains no $X-(Y \cup Z)$ linkage of order t such that $X \subseteq V\left(C_{t+2}\right)$, the set Z contains vertices of $\bigcup_{V \in \mathcal{W}} \Omega(V)$, and $Y \subseteq\left\{v \in V\left(G_{0}^{\prime}\right): d_{G_{0}^{\prime}}(v)<10 p\right\} \backslash \bigcup_{V \in \mathcal{V} \cup \mathcal{W}} \Omega(V)$.
Proof. Suppose there is an $X-(Y \cup Z)$ linkage in G_{0}^{\prime} as stated. Since $Y \cup Z \subseteq V\left(G_{0}^{\prime}\right) \backslash$ $\Delta(\Sigma, H)$, Lemma 6.2 provides us with an $X^{\prime}-(Y \cup Z)$ linkage \mathcal{P} in G_{0}^{\prime} that is orthogonal to two cycles $C_{1}^{\prime}, C_{2}^{\prime}$ contained in $\Delta(\Sigma, H)$, where again $X^{\prime} \subseteq V\left(C_{t+2}\right)$. Since \mathcal{P} has the same target set $Y \cup Z$ as the original linkage, it also has the same order $t \geq 3 k p(\underset{k(p-3)}{\alpha})$.

Each path in \mathcal{P} contains at most one vertex contained in a vortex, since this will be its last vertex. Also, for every vortex $V \in \mathcal{W}, \Omega(V)$ intersects at most 3 paths in \mathcal{P}. We find a subset \mathcal{P}^{\prime} of \mathcal{P} of order $k p\binom{\alpha}{k(p-3)}$ and for every $P \in \mathcal{P}^{\prime}$ such that P intersects some vortex, we assign a vortex $V(P)$ such that for $P, Q \in \mathcal{P}^{\prime}, V(P) \neq V(Q)$. We can construct the subset \mathcal{P}^{\prime} and the vortex assignments greedily - we begin considering \mathcal{P}, and as long some path P intersects an unassigned vortex V, we set $V(P):=V$ and delete any other path Q with both $Q \cap \Omega(V) \neq \emptyset$ and $V(Q)$ undefined.

By definition of Y and the connectivity of G, every last vertex $y \in Y \backslash Z$ of a path $P \in \mathcal{P}^{\prime}$ has a set A_{P} of $k(p-3)$ distinct neighbours in A. By definition of Z, every last vertex $z \in Z$ of a path $P \in \mathcal{P}^{\prime}$ sends an edge to some component C of $V(P)-G_{0}^{\prime}$. In $G-A$, a set of at most three vertices of G_{0}^{\prime} (which includes z) separates C from the rest of G_{0}^{\prime}. Hence by the connectivity of G, the component C has a set A_{P} of $k(p-3)$ distinct neighbours in A. For every such z, contract the component C on to z. (By definition of \mathcal{P}^{\prime} and the assignment $V(P)$, these C are distinct, and hence disjoint, for different z.) In the resulting minor G^{\prime} of G, the vertex z is adjacent to every vertex in A_{P} (for the $P \in \mathcal{P}^{\prime}$ ending in z).

Since $\left|\mathcal{P}^{\prime}\right|=k p\binom{\alpha}{k(p-3)}$, there is a subset $\mathcal{P}^{\prime \prime}$ of \mathcal{P}^{\prime} of order $k p$ such that for all the paths $P \in \mathcal{P}^{\prime \prime}$ their sets A_{P} conincide; let us write A^{\prime} for this subset of A of order $k(p-3)$.

Of each path $P \in \mathcal{P}^{\prime \prime}$ let us keep only its segment P^{\prime} between C_{2}^{\prime} and C_{1}^{\prime}, contracting the final segment of P that follows its vertex v_{P} in C_{1}^{\prime} on to v_{P}. In the minor $G^{\prime \prime}$ of G^{\prime} obtained by all these contractions, the final vertices v_{P} of the paths P^{\prime} with $P \in \mathcal{P}^{\prime \prime}$ are adjacent to all the $k(p-3)$ vertices in A^{\prime}. The cycles C_{1}^{\prime} and C_{2}^{\prime}, the $k p$ paths P^{\prime} with $P \in \mathcal{P}^{\prime \prime}$, and the edges between the vertices v_{P} and A^{\prime} together contain a subdivided fan $F(k p, k(p-3))$. Thus,

$$
k K_{p} \preccurlyeq F(k p, k(p-3)) \preccurlyeq G^{\prime \prime} \preccurlyeq G^{\prime} \preccurlyeq G,
$$

a contradiction.
Since $b \leq \alpha$, Lemma 6.3 implies that of paths from the linkage of Lemma 6.1 some unbounded number end in the same W_{i}. These have small degree in G_{0}^{\prime}

