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Abstract

It is known that finite crossed modules provide premodular tensor categories. These cat-

egories are in fact modularizable. We construct the modularization and show that it is

equivalent to the module category of a finite Drinfeld double.

1 Introduction

Modular tensor categories and, more generally, premodular tensor categories arise as repre-
sentation categories of certain (weak) Hopf algebras, certain nets of von Neumann algebras
and suitable classes of vertex algebras. They have found numerous applications, including the
construction of invariants of three-manifolds and links, the construction of low-dimensional
quantum field theories and the construction of gates in topological quantum computing. The
simplest algebraic object whose representation category is a premodular tensor category is a
finite crossed module:

Definition 1.1

A finite crossed module consists of two finite groups X1 and X2, together with a (right)action
µ of X1 on X2 by group automorphisms, written as µ(m, g) = mg and a group homomorphism,
called the boundary map, ∂ : X2 → X1 that satisfies

∂(mg) = g−1(∂m)g and m∂n = n−1mn for all m,n ∈ X2 and g ∈ X1.

It follows immediately from the definition that the kernel of ∂ is a central subgroup of
X2 and that the image of ∂ is a normal subgroup of X1. This definition reduces to the usual
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definition of the Drinfeld double D(G) of a finite group G if the boundary map ∂ is the identity
and the action µ is given by conjugation.

Our results hold over any algebraically closed field k of characteristic zero. Any finite crossed
module X gives rise to a category of representations over k which we denote by M(X ). The
objects (V, P,Q) of the category M(X ) are finite-dimensional X2-graded k-vector spaces V =
⊕m∈X2Vm with an action Q : X1 → Aut(V ) of X1 such that

P (m)Q(g) = Q(g)P (mg) for all m ∈ X2 and g ∈ X1 .

Here P (m) is the projection to the m-th graded component. Morphisms are required to preserve
the X2-grading and the X1-action. In other words, we consider the category of X1-equivariant
vector bundles on X2 of finite rank.

We endow the category M(X ) with the structure of a tensor category: the tensor product is
the usual tensor product of vector spaces, where the grading on V ⊗W is given by (V ⊗W )m =⊕

nl=m Vn ⊗Wl and the action of X1 on V ⊗W is the diagonal action. The boundary map ∂
gives the additional structure of a braided tensor category on M(X ): braiding isomorphisms
are given by

RVW : V ⊗W → W ⊗ V (1)

v ⊗ w 7→
∑

m∈X2

QW (∂m)w ⊗ PV (m)v .

Bantay has shown [Ba] that together with the dualities inherited from the category of finite-
dimensional k-vector spaces, where on the dual space the grading is defined by (V ∗)m = (Vm−1)∗

and the action is given by Q∗(g) = Q(g−1)∗, the category M(X ) has the structure of a pre-
modular tensor category:

Definition 1.2

(i) Let k be an algebraically closed field of characteristic zero. A premodular tensor category
over k is an abelian, k-linear, semi-simple ribbon category C such that

(a) The tensor product is linear in each variable and the tensor unit is absolutely simple,
End(1) = k.

(b) There are only finitely many isomorphism classes of simple objects, indexed by a set
ΛC.

(ii) The braiding on C allows to define the S-matrix with entries in the field k

sXY := tr(RY X ◦RXY ) , (2)

where X, Y ∈ ΛC. A premodular category is called modular, if the S-matrix is invertible.

We refer to [BK, Ka] for the notion of a ribbon category. For a detailed discussion of the
premodular tensor category M(X ), including a character theory, we refer to [Ba].

Modular tensor categories are of particular interest, since they allow the construction of a
topological field theory [RT, Tu] and thus of invariants of three-manifolds and of knots and
links. The category M(X ) associated to a crossed module is known to be modular, iff the
boundary map ∂ is an isomorphism [N, Proposition 5.6]. In this case, it is equivalent to the
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representation category of the Drinfeld double of a finite group. Equivalent categories appear
as representation categories of holomorphic orbifold theories, see e.g. [DVVV].

Bruguières [Br] (see also [M1]) has introduced the notion of modularization that associates
to any premodular tensor category (obeying certain conditions) a modular tensor category.
This tensor category is unique up to equivalence of braided tensor categories. The categories
associated to crossed modules obey these conditions [Ba]; hence the question arises whether
crossed modules provide a source of new modular tensor categories. A first main result of this
note is a negative answer to this question in Theorem 4.1: the modularization yields a modular
tensor category equivalent to the category for the Drinfeld double of X2/ker ∂ ∼= Im ∂.

Bruguières has also given an explicit modularization procedure which is based on a Tan-
nakian subcategory of the premodular tensor category. As a second main result of this note,
we determine in Proposition 2.12 the group corresponding to the Tannakian subcategory to be
a semi-direct product

G(X ) := (ker ∂)∗⋊µ̂(coker ∂) .

Here (ker ∂)∗ is the group of characters of the finite abelian group ker ∂; the semidirect product is
explained in equation (7). The regular representation of G then provides a commutative special
symmetric Frobenius algebra in the premodular tensor category M(X ). By general arguments,
the category of left modules over this algebra is a modular tensor category, see Proposition 3.7.

This note is organized as follows: in section 2 we recollect a few more aspects of crossed
modules and their representation category from [Ba] and describe explicitly the full Tannakian
subcategory of transparent objects. The transparent object corresponding to the regular rep-
resentation of G(X ) is shown in Section 3 to be a commutative special symmetric Frobenius
algebra 0. We describe the modularization functor as the induction functor with respect to the
algebra 0. In section 4, this description is used to construct an explicit equivalence of categories
from the modularization to the representation category of a Drinfeld double.