7 Proof of Theorem 2.2

Let r be the integer $R(s, t)$ provided by Lemma 6.11 for

$$
t=2 \alpha\left(k p\binom{2 \alpha}{k(p-3)}+k\left(\binom{p}{2}+1\right)\binom{\alpha}{p}\right)+3 k p\binom{\alpha}{k(p-3)}
$$

and $s=t+2$. Let w be large enough that, by Lemma 4.1 every $(k(p-3)+14 p+14)$ connected graph $G \not \approx k K_{p}$ of tree-width at least w contains an r-wall H such that (G, H) satisfies Hypothesis $\mathrm{H}(G, r)$, for this r.

For our proof of Theorem [2.2 let G be a $(k(p-3)+14 p+14)$-connected graph of treewidth at least w; we have to show that $G \succcurlyeq k K_{p}$. Suppose not. Then (G, H) satisfies Hypothesis $\mathrm{H}(G, r)$ for the value of r defined above, by our choice of w.

Let $C_{1}, C_{2}, \ldots, C_{t+2}$ be the first $t+2$ boundary cycles of H. By Lemma 6.1] there are t disjoint paths in G_{0}^{\prime} from $V\left(C_{t+2}\right)$ to vertices of degree $<10 p$ in G_{0}^{\prime}. By Lemma 6.3 all but at most $3 k p\binom{\alpha}{k(p-3)}$ of these paths intersect exactly one vortex V at their endpoints, and furthermore, this vortex V is among the α^{\prime} vortices of \mathcal{V}. Since $\alpha^{\prime} \leq \alpha$, at least $1 / \alpha$ of these paths end in the same vortex, say $V_{a}=\left(G_{a}, \Omega_{a}\right)$. These paths, then, form an $X-Y$ linkage \mathcal{P} in G (i.e. the linkage does not contain any of the virtual edges of G_{0}^{\prime}) of order

$$
\begin{equation*}
|\mathcal{P}| \geq 2\left(k p\binom{2 \alpha}{k(p-3)}+k\left(\binom{p}{2}+1\right)\binom{\alpha}{p}\right), \tag{4}
\end{equation*}
$$

with $X \subseteq V\left(C_{t+2}\right)$ and $Y \subseteq \Omega_{a}=:\left\{w_{1}, \ldots, w_{m}\right\}$.
Let us add to the graph G_{a} all the vertices from A (together with the edges they send to G_{a}), putting them in every part of its vortex decomposition. This does not affect our assumption that this decomposition is linked, since every vertex in A becomes a trivial path in the linkage through G_{a}. The new (induced) subgraph G_{a} of G has a path decomposition $\left(U_{1}, \ldots, U_{m}\right)$ with the following properties (where $U_{i}^{+}:=U_{i} \cap U_{i+1}=: U_{i+1}^{-}$):

- $A \subseteq U_{i}$ for all $i=1, \ldots, m$;
- $U_{i} \cap \Omega_{a}=\left\{w_{i-1}, w_{i}\right\}$ for all $i=1, \ldots, m$ with $w_{0}:=w_{1}$;
- all the sets U_{i}^{+}and U_{i}^{-}have the same order $(\leq 2 \alpha)$;
- $G_{a}-\Omega_{a}$ contains a $\left(U_{1}^{+} \backslash\left\{w_{1}\right\}\right)-\left(U_{m}^{-} \backslash\left\{w_{m-1}\right\}\right)$ linkage \mathcal{Q}.

For each $i=0, \ldots, m$, let $H_{i}=G\left[U_{i} \cup U_{i+1}\right]$ (putting $U_{0}=\left\{w_{1}\right\}$ and $U_{m+1}=\left\{w_{m}\right\}$). The set $U_{i}^{-} \cup U_{i+1}^{+} \cup\left\{w_{i}\right\}$ of size at most $4 \alpha+1$ separates H_{i} from the rest of G (put $\left.U_{0}^{-}=U_{m+1}^{+}=\emptyset\right)$. Let \mathcal{Q}_{i} be the set of the segments in H_{i} of paths in \mathcal{Q}. These are $U_{i}^{-}-U_{i+1}^{+}$ paths, one for each $Q \in \mathcal{Q}$, when $1<i<m$. We write \mathcal{T}_{i} for the set of trivial paths in \mathcal{Q}_{i}; when $1<i<m$, this is the set

$$
\mathcal{T}_{i}=\left\{\{v\} \mid v \in U_{i}^{-} \cap U_{i+1}^{+}\right\} \subseteq \mathcal{Q}_{i} .
$$

Note that \mathcal{T}_{i} contains every path $\{v\}$ with $v \in A$, and that $\left|\bigcup \mathcal{T}_{i}\right| \leq|\mathcal{Q}|<2 \alpha$.
Deleting at most half the paths in \mathcal{P}, we can ensure that for the remaining linkage $\mathcal{P}^{\prime} \subseteq \mathcal{P}$ there is no $i<m$ such that both w_{i} and w_{i+1} are endpoints of a path in \mathcal{P}^{\prime}. Let $I_{1} \subset$ $\{1, \ldots, m\}$ be the set of those i for which w_{i} is the final vertex of a path in \mathcal{P}^{\prime}.