2 Premodular categories from finite crossed modules

We start by summarizing some more aspects of the premodular category M(X ) defined in the
previous section. For any object V ∈ M(X ), the character is defined as the function

ψ : X2 × X1 → k
(m, g) 7→ trV (P (m) Q(g)) .

The character theory for finite crossed modules largely parallels (and in fact generalizes) the
character theory of finite groups [Ba]. In particular, Maschke’s theorem and orthgonality rela-
tions hold: for a general field k, the irreducible characters are orthogonal for the non-degenerate
symmetric bilinear form

< ψ1, ψ2 >:=
1

|X1|

∑

g∈X1,m∈X2

ψ1(m, g
−1)ψ2(m, g) .

For k = C, the irreducible characters are orthonormal with respect to the hermitian scalar
product

(ψ1, ψ2) :=
1

|X1|

∑

g∈X1,m∈X2

ψ1(m, g)ψ2(m, g) .

We introduce two particularly important objects in M(X ). To this end, we introduce the
notation K := ker ∂, C := coker ∂ and I := Im ∂.
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(i) The tensor unit 1 is defined on a one-dimensional vector space in the graded component
for e ∈ X2 and with trivial action of X1.

(ii) The vacuum object is the triple 0 = (V0, P0, Q0) with the vector space

V0 = k[ker ∂]⊗ k(coker ∂) ≡ k[K]⊗ k(C) .

On the distinguished basis (x⊗ δIy)x∈K,Iy∈C we set for m ∈ X2, g ∈ X1:

P0(m)(x⊗ δIy) = δ(my, x)(x⊗ δIy) Q0(g)(x⊗ δIy) = (x⊗ δIgy)

A direct calculation using the explicit form (1) of the braiding gives the S-matrix defined
in (2) in terms of the characters: the entry corresponding to the irreducible representations
p, q ∈ ΛM(X ) is

spq =
∑

m,n∈X2

ψp(m, ∂n)ψq(n, ∂m) .

It is convenient to introduce a normalization factor to obtain a non-degenerate symmetric
matrix:

Spq :=
spq
|X |

=
1

|X |

∑

m,n∈X2

ψp(m, ∂n)ψq(n, ∂m)

with |X | := |X1| · |ker ∂| = |X2| · |coker ∂|. For later reference, we associate to each p ∈ ΛM(X )

the number

ωp :=
1

dp

∑

m∈X2

ψp(m, ∂m) ,

where dp is the categorical dimension of p (which coincides with the dimension of the underlying
vector space). It gives the eigenvalue of the twist θp on the simple object p and it can be shown
to satisfy the equality

ψp(m, g∂m) = ωp · ψp(m, g) . (3)

Remark 2.1.

(i) Given any simple object p ∈ ΛM(X ), we have S1p =
dp
|X |

, where 1 is the tensor unit.

(ii) The multiplicity µp = dimk Hom(p, 0) of the irreducible representation p in 0 equals

µp = D[S2]1p , (4)

where D := |coker ∂| · |ker ∂|. This follows in a straightforward calculation by expressing
the multiplicity in terms of characters as µp = (ψp, ψ0) and then using orthogonality
relations to compare with the matrix element of S2.

We recall the following definition from [Br]:

Definition 2.2

An object X of a braided tensor category C is called transparent, if the equation RY,X = R−1
X,Y

holds for all Y ∈ C. We denote the set of isomorphism classes of simple transparent objects by
TC.

The following observations are straightforward:
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Remark 2.3.

(i) Direct summands of transparent objects and direct sums of transparent objects are trans-
parent.

(ii) The vacuum object 0 of M(X ) is transparent. This follows from a straightforward calcu-
lation using the explicit form (1) of the braiding.

Lemma 2.4.

An irreducible representation p ∈ ΛM(X ) is a direct summand of the vacuum object 0, if and
only if the p-th row of the S-matrix is collinear to the row (S1q)q∈ΛM(X)

.
In this case, the multiplicity µp equals α = µp = dp, where Spq = αS1q. Moreover, the twist

on any such simple object with µp > 0 is the identity.

Proof:

Suppose, there is an α ∈ k such that Spq = αS1q for all q ∈ ΛM(X ). Specializing to q = 1 yields
dp
|X |

= α
|X |

and hence the first identity α = dp > 0. We compute the multiplicity µp:

µp
(4)
= D[S2]1p = D

∑

q∈ΛM(X)

S1qSpq = αD
∑

q∈ΛM(X)

S2
1q = α

D

|X |2

∑

q∈ΛM(X)

d2p = α ,

where in the last step we have used a generalization of Burnside’s Theorem [Ba] for the char-
acters.

Conversely, suppose µp > 0 so that p is a direct summand of the transparent object 0 and
hence by Remark 2.3 transparent itself. For any q ∈ ΛM(X ) we conclude Rqp ◦Rpq = idp⊗q and
thus

Spq =
1

|X |
tr(idp⊗q) =

dpdq
|X |

= dpS1q .

The equalities

µp =
1

|X2|

∑

n∈X2,m∈K

ψp(m, ∂n)
(3)
=

1

|X2|

∑

n∈X2,m∈K

ψp(m, ∂nm
−1)ωp

=
1

|X2|

∑

ñ∈X2,m∈K

ψp(m, ∂ñ)ωp = µpωp

show that µp > 0 implies ωp = 1. �

For a premodular category C, consider the set of isomorphism classes of those simple objects
X ∈ C for which the row (sXY )Y ∈ΛC

is collinear with the row (s1Y )Y ∈ΛC
of the tensor unit:

MC = {X ∈ ΛC | ∀Y ∈ ΛC : sXY = dimX dim Y } .

Corollary 2.5.

We have the following identities for the category M(X ):

(i) MM(X ) = TM(X ).
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(ii) θX = idX for all transparent objects X.

(iii)
∑

p∈TM(X)
(dp)

2 = |ker ∂||coker ∂| with dp = dim p.

Proof:

(i) According to Lemma 2.4, any simple object p ∈ MM(X ) is contained in the transparent
object 0 and thus transparent itself. The other inclusion is obvious.

(ii) Lemma 2.4 and the first assertion of this corollary imply θp = idp for all p ∈ TM(X ). The
assertion follows since a transparent object is a direct sum of simple transparent objects.

(iii) The definition of µp and Lemma 2.4 imply

| ker ∂| · |coker ∂| = dim 0 =
∑

p∈ΛM(X)

µpdp =
∑

p∈TM(X)

(dp)
2 .

�

Bruguières’ modularity criterion [Br, Proposition 1.1] asserts that a premodular category C
is modular if and only if MC = {1}. As an application we obtain:

Proposition 2.6.

The category M(X ) is modular, if and only if the boundary map ∂ is a bijection. In this case,
M(X ) is equivalent to the representation category of a Drinfeld double.

Proof:

Lemma 2.4 implies that the row (Spq)q∈ΛM(X)
is collinear with (S1q)q∈ΛM(X)

, if and only if p has
non-vanishing multiplicity in 0. For the tensor unit, we have multiplicity µ1 = d1 = 1.

If the boundary map ∂ is a bijection, we have 0 ∼= 1 and, according to Bruguières’ criterion,
the category M(X ) is modular. If ∂ is not bijective, we have dimV0 > 1 and 0 contains at
least one simple object that is not isomorphic to the tensor unit 1. Bruguières’ criterion now
implies that the category is not modular. �

For a proof of this assertion that does not directly use Bruigières’ criterion, we refer to [N,
Proposition 5.6].

We will now explain why the premodular category M(X ) is modularizable [Ba]. To this
end, we repeat some definitions of [Br]:

Definition 2.7

(i) An object X of a category C is called a retract of an object Y ∈ C, if there are morphisms
ι : X → Y and π : Y → X such that π ◦ ι = idX .

(ii) A functor F : C → C′ is called dominant, if for every object X ∈ C′ there exists an object
Y ∈ C such that X is a retract of F (Y ).

(iii) A modularization of a premodular category C is a dominant ribbon functor F : C → C′

with C′ a modular tensor category. A premodular category is called modularizable, if it
admits a modularization.
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If a modularization exists, it is unique up to equivalence of braided tensor categories. It
is known [Br, Corollary 3.5] that a premodular category over an algebraically closed field of
characteristic zero is modularizable, if and only if for all objects X ∈ MC one has X ∈ TC ,
θX = idX and dimX ∈ N. We thus obtain for the category M(X ):

Proposition 2.8.

The premodular category M(X ) is modularizable.

Proof:

Corollary 2.5 implies for p ∈ MM(X ) that p ∈ TM(X ) and θp = idp. The assertion follows by
[Br, Corollary 3.5]. �

Proposition 2.3 of [Br] allows to detect modularizations among dominant ribbon functors
F : C → C′ between premodular categories: it is sufficient to check that for any transparent
object X ∈MC the image F (X) is trivial in the sense that it is a finite direct sum of the tensor
unit of C′.

Let us investigate further the tensor subcategory of transparent objects:

Definition 2.9

A premodular category C enriched over an algebraically closed field k is called Tannakian,
if there exists a modularization of C that is equivalent to the category vectf (k) of finite-
dimensional k-vector spaces.

We need the following facts proven in [De, Theorem 7.1] and [DM, Theorem 2.11]:

Proposition 2.10.

Let C be a premodular category over an algebraically closed field k of characteristic zero.

(i) The category C is Tannakian, if and only if for all simple objects X ∈ ΛC the twist equals
the identity, θX = idX , and dimX ∈ N.

(ii) If C is Tannakian, it is equivalent as a tensor category to the category of representations
of a finite group G on k-vector spaces.

Corollary 2.11.

The full tensor subcategory M(X )T of transparent objects of a premodular tensor category is
Tannakian.

Proof:

This follows immediately from Proposition 2.10 (i) and Corollary 2.5 (ii). �

We next determine explicitly the finite group G describing the Tannakian subcategory
M(X )T . The action µ : X2 × X1 → X2 that is part of the crossed module X = (X1,X2, µ, ∂)
factorizes to an action of coker ∂ on X2 which can be restricted to an action of coker ∂ on ker ∂:

ker ∂ × coker ∂

(k, Ig)

→

7→

ker ∂

kIg := kg .
(5)
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Since the subgroup ker ∂ is abelian, its irreducible characters form a group (ker ∂)∗. We
introduce the dual action

µ̂ : (ker ∂)∗ × coker ∂

(χ, c)

→

7→

(ker ∂)∗

χc(k) := χ(kc
−1

) ,
(6)

where we tacitly use the canonical identification (ker ∂)∗∗ ∼= ker ∂. We denote by G(X ) the
semi-direct product

G(X ) := (ker ∂)∗⋊µ̂(coker ∂) . (7)

Proposition 2.12.