For each $i \in I_{1}$, let J_{i} denote the component of $H_{i}-U_{i}^{-}-U_{i+1}^{+}$containing w_{i}. Note that $J_{i} \cap \bigcup \mathcal{T}_{i}=\emptyset$ for each i, and that the J_{i} are disjoint for different $i \in I_{1}$. Let $I_{2} \subseteq I_{1}$ be the set of those $i \in I_{1}$ for which J_{i} has at least $k(p-3)$ neighbours in $\bigcup \mathcal{T}_{i}$, and put $I_{3}:=I_{1} \backslash I_{2}$. Let us show that

$$
\begin{equation*}
\left|I_{3}\right| \geq k\left(\binom{p}{2}+1\right)\binom{\alpha}{p} \tag{5}
\end{equation*}
$$

Suppose not; then $\left|I_{2}\right| \geq k p\binom{2 \alpha}{k(p-3)}$, by (4). For each $i \in I_{2}$, the at least $k(p-3)$ neighbours of J_{i} in $\bigcup \mathcal{T}_{i}$ lie on different paths in \mathcal{Q}. Since $|\mathcal{Q}| \leq 2 \alpha$, there is a set of $k(p-3)$ paths Q in \mathcal{Q} and a set $I \subseteq I_{2}$ of order $k p$ such that for each of those Q and every $i \in I$ we have $Q \cap H_{i} \in \mathcal{T}_{i}$ and the unique vertex in this graph sends an edge to J_{i}. Contract each of these Q to one vertex, and contract each J_{i} with $i \in I$ on to its vertex w_{i}. Then each of these $k p$ vertices w_{i} is adjacent to those $k(p-3)$ vertices contracted from paths in \mathcal{Q}. Together with the $k p$ paths in \mathcal{P} ending in these w_{i} and the cycles C_{1}, \ldots, C_{t+2} in our wall H, we obtain a fan $F(k p, k(p-3))$ as in the proof of Lemma 6.3, contradicting our assumption that $G \not \nLeftarrow k K_{p}$. This proves (5).

Let $\mathcal{P}^{\prime \prime}$ be the set of paths in \mathcal{P}^{\prime} ending in some w_{i} with $i \in I_{3}$. For every $i \in I_{3}$, the graph J_{i} has at most $k(p-3)-1$ neighbours in $\bigcup \mathcal{T}_{i}$. Our plan now is to find some fixed paths $Q^{1}, \ldots, Q^{p} \in \mathcal{Q}$ and many indices $i \in I_{3}$, one for every edge in $k K_{p}$, such that for each of these i the segments $Q_{i}^{j}:=Q^{j} \cap H_{i}$ are non-trivial and we can connect two of them by a path through J_{i}. (This will require some re-routing of \mathcal{Q}_{i} inside H_{i}.) Dividing the linkage $\left(Q^{1}, \ldots, Q^{p}\right)$ into k chunks kept well apart by the $k-1$ subgraphs H_{i} between them (in which all these paths have non-trivial segments; it is here only that we need the non-triviality of segments), and contracting the p paths in each chunk to p vertices, we shall thus obtain our desired $k K_{p}$ minor.

Let us begin by choosing the segments $Q_{i}^{1}, \ldots, Q_{i}^{p}$ locally for each $i \in I_{3}$, allowing the choice of Q^{1}, \ldots, Q^{p} to depend on i. It will be easy later to find enough i for which these choices agree. Let us prove the following:

For every $i \in I_{3}$ there are paths $Q^{1}, \ldots, Q^{p} \in \mathcal{Q}$ with $Q_{i}^{1}, \ldots, Q_{i}^{p} \in \mathcal{Q}_{i} \backslash \mathcal{T}_{i}$ such
that for every choice of $1 \leq j<\ell \leq p$ there is a linkage $\left(\hat{Q}_{i}^{1}, \ldots, \hat{Q}_{i}^{p}\right)$ in H_{i} equivalent to $\left(Q_{i}^{1}, \ldots, Q_{i}^{p}\right)$ for which $J_{i}-\left(\hat{Q}_{i}^{1} \cup \ldots \cup \hat{Q}_{i}^{p}\right)$ contains a path $R_{i}^{j, \ell}$
from a vertex adjacent to \hat{Q}_{i}^{j} to a vertex adjacent to \hat{Q}_{i}^{ℓ}.
To prove (6), let $i \in I_{3}$ be given. Note that if any vertex v of J_{i} sends $p+1$ edges to $U_{i}^{-} \backslash\left(\left\{w_{i-1}\right\} \cup \mathcal{T}_{i}\right)$ or to $U_{i+1}^{+} \backslash\left(\left\{w_{i+1}\right\} \cup \mathcal{T}_{i}\right)$, the proof of (6) is immediate with $R_{i}^{j, \ell}=\{v\}:$ since v lies on at most one of the $p+1$ non-trivial paths in \mathcal{Q} to which it sends an edge, we can find p such paths avoiding v, no re-routing being necessary. So let us assume that this is not the case.

Consider the graph $J_{i}-w_{i}$. As $i \in I_{3}$, the vertex w_{i} has fewer than $k(p-3)$ neighbours in $\bigcup \mathcal{T}_{i}$, fewer than $10 p$ neighbours in G_{0}^{\prime} (by definition of \mathcal{P}), and at most $2 p$ neighbours in $\left(U_{i}^{-} \cup U_{i+1}^{+}\right) \backslash\left(\left\{w_{i-1}, w_{i+1}\right\} \cup \mathcal{T}_{i}\right)$. As w_{i} has degree at least $k(p-3)+14 p+14$ in G, the graph $J_{i}-w_{i}$ is non-empty. By the same argument,

$$
\begin{equation*}
\delta\left(J_{i}-w_{i}\right) \geq(k(p-3)+14 p+14)-(k(p-3)-1)-2 p-3=12(p+1) \tag{7}
\end{equation*}
$$

By Mader's theorem [5, Thm. 1.4.3] and the main result from [15] (which says that $2 s$ connected graphs of average degree at least $10 s$ are s-linked), (7) implies that $J_{i}-w_{i}$ has
a $(p+1)$-linked subgraph H_{i}^{\prime}. In particular, $\left|H_{i}^{\prime}\right| \geq 2 p+2$. Let Z_{i} consist of the vertices w_{i-1}, w_{i}, w_{i+1} and the neighbours of J_{i} in $\bigcup \mathcal{T}_{i}$. As $i \in I_{3}$ we have $\left|Z_{i}\right| \leq k(p-3)+2$, so $G-Z_{i}$ is still $2 p$-connected. Since $H_{i}^{\prime} \subseteq J_{i}-w_{i}$, the graph H_{i}^{\prime} has no vertex in Z_{i}. By Menger's theorem, there are $2 p$ disjoint paths in $G-Z_{i}$ from H_{i}^{\prime} to our wall H. By definition of J_{i}, their first vertices outside J_{i} lie in $U_{i}^{-} \cup U_{i+1}^{+}$(recall that this set and w_{i} together separate H_{i} from H in G), and hence on a path in $\mathcal{Q}_{i} \backslash \mathcal{T}_{i}$. By Lemma 5.2, there exists an $H_{i}^{\prime}-\left(\mathcal{Q}_{i} \backslash \mathcal{T}_{i}\right)$ comb of at least $2 p$ paths. Each path in \mathcal{Q} meets at most two of them. Observation 5.3 implies that we can find p paths $Q^{1}, \ldots, Q^{p} \in \mathcal{Q}$ such that $Q_{i}^{1}, \ldots, Q_{i}^{p} \in \mathcal{Q}_{i} \backslash \mathcal{T}_{i}$ (as in (6)) together with an $H_{i}^{\prime}-\left\{Q_{i}^{1}, \ldots, Q_{i}^{p}\right\}$ subcomb \mathcal{R} meeting all of Q^{1}, \ldots, Q^{p}. Let \bar{Q}_{i}^{q} denote the $\left(\mathcal{R}, H_{i}^{\prime}\right)$-segment of Q_{i}^{q}, for each $q=1, \ldots, p$; these segments are non-empty, but they may be trivial.