The category G(X )-Rep is equivalent, as a tensor category, to the category M(X )T of trans-
parent X -representations.

Proof:

• We construct the equivalence explicitly and define a functor on objects as

F : G(X )-Rep → M(X ) (8)

which maps the G(X )-representation (V, ρ) to the triple (V, P ρ, Qρ) with

P ρ(m) :=

{ 1
|K|

∑
χ∈K∗ χ(m)ρ(χ, I) if m ∈ K ≡ ker ∂

0 else

Qρ(g) := ρ(1, Ig).

Since a linear map commuting with the G(X )-action commutes with the action of X
defined by P ρ and Qρ, we can define F on morphisms as the identity so that the functor
F is fully faithful. To show that the X -representation (V, P ρ, Qρ) is transparent, consider
any X -representation (W,PW , QW ) and compute the braiding:

RV,W =
∑

m∈X2

QW (∂m) ⊗ P ρ(m) ◦ τV,W =
∑

m∈K

QW (∂m)⊗
1

|K|

∑

χ∈K∗

χ(m)ρ(χ, I) ◦ τV,W

= QW (1)⊗
∑

χ∈K∗

δ(χ, 1)ρ(χ, I) ◦ τV,W (since m ∈ ker ∂)

= (idW ⊗ idV ) ◦ τV,W = τV,W

where τV,W : V ⊗W → W ⊗ V is the transposition map. Similarly, we find

RW,V =
∑

m∈X2

Qρ(∂m) ⊗ PW (m) ◦ τW,V = ρ(1, I)⊗
∑

m∈X2

PW (m) ◦ τW,V

= (idV ⊗ idW ) ◦ τW,V = τW,V .

• We next show that F is a strict tensor functor. To check that the tensor unit of G(X )-Rep,
the trivial representation, is mapped to the tensor unit in M(X ), we remark that for
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m ∈ X2 and g ∈ X1 we have

P ρ1(m) =
1

|K|

∑

χ∈K∗

χ(m)ρ1(χ, I) =
1

|K|

∑

χ∈K∗

χ(m)idC =
1

|K|

∑

χ∈K∗

m(χ)idC = δ(m, 1)idC,

Qρ1(g) = ρ1(1, Ig) = idC.

Consider two objects (V1, ρ1) and (V2, ρ2) of G(X )-Rep. To show that the tensor product
of the images under F equals the image of the tensor product (V1 ⊗ V2, P

ρ1⊗ρ2 , Qρ1⊗ρ2),
we remark

PV1⊗V2(m) =
∑

n∈X2

P ρ1(n)⊗ P ρ2(n−1m)

=
∑

n∈K

1

|K|2

∑

χ,χ̃∈K∗

χ(n)χ̃(n−1m)ρ1(n, I)⊗ ρ2(n
−1m, I)

=
1

|K|

∑

χ,χ̃∈K∗

δ(χ, χ̃)χ(m)ρ1(m, I)⊗ ρ2(m, I)

=
1

|K|

∑

χ∈K∗

χ(m)ρ1(m, I)⊗ ρ2(m, I) = P ρ1⊗ρ2(m) ,

where the third equality is the generalized orthogonality relation for group characters [Is,
Theorem 2.13]. The analogous identity for the action of X1 is straightforward.

• The functor F being fully faithful, it suffices to show that F is essentially surjective to
prove that it is an equivalence of tensor categories.

Any transparent object is a direct sum of simple transparent objects; hence we can restrict
ourselves to simple transparent objects. They are all direct summands of the vacuum
object 0 = (V0, P0, Q0) (Lemma 2.4). From this, we conclude that the linear map P0(m)
is zero for m /∈ K and that the automorphism Q0(g) is constant on the equivalence classes
of the cokernel coker ∂ = X1/I. Consider thus for a simple transparent object (V, P,Q)

ρ : G(X ) → Aut(V )

(χ, Ig) 7→ ρ(χ, Ig) :=
∑
k∈K

χ−1(k)Q(g)P (k). (9)

Direct computations show that this defines an action of the group G(X ).

The image of the G(X )-representation (V, ρ) under F is the X -representation

P ρ(m) =
1

|K|

∑

χ∈K∗

χ(m)ρ(χ, I) =
1

|K|

∑

k∈K,χ∈K∗

χ(m)χ−1(k)Q(1)P (k)

=
1

|K|

∑

k∈K∗∗,χ∈K∗

m(χ)k(χ−1)P (k) =
∑

k∈K∗∗

δ(k,m)P (k) = P (m) if m ∈ K

P ρ(m) = 0 = P (m) if m /∈ K

and

Qρ(g) = ρ(1, Ig) =
∑

k∈K

1(k)Q(g)P (k) = Q(g) .

We conclude that F is essentially surjective and thus an equivalence of tensor categories.
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3 The modularization of M(X )

The vacuum object 0 carries additional algebraic structure which crucially enters in the mod-
ularization of the premodular category M(X ).

Definition 3.1

(i) An algebra in a (strict) tensor category C is a triple consisting of an object A ∈ C, a
multiplication morphism m ∈ Hom(A ⊗ A,A) and a unit η ∈ Hom(1, A) obeying the
equations

m ◦ (m⊗ idA) = m ◦ (id⊗m) and m ◦ (η ⊗ idA) = idA = m ◦ (idA ⊗ η) .