We now define the paths $\hat{Q}_{i}^{1}, \ldots, \hat{Q}_{i}^{p}$. For all q whose \bar{Q}_{i}^{q} is trivial we let $\hat{Q}_{i}^{q}=Q_{i}^{q}$. For those q whose \bar{Q}_{i}^{q} is non-trivial, we let $h_{1}^{q} \in H_{i}^{\prime}$ be the starting vertex of the path $R_{1}^{q} \in \mathcal{R}$ that ends on the first vertex of \bar{Q}_{i}^{q}, and let $h_{2}^{q} \in H_{i}^{\prime}$ be the starting vertex of the path $R_{2}^{q} \in \mathcal{R}$ that ends on the last vertex of \bar{Q}_{i}^{q}. Our aim is to link h_{1}^{q} to h_{2}^{q} in H_{i}^{\prime} for each q, but we must define $R_{i}^{j, \ell}$ at the same time. If \bar{Q}_{i}^{j} is trivial, let $r^{j} \in H_{i}^{\prime}$ be the starting vertex of the unique path $R^{j} \in \mathcal{R}$ that ends on \bar{Q}_{i}^{j}. If \bar{Q}_{i}^{j} is non-trivial, let $r^{j} \in H_{i}^{\prime}$ be a neighbour of h_{1}^{j} in $H_{i}^{\prime}-\bigcup \mathcal{R}$; such a neighbour exists, since H_{i}^{\prime}, being $(p+1)$-linked, is $(2 p+1)$-connected [5, Ex. 3.22]. Define r^{ℓ} analogously. Now choose a linkage in H_{i}^{\prime} consisting of a path $R=r^{j} \ldots r^{\ell}$ and paths $R^{q}=h_{1}^{q} \ldots h_{2}^{q}$ for all those q such that \bar{Q}_{i}^{q} is non-trivial. For these q, let \hat{Q}_{i}^{q} be obtained from Q_{i}^{q} by replacing \bar{Q}_{i}^{q} with $R_{1}^{q} \cup R^{q} \cup R_{2}^{q}$. If both \bar{Q}_{i}^{j} and \bar{Q}_{i}^{ℓ} are trivial, let $R_{i}^{j, \ell}$ be the interior of the path $R^{j} \cup R \cup R^{\ell}$. If \bar{Q}_{i}^{j} is trivial but \bar{Q}_{i}^{ℓ} is not, let $R_{i}^{j, \ell}$ be the path $R^{j} \cup R$ minus its first vertex. If \bar{Q}_{i}^{ℓ} is trivial but \bar{Q}_{i}^{j} is not, let $R_{i}^{j, \ell}$ be the path $R \cup R^{\ell}$ minus its last vertex. If neither \bar{Q}_{i}^{j} nor \bar{Q}_{i}^{ℓ} is trivial, let $R_{i}^{j, \ell}$ be the path R. This completes the proof of (6) .

By (5), we can find a set $I_{4} \subseteq I_{3}$ of $\left.k\binom{p}{2}+1\right)$ indices i in I_{3} for which the choice of paths Q^{1}, \ldots, Q^{p} in (6) coincides. (Recall that these paths are always chosen from the original vortex linkage of order $\leq \alpha$, since the trivial paths $\{v\}$ with $v \in A$ which we added later lie in every \mathcal{T}_{i}.) For notational reasons only, let $\hat{p}:=\binom{p}{2}$. Divide I_{4} into k segments

$$
\left(i_{1}^{1}, \ldots, i_{\hat{p}}^{1}, i^{1}\right), \ldots,\left(i_{1}^{k}, \ldots, i_{\hat{p}}^{k}, i^{k}\right)
$$

of length $\binom{p}{2}+1$. For every upper index $n=1, \ldots, k$ contract in each of Q^{1}, \ldots, Q^{p} the segment from $H_{i_{1}^{n}}$ to $H_{i_{\hat{p}}^{n}}$ (inclusive) to a vertex, and make these vertices into a K_{p} minor using the paths $R_{i}^{j, \ell}$ from (6) for subdivided edges, one for each $i=i_{1}^{n}, \ldots, i_{\hat{p}}^{n}$. Note that the k instances of a K_{p} minor thus obtained are disjoint, because they are 'buffered' by the unused segments of the paths Q^{1}, \ldots, Q^{p} in $H_{i^{n}}$ for $n=1, \ldots, k-1$.

8 Tightness of the connectivity bound

The goal of this section will be to provide a construction of a graph $G_{n, k, p}$ for all integers $p \geq 5, k \geq p$, and $n \geq 1$, such that the graph $G_{n, k, p}$ does not contain k disjoint instances of K_{p} as a minor, nor does the graph $G_{n, k, p}$ contain a subset X of vertices with $|X| \leq n$ such that $G-X$ does not contain K_{p} as a minor. Moreover, we will construct such a graph $G_{n, k, p}$ that is $\left(k(p-3)-\frac{(p-3)(p-4)}{2}-6\right)$-connected. This will imply that the connectivity bound obtained in Theorem 1.1 is best possible for all fixed $p, p \geq 5$, up to an additive constant.

For the remainder of this section, we fix $p \geq 5$. Let Σ be an orientable surface of minimum genus in which K_{p} embeds. The Euler genus of Σ is at most $\frac{(p-3)(p-4)}{6}+1$ (see [9]).

We will use the following facts (see 9 for details):
Lemma 8.1 There are at most $\frac{(p-3)(p-4)}{6}+1$ disjoint instances of K_{5}-minors in a graph which is embedded in the surface Σ. Moreover, suppose there are connected subgraphs B_{1}, \ldots, B_{q} in a graph embedded in the surface Σ, such that each B_{i} contains a K_{5}-minor. Assume there is a vertex v such that $v \in V\left(B_{i}\right)$ for each i and $\left(V\left(B_{i}\right)-\{v\}\right) \cap\left(V\left(B_{j}\right)-\{v\}\right)=\emptyset$ for $i \neq j$. Then $q \leq \frac{(p-3)(p-4)}{6}+1$.

Lemma 8.1 can be generalized as follows (again, see [9] for details):
Lemma 8.2 Suppose there are q disjoint minors isomorphic to $K_{l_{1}}, K_{l_{2}}, \ldots, K_{l_{q}}\left(l_{i} \geq 5\right.$ for $i=1, \ldots, q)$, respectively, in a graph G that is embedded in the surface Σ. Then $\Sigma_{i=1}^{q}\left\lceil\frac{\left(l_{i}-3\right)\left(l_{i}-4\right)}{6}\right\rceil \leq \frac{(p-3)(p-4)}{6}+1$. Suppose there are connected graphs B_{1}, \ldots, B_{q} in a graph that is embedded into the surface Σ, such that each B_{i} contains a $K_{l_{i}}$-minor (with $l_{i} \geq 5$ for $i=1, \ldots, q$), and there is a vertex v such that $v \in V\left(B_{i}\right)$ for each i and $\left(V\left(B_{i}\right)-\{v\}\right) \cap\left(V\left(B_{j}\right)-\{v\}\right)=\emptyset$ for $i \neq j$. Then $\Sigma_{i=1}^{q}\left\lceil\frac{\left(l_{i}-3\right)\left(l_{i}-4\right)}{6}\right\rceil \leq \frac{(p-3)(p-4)}{6}+1$.

We are almost ready to construct the graph $G(n, k, p)$. We first recall that the face-width of a graph embedded in a surface is the minimum number of times a non-contractable loop intersects the embedded graph taken over all possible non-contractable loops. The following observation follows immediately from the definition of face-width.

Observation 8.3 Let G be a graph embedded in a surface Γ with face-width k. Let X be a set of t vertices in G. Then $G-X$ is embedded in Γ with face width at least $k-t$.

For a further discussion of face-width, we refer to [9]. We will need the following result.
Theorem 8.4 ([11]) Let $t \geq 5$ be a positive integer and let Γ be a surface in which K_{t} can be embedded. Then there exists a value $r=r(\Gamma, t)$ such that every graph embedded in Γ with face-width r contains K_{t} as a minor.

Fix r to be the value given by Theorem 8.4 to ensure a graph embedded in Σ contains K_{p} as a minor. We first construct a graph G^{\prime} which is embedded in the surface Σ, with the following properties:

1. The face-width of G^{\prime} embedded in Σ is at least $n+r$.
2. There is a cycle C in G^{\prime} which bounds a disk D in Σ, and the set of vertices on the outer boundary of the disk D is defined by $V(D)$. We assume that no vertex, except for the vertex set $V(D)$, exists inside the disk D.
3. For each vertex v outside the disk D, there are at least $k(p-3)-\frac{(p-3)(p-4)}{2}-6$ internally disjoint paths from v to $V(D)$ in G^{\prime}.
4. G^{\prime} is 3-connected, and hence each vertex in $V(D)$ has degree at least 3 .

A graph G^{\prime} with the desired embedding is known to exist [8; we outline such a construction. We begin with a 3 -connected graph H allowing a closed 2-cell embedding in Σ, in other words, a 3 -connected graph H which embeds in Σ so that the topological closure of every facial region is homeomorphic to the closed disk. Consider the following operation for a fixed facial region F. The region F is bounded by a cycle C_{F} in H. We subdivide every edge of C and add a new vertex embedded in the region F adjacent to every vertex on the subdivided cycle C. The resulting graph is 3 -connected and the new embedding is a closed 2 -cell embedding as well. Note that if we perform this operation on every facial region, the resulting graph will be embedded in Σ with face width at least twice that of the original embedding. Thus by repeatedly performing the operation, we find a 3 -connected graph H_{1} along with a closed 2 -cell embedding in Σ satisfying 1 above.