A coalgebra in C is defined analogously as a triple consisting of an object C, a comulti-
plication morphism ∆ : C → C ⊗ C and a counit ǫ : C → 1 obeying coassociativity and
counit equalities.

(ii) An algebra (A,m, η) in a braided tensor category C is called (braided-)commutative, if
m ◦RAA = m.

(iii) An algebra in a tensor category is called haploid, if it is simple as a left module over itself,
i.e. if dimk Hom(1, A) = 1.

In the sequel we will see, that 0 even carries the structure of a special symmetric Frobenius
algebra:

Definition 3.2

Let C be a (strict) tensor category.

(i) A Frobenius algebra in C is an object with an algebra structure (A,m, η) and a coalgebra
structure (A,∆, ǫ) such that ∆ : A→ A⊗A is a morphism of A-bimodules:

(idA ⊗m) ◦ (∆⊗ idA) = ∆ ◦m = (m⊗ idA) ◦ (idA ⊗∆). (10)

(ii) Suppose that the tensor category C is enriched over the category of k-vector spaces where
k is a field. A special algebra in C is an object that is endowed with an algebra and a
coalgebra structure such that

ǫ ◦ η = β1id1 and m ◦∆ = βAidA

with invertible elements β1, βA ∈ k×.

(iii) Let C be a sovereign tensor category, i.e. a category with left and right dualities that
coincide as functors from C to Copp. A symmetric algebra in C is an algebra (A,m, η)
together with a morphism ǫ ∈ Hom(A, 1) such that the two morphisms

10



Φ1,Φ2 : A→ A∨

Φ1 := [(ǫ ◦m)⊗ idA∨ ] ◦ (idA ⊗ bA) ∈ Hom(A,A∨) (11)

Φ2 := [id∨
A ⊗ (ǫ ◦m)] ◦ (b̃A ⊗ idA) ∈ Hom(A,A∨) (12)

are identical.

Here bA : 1 → A⊗ A∨ and b̃A : 1 → A∨ ⊗A are the coevaluations of the two dualities.

Let G be a finite group and k a field. An important example of a symmetric special Frobenius
algebra in the symmetric tensor category of k[G]-modules is the algebra of functions k(G) on
G, the regular representation.

Lemma 3.3.

The essential image of the regular representation of G(X ) under the functor F is the the vacuum
object 0.

Corollary 3.4.

Since k(G(X )) is a commutative symmetric Frobenius algebra, the vacuum object 0 carries a
natural structure of a symmetric special Frobenius algebra in M(X )T and thus in M(X ).

Proof of Lemma 3.3:

Consider the natural basis {(χ, c)}(χ,c)∈K∗⋊µ̂C of k(G(X )) of idempotents

(χ, c) · (χ̃, c̃) := δ(χ, χ̃)δ(c, c̃)(χ̃, c̃) (13)

and in which the regular representation ρR : G(X ) → Aut(G(X )) is given by

ρR(χ, c)(χ̃, c̃) := (χc̃χ̃, cc̃) . (14)

It is convenient to perform a partial Fourier transform with respect to K to introduce also the
basis

(k, c) :=
∑

χ∈K∗

χ(k)(χ, c). (15)

of
k(G(X )) in which the multiplication is

(k, c) · (k̃, c̃) = δ(c, c̃)(kk̃, c̃) .

The regular algebra k(G(X )) is mapped under the functor F to the triple
(k(K∗⋊µ̂C), P

R, QR) with

PR(m) =

{ 1
|K|

∑
χ∈K∗ χ(m)ρR(χ, I) if m ∈ K

0 else
(16)

QR(g) = ρR(1, Ig). (17)

We compute the action of PR and QR on the basis (k, c)(k,c)∈K×C:
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PR(m)(k̃, Ig̃) =
1

|K|

∑

χ,χ̃∈K∗

χ(m)χ̃(k̃)ρR(χ, I)(χ̃, Ig̃)

=
1

|K|

∑

χ,χ̃∈K∗

χ(mg̃)χ̃(k̃)(χχ̃, Ig̃) =
1

|K|

∑

χ,χ′∈K∗

mg̃(χ)k̃(χ−1χ′)(χ′, Ig̃)

=
∑

χ′∈K∗

δ(mg̃, k̃)χ′(k̃)(χ′, Ig̃) = δ(mg̃, k̃)(k̃, Ig̃) if m ∈ K

PR(m)(k̃, Ig̃) = 0 = δ(mg̃, k̃)(k̃, Ig̃) if m /∈ K

QR(g)(k̃, Ig̃) =
∑

χ∈K∗

χ(k̃)ρR(1, Ig)(χ, Ig̃) =
∑

χ∈K∗

χ(k̃)(χ, Igg̃) = (k̃, Igg̃) .

Since this is precisely the action of X on 0, we have proven the assertion. �

Modules over the special symmetric Frobenius algebra 0 crucially enter in the concrete
construction [Br, Lemma 3.3] of the modularization:

Definition 3.5

Let A be an algebra in a strict tensor category C.

(i) A (left) A-module is a pair (X, ρX) with A ∈ C and ρX ∈ HomC(A⊗X,X) such that

ρ ◦ (m⊗ idX) = ρ ◦ (idA ⊗ ρ) and ρ ◦ (η ⊗ idX) = idX .

(ii) A module (X, ρX) over A is called local or dyslectic ([Pa, KO, FFRS]), if ρX◦RXA◦RAX =
ρX .