Given the embedded graph H_{1}, let H^{*} be the dual graph with vertex set equal to the set of facial regions and two facial regions are adjacent in H^{*} if their boundary cycles share an edge. Note that by the 3 -connectivity of H_{1}, the graph H^{*} is a simple connected graph. Let T be a spanning tree of H^{*}, and fix a root R of the tree T. Let $F \in V(T)-R$ be a facial region of H_{1} forming a leaf in T. Let C_{F} be the boundary cycle of F, and let e_{F} be the edge of H_{1} shared with the neighboring facial region in T. We subdivide the edge e_{F} sufficiently many times to add $k(p-3)-\frac{(p-3)(p-4)}{2}-6$ neighbors in the subdivided e_{F} for every vertex of $C_{F}-e_{F}$. Given that the region is homeomorphic to the disc, it is clear that we can add the edges maintaining the embedding in Σ. Moreover, we maintain 3-connectivity of the graph. In the resulting graph, every vertex of $C_{F}-e_{F}$ will have the desired large degree. We repeatedly delete the leaf F from the tree T and apply the same process to a leaf of $V(T)-F$ until only the vertex R remains. Let G^{\prime} be the resulting graph. We claim G^{\prime} satisfies $2-4$ above with the disc D being the boundary cycle of the facial region R. The properties 2 and 4 follow easily from the construction. To see that we satisfy 3 as well, pick a vertex of $v \in V\left(G^{\prime}\right) \backslash V(D)$. We can find the desired paths from v to $V(D)$ by looking at the path of facial regions in T connecting v to $V(D)$. At each facial region along the path, a given vertex has in fact $k(p-3)-\frac{(p-3)(p-4)}{2}-6$ neighbors on the next facial region. This completes our outline of the construction of G^{\prime}.

We now define $G=G(n, k, p)$ as follows. Let Z be a set of $k(p-3)-\frac{(p-3)(p-4)}{2}-6$ vertices. The vertex set of G will be $Z \cup V\left(G^{\prime}\right)$, and the edge set will the union of the edges of G^{\prime} along with every possible edge of the form $z d$ for all $z \in Z$ and $d \in D$. We will see that the graph G satisfies the desired properties.

We first claim that G is $\left(k(p-3)-\frac{(p-3)(p-4)}{2}-6\right)$-connected. Assume there exists a cutset $X \subseteq V(G)$ dividing the graph into at least two connected pieces with $X \leq k(p-3)-$ $\frac{(p-3)(p-4)}{2}-7$. Let u and v be two vertices such that u and v are in distinct components of $G-X$. There exists at least one element $z \in Z$ contained in $G-X$, and so it follows that $V(D) \backslash X$ is contained in a single component of $G-X$. Given that there exist $k(p-3)-$ $\frac{(p-3)(p-4)}{2}-6$ internally disjoint paths from each of v and u to $V(D)$, it follows that $V(D) \backslash X$, u, and v are all contained in the same component of $G-X$, contrary to our choice of u and v.

We now observe that there is no vertex set X of order at most n in G such that $G-X$ does not contain a K_{p}-minor. By Observation 8.3, for any vertex set X of order n, the graph $G-X$ has face-width at least r. It follows that $G-X$ contains K_{p} as a minor by Theorem 8.4

As a final step, we now prove that G cannot contain k disjoint instances of K_{p}-minors
when $k \geq p$. Suppose, to reach a contradiction, that G contains pairwise disjoint subgraphs H_{1}, \ldots, H_{k}, each of which contains K_{p} as a minor. Recall that Z is the set of vertices adjacent every vertex of D, and $|Z|=k(p-3)-\frac{(p-3)(p-4)}{2}-6$. We are now interested in all of the instances H_{1}, \ldots, H_{k} that contain at most $p-4$ vertices of Z. We fix the value t, and possibly re-number the subgraphs H_{i} for $1 \leq i \leq k$ such that H_{i} contains at most $p-4$ vertices of Z if and only if $1 \leq i \leq t$. We let l_{i} be defined to be $\left|V\left(H_{i}\right) \cap Z\right|$ for $1 \leq i \leq t$. It follows immediately that:

$$
\begin{aligned}
|Z| & =\sum_{1}^{t} l_{i}+\sum_{i=t+1}^{k}\left|V\left(H_{i}\right) \cap Z\right| \\
& \geq \sum_{1}^{t} l_{i}+(k-t)(p-3) \\
& \geq \sum_{1}^{t} l_{i}+k(p-3)-t p+3 t
\end{aligned}
$$

If we combine the resulting inequality with the bound on $|Z|$, we conclude that

$$
\sum_{1}^{t}\left(p-l_{i}-3\right) \geq \frac{(p-3)(p-4)}{2}+6
$$

We now define a new graph \bar{G} to be the graph G^{\prime} embedded in Σ with an additional vertex x attached to every vertex of D. It is clear that the graph \bar{G} embeds in Σ as well. We also define \bar{H}_{i} for $1 \leq i \leq t$ to be the subgraph of \bar{G} formed by $H_{i} \cap G^{\prime}$ and the vertex x. Observe that \bar{H}_{i} contains a $p-l_{i}+1$ clique minor. This follows as every branch set of H_{i} which does not intersect Z remains a connected branch set of \bar{H}_{i}, and we form one additional branch set consisting of the union of the remaining branch sets of the clique minor in H_{i} along with the vertex x. Note that by our choice of $H_{i}, p-l_{i}+1 \geq 5$ for $1 \leq i \leq t$.

We now apply Lemma 8.2 to the subgraphs $\bar{H}_{i}, 1 \leq i \leq t$, of the graph \bar{G}. It follows that:

$$
\begin{aligned}
\frac{(p-3)(p-4)}{6}+1 & \geq \sum_{1}^{t}\left\lceil\frac{\left(p-l_{i}-2\right)\left(p-l_{i}-3\right)}{6}\right\rceil \\
& \geq \sum_{1}^{t}\left\lceil\frac{1}{3}\left(p-l_{i}-3\right)\right\rceil \\
& \geq \sum_{1}^{t} \frac{1}{3}\left(p-l_{i}-3\right)
\end{aligned}
$$

However, given our lower bound on $\sum_{1}^{t}\left(p-l_{i}-3\right)$, we now arrive at a contradiction.
This completes the proof that there exists a graph $G_{n, k, p}$ which is $\left(k(p-3)+\frac{(p-3)(p-4)}{2}-6\right)-$ connected graph such that for all integers $n \geq 1, p \geq 5, k \geq p$, the graph $G_{n, k, p}$ does not contain k disjoint instances of K_{p} as a minor, nor does it contain a subset X of vertices with $|X| \leq n$ such that $G(n, k, p)-X$ does not contain K_{p} as a minor.

References

[1] T. Böhme, K. Kawarabayashi, J. Maharry and B. Mohar, Linear connectivity forces large complete bipartite graph minors, J. Combin. Theory Ser. B, 99 (2009), 557-582.
[2] K. Kawarabayashi, S. Norine, R. Thomas, P. Wollan, K_{6} minors in 6-connected graphs of bounded tree width, submitted.
[3] K. Kawarabayashi, S. Norine, R. Thomas, P. Wollan, K_{6} minors in large 6-connected graphs, submitted.
[4] R. Diestel, K. Kawarabayashi, Th. Müller, P. Wollan, On the excluded-minor structure theorem for graphs of large tree-width, http://arxiv.org/abs/0910.0946
[5] R. Diestel, Graph Theory (3rd edition), Springer-Verlag, 2005, Electronic edition available at: http://diestel-graph-theory.com/GrTh.html
[6] P. Erdős and L. Pósa, On the maximal number of disjoint circuits of a graph, Publ. Math. Debrecen 9 (1962), 3-12.
[7] J.-O. Fröhlich and T. Müller, Linear Connectivity Forces Large Complete Bipartite Minors: the Patch for the Large Tree-Width Case, http://arxiv.org/abs/0906.2568
[8] B. Mohar, personal communication.
[9] B. Mohar and C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, Baltimore, MD, 2001.
[10] N. Robertson and P. Seymour, Graph Minors V: Excluding a planar graph, J. Combin. Theory, Ser. B 41, (1986) pp.92-114.
[11] N. Robertson and P. D. Seymour, Graph Minors. VII. Disjoint paths on a surface, J. Combin. Theory, Ser. B, 45 (1988), 212-254.
[12] N. Robertson and P. D. Seymour, Graph Minors. XVI. Excluding a non-planar graph J. Combin. Theory, Ser. B 89 (2003) 43-76.
[13] N. Robertson and P. Seymour, Graph Minors. XVII. Taming a vortex, J. Combin. Theory, Ser. B 77, (1999) pp. 162-210.
[14] N. Robertson and P. Seymour, Graph Minors. XXI. Graphs with unique linkages, J. Combin. Theory, Ser. B, 99, 583-616.
[15] R. Thomas and P. Wollan, An improved linear edge bound for graph linkages, Europ. J. Combinatorics, 26 (2005) 309-324.

[^0]: *National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan
 ${ }^{\dagger}$ Research is partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research, by C \& C Foundation, by Kayamori Foundation and by Inoue Research Award for Young Scientists.
 ${ }^{\ddagger}$ Email address: k_keniti@nii.ac.jp
 §University of Rome, "La Sapienza" Department of Computer Science, Via Salaria 113, Rome 00198 Italy
 『Email address: paul.wollan@gmail.com