(iii) A morphism of A-modules (X, ρX) and (Y, ρY ) is a morphism f ∈ HomC(X, Y ) such that

f ◦ ρX = ρY ◦ (idA ⊗ f) . (18)

(iv) We denote by A-ModC the category of A-modules in C and by A-Modloc
C the full subcat-

egory of local A-modules.

Remark 3.6.

Let C be a braided tensor category and A be a commutative algebra in C. The following elemen-
tary facts from commutative algebra are still valid in this setting:

(i) Every left A-module (M, ρ) has a structure of a right A-module with (M, ρ ◦RM,A).

(ii) Let M,N be two left A-modules. Then

M ⊗A N := coker (ρM ◦RM,A ⊗ idN − idM ⊗ ρN )

endows the category A-ModC with the structure of a tensor category.
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In fact, the modularization functor was constructed in [Br, Proposition 3.2] as an induction
functor for a special commutative symmetric Frobenius algebra obtained as the regular algebra
in a Tannakian subcategory. We conclude

Proposition 3.7.

The induction functor

Ind0 : M(X ) → M(X ) := 0-Mod

X 7→ (0⊗X,m⊗ idX)

is a modularization of M(X ).

Proof:

By [FS, Proposition 5.11], the induction functor is a tensor functor and by [FS, Proposition
5.17] it is compatible with duality. Since 0 is a special Frobenius algebra, the induction functor
is dominant by [FS, Lemma 4.15]. From the explicit form of the braiding given in [FFRS,
Proposition 3.21] one deduces that the induction functor respects the braiding and is thus a
ribbon functor. The category of modules over the regular algebra k(G(X )) in G(X )-Rep is
equivalent to the category of k-vector spaces. Hence, for any transparent object X ∈ C, the
induced module is isomorphic to a direct sum of 0. Thus by [Br, Proposition 2.3], the induction
functor is a modularization. �

4 Explicit description of the modularization

We now wish to describe the modularization M(X ) explicitly by showing that it is equivalent
to the category of representations of a crossed module X with bijective boundary map and thus
to the representation category of an ordinary Drinfeld double. To this end, we consider

X := (I,X2/K, µ, ∂) (19)

with action

µ : I × X2/K → X2/K

(g,Km) 7→ Kµ(g,m) = Kmg

and boundary map

∂ : X2/K → I

Km 7→ ∂(m) .

All maps are well-defined, since x ∈ K and g ∈ I implies xg ∈ K and ∂(x) = 1. A direct
computation shows that this defines a crossed module; the bijectivity of ∂ is obvious.

Theorem 4.1.

The modularization of the representation category M(X ) of a crossed module X is equivalent,
as a ribbon category, to the category of representations M(X ) of the crossed module X .
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Our proof proceeds in two steps. We first introduce the crossed module

X ′ = (I,X2, µ
′ = µ|I×X2, ∂)

where we restrict to the image I of ∂. By abuse of notion, we denote the boundary map of
this crossed module again by ∂; this map is surjective. We denote by 0′ the vacuum object of
M(X ′) which is again a commutative special symmetric Frobenius algebra. We then construct
a functor

0-ModM(X )
F

−→ 0′-ModM(X ′) .

Proposition 4.4 asserts that F is an equivalence of abelian categories.
In a second step, we construct a functor

0′-ModM(X ′)
F ′

−→ M(X )

and show in Proposition 4.5 that it provides an equivalence of abelian categories as well. We
finally endow the two functors F and F ′ with the structure of braided tensor functors and thus
show that the categories 0-ModM(X ) and M(X ) are equivalent as braided tensor categories.

This implies also that the categories are equivalent as ribbon categories: any braided equiv-
alence G : C → D of ribbon categories is an equivalence of ribbon categories. To see this, define
on the image of C under G a new duality by G(X)∗ := G(X∨). The new duality is isomorphic
to the duality in D, thus G(X∨) ∼= G(X)∨. Since in any ribbon category the twist can be
expressed in terms of the dualities and the braiding, the equivalence is also compatible with
the twist.

This concludes our argument that the categories M(X ) and M(X ) are equivalent as ribbon
categories.

We first construct a functor F : 0-ModM(X ) → 0′-ModM(X ′) by restricting the group-action
of X1 to the group-action of I = Im∂.

Construction of F

• To construct the functor F , we spell out the data contained in an object of 0-ModM(X ).
Such an object consists of a X -representation (V, PV , QV ) and a k-linear map ρ : V0⊗V →
V such that

(i) ρV (x⊗ δIy, ρV (x̃⊗ δIỹ, v)) = δ(Iy, Iỹ)ρV (xx̃⊗ δIỹ, v) (0-action)

(ii) ρV (1⊗
∑

Iy∈C δIy, v) = v (unitality of 0-action)

(iii) ρV ◦ P0V = PV ◦ ρV

(iv) ρV ◦Q0V = QV ◦ ρV
(unitality of 0-action)

We introduce the simplified notation with v ∈ V :

x⊗ δIy.v := ρV (x⊗ δIy, v) and δIy.v := 1⊗ δIy.v .

• With the notation VIy := 1⊗ δIy.V , (i) and (ii) imply the decomposition of V as a direct
sum of vector spaces

V =
⊕

Iy∈C

VIy .

14



Similarly, we conclude that for every x ∈ K the action x ⊗ δIy. is an automorphism of
vector spaces

x⊗ δIy.VIy = VIy . (20)

We next show that for all m ∈ X2, Iy ∈ C, we have

PV (m)VIy ⊂ VIy . (21)

Indeed,

P0V (m)(x⊗ δIy ⊗ v) =
∑

n∈X2

P0(n)(x⊗ δIy)⊗ PV (n
−1m)v

=
∑

n∈X2

δ(ny, x)(x⊗ δIy)⊗ PV (n
−1m)v

= (x⊗ δIy)⊗ PV ((x
y−1

)−1m)v

and from (iii), we conclude

PV (m)(x⊗ δIy.v) = x⊗ δIy.(PV ((x
y−1

)−1m)v) .

• From (iv) we conclude that for all Iy, Iỹ ∈ C, we have vector space isomorphisms
Q(ỹy−1) : VIy → VIỹ and that we have for all h ∈ I

QV (h)VIy = VIy . (22)

Indeed, we find with g ∈ X2

Q0V (g)(x⊗ δIy ⊗ v) = Q0(g)(x⊗ δIy)⊗QV (g)v = (x⊗ δIgy)⊗QV (g)v

and thus by (iv)
QV (g)(x⊗ δIy.v) = x⊗ δIgy.(QV (g)v) .

• From equations (20) - (22) we conclude that every subvector space VIy is invariant under
the action of x ∈ K, m ∈ X2 and h ∈ I. In particular, every vector space VIy is a
X ′-representation. It becomes a 0′ = C[K]-module by setting ρ′V (x, v) := ρV (x⊗ δIy, v).

All these 0′-modules are isomorphic. We select the 0′-module VI as the image of the
functor F :

F (V, PV , QV , ρV ) := (VI , PV , QV |I , ρV ( ⊗ δI , )) .

On morphisms, we set

F (φ : V →W ) := φ|VI
: VI →WI .

Indeed, the image of the vector space VI under φ : V → W is contained in WI , since φ
commutes with the action, φ(VI) = φ(ρV (1⊗ δI , V )) = ρW (1⊗ δI , φ(V )) ⊂WI .
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Proposition 4.2.

The functor F presented in the above construction provides an equivalence of abelian categories
0-ModM(X ) ≃ 0′-ModM(X ′).

Proof:

We show that the functor is fully faithful and essentially surjective. To show essential surjec-
tivity, consider an object (W,P ′

W , Q
′
W , ρ

′
W ) in 0′-ModM(X ′).

To find the preimage, we use induction from I to x1: consider the object (V, PV , QV , ρV ) in
0′-ModM(X ′) with

V =
⊕

Iy∈C

WIy

and action
QV = IndX1

I Q′
W : X1 → End(V ) .

We introduce a X2-grading by

PV (m)wIy = (PV (m)w)Iy

and the structure of a 0-module by

ρV (x⊗ δIy, wIỹ) := δ(Iy, Iỹ)(ρ′W (x, w))Iy .

A straightforward calculation shows that the image of this object under F is (W,P ′
W , Q

′
W , ρ

′
W ).

To show that F is fully faithful, we note that a morphism φ : V →W from (V, PV , QV , ρV )
to (W,PW , QW , ρW ) is determined by its restriction to VI , since for any v ∈ V , we have

φ(v) =
∑

Iy∈C

φ(1⊗ δIy.v) =
∑

Iy∈C

φ(Q(y)Q(y−1)1⊗ δIy.v)

=
∑

Iy∈C

Q(y)φ (1⊗ δI .Q(y
−1)v)︸ ︷︷ ︸

∈VI

.

�

We next construct an equivalence F ′ : 0′-ModM(X ′) → M(X ). The idea is to take
coinvariants with respect to the action of the kernel K := ker ∂.

Construction of F ′

• To construct an equivalence F ′ : 0′-ModM(X ′) → M(X ) we spell out explicitly the data
contained in an object (W,PW , QW , ρW ) of 0′-ModM(X ′): here (W,PW , QW ) is an object
of M(X ′) and ρW : C[K]⊗W → W is a k-linear map such that

(i) ρW (x, ρW (x̃, w)) = ρ(xx̃, w)

(ii) ρW (1, w) = w

(iii) ρW ◦ P0
′W = PW ◦ ρW

(iv) ρW ◦Q0
′W = QW ◦ ρW
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We introduce the shorthand notation x.w for ρW (x, w).

• From the first two axioms we conclude that for all x ∈ K, the action is an isomorphism.
As a X ′-module, we decompose W

W =
⊕

m∈X2

Wm with Wm := P (m)W .

From (iii) we conclude as in the construction of F

x.P (m)w = P (xn)x.w . (23)

Thus the action of x implies for Km = Kn in X2/K the isomorphy of vector spaces
Wm

∼= Wn. Again as in the construction of F , we conclude

x.(Q(g)w) = Q(g)(x.w) for all g ∈ X1 . (24)

• We now define F ′ by taking coinvariants with respect to the action of K = ker ∂. On
objects, we have

F ′(W,PW , QW , ρW ) := (WK , PWK
, QWK

)

with
WK :=W/(x.w − w|x ∈ K,w ∈ W )

PWK
(Km)w := PW (m)w

QWK
(h)w := QW (h)w .

From (23) and (24) we deduce that the maps PWK
and QWK

are well-defined. On mor-
phisms, we consider the restriction

F (f : W → V ) := (fK :WK → VK)

and obtain a k-linear functor F ′.

Proposition 4.3.

The functor F ′ presented in the above construction provides an equivalence of abelian categories
0′-ModM(X ′) ≃ M(X ).

Proof:

To show that F ′ is essentially surjective, we construct for (V, PV , QV ) ∈ M(X ′) an object
(W,PW , QW , ρW ) ∈ 0′-ModM(X ) with

W :=
⊕

x∈K

Wx ,

where Wx
∼= V as a X1-representation for all x ∈ K. On W we define an action of K by

x.wx̃ := wxx̃ .

To define an action of X2, choose representatives (Km) and set

PW (xm)wx̃ := δ(x, x̃)PWx
(Km)wx .
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The image under F of the object constructed is isomorphic to (V, PV , QV ), showing essential
surjectivity.

As in the proof of proposition 4.2, we conclude that a morphism φ : V → W is uniquely
determined by the map φK induced on coinvariants. �

It remains to endow the functors with more structure.

Proposition 4.4.

Consider the morphism
ϕ0 :C[K]

x

→

7→

C[K]⊗ C(δI)

x⊗ δI

and for all objects V,W of 0′-ModM(X ′) the morphisms:

ϕ2(V,W ) :F (V )⊗0
′ F (W )

vI ⊗0
′ wI

→

7→

F (V ⊗0 W )

vI ⊗0 wI .

These morphisms endow the functor F : 0−ModM(X ) → 0′-ModM(X ′) with the structure of a
braided tensor functor.

Proof:

Bijectivity of ϕ0 is obvious. To check bijectivity of ϕ2(V,W ), we note that the equation
v⊗0 w = δI .(v⊗0 w) = δI .v⊗0 δI .w for v⊗0 w ∈ F (V ⊗W ) implies v⊗0 w = ϕ2(δI .v⊗0

′ δI .w)
and hence surjectivity. On the other hand, ϕ2(V,W )(vI ⊗0′ wI) = 0 implies vI = 0 and wI = 0
and thus injectivity of ϕ2. The verification that (F, ϕ0, ϕ2) is a tensor functor is routine.

To show that the tensor functor (F, ϕ0, ϕ2) is braided, we have to check that for any pair
of objects (V, PV , QV ), (W,PW , QW ) the diagram

F (V )⊗0′ F (W )
ϕ2

−−−→ F (V ⊗0 W )yRF (V ),F (W )

yF (RV,W )

F (W )⊗0
′ F (V )

ϕ2
−−−→ F (W ⊗0 V )

commutes; indeed,

F (RV,W ) ◦ ϕ2(V,W )(v ⊗0
′ w) = F (RV,W )(v ⊗0 w)

=
∑

n∈X2

QW (∂′m)w ⊗0 PV (m)v

= ϕ2

(
∑

n∈X2

QW (∂′m)w ⊗0′ PV (m)v

)

= ϕ2 ◦RF (V ),F (W )(v ⊗0′ w) .

Hence (F, ϕ0, ϕ2) is a braided tensor functor.
�
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Proposition 4.5. Consider the morphisms

ϕ′
0 :C

λ

→

7→

(C[K])K

λx x ∈ K

and for all objects V,W of M(X )

ϕ′
2(V,W ) :VK ⊗WK

v ⊗ w

→

7→

(V ⊗0
′ W )K

v ⊗0
′ w .

These morphisms endow the functor F ′ : 0′-ModM(X ′) → M(X ) with the structure of a braided
tensor functor.

Proof:

We first remark that ϕ′
0 is well-defined, since for x, x′ ∈ K we have x = x′ in (C[K])K . The

bijectivity of ϕ0 is immediate from dimk(C[K])K = 1 and ker ϕ′
0 = 0.

To check that also ϕ′
2(V,W ) is well-defined, we first remark that the action of x ∈ K on

v ⊗0
′ w ∈ V ⊗0

′ W reads

x.(v ⊗0
′ w) = x.v ⊗0

′ w = v ⊗0
′ x.w .

Now take v, v′ ∈ V and w,w′ ∈ W such that

v ⊗ w = v′ ⊗ w′ .

Then we can find x, x̃ ∈ K such that v′ = x.v and w′ = x̃.w and we have by the proceeding
remark

v ⊗0
′ w = xx̃.(v ⊗0

′ w) = x.v ⊗0
′ x̃.w

and thus
ϕ′
2(v ⊗ w) = ϕ′

2(v
′ ⊗ w′) .

An inverse of ϕ′
2 can be given directly by

ϕ
′−1
2 (v ⊗0′ w) = v ⊗ w .

One checks by direct computations that (F ′, ϕ′
0, ϕ

′
2) is a tensor functor. Finally, (F ′, ϕ′

0, ϕ
′
2)

is braided, since we have

F ′(RVW ) ◦ ϕ′
2(v ⊗ w) = F ′(RVW )(v ⊗0′ w)

=
∑

Km∈X2/K

Q(∂̄Km)w ⊗0
′ P (Km)v

= ϕ′
2


 ∑

Km∈X2/K

Q(K∂̄m)w ⊗ P (Km)v




= ϕ′
2 ◦RVKWK

(v ⊗ w) .

�

19



Acknowledgements

We thank Jürgen Fuchs, Thomas Nikolaus and Ingo Runkel for helpful discussions. The authors
are partially supported by the DFG Priority Program 1388 “Representation theory”.

References

[BK] B. Bakalov, A. Kirilov, Lectures on tensor categories and modular functors, American
Mathematical Society, Providence, 2000

[Ba] P. Bantay, Characters of Crossed Modules and premodular Categories,
London Mathematical Society Lecture Note Series 372 (2010) math.QA/0512542
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